
Chapter 6

Formal Language Theory

In this chapter, we introduce formal language theory, the computational
theories of languages and grammars. The models are actually inspired by
formal logic, enriched with insights from the theory of computation.

We begin with the definition of a language and then proceed to a rough
characterization of the basic Chomsky hierarchy. We then turn to a more de-
tailed consideration of the types of languages in the hierarchy and automata
theory.

6.1 Languages

What is a language? Formally, a language L is defined as as set (possibly
infinite) of strings over some finite alphabet.

Definition 7 (Language) A language L is a possibly infinite set of strings
over a finite alphabet Σ.

We define Σ∗ as the set of all possible strings over some alphabet Σ. Thus
L ⊆ Σ∗. The set of all possible languages over some alphabet Σ is the set of
all possible subsets of Σ∗, i.e. 2Σ∗

or ℘(Σ∗). This may seem rather simple,
but is actually perfectly adequate for our purposes.

6.2 Grammars

A grammar is a way to characterize a language L, a way to list out which
strings of Σ∗ are in L and which are not. If L is finite, we could simply list

94

CHAPTER 6. FORMAL LANGUAGE THEORY 95

the strings, but languages by definition need not be finite. In fact, all of the
languages we are interested in are infinite. This is, as we showed in chapter 2,
also true of human language.

Relating the material of this chapter to that of the preceding two, we
can view a grammar as a logical system by which we can prove things. For
example, we can view the strings of a language as WFFs. If we can prove
some string u with respect to some language L, then we would conclude that
u is in L, i.e. u ∈ L.

Another way to view a grammar as a logical system is as a set of formal
statements we can use to prove that some particular string u follows from
some initial assumption. This, in fact, is precisely how we presented the
syntax of sentential logic in chapter 4. For example, we can think of the
symbol WFF as the initial assumption or symbol of any derivational tree of
a well-formed formula of sentential logic. We then follow the rules for atomic
statements (page 47) and WFFs (page 47).

Our notion of grammar will be more specific, of course. The grammar
includes a set of rules from which we can derive strings. These rules are
effectively statements of logical equivalence of the form: ψ → ω, where ψ
and ω are strings.1

Consider again the WFFs of sentential logic. We know a formula like
(p∧q′) is well-formed because we can progress upward from atomic statements
to WFFs showing how each fits the rules cited above. For example, we
know that p is an atomic statement and q is an atomic statement. We also
know that if q is an atomic statement, then so is q′. We also know that
any atomic statement is a WFF. Finally, we know that two WFFs can be
assembled together into a WFF with parentheses around the whole thing and
a conjunction ∧ in the middle.

We can represent all these steps in the form ψ → ω if we add some
additional symbols. Let’s adoptW for a WFF and A for an atomic statement.
If we know that p and q can be atomic statements, then this is equivalent to
A → p and A → q. Likewise, we know that any atomic statement followed
by a prime is also an atomic statement: A→ A′. We know that any atomic
statement is a WFF: W → A. Last, we know that any two WFFs can be

1These statements seem to go in only one direction, yet they are not bound by the
restriction we saw in first-order logic where a substitution based on logical consequence
can only apply to an entire formula. It’s probably best to understand these statements
as more like biconditionals, rather than conditionals, even though the traditional symbol
here is the same as for a logical conditional.

CHAPTER 6. FORMAL LANGUAGE THEORY 96

conjoined: W → (W ∧W).
Each of these rules is part of the grammar of the syntax of WFFs. If

every part of a formula follows one of the rules of the grammar of the syntax
of WFFs, then we say that the formula is indeed a WFF.

Returning to the example (p ∧ q′), we can show that every part of the
formula follows one of these rules by constructing a tree.

(6.1) W

(W

A

p

∧ W

A

A

q

′

)

Each branch corresponds to one of the rules we posited. The mother of
each branch corresponds to ψ and the daughters to ω. The elements at the
very ends of branches are referred to as terminal elements, and the elements
higher in the tree are all non-terminal elements. If all branches correspond
to actual rules of the grammar and the top node is a legal starting node,
then the string is syntactically well-formed with respect to that grammar.

Formally, we define a grammar as {VT , VN , S, R}, where VT is the set of
terminal elements, VN is the set of non-terminals, S is a member of VN , and
R is a finite set of rules of the form above. The symbol S is defined as the
only legal ‘root’ non-terminal. As in the preceding example, we use capital
letters for non-terminals and lowercase letters for terminals.

Definition 8 (Grammar) {VT , VN , S, R}, where VT is the set of terminal
elements, VN is the set of non-terminals, S is a member of VN , and R is a
finite set of rules.

Looking more closely at R, we will require that the left side of a rule
contain at least one non-terminal element and any number of other elements.
We define Σ as VT ∪ VN , all of the terminals and non-terminals together. R
is a finite set of ordered pairs from Σ∗VNΣ∗ ×Σ∗. Thus ψ → ω is equivalent
to 〈ψ, ω〉.

CHAPTER 6. FORMAL LANGUAGE THEORY 97

Definition 9 (Rule) R is a finite set of ordered pairs from Σ∗VNΣ∗ × Σ∗,
where Σ = VT ∪ VN .

We can now consider grammars of different types. The simplest case
to consider first, from this perspective, are context-free grammars, or Type
2 grammars. In such a grammar, all rules of R are of the form A → ψ,
where A is a single non-terminal element of VN and ψ is a string of terminals
from VT and non-terminals from VN . Such a rule says that a non-terminal
A can dominate the string ψ in a tree. These are the traditional phrase-
structure taught in introductory linguistics courses. The set of languages
that can be generated with such a system is fairly restricted and derivations
are straightforwardly represented with a syntactic tree. The partial grammar
we exemplified above for sentential logic was of this sort.

A somewhat more powerful system can be had if we allow context-sensitive
rewrite rules, e.g. A→ ψ/α β (where ψ cannot be ǫ). Such a rule says that
A can dominate ψ in a tree if ψ is preceded by α and followed by β. If
we set trees aside, and just concentrate on string equivalences, then this is
equivalent to αAβ → αψβ. Context-sensitive grammars are also referred to
as Type 1 grammars.

