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Question: Are Feynman integrals periods of mixed Tate motives?
(multiple zeta values: extensive example collection
Broadhurst–Kreimer)

• Two methods of computing Feynman integrals (scalar massless
Euclidean quantum field theory): momentum space or configuration
space (Fourier transform)

GR
m(xs − xt) =

1
(2π)D

∫
RD

dp
eip·(xs−xt )

p2 + m2 + iε
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General setting: Motives of algebraic varieties (Grothendieck)
Universal cohomology theory for algebraic varieties (with
realizations)

• Pure motives: smooth projective varieties with correspondences

Hom((X , p,m), (Y , q, n)) = qCorrm−n
/∼,Q(X ,Y ) p

Algebraic cycles mod equivalence (rational, homological, numerical),
composition

Corr(X ,Y )× Corr(Y ,Z )→ Corr(X ,Z )

(πX ,Z )∗(π
∗
X ,Y (α) • π∗Y ,Z (β))

intersection product in X × Y × Z ; with projectors p2 = p and q2 = q
and Tate twists Q(m) with Q(1) = L−1

Numerical pure motives: Mnum,Q(k) semi-simple abelian category
(Jannsen)
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• Mixed motives: varieties that are possibly singular or not projective
(much more complicated theory!) Triangulated category DM
(Voevodsky , Levine, Hanamura)

m(Y )→ m(X)→ m(X r Y )→ m(Y )[1]

m(X × A1) = m(X)(−1)[2]

• Mixed Tate motives DMT ⊂ DM generated by the Q(m)

Over a number field: t-structure, abelian category of mixed Tate
motives (vanishing result, M.Levine)
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Periods and motives:
∫
σ ω numbers obtained integrating an algebraic

differential form over a cycle defined by algebraic equations
Constraints on numbers obtained as periods from the motive of the
variety!

• Periods of mixed Tate motives are Multiple Zeta Values

ζ(k1, k2, . . . , kr ) =
∑

n1>n2>···>nr≥1

n−k1
1 n−k2

2 · · · n−kr
r

Conjecture proved recently:
• Francis Brown, Mixed Tate motives over Z, Annals of Math 2012,
arXiv:1102.1312.

Feynman integrals and periods: MZVs as typical outcome:
• D. Broadhurst, D. Kreimer, Association of multiple zeta values with
positive knots via Feynman diagrams up to 9 loops,
arXiv:hep-th/9609128
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General setting: scalar perturbative QFTs

S(φ) =

∫
L (φ)dDx = S0(φ) + Sint(φ)

in D dimensions, with Lagrangian density

L (φ) =
1
2

(∂φ)2 − m2

2
φ2 −Lint(φ)

Perturbative expansion: Feynman rules and Feynman diagrams

Seff (φ) = S0(φ) +
∑

Γ

U(Γ, φ)

#Aut(Γ)
(1PI graphs)

Amplitudes U(Γ) for fixed external edges of the graph are integral
(generally divergent) on:
• momenta associated to internal edges of the graph with
momentum conservation rules at vertices
• configurations associated to vertices of the graph with divergences
where coordinates collide (diagonals)
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• Momentum space: parametric Feynman integrals, graph
hypersurfaces, motives of graph hypersurfaces not mixed Tate in
general (Belkale–Brosnan, Doryn, Schnetz), period can still be mixed
Tate (Brown, Brown–Schnetz); various results on classes in the
Grothendieck ring (Aluffi-M.)

U(Γ) =
Γ(n − D`/2)

(4π)`D/2

∫
σn

PΓ(t, p)−n+D`/2ωn

ΨΓ(t)−n+D(`+1)/2

σn = {t ∈ Rn
+|
∑

i ti = 1}, volume form ωn

ΨΓ(t) =
∑

T

∏
e/∈T

te

PΓ(p, t) =
∑
C⊂Γ

sC

∏
e∈C

te

sC quadratic function of external momenta pe

XΓ = {t ∈ Pn−1 : ΨΓ(t) = 0}

(projective) graph hypersurfaces
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• Configuration space: wonderful compactifications of graph
configuration spaces; mixed Tate motives; Feynman amplitude and
Laplacian Green functions; explicit results using Gegenbauer
polynomial expansion; pullback to wonderful compactification,
cohomologous to algebraic form with logarithmic poles; deformation
and renormalization.
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Feynman amplitude in configuration space (dim D = 2λ+ 2)

