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• based on ongoing joint work with Yuri I. Manin (Max Planck
Institute for Mathematics)

• related work:

M. Marcolli, Gamma Spaces and Information, Journal of
Geometry and Physics, 140 (2019), 26–55.

Yu.I. Manin and M. Marcolli, Nori diagrams and persistent
homology, arXiv:1901.10301, to appear in Mathematics of
Computer Science.

• building mathematical background for future joint work with
Doris Tsao (Caltech neuroscience)
• this work partially supported by FQXi FFF Grant number:
FQXi-RFP-1804, SVCF grant number 2018-190467
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Motivation N.1: Nontrivial Homology

Kathryn Hess’ applied topology group at EPFL: topological
analysis of neocortical microcircuitry (Blue Brain Project)

formation of large number of high dimensional cliques of
neurons (complete graphs on N vertices with a directed
structure) accompanying response to stimuli
formation of these structures is responsible for an increasing
amount of nontrivial Betti numbers and Euler characteristics,
which reaches a peak of topological complexity and then fades
proposed functional interpretation: this peak of non-trivial
homology is necessary for the processing of stimuli in the
brain cortex... but why?
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Motivation N.2: Computational Role of Nontrivial Homology

mathematical theory of concurrent and distributed computing
(Fajstrup, Gaucher, Goubault, Herlihy, Rajsbaum, ...)

initial, final states of processes vertices, d + 1 mutually
compatible initial/final process states d-simplex

distributed algorithms: simplicial sets and simplicial maps

certain distributed algorithms require “enough non-trivial
homology” to successfully complete their tasks
(Herlihy–Rajsbaum)

this suggests: functional role of non-trivial homology to carry
out some concurrent/distributed computation
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Motivation N.3: Neural Codes and Homotopy Types

Carina Curto and collaborators: geometry of stimulus space
can be reconstructed up to homotopy from binary structure of
the neural code

overlaps between place fields of neurons and the associated
simplicial complex of the open covering has the same
homotopy type as the stimulus space

this suggests: the neural code represents the stimulus space
through homotopy types, hence homotopy theory is a natural
mathematical setting
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Motivation N.4: Informational and Metabolic Constraints

neural codes: rate codes (firing rate of a neuron), spike timing
codes (timing of spikes), neural coding capacity for given
firing rate, output entropy

metabolic efficiency of a transmission channel ratio
ε = I (X ,Y )/E of the mutual information of output and input
X and energy cost E per unit of time

optimization of information transmission in terms of
connection weights maximizing mutual information I (X ,Y )

requirement for homotopy theoretic modelling: need to
incorporate constraints on resources and information
(mathematical theory of resources: Tobias Fritz and
collaborators, categorical setting for a theory of resources and
constraints)
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Motivation N.5: Informational Complexity

measures of informational complexity of a neural system have
been proposed, such as integrated information: over all
splittings X = A∪B of a system and compute minimal mutual
information across the two subsystems, over all such splittings

controversial proposal (Tononi) of integrated information as
measure of consciousness (but simple mathematical systems
from error correcting codes with very high integrated
information!)

some better mathematical description of organization of
neural system over subsystems from which integrated
information follows?
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Main Idea for a homotopy theoretic modeling of neural information
networks

Want a space (topological) that describes all consistent ways
of assigning to a population of neurons with a network of
synaptic connections a concurrent/distributed computational
architecture (“consistent” means with respect to all possible
subsystems)
Want this space to also keep track of constraints on resources
and information and conversion of resources and transmission
of information (and information loss) across all subsystems
Want this description to also keep track of homotopy types
(have homotopy invariants, associated homotopy groups):
topological robustness
Why use category theory as mathematical language? because
especially suitable to express “consistency over subsystems”
and ”constraints over resources”
also categorical language is a main tool in homotopy theory
(mathematical theory of concurrent/distributed computing
already knows this!)
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the language of categories

category C two parts of the structure: objects Obj(C) and
morphisms MorC(A,B) between objects φ : A→ B