In the other direction from context-free grammars, that is toward less
powerful grammars, we have the regular or right-linear or Type 3 grammars.
Such grammars only contain rules of the following form: A→ xB or A→ x.
The non-terminal A can be rewritten as a single terminal element x or a
single non-terminal followed by a single terminal.

(6.2) 1 context-sensitive A→ ψ/α β

2 context-free A→ ψ

3 right-linear

{

A→ x B

A→ x

}

We will see that these three types of grammars allow for successively
more restrictive languages and can be paired with specific types of abstract
models of computers. We will also see that the formal properties of the most
restrictive grammar types are quite well understood and that as we move up
the hierarchy, the systems become less and less well understood, or, more
and more interesting.

CHAPTER 6. FORMAL LANGUAGE THEORY 98

Let’s look at a few examples. For all of these, assume the alphabet is
Σ = {a, b, c}.

How might we define a grammar for the language that includes all strings
composed of one instance of b preceded by any number of instances of a:
{b, ab, aab, aaab, . . .}? We must first decide what sort of grammar to write
among the three types we’ve discussed. In general, context-free grammars
are the easiest and most intuitive to write. In this case, we might have
something like this:

(6.3) S → A b

A→ ǫ

A→ A a

This is an instance of a context-free grammar because all rules have a single
non-terminal on the left and a string of terminals and non-terminals on the
right. This grammar cannot be right-linear because it includes rules where
the right side has a non-terminal followed by a terminal. This grammar
cannot be context-sensitive because it contains rules where the right side is
ǫ. For the strings b, ab, and aab, this produces the following trees.

(6.4)
S

A

ǫ

b

S

A

A

ǫ

a

b

S

A

A

A

ǫ

a

a

b

In terms of our formal characterization of grammars, we have:

CHAPTER 6. FORMAL LANGUAGE THEORY 99

(6.5) VT = {a, b}

VN = {S,A}

S = S

R =

S → A b

A→ ǫ

A→ A a

Other grammars are possible for this language too. For example:

(6.6) S → b

S → A b

A→ a

A→ A a

This grammar is context-free, but also qualifies as context-sensitive. We no
longer have ǫ on the right side of any rule and a single non-terminal on the left
qualifies as a string of terminals and non-terminals. This grammar produces
the following trees for the same three strings.

(6.7)
S

b

S

A

a

b

S

A

A

a

a

b

We can also write a grammar that qualifies as right-linear that will char-
acterize this language.

(6.8) S → b

S → a S

This produces trees as follows for our three examples.

CHAPTER 6. FORMAL LANGUAGE THEORY 100

(6.9)
S

b

S

a S

b

S

a S

a S

b

Let’s consider a somewhat harder case: a language where strings begin
with an a, end with a b, with any number of intervening instances of c, e.g.
{ab, acb, accb, . . .}. This can be described using all three grammar types.
First, a context-free grammar:

(6.10) S → a C b

C → C c

C → ǫ

This grammar is neither right-linear nor context-sensitive. It produces trees
like these:

(6.11)

S

a C

ǫ

b

S

a C

C

ǫ

c

b

S

a C

C

C

ǫ

c

c

b

Here is a right-linear grammar that generates the same strings:

(6.12) S → a C

C → c C

C → b

CHAPTER 6. FORMAL LANGUAGE THEORY 101

This produces trees as follows for the same three examples:

(6.13)
S

a C

b

S

a C

c C

b

S

a C

c C

c C

b

We can also write a grammar that is both context-free and context-
sensitive that produces this language.

(6.14) S → a b

S → a C b

C → C c

C → c

This results in the following trees.

(6.15)
S

a b

S

a C

c

b

S

a C

C

c

c

b

We will see that the set of languages that can be described by the three
types of grammar are not the same. Right-linear grammars can only accom-
modate a subset of the languages that can be treated with context-free and
context-sensitive grammars. If we set aside the null string ǫ, context-free
grammars can only handle a subset of the languages that context-sensitive
grammars can treat.

CHAPTER 6. FORMAL LANGUAGE THEORY 102

In the following sections, we more closely examine the properties of the
sets of languages each grammar formalism can accommodate and the set of
abstract machines that correspond to each type.

6.3 Finite State Automata

In this section, we treat finite state automata. We consider two types of
finite state automata: deterministic and non-deterministic. We define each
formally and then show their equivalence.

What is a finite automaton? In intuitive terms, it is a very simple model
of a computer. The machine reads an input tape which bears a string of
symbols. The machine can be in any number of states and, as each symbol is
read, the machine switches from state to state based on what symbol is read
at each point. If the machine ends up in one of a set of particular states,
then the string of symbols is said to be accepted. If it ends up in any other
state, then the string is not accepted.

What is a finite automaton more formally? Let’s start with a determin-
istic finite automaton (DFA). A DFA is a machine composed of a finite set
of states linked by arcs labeled with symbols from a finite alphabet. Each
time a symbol is read, the machine changes state, the new state uniquely
determined by the symbol read and the labeled arcs from the current state.
For example, imagine we have an automaton with the structure in figure 6.16
below.

(6.16)
q0 q1

b

b

a a

There are two states q0 and q1. The first state, q0, is the designated start
state and the second state, q1, is a designated final state. This is indicated
with a dark circle for the start state and a double circle for any final state.
The alphabet Σ is defined as {a, b}.

This automaton describes the language where all strings contain an odd
number of the symbol b, for it is only with an input string that satisfies that
restriction that the automaton will end up in state q1. For example, let’s
go through what happens when the machine reads the string bab. It starts
in state q0 and reads the first symbol b. It then follows the arc labeled b to

CHAPTER 6. FORMAL LANGUAGE THEORY 103

state q1. It then reads the symbol a and follows the arc from q1 back to q1.
Finally, it reads the last symbol b and follows the arc back to q0. Since q0 is
not a designated final state, the string is not accepted.

Consider now a string abbb. The machine starts in state q0 and reads the
symbol a. It then follows the arc back to q0. It reads the first b and follows
the arc to q1. It reads the second b and follows the arc labeled b back to q0.
Finally, it reads the last b and follows the arc from q0 back to q1. Since q1 is
a designated final state, the string is accepted.

We can define a DFA more formally as follows:

Definition 10 (DFA) A deterministic finite automaton (DFA) is a quintu-
ple 〈K,Σ, q0, F, δ〉, where K is a finite number of states, Σ is a finite alphabet,
q0 ∈ K is a single designated start state, and δ is a function from K × Σ to
K.