Version N.1:

ωΓ =
∏

e∈EΓ

1
‖xs(e) − xt(e)‖2λ

∧
v∈VΓ

dxv

defines a C∞-differential form on X VΓ with singularities along
diagonals xs(e) = xt(e)

• not closed form

• chain of integration:
σΓ = X(R)VΓ
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Version N.2: (complexification)
Z = X × X with projection p : Z → X , p : z = (x , y) 7→ x

ω
(Z)
Γ =

∏
e∈EΓ

1
‖xs(e) − xt(e)‖2D−2

∧
v∈VΓ

dxv ∧ dx̄v

where ‖xs(e) − xt(e)‖ = ‖p(z)s(e) − p(z)t(e)‖
• closed form

• chain of integration:

σ(Z ,y) = X VΓ × {y = (yv )} ⊂ Z VΓ = X VΓ × X VΓ

for a fixed y = (yv | v ∈ VΓ)
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Relation to Green functions:
• Green function of real Laplacian on AD(R), with D = 2λ+ 2:

GR(x , y) =
1

‖x − y‖2λ

• On AD(C) complex Laplacian

∆ =
D∑

k=1

∂2

∂xk∂x̄k

has Green form

GC(x , y) =
−(D − 2)!

(2πi)D‖x − y‖2D−2

Feynman amplitudes modeled on the two cases
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Different method:
• Version N.1: explicit computation of regularized integral∫

σΓ

ωΓ

using expansion of Green function in Gegenbauer polynomials:
explicit occurrence of multiple zeta values

• Version N.2: cohomological method, pullback ω(Z)
Γ to a

compactification of configuration space where cohomologous to
algebraic form with log poles; regularize to separate poles from chain
of integration; show explicitly motive is mixed Tate

• Discuss first second case (geometric method)
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Graph configuration spaces
X a smooth projective algebraic variety that contains a dense AD: for
instance X = PD, with D spacetime dimension.

Feynman amplitude ωΓ on X VΓ

Singularities of Feynman amplitude along diagonals

∆e = {(xv )v∈VΓ
| xv1 = xv2 for ∂Γ(e) = {v1, v2}}

Graph configuration space:

ConfΓ(X) = X VΓ r
⋃

e∈EΓ

∆e

Goal N.1: compactify ConfΓ(X) to a smooth projective algebraic
variety Conf Γ(X) so that

Conf Γ(X) r ConfΓ(X)

is a normal crossings divisor
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Variants: Version N.2 of configuration space for amplitude ω(Z)
Γ

F(X , Γ) = Z VΓ \
⋃

e∈EΓ

∆
(Z)
e
∼= (X × X)VΓ \

⋃
e∈EΓ

∆
(Z)
e

with diagonals

∆
(Z)
e
∼= {(zv | v ∈ VΓ) ∈ Z VΓ | p(zs(e)) = p(zt(e))}

Relation to previous:

F(X , Γ) ' ConfΓ(X)× X VΓ

∆
(Z)
e
∼= ∆e × X VΓ

Compactify to F(X , Γ) in same way
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Wonderful compactifications
• Fulton–MacPherson configuration spaces (= complete graph case
of ConfΓ(X))

• More general setting for arrangements of subvarieties:
DeConcini–Procesi, Li Li

• General method: realize Conf Γ(X) or F(X , Γ) as a sequence of
blowups of X VΓ (or Z VΓ) along a collection of dominant transforms of
diagonals

• Equivalent description: closure in

ConfΓ(X) ↪→
∏
γ∈GΓ

Bl∆γX VΓ

with GΓ subgraphs induced (all edges of Γ between subset of
vertices) and 2-vertex-connected
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Blowup construction of wonderful compactifications
• Connected induced subgraphs: SGk (Γ) = {γ ∈ SG(Γ) | |Vγ | = k}
and polydiagonals ∆̂γ = {xs(e) = xt(e) : e ∈ Eγ} (same as diagonal
∆γ if γ connected)
• Arrangement of subvarieties in X VΓ : SΓ polydiagonals of disjoint
unions of connected induced subgraphs
• Building set for the arrangement:

