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This lecture is based on:

@ Matilde Marcolli, Gongalo Tabuada, Feynman quadrics motive
of the massive sunset graph, arXiv:1705.10307

Related work:

e M. Bernardara, G. Tabuada, Chow groups of intersections of
quadrics via homological projective duality and (Jacobians of)
non-commutative motives, lzv. Math. 80 (2016) no. 3,
463-4380.

@ M. Marcolli, G. Tabuada, Jacobians of noncommutative
motives, Moscow Mathematical Journal 14 (2014) no. 3,
577-594.
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Sunset Graph

my

ms

perturbative scalar QFT with masses m; (massive propagators
along the edges)
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Previously known (via different method)

@ S. Bloch P. Vanhove, The elliptic dilogarithm for the sunset
graph. J. Number Theory 148 (2015), 328-364

@ S. Bloch, M. Kerr and P. Vanhove, A Feynman integral via
higher normal functions. Compos. Math. 151 (2015) no. 12,
2329-2375.

The motive of the massive sunset graph (computed using graph
hypersurfaces) in dimension D = 2 and D = 4 (case of equal
masses and more general case) is non-mixed Tate (expressed in
terms of elliptic curves).

We work in general dimension D and with Feynman quadrics
instead of graph hypersurfaces
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Feynman graphs

D > 0 spacetime dimension (Euclidean)

(I, m, k) Feynman graph equipped with mass parameters
m = (m,) and external momenta k = (k;)

@ internal edges €; € Ejn (') carry momentum variables
k,' = (/(,'J) € AD
@ edge propagator

D
qi(k) =Yk, + m?
r=1
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Feynman integral I(r’my,.;)

C/HVGVint,(r)5(Ze,-€E;nt(r)6Vg"k’.+ZEJEEGX¢,(F)EVJKJ') H dPk;

Heiggim(r) qi(ki) i€ Eum (1) (2m)P
o C =T, A\v(27)~P with A, coupling constant at vertex v
@ €, ; incidence matrix with entries 1, —1, or 0, for v = s(e),

v=t(e), v&ai(e)
[l dPk; standard volume form in A"P(R)
n := #En (') number of internal edges

Unrenormalized (usually divergent) Feynman integral
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Feynman quadrics
e Notation: v = (v;,) € A"? and v/ = (vi,) € AP et
<V7 V,> = 27:1 ZrD:I Vl'JV/{,r and v? 1= <V’ V> = Zi,r V:%r

e Homogeneous polynomial (nD + 1 variables):
qi(ki,x) : Zk + m?x? = k? + m?x°
(identify k; = (ki,) € AP with v = (v;,) of A"P with k; , for i = j

and 0 otherwise)

e Quadric Hypersurface: Q! c PP
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Linear relations

e delta function in Feynman integral imposes linear relations at
vertices between the momentum variables

U TED S S D
€ €Eing () 6 €Eext(I) & €Eing () & EEcx ()
s(e)=v s(ej)=v t(e)=v t(j)=v

@ N number of independent linear relations

@ choose n — N independent variables ¢ = {{;} among
{ki,..., kn} (loop variables)

@ have N = #Viu (') — 1 so difference
n— N = #En (') — #Vine(T) + 1 is first Betti number
L = by()
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Vanishing external momenta x =0

@ linear subspace of momentum conservation

He= () { ). k- > k=0}cPp®

vEVine(l) ei€Eine() € €Ein: ()
s(e)=v t(ej)=v

@ Feynman quadrics in loop variables
Qi == QN Hr = {qi(¢,x) =0}
e The quadrics Q; are usually singular (cones)

e Notation: coordinates u = (ug : --- : uyp) on PLP with

up :=x, (ur,...,up):=4€r - (ur—1yp,---,up) =41
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Nets of quadrics

@ parameterizing space of all quadric hypersurfaces in PLP is the
LD+2

projective space IP’( > )1 of symmetric

(LD + 1) x (LD + 1)-matrices up to scalar multiples

@ inside this parameterizing space discriminant hypersurface D:
quadratic forms with non-trivial kernel