For example, in the DFA in figure 6.16, K is {q0, q1}, Σ is {a, b}, q0 is the
designated start state and F = {q1}. The function δ has the following domain
and range:

(6.17) domain range

q0, a q0

q0, b q1

q1, a q1

q1, b q0

Thus, the function δ can be represented either graphically as arcs, as in
(6.16), or textually as a table, as in (6.17).2

The situation of a finite automaton is a triple: (x, q, y), where x is the
portion of the input string that the machine has already “consumed”, q is
the current state, and y is the part of the string on the tape yet to be read.
We can think of the progress of the tape as a sequence of situations licensed
by δ. Consider what happens when we feed abab to the DFA in figure 6.16.
We start with (ǫ, q0, abab) and then go to (a, q0, bab), then to (ab, q1, ab), etc.

2Some treatments distinguish deterministic automata from complete automata. A de-
terministic automaton has no more than one arc from any state labeled with any particular
symbol. A complete automaton has at least one arc from every state for every symbol.

CHAPTER 6. FORMAL LANGUAGE THEORY 104

The steps of the derivation are encoded with the turnstile symbol ⊢. The
entire derivation is given below:

(6.18) (ǫ, q0, abab) ⊢ (a, q0, bab) ⊢ (ab, q1, ab) ⊢ (aba, q1, b) ⊢ (abab, q0, ǫ)

Since the DFA does not end up in a state of F (q0 6∈ F), this string is not
accepted.

Let’s define the turnstile more formally as follows:

Definition 11 (produces in one move) Assume a DFA M , where M =
〈K,Σ, δ, q0, F 〉. A situation (x, q, y) produces situation (x′, q′, y′) in one move
iff: 1) there is a symbol σ ∈ Σ such that y = σy′ and x′ = xσ (i.e., the
machine reads one symbol), and 2) δ(q, σ) = q′ (i.e., the appropriate state
change occurs on reading σ).

We can use this to define a notion “produces in zero or more steps”: ⊢∗. We
say that S1 ⊢∗ Sn if there is a sequence of situations S1 ⊢ S2 ⊢ . . . ⊢ Sn−1 ⊢
Sn. Thus the derivation in (6.18) is equivalent to the following.

(6.19) (ǫ, q0, abab) ⊢
∗ (abab, q0, ǫ)

Let’s now consider non-deterministic finite automata (NFAs). These are
just like DFAs except i) arcs can be labeled with the null string ǫ, and ii)
there can be multiple arcs with the same label from the same state; thus δ
is a relation, not a function, in a NFA.

Definition 12 (NFA) A non-deterministic finite automaton M is a quin-
tuple 〈K,Σ,∆, q0, F 〉, where K, Σ, q0, and F are as for a DFA, and ∆, the
transition relation, is a finite subset of K × (Σ ∪ ǫ) ×K.

Let’s look at an example. The NFA in (6.20) generates the language
where any instance of the symbol a must have at least one b on either side
of it; the string must begin with at least one instance of b.

(6.20)

q0 q1

b

a

b

b

CHAPTER 6. FORMAL LANGUAGE THEORY 105

Here, q0 is the designated start state and q1 is in F . We can see that
there are two arcs from q0 on b, but none on a; this is thus necessarily
non-deterministic.

The transition relation ∆ can be represented in tabular form as well.
Here, we list all the mappings for every combination of K × Σ∗.

(6.21) domain range

q0, a ∅

q0, b {q0, q1}

q1, a {q0}

q1, b {q0}

Given that there are multiple paths through an NFA for any particular
string, how do we assess whether a string is accepted by the automaton? To
see if some string is accepted by a NFA, we see if there is at least one path
through the automaton that terminates in a state of F .

Consider the automaton above and the string bab. There are several paths
that work.

(6.22) a. (ǫ, q0, bab) ⊢ (b, q0, ab) ⊢?

b. (ǫ, q0, bab) ⊢ (b, q1, ab) ⊢ (ba, q0, b) ⊢ (bab, q0, ǫ)

c. (ǫ, q0, bab) ⊢ (b, q1, ab) ⊢ (ba, q0, b) ⊢ (bab, q1, ǫ)

There are three paths possible. The first, (6.22a), doesn’t terminate. The
second terminates, but only in a non-final state. The third, (6.22c), termi-
nates in a final state. Hence, since there is at least one path that terminates
in a final state, the string is accepted.

It’s a little trickier when the NFA contains arcs labeled with ǫ. For
example:

(6.23)

q0 q1

a

ǫ

b

a

a

b

CHAPTER 6. FORMAL LANGUAGE THEORY 106

Here we have the usual sort of non-determinism with two arcs labeled with
a from q0. We also have an arc labeled ǫ from q1 to q0. This latter sort of
arc can be followed at any time without consuming a symbol. Let’s consider
how a string like aba might be parsed by this machine. The following chart
shows all possible paths.

(6.24) a. (ǫ, q0, aba) ⊢ (a, q0, ba) ⊢ (ab, q0, a) ⊢ (aba, q1, ǫ)

b. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (ab, q1, a) ⊢ (aba, q1, ǫ)

c. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (a, q0, ba) ⊢ (ab, q0, a) ⊢ (aba, q0, ǫ)

d. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (ab, q1, a) ⊢ (ab, q0, a) ⊢ (aba, q0, ǫ)

e. (ǫ, q0, aba) ⊢ (a, q0, ba) ⊢ (ab, q0, a) ⊢ (aba, q1, ǫ) ⊢ (aba, q0, ǫ)

f. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (ab, q1, a) ⊢ (aba, q1, ǫ) ⊢ (aba, q0, ǫ)

g. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (a, q0, ba) ⊢ (ab, q0, a) ⊢ (aba, q1, ǫ)

h. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (a, q0, ba) ⊢ (ab, q0, a) ⊢

(aba, q1, ǫ) ⊢ (aba, q0, ǫ)

i. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (ab, q1, a) ⊢ (ab, q0, a) ⊢ (aba, q1, ǫ)

j. (ǫ, q0, aba) ⊢ (a, q1, ba) ⊢ (ab, q1, a) ⊢ (ab, q0, a) ⊢

(aba, q1, ǫ) ⊢ (aba, q0, ǫ)

The ǫ-arc can be followed whenever the machine is in state q1. It is indicated
in the chart above by a move from q1 to q0 without a symbol being read.
Note that it results in an explosion in the number of possible paths. In this
case, since at least one string ends up in the designated final state q1, the
string is accepted.