GΓ = {∆γ : γ induced, biconnected }

ConfΓ(X) = X VΓ r ∪γ⊂GΓ
∆γ

• Start with Y0 = X VΓ ; obtain Yk from Yk−1 by blowup along the
iterated dominant transforms (=proper transform or inverse image of
exceptional divisor) of

∪γ∈Gn−k+1,Γ∆γ

with Gk ,Γ = GΓ ∩ SGk (Γ) then

Yn−1 = Conf Γ(X)
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Boundary structure
• GΓ-nests: sets of biconnected induced subgraphs with γ ∩ γ′ = ∅
or γ ∩ γ′ = {v} single vertex or γ ⊆ γ′ or γ′ ⊆ γ

Conf Γ(X) r ConfΓ(X) =
⋃

∆γ∈GΓ

Dγ

• divisors Dγ (iterated dominant transform of ∆γ) with

Dγ1 ∩ · · · ∩ Dγ` 6= ∅ ⇔ {γ1, . . . , γ`} is a GΓ-nest

and transverse intersections
• strata parameterized by forests of nested subgraphs (as in
Fulton–MacPherson case)
• case of F(X , Γ) completely analogous
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Motives of configuration spaces – Key ingredient: Blowup formulae

• For mixed motives (Voevodsky category):

m(BlV (Y )) ∼= m(Y )⊕
codimY (V)−1⊕

k=1

m(V )(k)[2k ]

• For Grothendieck classes Bittner relation

[BlV (Y )] = [Y ]− [V ] + [E ] = [Y ] + [V ]([PcodimY (V)−1]− 1)

exceptional divisor E

• Conclusion: the motive of Conf Γ(X) and of F(X , Γ) is mixed Tate if
X is mixed Tate.
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Voevodsky motive: (quasi-projective smooth X )

m(Conf Γ(X)) = m(X)VΓ⊕
⊕

N ∈GΓ-nests,µ∈MN

m(X)VΓ/δN (Γ)(‖µ‖)[2‖µ‖]

where MN := {(µγ)∆γ∈GΓ
: 1 ≤ µγ ≤ rγ − 1, µγ ∈ Z} with

rγ = rγ,N := dim(∩γ′∈N :γ′⊂γ∆γ′)− dim ∆γ and ‖µ‖ :=
∑

∆γ∈GΓ
µγ

Γ/δN (Γ) = Γ//(γ1 ∪ · · · ∪ γr )

for N = {γ1, . . . , γr}
Class in the Grothendieck ring:

[Conf Γ(X)] = [X ]VΓ +
∑

N ∈GΓ-nests

[X ]VΓ/δN (Γ)
∑
µ∈MN

L‖µ‖

Chow motive: (smooth projective X ): from result of Li Li on wonderful
compactifications of arrangements of subvarieties
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Pullback and forms with logarithmic poles
• π∗γ(ω

(Z)
Γ ) pullback to iterated blowup F(X , Γ) of Z VΓ along

dominant transforms of ∆
(Z)
γ of biconnected induced subgraphs

• Divergence locus union of divisors (dominant transforms of ∆
(Z)
γ )⋃

∆
(Z)
γ ∈GΓ

D(Z)
γ

• Chain of integration σ̃(Z ,y)
Γ = ConfΓ(X)× {y} ⊂ F(X , Γ) intersects

divergence locus in

DΓ =
⋃

∆
(Z)
γ ∈GΓ

Dγ × {y} ⊂ ConfΓ(X)× {y}

• pullback π∗γ(ω
(Z)
Γ ) on σ̃(Z ,y)

Γ smooth closed form on

ConfΓ(X) r

 ⋃
γ∈GΓ

Dγ
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Smooth and algebraic forms
• de Rham cohomology of a smooth quasi-projective varieties
computed using algebraic differential forms (Grothendieck)