@ a net of n quadric hypersurfaces in PLP consists of an
LD+2)71

embedding p: P! < ("%
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Net of Feynman quadrics of a graph TI':

p:IP’”_1<—>IP’(LD2+2)_1 0:---:0:1:0:---:0)— Q

LD+2

@ quadric hypersurfaces Q; belong to p(" )’1(R) (the defining
quadratic form g; of the quadric Q; is real)

@ symmetric matrices A;, defined by g;(u) = (u, Aju), can be
written as A; = TI.T T;, with TI.T adjoint of T; with respect to
the bilinear form (v, v/)

@ momentum conservation condition:

S =Y T

s(ej)=v t(ej)=v

7__,' = PT;P with projection P : (UO, e ULD) — (Ul, e ULD)
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Deformations of nets of quadrics
. n—1 (LD+2)71 .
@ one-parameter deformation of p : P"~" — P\ 2 is a
LD+2

morphism j: P"~1 x Al — P("27) -1 with p= ﬁ|]pn71><{0}
e given ¢ € AY(Q), € # 0, write p. for net Plpn—1x{e}
(e-deformation of p)

For any Feynman graph I there is always a one-parameter
deformation § of the net of Feynman quadrics

p€:P”_1<—>]P’(LD2+2)71 (0:---:0:1:0:---:0) = Qi

such that for sufficiently small €
@ the quadrics Q; . belong to ]P’(LD2+2
e the quadrics Q; . belong to ]P’(LD;2)_1(]R) (real)
@ the symmetric matrices A; . can be written as A; . = TI.T6 Tic

)_l\D (smooth)

(positive)
@ momentum conservation condition:
zs(e,-):v Ti,e = Zt(e,-):v Ti,e for T,'76 = P7-,"EP

Matilde Marcolli Sunset Boulevard



These deformations p. maintain physical properties (real, positive,
momentum conservation) while they gain smoothness (replacing
cones with smooth quadrics)

e Sketch of the argument for momentum conservation:
@ choose a spanning tree for the Feynman graph I

@ constructing an e-deformation g; . of quadratic forms g;
associated to the L edges in the complement of the spanning
tree

@ show that there is a unique way to extend the deformation to
the remaining quadratic forms g; on the edges of the spanning
tree so that momentum conservation holds
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The Motive and the Period
Feynman integral in terms of periods of motive associated to the
net of Feynman quadrics

@ motive: in the category of mixed motives DM, (F)g with
F C C algebraically closed

ME my = MP\Qr m)e
Qr,m) = U1 Qi.c union of the quadric hypersurfaces

o algebraic differential forms: oo € N

LD
w = Z(—l)iu; dug A+~ ANdu; A--- Ndugp
i=0
w w

Mo = —a  Toe'= 5 —a
“ [T af o | 97

@ restriction of w to the affine chart AP coords (1, uy,. .., urp)
is affine volume form du; A -+ A duip
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Properties:
e o =1 (divergent) Feynman integral

(27T)D ALD(R) n

°oa> % convergent (regularization)

/ Noe = / Nae
ALD(R) P2D(R)

period of PP\ Q(r m)

exponent « changes superficial degree of convergence of Feynman
integral from §(I') = LD — 2n to 0,(') = DL — 2na

e-deformation Q; . ensures differential form 7, has no poles on
the hyperplane at infinity PEV(R)\ALN(R) = PLN-1(R)
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Sunset Graph

in the specific case of the massive sunset graph there is an explicit
deformation Q; . of the net of quadrics such that

@ Q. smooth, real, positive, satisfying momentum conservation

@ the double intersections Q; . N ;. and the triple intersection
Q1,e N Qe N Q3¢ are all transversal
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main idea
@ usual physical perturbation
2 2 N2
qe’g(k’x) = ke + (me + ’G)X
@ main purpose to move location of poles in the complex plane
@ not good for smoothness and for transversality