Notice that it’s a potentially very scary proposition to determine if some
NFA generates some string x. Given that there are ǫ-arcs, which can be
followed at any time without reading a symbol, there can be an infinite
number of paths for any finite string.3 Fortunately, this is not a problem,
because DFAs and NFAs generate the same class of languages.

Theorem 1 DFAs and NFAs produce the same languages.

Let’s show this. DFAs are obviously a subcase of NFAs; hence any language
generated by a DFA is trivially generated by an NFA.

3This can arise if we have cycles involving ǫ.

CHAPTER 6. FORMAL LANGUAGE THEORY 107

Proving this in the other direction is a little trickier. What we will do is
show how a DFA can be constructed from any NFA (Hopcroft and Ullman,
1979). Recall that the arcs of an NFA can be represented as a map from
K × (Σ ∪ ǫ) to all possible subsets of K. What we do to construct the DFA
is to use these sets of states as literal labels for new states.

For example, in the NFA in (6.20), call it M , we have ∆ as in (6.21). The
possible sets of states are: ∅, {q0}, {q1}, and {q0, q1}.

4 The new DFA M ′ will
then have state labels: [∅], [q0], [q1], and [q0, q1], replacing the curly braces
that denote sets with square braces which we will use to denote state labels.
For the new DFA, we define δ′ as follows:

δ′([q1, q2, . . . , qn], a) = [p1, p2, . . . , pn]

if and only if, in the original NFA:

∆({q1, q2, . . . , qn}, a) = {p1, p2, . . . , pn}

The latter means that we apply ∆ to every state in the first list of states and
union together the resulting states.

Applying this to the NFA in (6.20), we get this chart for the new DFA.

(6.25) δ([∅], a) = [∅]

δ([∅], b) = [∅]

δ([q0], a) = [∅]

δ([q0], b) = [q0, q1]

δ([q1], a) = [q0]

δ([q1], b) = [q0]

δ([q0, q1], a) = [q0]

δ([q0, q1], b) = [q0, q1]

The initial start state was q0, so the new start state is [q0]. Any set containing
a possible final state from the initial automaton is a final state in the new
automaton: [q1] and [q0, q1]. The new automaton is given below.

4Recall that there will be 2K of these.

CHAPTER 6. FORMAL LANGUAGE THEORY 108

(6.26)

[∅] [q1]

[q0] [q0, q1]a

b

a

b
a

b

a

b

This automaton accepts exactly the same language as the previous one.
If we can always construct a DFA from an NFA that accepts exactly the
same language, it follows that there is no language accepted by an NFA that
cannot be accepted by a DFA. 2

Notice two things about the resulting DFA in (6.26). First, there is a
state that cannot be reached: [q1]. Such states can safely be pruned. The
following automaton is equivalent to (6.26).

(6.27)

[∅]

[q0] [q0, q1]a

b

a

b

a

b

Second, notice that the derived DFA can, in principle, be massively bigger
than the original NFA. In the worst case, if the original NFA has n states,
the new automaton can have as many as 2n states.5

In the following, since NFAs and DFAs are equivalent, I will refer to the
general class as Finite State Automata (FSAs).

5There are algorithms for minimizing the number of states in a DFA, but they are
beyond the scope of this introduction. See Hopcroft and Ullman (1979). Even minimized,
it is generally true that an NFA will be smaller than its equivalent DFA.

CHAPTER 6. FORMAL LANGUAGE THEORY 109

6.4 Regular Languages

We now consider the class of regular languages. We’ll show that these are
precisely those that can be accepted by an FSA and which can be generated
by a right-linear grammar.

The regular languages are defined as follows.

Definition 13 (Regular Language) Given a finite alphabet Σ:

1. ∅ is a regular language.

2. For any string x ∈ Σ∗, {x} is a regular language.

3. If A and B are regular languages, then so is A ∪B.

4. If A and B are regular languages, then so is AB.

5. If A is a regular language, then so is A∗.

6. Nothing else is a regular language.

Consider each of these operations in turn. First, we have that any string
of symbols from the alphabet can be a specification of a language. Thus, if
the alphabet is Σ = {a, b, c}, then the regular language L can be {a}.6

If L1 = {a} and L2 = {b}, then we can define the regular language which
is the union of L1 and L2: L3 = L1 ∪ L2, i.e. L3 = {a, b}. In string terms,
this is usually written L3 = (a|b).

We can also concatenate two regular languages, e.g. L3 = L1L2, e.g.
L3 = {ab}.

Finally, we have Kleene star, which allows us to repeat some regular
language zero or more times. Thus, if L1 is a regular language, then L2 = L∗

1

is a regular language, e.g. L2 = {a, aa, aaa, . . .}. In string terms: L2 = a∗.
These operations can, of course, be applied recursively in any order.7 For

example, a(b∗|c)a∗ refers to the language where all strings are composed of
a single instance of a followed by any number of instances of b or a single c,
followed in turn by any number of instances of a.

We can go in the other direction as well. For example, how might we
describe the language where all strings contain an even number of instances
of a plus any number of the other symbols: ((b|c)∗a(b|c)∗a(b|c)∗)∗.

6Notice that it would work just as well to start form any symbol a ∈ Σ here, since we
have recursive concatenation below.

7In complex examples, we can use parentheses to indicate scope.

CHAPTER 6. FORMAL LANGUAGE THEORY 110

6.4.1 Automata and Regular Languages

It turns out that the set of languages that can be accepted by a finite state
automaton is exactly the regular languages.

Theorem 2 A set of strings is a finite automaton language if and only if it
is a regular language.

We won’t prove this rigorously, but we can see the logic of the proof fairly
straightforwardly. There are really only four things that we can do with
a finite automaton, and each of these four correspond to one of the basic
clauses of the definition of a regular language.

First, we have that a single symbol is a legal regular language because we
can have a finite automaton with a start state, a single arc, and a final state.

(6.28)
q0 q1

a

Second, we have concatenation of two regular languages by taking two
automata and connecting them with an arc labeled with ǫ.