• if complement of normal crossings divisor can use forms with log
poles (Deligne)

H∗(U ) ' H∗(X ,Ω∗X (log(D)))

•X smooth projective variety dimC m; D normal crossings divisor;
U = X r D ; ω smooth closed differential form degm on U ;
⇒ ∃ algebraic differential form η log poles along D , with
[η] = [ω] ∈ Hm

dR(U )

• Conclusion: ∃ algebraic form η
(Z)
Γ with log poles along union of Dγ ,

cohomologous to π∗γ(ω
(Z)
Γ ) on σ̃(Z ,y)

Γ
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Regularization problem

• η(Z)
Γ algebraic differential form; σ̃(Z ,y)

Γ algebraic cycle: Feynman
integral becomes ∫

σ̃
(Z ,y)
Γ rDΓ

η
(Z)
Γ

would be a period... but divergent!! (because of intersection DΓ of
chain with divisors)

• need a regularization procedure: separate chain of integration from
divergence locus

Two regularization methods

• Principal value current regularization and iterated Poincaré
residues

• Deformation to the normal cone

Özgür Ceyhan and Matilde Marcolli Feynman integrals in configuration space and mixed Tate motives



Current regularization

• Regularized Feynman amplitude:

〈PV (η
(Z)
Γ ), ϕ〉 = lim

λ→0

∫
σ̃

(Z ,y)
Γ

|fn|2λn · · · |f1|2λ1η
(Z ,y)
Γ ϕ

where ϕ test functions; n = nΓ = #GΓ; and fk equation of D(Z)
γk

• Ambiguities of regularization:

σ̃
(Z ,y)
Γ,N ,ε := σ̃

(Z ,y)
Γ ∩ TN ,ε(f ) ∩ NN ,ε(f )

TN ,ε(f ) = {|fk | = εk , k = 1, . . . , r}
NN ,ε(f ) = {|fk | > ε, k = r + 1, . . . , n}

n graphs in GΓ ordered so that first r in the nest N

lim
ε→0

∫
σ̃

(Z ,y)
Γ,N ,ε

ϕη
(Z ,y)
Γ

has a residue (iterated Poincaré residue) supported on

V (Z)
N = D(Z)

γ1
∩ · · · ∩ D(Z)

γr

Özgür Ceyhan and Matilde Marcolli Feynman integrals in configuration space and mixed Tate motives



Iterated Poincaré residue∫
ΣN

RN (ηΓ) =
1

(2πi)r

∫
LN (ΣN )

ηΓ

(2D|VΓ| − r)-cycle ΣN in V (Z)
N ; iterated Leray coboundary

LN (ΣN ) in F(X , Γ) is a T r -torus bundle over ΣN

• If the variety X is a mixed Tate motive, these residues are all
periods of mixed Tate motives

• On intersections of chain of integration and divergence loci

〈RN (ηΓ),VN 〉 =

∫
VN ×{y}

RN (ηΓ)
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Deformation to the normal cone

• extend integral ∫
σ̃

(Z ,y)
Γ

π∗Γ(ω
(Z)
Γ )

to a larger ambient deformation space where can separate σ̃(Z ,y)
Γ

from the divergence locus

• start with Z VΓ × P1, deformation coordinate ζ ∈ P1, and

ω̃
(Z)
Γ =

∏
e∈EΓ

1
(‖xs(e) − xt(e)‖2 + |ζ|2)D−1

∧
v∈VΓ

dxv ∧ dx̄v ∧ dζ ∧ d ζ̄

• divergence locus in the central fiber ζ = 0

∪e∈EΓ
∆

(Z)
e ⊂ Z VΓ × {0}
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• starting with Z VΓ × P1 blowups along ∆
(Z)
γ × {0}, induced

biconnected subgraphs

• obtain smooth projective variety D(Z [Γ]) fibered over P1: fiber over
ζ 6= 0 ∈ P1 equal to Z VΓ ; fiber over ζ = 0 has a component F(X , Γ)
plus other components projectivizations P(C ⊕ 1) of normal cones of
blowups

1)

Bl   (X)