@ ... but use as model idea

perturbed quadrics of the Sunset Graph

Zariski open W(m) C A! (depending on mass parameter

m = (my, my, m3), with m; # 0), for every e € W(m) the
deformed quadrics Q1¢, @2¢, @3,c C P20 are smooth, real, positive,
satisfying momentum conservation and transverse intersections

Qi,e N Qj,e and Ql,e N QZ,e N Q3,e
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Motives
e M(X)g mixed motive and M¢(X)g mixed motive with
compact support (isomorphic for smooth projective)
e dual motive dual M(X)" ~ M(X)q(—d)[—2d]
@ category of mixed-Tate motives: triangulated subcategory in
DM, (F)q generated by Tate motives Lk

o if distinguished triangle in DMy, (F)q with two out of three
terms mixed-Tate = third one also mixed-Tate

@ also if distinguished triangle with one term mixed-Tate and
one not = third one must be non-mixed-Tate
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e for any X smooth M(X)qg mixed-Tate iff M°(X)q mixed-Tate
(mixed Tate subcategory stable under duals)

e Mayer-Vietoris triangle: Zariski open cover X = UU V
M (X)g — M (U)g®M(V)g — M (UNV)g — M(X)g[1]

o Gysin triangle: Zariski closed subscheme Z C X with open
complement U

M(Z)q — M (X)g — M (U)g — M (Z)q[l]
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Step 1: the motives M°(P2P\ Q; .)g are mixed-Tate
@ 2D even, quadric hypersurface Q;. C P?P odd-dimensional
@ motivic decomposition of Chow motive (smooth quadrics)
H(Qi)o~1eLaL®2 @ ... L8RP

so M(Qi)o =~ M(Q; ) is mixed-Tate
@ Gysin triangle with X = P20 and 7 = Qi e gives
M€ (P2P\ Q; ) mixed-Tate
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Step 2: M(P2P\(Q;c U Q) ¢))g mixed-Tate iff
M<(P2P\(Qic N Qjc))g mixed-Tate

o Mayer-Vietoris triangle with X := P2P\(Q; . N Q;.),
U:=P2P\Q;. and V :=P?D\Q; .

o this has UNV = P?P\(Qi . U Qj)

e M(U)g and M(V)g mixed-Tate by Step 1

o if two out of three terms mixed-Tate then third term in the
Mayer-Vietoris triangle also mixed-Tate

Matilde Marcolli Sunset Boulevard



Step 3: assume all M¢(P?P\(Q; N Qj))g are mixed-Tate, then
M€ (P2P\ Q(r,m))q is mixed-Tate iff M(P2P\(Q1c N Q2.c N Q3.))
is mixed-Tate

o take U = IP’QD\(QL6 U @) and V = P2D\Q3’E then
unv= P2D\Q(r7m)
M<(V)q mixed-Tate by Step 1
Me(P2P\ (@1 N Qa2.c))g mixed-Tate by assumption
get M¢(U)g mixed Tate by Step 2 and assumption
Mayer-Vietoris triangle: I\/IC(IPQD\Q(r’m))@ mixed-Tate iff
M<(U U V)g mixed-Tate
o take Uiz := P?P\(Q1c N Q) and Uz := P2P\ (@2 N Qs.)

Uiz N Uz = P?P\((Qr.e N @) U (@2 N Qs))

= IPQD\((QI,E U Q275) N Q37€) =yJuvVv

e Mayer-Vietoris triangle: M°(U U V)g mixed-Tate iff
M€ (Uiz U Up3z)g mixed-Tate

2D
Uiz U Uz = P77\ (Q1,e N Q2,e N Q3.)

e 6 6 ¢



Step 4: the motives M¢(P2P\(Q; N Qj))g are mixed-Tate

@ by transversality the intersections Q; . N ;. are smooth
complete intersections of two odd-dimensional quadrics