(6.29)
FSA 1 FSA 2

ǫ
.

We connect all final states of the first automaton with the start state of the
second automaton with ǫ-arcs. The final states of the first automaton are
made non-final. The start state of the second automaton is made a non-start
state.

Union is straightforward as well. We simply create a new start state
and then create arcs from that state to the former start states of the two
automata labeled with ǫ. We create a new final state as well, with ǫ-arcs
from the former final states of the two automata.

(6.30)

q0

FSA 2

q1

FSA 1ǫ

ǫ

ǫ

ǫ

CHAPTER 6. FORMAL LANGUAGE THEORY 111

Finally, we can get Kleene star by creating a new start state (which is
also a final state), a new final state, and an ǫ-loop between them.

(6.31)

q0 FSA 1 q1

ǫ

ǫ ǫ

If we can construct an automaton for every step in the construction of a
regular language, it should follow that any regular language can be accepted
by some automaton.8

6.4.2 Right-linear Grammars and Automata

Another equivalence that is of use is that between the regular languages and
right-linear grammars. Right-linear grammars generate precisely the set of
regular languages.

We can show this by pairing the rules of a right-linear grammar with the
arcs of an automaton. First, for every rewrite rule of the form A→ x B, we
have an arc from state A to state B labeled x. For every rewrite rule of the
form A → x, we have an arc from state A to the designated final state, call
it F .

Consider this very simple example of a right-linear grammar.

(6.32) a. S → a A

b. A → a A

c. A → a B

d. B → b

This generates the language where all strings are composed of two or more
instances of a, followed by exactly one b.

If we follow the construction of the FSA above, we get this:

(6.33) S A B F

a a b

a

8A rigorous proof would require that we go through this in the other direction as well,
from automaton to regular language.

CHAPTER 6. FORMAL LANGUAGE THEORY 112

This FSA accepts the same language generated by the right-linear grammar
in (6.32).

Notice now that if FSAs and right-linear grammars generate the same
set of languages and FSAs generate regular languages, then it follows that
right-linear grammars generate regular languages. Thus we have a three-way
equivalence between regular languages, right-linear grammars, and FSAs.

6.4.3 Closure Properties

Let’s now turn to closure properties of the regular languages. By the defini-
tion of regular language, it follows that they are closed under the properties
that define them: concatenation, union, Kleene star. They are also closed
under complement. The complement of some regular language L defined over
the alphabet Σ is L′ = Σ∗ − L.

It’s rather easy to show this using DFAs. In particular, to construct the
complement of some language L, we create the DFA that generates that
language and then swap the final and non-final states.

Let’s consider the DFA in (6.16) on page 102 above. This generates the
language a∗ba∗(ba∗ba∗)∗, where every legal string contains an odd number of
instances of the symbol b, and any number of instances of the symbol a. We
now reverse the final and non-final states so that q0 is both the start state
and the final state.

(6.34)
q0 q1

b

b

a a

This now generates the complement language: a∗(ba∗ba∗)∗. Every legal string
has an even number of instances of b (including zero), and any number of
instances of a.

With complement so defined, and DeMorgan’s Law (the set-theoretic ver-
sion), it follows that the regular languages are closed under intersection as
well. Recall the following equivalences from chapter 3.

(6.35) (X ∪ Y)′ = X ′ ∩ Y ′

(X ∩ Y)′ = X ′ ∪ Y ′

CHAPTER 6. FORMAL LANGUAGE THEORY 113

Therefore, since the regular languages are closed under union and under
complement, it follows that they are closed under intersection. Thus if we
want to intersect the languages L1 and L2, we union their complements, i.e.
L1 ∩ L2 = (L′

1
∪ L′

2
)′.

6.5 Context-free Languages

In this section, we treat the context-free languages, generated with rules of
the form A → ψ, where A is a non-terminal and ψ is a string of terminals
and non-terminals.

From the definition of right-linear grammars and context-free grammars,
it follows that any language that can be described in terms of a right-linear
grammar can be described in terms of a context-free grammar. This is true
trivially since any right-linear grammar is definitionally also a context-free
grammar.

What about in the other direction though? There are languages that can
be described in terms of context-free grammars that cannot be described in
terms of right-linear grammars. Consider, for example, the language anbn:
{ǫ, ab, aabb, aaabbb, . . .}. It can be generated by a context-free grammar, but
not by a right-linear grammar. Here is a simple context-free grammar for
this language:

(6.36) S → a S b

S → ǫ

Here are some sample trees produced by this grammar.

(6.37)
S

ǫ

S

a S

ǫ

b

S

a S

a S

ǫ

b

b

Another language type that cannot be treated with a right-linear gram-
mar is xxR where a string x is followed by its mirror-image xR, including

CHAPTER 6. FORMAL LANGUAGE THEORY 114

strings like aa, bb, abba, baaaaaab, etc. This can be treated with a context-
free grammar like this:

(6.38) S → a S a

S → b S b

S → ǫ

This produces trees like this one:

(6.39) S

b S

a S

a S

a S

ǫ

a

a

a

b

The problem is that both sorts of language require that we keep track
of a potentially infinite amount of information over the string. Context-free
grammars do this by allowing the edges of the right side of rules to depend on
each other (with other non-terminals in between). This sort of dependency
is, of course, not possible with a right-linear grammar.

6.5.1 Pushdown Automata

Context-free grammars are also equivalent to a particular simple computa-
tional model, e.g. a non-deterministic pushdown automaton (PDA). A PDA
is just like a FSA, except it includes a stack, a memory store that can be
utilized as each symbol is read from the tape.

The stack is restricted, however. In particular, symbols can be added to
or read off of the top of the stack, but not to or from lower down in the stack.

CHAPTER 6. FORMAL LANGUAGE THEORY 115

For example, If the symbols a, b, and c are put on the stack in that order,
they can only be retrieved from the stack in the opposite order: c, b, and
then a. This is the intended sense of the term pushdown.9

Thus, at each step of the PDA, we need to know what state we are in,
what symbol is on the tape, and what symbol is on top of the stack. We can
then move to a different state, reading the next symbol on the tape, adding
or removing the topmost symbol of the stack, or leaving it intact. A string
is accepted by a PDA if the following hold:

1. the whole input has been read;

2. the stack is empty;

3. the PDA is in a final state.