composition φ ∈ MorC(A,B), ψ ∈ MorC(B,C ) gives
ψ ◦ φ ∈ MorC(A,C ), associativity of composition
(ψ ◦ φ) ◦ η = ψ ◦ (φ ◦ η)

diagrammatic view (string diagrams): objects as wires
(possible states) and morphisms as processes
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functors between categories

comparing different categories: F : C → D a map of objects
F (A) ∈ Obj(D) for A ∈ Obj(C) and a compatible map of
morphisms F (φ) ∈ MorD(F (A),F (B)) for φ ∈ MorC(A,B)

key idea: morphisms describe how objects can be transformed
and functoriality means objects are mapped compatibly with
their possible transformations

comparing functors: natural transformation
F ,G : C → D two functors can be related by η : F → G
which means:

for all objects A ∈ Obj(C) a morphism ηA : F (A)→ G (A) in
MorD(F (A),G (A))
for all φ ∈ MorC(A,B) compatibility (commutative diagram)

F (A)
F (φ) //

ηA

��

F (B)

ηB

��
G (A)

G(φ) // G (B)
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Example: Directed Graphs

category 2 has two objects V ,E and two morphisms
s, t ∈ Mor(E ,V )

F category of finite sets: objects finite sets, morphisms
functions between finite sets

a directed graph is a functor G : 2→ F
G (E ) is the set of edges of the directed graph
G (V ) is the set of vertices of the directed graph
G (s) : G (E )→ G (V ) and G (t) : G (E )→ G (V ) are the usual
source and target maps of the directed graph

category of directed graphs Func(2,F) objects are functors
and morphisms are natural transformations

• Note: general philosophical fact about categories: the devil is in
the morphisms! (objects are easy, morphisms are usually where the
difficulties hide)
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Categorical sum

additional property on a category C, which describes being
able to form composite states/systems

for all A,B objects of C there is a sum object A⊕ B

this is identified (up to unique isomorphism) by a
universal property: there is a unique way of extending
morphisms from A and B to morphisms from A⊕ B

there are morphisms ιA : A→ A⊕ B and ιB : B → A⊕ B
such that, given any morphisms φ : A→ C and ψ : B → C
there exists a unique morphism ξ : A⊕ B → C that completes
commutative diagram

A
ιA //

φ

""

A⊕ B

ξ
��

B
ιBoo

ψ

||
C

if you know how to transform two subsystems A,B this
determines how to transform their composite system A⊕ B
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zero object

an object O that has a unique morphism O → A to any other
object A and a unique morphism A→ O from any other
object

the zero object (when it exists) represents a trivial system

in particular O ⊕ A ∼= A

unital symmetric monoidal category

operation of forming composite systems written as ⊗
diagrammatic rules
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Example: finite pointed sets

prototype example of category with sum and zero-object

objects are finite sets with a choice of a base point (X , x0)

morphisms are maps of finite sets that map base point to base
point f : X → Y with f (x0) = y0

categorical sum X ∨ Y := X t Y /x0 ∼ y0: union of sets with
base points identified

zero-object single point

• Note: pointed sets are an unavoidable nuisance of homotopy
theory! (just think of base point as being there for computational
purposes, while “meaning” is attached only to the rest of the set)
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Example: category of codes

C be a [n, k , d ]2 binary code of length n with #C = qk

category Codesn,∗ of pointed codes of length n

objects codes that contain 0-word c0 = (0, 0, . . . , 0)
exclude code consisting only of constant words
c0 = (0, 0, . . . , 0) and c1 = (1, 1, 1, . . . , 1) (for reasons of
non-trivial information)
morphisms f : C → C ′ functions mapping the 0-word to itself
(don’t require maps of ambient Fn

2)
sum as for pointed sets C ∨ C ′ (glued along the zero-word)
zero-object: code consisting only of the zero word
role of zero-word is like reference point (for neural code,
baseline when no activity detected)

• Note: in coding theory often other form of categorical sum
(decomposable codes), but changes code length n

C ⊕ C ′ := {(c , c ′) ∈ Fn+n′

2 | c ∈ C , c ′ ∈ C ′}
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neural codes