P(C(Y) 

X

Y

X

Y

P(C(Y))

Y

• in D(Z [Γ]) the chain of integration σ̃(Z ,y)
Γ becomes separated from

the locus of divergence
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Deformation: motive and period
• if the motive of X is mixed Tate, then the motive of D(Z [Γ]) is also
mixed Tate (again blowup formulae)

• pullback π̃∗Γ(ω̃
(Z)
Γ ) of form to the deformation along blowup

π̃Γ : D(Z [Γ])→ Z VΓ × P1

• locus of divergence union of divisors in the central fiber of
projection π : D(Z [Γ])→ P1⋃

γ∈GΓ

D(Z)
γ ⊂ π−1(0)

• chain σ(Z ,y)
Γ × P1 with proper transform σ

(Z ,y)
Γ × P1 deformed

inside normal cone away from union of divisors (as in figure) to Σ
(Z ,y)
Γ

• Regularized Feynman amplitude∫
Σ

(Z ,y)
Γ

δ(π−1(0)) π̃∗Γ(ω̃
(Z)
Γ )

is a period of a mixed Tate motive
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Explicit computations of Feynman amplitudes:

Step 1: explicit chains in X VΓ

• Acyclic orientations: Γ no looping edges, Ω(Γ) set of acyclic
orientations; Stanley: (−1)VΓPΓ(−1) acyclic orientations where
PΓ(t) chromatic polynomial

• orientation o ∈ Ω(Γ)⇒ partial ordering of vertices w ≥o v

• chain with boundary ∂Σo ⊂ ∪e∈EΓ
∆e

Σo := {(xv ) ∈ X VΓ(R) : rw ≥ rv whenever w ≥o v}

middle dimensional relative homology class

[Σo] ∈ H|VΓ|(X VΓ ,∪e∈EΓ
∆e)

• Σo r ∪v{rv = 0} bundle fiber (SD−1)VΓ base

Σo = {(rv ) ∈ (R∗+)VΓ : rw ≥ rv whenever w ≥o v}
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Step 2: Gegenbauer polynomials
• Generating function and orthogonality (|t| < 1 and λ > −1/2)

1
(1− 2tx + t2)λ

=
∞∑

n=0

C(λ)
n (x)tn

∫ 1

−1
C(λ)

n (x)C(λ)
m (x) (1− x2)λ−1/2dx = δn,m

π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2

• D = 2λ+ 2 Newton potential expansion in Gegenbauer
polynomials:

1
‖xs(e) − xt(e)‖2λ =

1
ρ2λ

e (1 + ( re
ρe

)2 − 2 re
ρe
ωs(e) · ωt(e))λ

= ρ−2λ
e

∞∑
n=0

(
re

ρe
)nC(λ)

n (ωs(e) · ωt(e)),

with ρe = max{‖xs(e)‖, ‖xt(e)‖} and re = min{‖xs(e)‖, ‖xt(e)‖} and
with ωv ∈ SD−1
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Step 3: angular and radial integrals
• on chain of integration σΓ = X(R)VΓ Feynman integral becomes
(Version N.1)∑

o∈Ω(Γ)

mo

∫
Σo

∏
e∈EΓ

r−2λ
to(e)

(∑
n

(
rso(e)

rto(e)
)nC(λ)

n (ωso(e) · ωto(e))

)
dV

with positive integers mo (multiplicities) and volume form
dV =

∏
v dDxv =

∏
v rD−1

v drv dωv

• angular integrals:

A(ne)e∈EΓ
=

∫
(SD−1)VΓ

∏
e

C(λ)
ne (ωs(e) · ωt(e))

∏
v

dωv

• radial integrals:∑
o∈Ω(Γ)

mo

∫
Σ̄o

∏
e∈EΓ

F (rso(e), rto(e))
∏

v

rD−1
v drv

F (rso(e), rto(e)) = r−2λ
to(e)

∑
ne

Ane (
rso(e)

rto(e)
)ne

Özgür Ceyhan and Matilde Marcolli Feynman integrals in configuration space and mixed Tate motives