A non-deterministic pushdown automaton can be defined more formally
as follows:

Definition 14 A non-deterministic PDA is a sextuple 〈K, Σ, Γ, s, F , ∆〉,
where K is a finite set of states, Σ is a finite set (the input alphabet), Γ
is a finite set (the stack alphabet), s ∈ K is the initial state, F ⊆ K is
the set of final states, and ∆, the set of transitions is a finite subset of
K × (Σ ∪ ǫ) × (Γ ∪ ǫ) ×K × (Γ ∪ ǫ).

Let’s consider an example. Here is a PDA for anbn.

(6.40) States: K = {q0, q1}

Input alphabet: Σ = {a, b}

Stack alphabet: Γ = {c}

Initial state: s = q0

Final states: F = {q0, q1}

Transitions: ∆ =

(q0, a, ǫ) → (q0, c)

(q0, b, c) → (q1, ǫ)

(q1, b, c) → (q1, ǫ)

9A stack is also referred to as “last in first out” (LIFO) memory.

CHAPTER 6. FORMAL LANGUAGE THEORY 116

The PDA puts the symbol c on the stack every time it reads the symbol a
on the tape. As soon as it reads the symbol b, it removes the topmost c from
the stack and moves to state q1, where it removes an c from the stack for
every b that it reads on the tape. If the same number of instances of a and
b are read, then the stack will be empty when there are no more symbols on
the tape.

To see this more clearly, let us define a situation for a PDA as follows.

Definition 15 (Situation of a PDA) A situation of a PDA is a quadru-
ple (x, q, y, z), where q ∈ K, x, y ∈ Σ∗, and z ∈ Γ∗.

This is just like the situation of an FSA, except that it includes a specification
of the state of the stack in z.

Consider now the sequence of situations which shows the operation of the
previous PDA on the string aaabbb.

(6.41) (ǫ, q0, aaabbb, ǫ) ⊢ (a, q0, aabbb, c) ⊢ (aa, q0, abbb, cc) ⊢

(aaa, q0, bbb, ccc) ⊢ (aaab, q1, bb, cc) ⊢ (aaabb, q1, b, c) ⊢

(aaabbb, q1, ǫ, ǫ)

Notice that this PDA is deterministic in the sense that there is no more
than one arc from any state on the same symbol.10 This PDA still qualifies
as non-deterministic under Definition 14, since deterministic automata are
always a subset of non-deterministic automata.

The context-free languages cannot all be treated with deterministic PDAs,
however. Consider the language xxR, where a string is followed by its mirror
image, e.g. aa, abba, bbaabb, etc. We’ve already seen that this is trivially
generated using context-free rules. Here is a non-deterministic PDA that
generates the same language.

10Notice that the PDA is not complete, as there is no arc on a from state q1.

CHAPTER 6. FORMAL LANGUAGE THEORY 117

(6.42) States: K = {q0, q1}

Input alphabet: Σ = {a, b}

Stack alphabet: Γ = {A,B}

Initial state: s = q0

Final states: F = {q0, q1}

Transitions: ∆ =

(q0, a, ǫ) → (q0, A)

(q0, b, ǫ) → (q0, B)

(q0, a, A) → (q1, ǫ)

(q0, b, B) → (q1, ǫ)

(q1, a, A) → (q1, ǫ)

(q1, b, B) → (q1, ǫ)

Here is the sequence of situations for abba that results in the string being
accepted.

(6.43) (ǫ, q0, abba, ǫ) ⊢ (a, q0, bba, A) ⊢ (ab, q0, ba, BA) ⊢

(abb, q1, a, A) ⊢ (abba, q1, ǫ, ǫ)

Notice that at any point where two identical symbols occur in a row, the PDA
can guess wrong and presume the reversal has occurred or that it has not.
In the case of abba, the second b does signal the beginning of the reversal,
but in abbaabba, the second b does not signal the beginning of the reversal.
With a string of all identical symbols, like aaaaaa, there are many ways to
go wrong.

This PDA is necessarily non-deterministic. There is no way to know,
locally, when the reversal begins. It then follows that the set of languages
that are accepted by a deterministic PDA are not equivalent to the set of
languages accepted by a non-deterministic PDA. For example, any kind of
PDA can accept anbn, but only a non-deterministic PDA will accept xxR.

We’ve said that non-determistic PDAs accept the set of languages gener-
ated by context-free grammars.

Theorem 3 Context-free grammars generate the same kinds of languages as
non-deterministic pushdown automata.

CHAPTER 6. FORMAL LANGUAGE THEORY 118

This is actually rather complex to show, but we will show how to construct
a non-deterministic PDA from a context-free grammar. Given a CFG G =
〈VN , VT , S, R〉, we construct a non-deterministic PDA as follows.

1. K = {q0, q1}

2. s = q0

3. F = {q1}

4. Σ = VT

5. Γ = {VN ∪ VT}

There are only two states, one being the start state and the other the sole
final state. The input alphabet is identical to the set of terminal elements
allowed by the CFG and the stack alphabet is identical to the set of terminal
plus non-terminal elements.

The transition relation ∆ is constructed as follows:

1. (q0, ǫ, ǫ) → (q1, S) is in ∆.

2. For each rule of the CFG of the form A → ψ, ∆ includes a transition
(q1, ǫ, A) → (q1, ψ).

3. For each symbol a ∈ VT , there is a transition (q1, a, a) → (q1, ǫ).

Let’s consider how this works with a simple context-free grammar:

(6.44) S → NP V P

V P → V NP

NP → N

N → John

N → Mary

V → loves

We have K, s, and F as above. For Σ and Γ, we have:

CHAPTER 6. FORMAL LANGUAGE THEORY 119

(6.45) Σ = {John, loves,Mary}

Γ = {S,NP, V P, V,N, John, loves,Mary}

The transitions of ∆ are as follows:

(6.46) (q0, ǫ, ǫ) → (q1, S)

(q1, ǫ, S) → (q1, NP V P)

(q1, ǫ, NP) → (q1, N)

(q1, ǫ, V P) → (q1, V NP)

(q1, ǫ, N) → (q1, John)

(q1, ǫ, N) → (q1,Mary)

(q1, ǫ, V) → (q1, loves)

(q1, John, John) → (q1, ǫ)

(q1,Mary,Mary) → (q1, ǫ)

(q1, loves, loves) → (q1, ǫ)

Let’s now look at how this PDA treats an input sentence like Mary loves
John.