@ motivic decomposition of Chow motive h(Qj N Qjc)o
(Bernardara-Tabuada)

10LOL22p. - .@L®(D—2)@(L®(D—1))@(2D+2)@L®D@. ..@L®(2D-2)

so M(Qie N Qje)o = M(Qie N Qjc)g mixed-Tate
o Gysin triangle with with X :=P?P and Z := Q; N Q; =
M<(P2P\(Qic N Qj.c))g mixed-Tate
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Step 5: the motive I\/IC(IPQD\(QLE N Q2,c N Q3.c))g is not
mixed-Tate

o same Gysin triangle argument: M<(P20\(QcN Q2. N Qs))o
mixed-Tate iff M°(Q1.c N Qe N Q3,c)p Mixed-Tate

@ by transversality Q1N Q2 N @3,c smooth complete
intersection of three odd-dimensional quadrics

e motivic decomposition of Chow motive h( Q1. N Q2.c N Q3.¢)0
(Bernardara-Tabuada)

10LOLE2®- - - aL2CP)g(h1(JP2(Q1NQ2,cNQs.) ) oLE(P D)

0 JO2(Q1eN @ N Q) is the (D — 2)-th intermediate
algebraic Jacobian of Q1 N Q2. N Q3¢

@ abelian variety J‘_?*2(Q1,E N Q2. N Q3,¢) isomorphic to Prym
variety Prym(C/C)

o Prym variety Prym(C/C) with C discriminant divisor of N
quadric fibration associated to the triple intersection and C
étale double cover of curve C
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o if motive h(Q1,c N Q2,c N Q3,¢)g Were mixed-Tate it would be
sum of powers of Lefschetz motive L, hence only even
dimensional cohomology

@ but first cohomology
H (0(Qu.e N Q2. N Qs.c)g) = HH (0 (Prym(C/C))g)

= H'(Prym(C/C)) # 0

@ so non-mixed-Tate because of term

hl(J;?_2(Q1,e N QeN Q3,e))(@ ® L®(0-1)

Conclusion: the Feynman motive MC(]P’2D\Q(r7m))@ of the Sunset
Graph is non-mixed-Tate (for generic non-zero mass parameters)
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Prym varieties and intermediate Jacobians

o A. Beauville, Variétés de Prym et Jacobiennes intermédiaires.
Ann. Sci. de I'ENS 10 (1977) 309-391.

Prym varieties
o 7 : C — C étale double covering of curves
@ pullback maps on the Jacobians 7* : J — J
e normmap N : J — J (project points of divisor)

@ Prym variety is the kernel of the norm map (largest abelian
subvariety of J on which norm map is trivial)
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Other periods

e same differential form 7, ¢
o taking the derivative with respect to the mass parameter

@ this raises powers of the edge propagators
w
Nay,...,cn = 770 a;
[T g;

@ these are solutions of differential system satisfied by the
Feynman integral

Question: provide an upper bound estimative for the dimension of
the space of these Feynman integrals, through a bound on the
dimension of the space of periods on the Feynman motive
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Dimension bound: upper bound given by 7 + dim H(Prym(C/C))

@ estimate dimension of space of periods in middle cohomology

@ periods are pairing between de Rham and Betti cohomology:
Hak (P*P\Q(rm)) x HE”(P*P\Q(r,m)) — C

@ estimate dimension of middle cohomology HQD(IP’ZD\Q(F,,,,))

o take P = ]PQD, U= ]PQD\(QL6 U 0276)’ V = PZD\Q&E,
Uiz = P2P\(Q1,e N @3,e), Uz = P?P\(@2,c N Qs), and
Q123 = Qe N Qe N Q3¢

e Mayer-Vietoris triangle with UN V = P\Q(rym) gives long
exact sequence in cohomology
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@ in a long exact sequence --- — V™1 —» VI 5 vl ...
dimensions dim(V") < dim(V"~1) + dim(V"*1)
@ long exact sequence in cohomology

oo = H'(UUV) — H(U)@H" (V) — H(UNV) — H Y (UuV) — -
@ this gives estimate on dimensions
dim H2P(P?P\ Qr ) < dim H2P(U)+dim H2P(V)+dim H?P T (UUV)
dim H2PTL(UUV) < dim H?PF(Uy3)+dim H2PF(Ups)+dim H?PT2(P\ Qyz