Example: polygons and polylogarithms

• Γ polygon with k edges, D = 2λ+ 2:

An =

(
λ2πλ+1

Γ(λ+ 1)(n + λ)

)k

· dim Hn(S2λ+1)

Hn(S2λ+1) space of harmonic functions deg n on S2λ+1

(Gegenbauer polynomial and zonal spherical harmonics)

• when D = 4, Feynman amplitude:

(2π2)k
∑

o

mo

∫
Σ̄o

Lik−2(
∏

i

r2
wi

r2
vi

)
∏

v

rv drv

polylogarithm functions

Lis(z) =
∞∑

n=1

zn

ns

vertices vi , wi sources and tails of oriented paths of o
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Step 4: stars of vertices and isoscalars

• star (corolla) of a vertex, with unpaired half-edges: angular integral

An(ω) =

∫
SD−1

∏
j

C(λ)
nj (ωj · ω) dω

with n = (nj)ej∈EΓ
and ω = (ωj)ej∈EΓ

• integrals of products of spherical harmonics:

A(nj )(ωvj ) = cD,n1 · · · cD,nk Ã(nj )(ωvj )

Ã(nj )(ωvj ) =
∑
`1,...,`k

Y (n1)
`1

(ω1) · · ·Y (nk )
`k

(ωk )

∫
SD−1

Y (n1)
`1

(ω) · · ·Y (nk )
`k

(ω) dω

{Y (n)
` }`=1,...,dn orthonormal basis of Hn(SD−1); dn = dim Hn(SD−1)

and

cD,n =
Vol(SD−1) (D − 2)

2n + D − 2
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isoscalar factors

• reduce to trivalent vertices: Gaunt coefficients 〈Y (n1)
`1

,Y (n2)
`2

Y (n3)
`3
〉D

Racah’s factorization in terms of isoscalar factors

〈Y (n1)
`1

,Y (n2)
`2

,Y (n3)
`3
〉D =

(
n1 n2 n3

n′1 n′2 n′3

)
D:D−1

〈Y (n′1)

`′1
,Y

(n′2)

`′2
,Y

(n′3)

`′3
〉D−1

`i = (n′i , `
′
i ) with n′i = mD−2,i and `′i = (mD−3,i , . . . ,m1,i)

there are general explicit expressions for the isoscalar factors
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Step 5: gluing trivalent stars by matching half edges

• integrate on variables of matched half-edges:

A(ni )i=1,...,4((ωi)i=1,...,4) =
∑
`i

4∏
i=1

cD,ni Y (ni )
`i

(ωi) Kni ,`i (n)

Kni ,`i (n) = c2
D,n

dn∑
`=1

〈Y (n)
` ,Y (n1)

`1
,Y (n2)

`2
〉D · 〈Y (n)

` ,Y (n3)
`3

,Y (n4)
`4
〉D

• when D = 4 and `i = 0

K
(D=4)

n,0 (n) = (
4∏

i=1

1
(ni + 1)1/2

)
4π4

(n + 1)3 ,

in range n + n1 + n2 and n + n3 + n4 even and
|nj − nk | ≤ ni ≤ nj + nk for (ni , nj , nk ) equal to (n, n1, n2) or
(n, n3, n4) and transpositions; zero otherwise
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• radial integral for matched half-edges:

r9
3∏

i=1

tαi
i

∑
n1,n2,n3

A(n1,n2,n3)(ω1, ω2, ω3)tε1n1
1 tε2n2

2 tε3n3
3 dr

3∏
i=1

dti

αi = 1 and εi = 1 outgoing; αi = 3 and εi = −1 incoming

• leading term of integral for matched half-edges (D = 4):

∑
n

(
4∏

i=1

cD,ni Y
(ni )
0 (ωi)

tαi +εi ni
i dti

(ni + 1)1/2
)

∫
Σ̄

t4 dt
∑

n

4π2

(n + 1)3 tεn

sum with constraints n + n1 + n2 and n + n3 + n4 even and
|nj − nk | ≤ ni ≤ nj + nk for (ni , nj , nk ) equal to (n, n1, n2) or
(n, n3, n4) and transpositions
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Step 6: gluing all half edges and nested sums