T > 0 time interval of observation, subdivided into some
basic units of time, ∆t

code length n = T/∆t: number of basic time intervals
considered

number of nontrivial code words: neurons oberved

each code word: firing pattern of that neuron, digit 1 for each
time intervals ∆t that contained a spike and 0 otherwise

zero-word baseline of no activity (for comparison)

a neural code for N neurons is a sum C1 ∨ · · · ∨ CN with
Ci = {c0, c} with zero-word c0 and firing pattern c of i-th
neuron
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Example: finite probabilities and fiberwise measures

objects (X ,P) finite pointed sets (X , x0) with probability
measure P (with P(x0) > 0)

morphisms φ : (X ,P)→ (Y ,Q) pairs φ = (f , λ) pointed
function f : (X , x0)→ (Y , y0) with f (supp(P)) ⊆ supp(Q)
and weights λy (x) ∈ R+ for x ∈ f −1(y)

P(A) =
∑

y∈f (A)

∑
x∈f −1(A)

λy (x) ∈ Q(y)

category Pf of finite probabilities with fiberwise measures
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Probability measure associated to a code

binary code C of length n

b(c) number of digits equal to 1 in the word c (Hamming
distance to the reference zero-word c0)

probability distribution

PC (c) =

{
b(c)

n(#C−1) c 6= c0

1−
∑

c ′ 6=c0
b(c ′)

n(#C−1) c = c0

mapping C 7→ PC determines a functor P : Codesn,∗ → Pf
morphisms: λf (c)(c) = PC (c)

PC ′ (f (c))
is ok because only code word

with b(c) = 0 is 0-word c0 and b(c) = n only for the word c1
(assuming codes do not contain only c0 and c1)

the probability PC keeps track of the information transmitted
by the code C
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Example: weighted codes

category of weighted binary codes WCodesn,∗

objects pairs (C , ω) of a code C of length n containing
zero-word c0 and function ω : C → R assigning (signed)
weight to each code word, with ω(c0) = 0

morphisms φ = (f , λ) : (C , ω)→ (C ′, ω′) with f : C → C ′

mapping the zero-word to itself and f (supp(ω)) ⊂ supp(ω′)
and weights λc ′(c) for c ∈ f −1(c ′)

sum (C , ω)⊕ (C ′, ω′) = (C ∨ C ′, ω ∨ ω′) with ω ∨ ω′|C = ω
and ω ∨ ω′|C ′ = ω′

zero object ({c0}, 0)

Matilde Marcolli (Caltech, University of Toronto & Perimeter Institute)Homotopy Theory and Neural Information Networks



Example: concurrent/distributed computing architectures

category of transition systems

G. Winskel, M. Nielsen, Categories in concurrency, in
“Semantics and logics of computation (Cambridge, 1995)”,
pp. 299–354, Publ. Newton Inst., 14, Cambridge Univ. Press,
1997.

models of computation that involve parallel and distributed
processing

objects τ = (S , ι,L, T ) with S set of possible states of the
system, ι initial state, L set of labels, T set of possible
transitions, T ⊆ S × L× S (specified by initial state, label of
transition, final state)

directed graph with vertex set S and with set of labelled
directed edges T
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MorC(τ, τ ′) of transition systems pairs (σ, λ), function
σ : S → S ′ with σ(ι) = ι′ and (partially defined) function
λ : L → L′ of labeling sets such that, for any transition

sin
`→ sout in T , if λ(`) ∈ L′ is defined, then σ(sin)

λ(`)→ σ(sout)
is a transition in T ′

categorical sum

(S , ι,L, T )⊕(S ′, ι′,L′, T ′) = (S×{ι′}∪{ι}×S ′, (ι, ι′),L∪L′, T tT ′)

T t T ′ := {(sin, `, sout) ∈ T } ∪ {(s ′in, `′, s ′out) ∈ T ′}

where both sets are seen as subsets of

(S × {ι′} ∪ {ι} × S ′)× (L ∪ L′)× (S × {ι′} ∪ {ι} × S ′)

zero object is given by the stationary single state system
S = {ι} with empty labels and transitions
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Categories of Resources

mathematical theory of resources

B. Coecke, T. Fritz, R.W. Spekkens, A mathematical theory of
resources, Information and Computation 250 (2016), 59–86.
[arXiv:1409.5531]