@ given complete intersection Z1N---NZ.=:Z CP
codimension ¢, Gysin long exact sequence in cohomology:

o= H™2¢(Z) = H'(P) = H"(P\Z) = H">TY(Z2) - H'(P) — - --
e for Uj either Uiz or Uz with Q; N Q; codimension 2
H™(QieNQje) = H'(P) = H'(Uy) = H3(Q;..NQj.c) — HY(P)
@ for r = 2D + 1 estimate:
dim H?P(U;) < dim H?PH(P) 4 dim H2P2(Qi. N Q;.0)
<dim H*P72(Q:. N Q;.0)
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by motivic decomposition have h2P~2(Q; . N Qje)o Lb-1
so get dim H?2P=2(Q; . N Qj) =1
previous estimates give

dim H?2PTH (U U V) < 2 4 dim H?P2(P\ Q1a3)
dim H2P (B20\Qr,my) < 2+dim H20(U)-+dim H20(V)+dim H2072(P\ Quzs

estimate dim H?P+2(PP\ Q123) via Gysin exact sequence

H™%(Qi23) — H'(P) — H' (P~ Qu23) — H°"1(Qu23)

e taking r = 2D + 2 and using B
dim H2D—3(Q123) =dim Hl(Prym(C/C))

dim H?PH2(P\ Q123) < dim H'(Prym(C/C) + 1
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o estimate dim H2P (V) using Gysin exact sequence for Qs
codimension 1

s H2(@3,) = H(P) = HI(V) = H2PH(Q30) — - -
@ get estimate
dim H2P (V) < dim H?P71(Qs ) + dim H?P(P)

@ by motivic decomposition Q3 has no odd cohomology so get
dim H?2P(V) <1

e estimate dim H?P(U) with Mayer-Vietoris long exact sequence
for open cover {P\Q1,c,P\ Q2 } of P\(Q1,e N Q2,c)

dim H22(U) < dim H2P+1(P\(Que N Qo)) + dim H2P(P\ Qy..)
+dim H22(P\ Q...
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e as for Uiz and Uas have dim H?P+1(Up,) < 1
o similarly to V have dim H?P(P\Q;.) < 1
@ so get dim H2D(U) <3

@ combining all these estimates get middle cohomology bounded
by 7 + dim H!(Prym(C/C))

Matilde Marcolli Sunset Boulevard



Massless case: motive of the sunset graph known to be mixed-Tate

e P. Aluffi, M. Marcolli, Feynman motives of banana graphs,
Commun. Number Theory Phys. 3 (2009), no. 1, 1-57.

Why previous argument does not apply?

o quadrics @; in PEP~1 (no x coordinate)

o still deform so quadrics smooth and transverse
o even dimensional quadrics Q; . odd dimensional P2P—1
o

motivic decomposition (Bernardara-Tabuada)

L®i/2 0<i<2d,ieven
H(QiNQiedo =14 H'(U7 QN Qc))o i=d

0 otherwise

@ now find distinguished triangles with two terms
non-mixed-Tate: cannot say anything about third
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One-loop triangle graph: massive case known to be mixed-Tate

e S. Bloch, D. Kreimer, Mixed Hodge structures and
renormalization in physics. Comm. Number Theory Phys. 2
(2008), no. 4, 637-718.

Why previous argument does not apply?

@ if zero external momenta, momentum conservation at
vertices: same momentum entering through an edge exists
through the other

o three Feynman quadrics in same momentum variable k € AP

@ momentum conservation condition for the deformations forces
identification T;. = T; . on consecutive edges

@ no deformation satisfying momentum conservation can
achieve transversality
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