(6.47) (ǫ, q0,Mary loves John, ǫ) ⊢

(ǫ, q1,Mary loves John, S) ⊢

(ǫ, q1,Mary loves John, NP V P) ⊢

(ǫ, q1,Mary loves John, N V P) ⊢

(ǫ, q1,Mary loves John,Mary V P) ⊢

(Mary, q1, loves John, V P) ⊢

(Mary, q1, loves John, V NP) ⊢

(Mary, q1, loves John, loves NP) ⊢

(Mary loves, q1, John, NP) ⊢

(Mary loves, q1, John, N) ⊢

(Mary loves, q1, John, John) ⊢

(Mary loves John, q1, ǫ, ǫ)

CHAPTER 6. FORMAL LANGUAGE THEORY 120

This is not a proof that CFGs and PDAs are equivalent, but it shows the
basic logic of that proof.

6.5.2 Closure Properties

The context-free languages are closed under a number of operations including
union, concatenation, and Kleene star. They are not closed under comple-
mentation, nor are they closed under intersection.11

The demonstration that they are not generally closed under intersection
is easy to see. One can show that anbncn is beyond the limits of context-free
grammar. Now we know that anbn is context-free. We can complicate that
just a little and still stay within the limits of context-free grammar: anbncm,
where though the first two symbols must be paired, there can be any number
of instances of the third. If we try to intersect anbncm and ambncn, which is
also of course describable with a context-free grammar, we get anbncn, which
is not context-free.

6.5.3 Natural Language Syntax

The syntax of English cannot be regular. Consider these examples:

(6.48) The cat died.
The cat [the dog chased] died.
The cat [the dog [the rat bit] chased] died.
...

This is referred to as center embedding. Center-embedded sentences generally
require a match between the number of subjects and the number of verbs.
These elements do not occur adjacent to each other (except for the most
embedded pair). This, then, is equivalent to anbn and beyond the range of
the regular languages.12

Most speakers of English find these sentences rather marginal once they
get above two or three clauses. It is thus a little disturbing that the best
example of how natural language syntax cannot be regular is of this sort.

11Though they are, as you might expect, closed under intersection with a regular lan-
guage.

12This argument is due to Partee et al. (1990).

CHAPTER 6. FORMAL LANGUAGE THEORY 121

Notice that if the grammar does not allow center-embedding beyond some
specific number of clauses n, then the grammar can easily be regular. For
example, imagine the upper bound on the anbn pattern is n ≤ 3; this consti-
tutes a finite set of sentences and can just be listed.

Is natural language syntax context-free or context-sensitive? Shieber
(1985) argues that natural language syntax must be context-sensitive based
on data from Swiss German. Examples like the following are grammatical.
(Assume the sentence begins with the phrase Jan säit das ‘John said that’.)

(6.49) mer d’chind em Hans es huus lönd hälfe aastriiche.
we children Hans house let help paint
‘. . . we let the children help Hans paint the house.’

This is equivalent to the language xx, e.g. aa, abab, abaaba, etc., which is
known not to be context-free.13

If the Swiss German pattern is correct, then it means that any formal
account of natural language syntax requires more than a PDA and that a
formalism based on context-free grammar is inadequate. Notice, however,
that, once again, it is essential that the center-embedding be unbounded.

6.5.4 Other Properties of Context-free Languages

Notice that since context-free languages are accepted by non-deterministic
PDAs, determining whether some particular string is accepted by such a
PDA is a more complex operation than for the regular languages.

Recall that, for a regular language, we can always construct a DFA. Thus,
for the regular languages, the number of steps we need to consider to deter-
mine the acceptability of some string s is equivalent to the length of that
string.

On the other hand, if we are interested in whether some string s is ac-
cepted by a non-deterministic PDA, we must keep considering paths through
the automaton until we find one that terminates with the appropriate prop-
erties: end of string, empty stack, in a final state. This may be quite a
few paths to consider. Recall the context-free language xxR and the non-
deterministic PDA we described to treat it. For any string of length n, we

13Shieber actually goes further and shows that examples of this sort are not simply an
accidental subset of the set of Swiss German sentences, but I leave this aside here.

CHAPTER 6. FORMAL LANGUAGE THEORY 122

must entertain the hypothesis that the reversal begins at any point between
1 and n. This entails that we must consider lots of paths for a long string.14

What this means, in concrete terms, is that if some phenomenon can
be treated in finite-state terms or in context-free terms, and efficiency is a
concern, go with the finite-state treatment.

6.6 Other Machines

There are other machines far more powerful than PDAs. For example, there
are Turing machines (TMs). These are like FSAs except i) the reading head
can move in either direction, and ii) it can write to as well as read from the
tape. These properties allow TMs to use unused portions of the input tape
as an unbounded memory store without the access limitations of a stack.
Formally, a TM is defined as follows.

Definition 16 (Turing Machine) A TM is a quadruple (K,Σ, s, δ), where
K is a finite set of states, Σ is a finite alphabet including #, s ∈ K is the
start state, and δ is a partial function from K × Σ to K × (Σ ∪ {L,R}).

Here # is used to mark initially unused portions of the input tape. The logic
of δ is that it maps from particular state/symbol combinations to a new
state, simultaneously (potentially) writing a symbol to the tape and moving
left or right.

TMs can describe far more complex languages than are thought to be
appropriate for human language. For example anbn! can be treated with a
TM. Likewise, an, where n is prime, can be handled with a TM. Hence, while
there is a lot of work in computer science on the properties of TMs, there
has not been a lot of work in grammatical theory using them.

Another machine type that we have not treated so far is the finite state
transducer (FST). The basic idea is that we start with an FSA, but label the
arcs with pairs of symbols. The machine can be thought of as reading two
tapes in parallel. If the pairs of symbols match what is on the two tapes—and
the machine finishes in a designated final state—then the pair of strings is

14It might be thought that we must consider an infinite number of paths, but this is
not necessarily so. Any non-deterministic PDA with an infinite number of paths for some
finite string can be converted into a non-deterministic PDA with only a finite number of
paths for some finite string. See Hopcroft and Ullman (1979).