Resources modelled by a symmetric monoidal category
(R, ◦,⊗, I)
objects A ∈ Obj(R) represent resources, product A⊗ B
represents combination of resources, unit object I empty
resource

morphisms f : A→ B in MorR(A,B) represent possible
conversions of resource A into resource B

convertibility of resources when MorR(A,B) 6= ∅
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Example of optimization of resources: adjoint functors

a functor ρ : C → R that assigns resources to (computational)
systems

existence of a left adjoint β : R → C such that

MorC(β(A),C ) ' MorR(A, ρ(C )), ∀C ∈ Obj(C), A ∈ Obj(R)

adjoint functor is a solution to an optimization problem

assignment A 7→ β(A) optimal way of associating a
computational system β(A) in the category C to a given
constraints on available resources, encoded by fixing
A ∈ Obj(R)
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system β(A) constructed from resources A: some of resources
A used for the manufacturing of β(A) so one expects
conversion from A to remaining resources available to system
β(A), namely ρ(β(A)) (left rather than a right adjoint)

Freyd’s adjoint functor theorem (condition for existence):
solution set {Cj}j∈J (systems optimal for resources A)
with morphisms uj : A→ ρ(Cj)
for any system C ∈ Obj(C) for which there is a possible
conversion of resources u : A→ ρ(C ) in MorR(A, ρ(C )), there
is one of the systems Cj and a modification of systems
φ : Cj → C in MorC(Cj ,C ) such that conversion of resources
u : A→ ρ(C ) factors through the system Cj , namely
u = ρ(φ) ◦ uj
solution set Ci optimal sytems from which any other system
that uses less resources than A can be obtained via allowed
modifications (morphisms)
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Summing functors

C a category with sum and zero-object (binary codes,
transition systems, resources, etc)

(X , x0) a pointed finite set and P(X ) a category with objects
the pointed subsets A ⊆ X and morphisms the inclusions
j : A ⊆ A′

a functor ΦX : P(X )→ C summing functor if

ΦX (A ∪ A′) = ΦX (A)⊕ ΦX (A′) when A ∩ A′ = {x0}

and ΦX ({x0}) is zero-object of C
ΣC(X ) category of summing functors ΦX : P(X )→ C,
morphisms are natural transformations

• Key idea: a summing functor is a consistent assignment of
resources of type C to all subsystems of X so that a combination
of independent subsystems corresponds to combined resources
• ΣC(X ) parameterizes all possible such assignments
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Segal’s Gamma Spaces

construction introduced in homotopy theory in the ’70s: a
general construction of (connective) spectra (generalized
homology theories)

a Gamma space is a functor Γ : F → ∆ from finite (pointed)
sets to (pointed) simplicial sets

a category C with sum and zero-object determines a Gamma
space ΓC : F → ∆

for a finite set X take category of summing functors ΣC(X )
and simplicial set given by nerve N (ΣC(X )) of this category
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meaning of this construction

nerve of a category: vertices are objects of the category, edges
are morphisms between objects, any chain of compositions of
morphisms gives a simplex: example, a 2-simplex

Z

X

g◦f
>>

f // Y

g

OO

(faces and degeneracies: compose successive morphisms in a
chain, insert identity morphism)

nerve N (ΣC(X )) of category of summing functors organizes
all assignments of C-resources to X -subsystems and their
transformations into a single topological structure that keeps
track of relations between them (morphisms of ΣC(X ) and
their compositions become simplexes of the nerve)
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Systems organized according to networks

instead of finite set X want a directed graph (network) and its
subsystems

directed graph as functor G : 2→ F and functorial
assignment X 7→ ΣC(X )

ΣC(EG ) summing functors ΦE : P(EG )→ C for sets of edges
and ΣC(VG ) summing functors ΦV : P(VG )→ C for sets of
vertices

source and target maps s, t : EG → VG transform summing
functors ΦE ∈ ΣC(EG ) to summing functors in ΣC(VG )