• R a domain of summation for integers (n1, . . . , nk )

R = R
(k)
P := {(n1, . . . , nk ) | ni > 0, i = 1, . . . , k}

R = R
(k)
MP := {(n1, . . . , nk ) | nk > · · · > n2 > n1 > 0}

R = R
(3)
T := {(n1, n2, n3) | n2 > n1, n2 − n1 < n3 < n2 + n1}.

associated series

LiRs1,...,sk
(z1, . . . , zk ) =

∑
(n1,...,nk )∈R

zn1
1 · · · z

nk
k

ns1
1 · · · n

sk
k

includes products of polylogs, multiple polylogs, etc.

• even/odd: LiR,even
s1,...,sk (z1, . . . , zk ) and LiR,odd

s1,...,sk (z1, . . . , zk )
respectively:

1
2

(
LiRs1,...,sk

(z1, . . . , zk ) + LiRs1,...,sk
(−z1, . . . ,−zk )

)
1
2

(
LiRs1,...,sk

(z1, . . . , zk )− LiRs1,...,sk
(−z1, . . . ,−zk )

)
.
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• more general odd/even summations (Ei = 2N or Ei = Nr 2N)

LiR,E1,...,Ek
s1,...,sk (z1, . . . , zk ) =

∑
(n1,...,nk )∈R, ni∈Ei

zn1
1 · · · z

nk
k

ns1
1 · · · n

sk
k

• Example: matching all half-edges∫ 1

0
t9 (26LiRMP ,odd,even

6,3 (t, t) + 2LiRT ,even
3,3,3 (t, t, t)) dt

• then relate LiRT
s1,s2,s3

(z1, z2, z3) to well known generalizations of
multiple zeta values and multiple polylogarithms
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• Mordell–Tornheim multiple series

ζMT ,k (s1, . . . , sk ; sk+1) =
∑

(n1,...,nk )∈R
(k)
P

n−s1
1 · · · n−sk

k (n1+· · ·+nk )−sk+1

and function LiMT
s1,...,sk ;sk+1

(z1, . . . , zk ; zk+1)

∑
(n1,...,nk )∈R

(k)
P

zn1
1 · · · z

nk
k z(n1+···+nk )

k+1

ns1
1 · · · n

sk
k (n1 + · · ·+ nk )sk+1

• Apostol–Vu multiple series

ζAV ,k (s1, . . . , sk ; sk+1) =
∑

(n1,...,nk )∈R
(k)
MP

n−s1
1 · · · n−sk

k (n1+· · ·+nk )−sk+1

and function LiAV
s1,...,sk ;sk+1

(z1, . . . , zk ; zk+1)

∑
(n1,...,nk )∈R

(k)
MP

zn1
1 · · · z

nk
k z(n1+···+nk )

k+1

ns1
1 · · · n

sk
k (n1 + · · ·+ nk )sk+1
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Euler–Maclaurin summation formula for f (t) = x t t−s

f (k)(t) =
k∑

j=0

(−1)k−j
(

k
j

)(
s + k − j − 1

k − j

)
(k−j)!t−(s+k−j)x t log(x)j

gives
b∑

n=a

f (n) =

∫ b

a
f (t)dt +

1
2

(f (b) + f (a))

+
N∑

k=2

bk

k!
(f (k−1)(b)− f (k−1)(a))

−
∫ b

a

BN(t − [t])
N!

f (N)(t) dt,

bk Bernoulli numbers and Bk Bernoulli polynomials
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• applied to LiRs1,s2,s3
(z1, z2, z3) with R = R

(3)
T summation terms

±Fj,k (s3, z3) LiAV
s1,s2;s3+k−j

(z1, z2; z3)

±Fj,k (s3, z3) LiMT
s1,s3+k−j ;s2

(z1, z2; z3)

with

Fj,k (s, z) =
bk

k!

(
k
j

)(
s + k − j − 1

k − j

)
(k − j)! log(z)j

Conclusion: by this method can see explicit integrals leading to
multiple zeta values, but computations become easily extremely
complicated even for simple graphs!
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