CHAPTER 6. FORMAL LANGUAGE THEORY 123

accepted. Another way to think of these, however, is that the machine reads
one tape and spits out some symbol every time it transits an arc (perhaps
writing those latter symbols to a new blank tape).

Formally, we can define an FST as follows:

Definition 17 (FST) An FST is a sextuple (K,Σ,Γ, s, F,∆) where K is
a finite set of states, Σ is the finite input alphabet, Γ is the finite output
alphabet, s ∈ K is the start state, F ⊆ K is the set of final states and ∆ is
a relation from K × (Σ ∪ ǫ) to K × (Γ ∪ ǫ).

The relation ∆ moves from state to state pairing symbols of Σ with symbols
of Γ. The instances of ǫ in ∆ allow it to insert or remove symbols, thus
matching strings of different lengths.

For example, here is an FST that operates with the alphabet Σ = {a, b, c},
where anytime a b is confronted on one tape, the machine spits out c.

(6.50)

q0

b : c

a : a

c : c

Such an FST would convert abbcbcaa into acccccaa.
The interest of such machines is twofold. First, like FSAs they are quite

restricted in power and very well understood. Second, many domains of lan-
guage and linguistics are modeled with input–output pairings and a trans-
ducer provides a tempting model for such a system. For example, in phonol-
ogy, if we posit rules that nasalize vowels before nasal consonants, we might
model that with a transducer that pairs oral vowels with nasal vowels just
in case the following segment is a nasal consonant.

Let’s look a little more closely at the kinds of relationships transducers al-
low (Kaplan and Kay, 1994). First we need a notion of n-way concatenation.
This generalizes the usual notion of concatenation to transducers.

Definition 18 (n-way concatenation) If X is an ordered tuple of strings
〈x1, x2, . . . , xn〉 and Y is an ordered tuple of strings 〈y1, y2, . . . , yn〉 then the
n-way concatenation of X and Y , X · Y is defined as 〈x1y1, x2y2, . . . xnyn〉

We also need a way to talk about alphabets that include ǫ. We define Σǫ =
{Σ ∪ ǫ}. With these in place, we can define the notion of a regular relation.

CHAPTER 6. FORMAL LANGUAGE THEORY 124

Definition 19 (Regular Relation) We define the regular relations as fol-
lows:

1. The empty set and all a in Σǫ × . . .× Σǫ are n-way regular relations.

2. If R1, R2, and R are all regular relations, then so are:

R1 · R2 = {xy | x ∈ R1, y ∈ R2} (n-way concatenation)
R1 ∪ R2 (union)
R∗ =

⋃

∞

i=0
Ri (n-way Kleene closure)

3. There are no other regular relations.

It should be apparent that the regular relations are closed under the
usual regular operations.15 The regular relations are closed under a number
of other operations too, e.g. the ones above, but also reversal, inverse, and
composition.

They are not closed under intersection and complementation, however.
For example, imagine we have

R1 = {〈an, bnc∗〉 | n ≥ 0}

and

R2 = {〈an, b∗cn〉 | n ≥ 0}

The intersection is clearly not regular. Each of these languages is, however,
regular. We can see R1 as a : b∗ ǫ : c∗ and R2 as ǫ : b∗ a : c∗. It follows, of
course, that the regular relations are not closed under complementation (by
DeMorgan’s Law).16

6.7 Summary

The chapter began with a presentation of the formal definition of language
and grammar.

15Note that the regular relations are equivalent to the “rational relations” of algebra for
the mathematically inclined.

16Same-length regular relations are closed under intersection.

CHAPTER 6. FORMAL LANGUAGE THEORY 125

We went on to consider different kinds of grammars, covering right-linear
grammars, context-free grammars, and context-sensitive grammars. These
increase in complexity as we go along, such that certain kinds of languages
can only be described by a grammar sufficiently high up in the hierarchy.
For example, anbn and wwR require at least a context-free description, while
ww and anbncn require a context-sensitive description.

We next turned to finite state automata. We gave a formal characteri-
zation and showed how these work. We showed how deterministic and non-
deterministic FSAs are equivalent. We defined the regular languages and
showed how FSAs and right-linear grammars accept and generate them. Fi-
nally, we showed how the regular languages are closed under their defining
properties, but also complement and intersection.

We next considered the context-free languages showing how they can be
accommodated by non-deterministic pushdown automata. We showed how
deterministic pushdown automata were not sufficient to accommodate all the
context-free languages.

We considered the implications of formal language theory for natural
language syntax, citing several arguments that natural language must be
context-free and may even be context-sensitive.

Last, we briefly reviewed two additional abstract machine types: Turing
machines and finite state transducers.

6.8 Exercises

1. Write a right-linear grammar that generates the language where strings
must have exactly one instance of a and any number of instances of the
other symbols.

2. Write a right-linear grammar where strings must contain an a, a b, and
a c in just that order, plus any number of other symbols.

3. Write a context-free grammar where legal strings are composed of some
number of instances of a, followed by a c, followed by exactly the same
number of instances of b as there were of a, followed by another c.

4. Write a context-sensitive grammar where legal strings are composed of
some number of instances of a, followed by exactly the same number of

CHAPTER 6. FORMAL LANGUAGE THEORY 126

instances of b as there were of a, followed by exactly the same number
of instances of c.

5. Write a DFA that generates the language where strings must have
exactly one instance of a and any number of instances of the other
symbols.

6. Write a DFA where strings must contain an a, a b, and a c in just that
order, plus any number of other symbols.

7. Write a DFA where anywhere a occurs, it must be immediately followed
by a b, and any number of instances of c my occur around those bits.

8. Describe this language in words: b(a∗|c∗)c

9. Describe this language in words: b(a|c)∗c

10. Describe this language in words: (a|b|c)∗a(a|b|c)∗a(a|b|c)∗

11. Formalize this language as a regular language: all strings contain pre-
cisely three symbols.

12. Formalize this language as a regular language: all strings contain more
instances of a than of b, in any order, with no instances of c.

13. Explain why wwR cannot be regular.

14. Explain why ww cannot be context-free.

15. Assuming the alphabet {a, b, e, f}, write a transducer which replaces
any instance of a that precedes an f with an e. Otherwise, strings are
unchanged.