Φs
VG

(A) := ΦEG
(s−1(A)) Φt

VG
(A) := ΦEG

(t−1(A))

assigns to a set of vertices C-resources of in/out edges

categorical statement: source and target maps s, t : EG → VG

determine functors between categories ΣC(EG ) and ΣC(VG ) of
summing functors, hence map between their nerves
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Expressing constraints and optimization in categorical form

limits and colimits in categories

diagram F : J → C and cone N, limit is “optimal cone” (dual
version for colimits)

special cases of limits and colimits: equalizers, coequalizers

Example: thin categories (S ,≤) set of objects S and one
morphism s → s ′ when s ≤ s ′

diagram in (S ,≤) is selection of a subet A ⊂ S
limits and colimits greatest lower bounds and least upper
bounds for subsets A ⊆ S

Key idea: functors compatible with limits and colimits
describe constrained optimization
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Conservation laws at vertices

source and target functors s, t : ΣC(EG ) ⇒ ΣC(VG )

equalizer category ΣC(G ) with functor ι : ΣC(G )→ ΣC(EG∗)
such that s ◦ ι = t ◦ ι with universal property

ΣC(G )
ι // ΣC(EG ) s //

t
// ΣC(VG )

A

∃u

OO
q

99

this is category of summing functors ΦE : P(EG )→ C with
conservation law at vertives: for all A ∈ P(VG )

ΦE (s−1(A)) = ΦE (t−1(A))

in particular for all v ∈ VG have inflow of C-resources equal
outflow

⊕e:s(e)=vΦE (e) = ⊕e:t(e)=vΦE (e)

another kind of conservation law expressed by coequalizer
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Gamma spaces for networks

EC : Func(2,F)→ ∆ with EC(G ) = N (ΣC(G )) nerve of
equalizer of s, t : ΣC(EG ) ⇒ ΣC(VG ) (equalizer of nerves)

• Example: Linear Neuron

category of weighted codes WCodesn,∗

summing functors ΣWCodesn,∗(EG ) and ΣWCodesn,∗(VG )

directed graph G has a single outgoing edge at each vertex:
{e ∈ EG | s(e) = v} = {out(v)}
equalizer condition (categorical version of linear neuron)

(Cout(v), ωout(v)) = ⊕t(e)=v (Ce , ωe)

• Need nonlinearities: thresholds and saturation

need a formulation analogous to chamber structures
(hyperplane arrangements) and different regions of linearity
(as for Hopfield network dynamics, see work of C. Curto and
collaborators) lifted to the level of category of weighted codes
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Things you can do with this

Gamma spaces have associated topological invariants
(homotopy groups) so can decide if assigning resources of type
C or of type R to a network G is “inequivalent” on the basis
of these invariants πk(ΓC(G )) 6= πk(ΓR(G )) for some k ≥ 0

any (functorial) transformation of resources ρ : C → R carries
over the whole structure

ΓCones(G ) describes the assignments of binary codes to a
network (neural codes): passing from codes to probabilities
gives information constraints on the network, functorially
assigning computational architectures (transition systems) to
codes gives computational resources of network, assigning
resources to computational systems gives metabolic
constraints on computational power of the network etc
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More things that are needed

this setting is just an empty stage: like in the modelling of
physical systems kinematics sets the stage but dynamics gives
the actual model

Gamma spaces are just kinematics for consistent assignments
of resources to networks

need to make this setting dynamical to obtain actual models

a possible way to incorporate dynamics is as a flow on the
nerve space N (ΣC(G )): this means fixing the network
geometry by having time-variable resources and other
structures (codes, weights, probabilities, etc)

if also want to make the network G itself dynamical need to
also move in the space of Func(2,F)
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Some goals

obtain estimates of Shannon information, mutual information,
and integrated information for static and dynamical networks
with associated (static or dynamical) codes

obtain a (functorial) mapping of networks with associated
codes to concurrent/distributed computational systems
describing computational capacity of the network

obtain estimates of metabolic constraints from network and
its computational structure

study behavior of dynamical networks in this categorical
setting where dynamics consistently transforms the whole
structure

... in progress!
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