Quantum Hall effect models in NCG

Electrons in a crystal:

\[\Gamma \subset \mathbb{R}^d \] lattice, \(\mathbb{Z}^d \) co-compact; \(\mathbb{R}^d \) compact \((d = 2, 3) \)

periodic potential (electron-ion interaction)

\[U(x) = \sum_{\gamma \in \Gamma} u(x - \gamma) \]

invariant under translations by \(\Gamma \)

\[T_\gamma U = U \quad \forall \gamma \in \Gamma \]

N-electrons: N-particle Hamiltonian

\[N \sum_{i=1}^{N} \left(-\Delta_{x_i} + V(x_i) \right) + \frac{1}{2} \sum_{i \neq j} W(x_i - x_j) \]

Simplify to a single particle problem using

"independent electron approximation"

\[\sum_{i=1}^{N} \left(-\Delta_{x_i} + V(x_i) \right) + \frac{1}{2} \sum_{i \neq j} W(x_i - x_j) \]

Correct \(U \) by an average effect of all other electrons on a given one

\[\rightarrow \text{Usually } V(x) \text{ unbounded (Coulomb potential well)} \]

but effective potential of independent-electron approx \(\underline{V(x)} \) bounded function

(Condensed matter physics)
then wave function
\[\psi(x_1, \ldots, x_N) = \det(\psi_{ij}(x_j)) \]
\[(-\Delta_{\mathbb{R}^d} + V(x)) \phi_i = E_i \phi_i \]
\[E = \sum_i E_i \]

reduces completely to a single electron problem

(Usually inverse problem of determining \(V \): not known explicitly)

\[H = -\Delta + V \quad T_Y = \text{translations, } y \in \mathcal{X} \]
\[(\text{unitary operators}) \]
\[\mathcal{X} = \mathcal{L}^2(\mathbb{R}^d) \]

\[T_y H T_y^{-1} = H \quad \forall y \in \mathcal{X} \]

\[\Rightarrow T_Y \text{ commutes w/ } H \quad \text{simultaneously diagonalize in basis of eigenstates of } H \]

\[T_y \hat{\psi} = c(y) \hat{\psi} \quad T_y, T_z = T_y, T_z \]

\[\Rightarrow c : \mathcal{X} \rightarrow \mathbb{U}(1) \quad \text{group homomorphism} \]

\[c(y) = \exp(i\langle k, y \rangle) \quad \forall k \in \mathcal{F} = \text{Poincaré dual of } \mathcal{X} \]

\[\mathcal{X} = \mathbb{Z}^d \quad \Rightarrow \mathcal{F} \cong \mathbb{T}^d \quad \text{thus} \]

\[T^d \cong \mathcal{F} = \mathbb{R}^d / \mathbb{Z}^d \]

\[\mathcal{F} = \{ k \in \mathbb{R}^d : \langle k, y \rangle \in 2\pi \mathbb{Z}, \forall y \in \mathcal{X} \} \]

dual lattice (reciprocal lattice)
Brillouin zones of the crystal: fundamental domains of reciprocal lattice \(\Gamma^* \)

(identify \(w \) with \(T^d \))

Classical Bloch theory of electrons in solids:

\[
\begin{align*}
\{ \begin{array}{l}
(\Delta + V) \psi &= E \psi \\
\psi(x+y) &= e^{ik \cdot y} \psi(x)
\end{array} \}
\]

spectral problems

for given \(k \): eigenvalues \(E_1(k), E_2(k), \ldots, E_n(k), \ldots \)

\[E(k) = E(k + u); \ u \in \Gamma^* \]

\(k \mapsto E(k) \quad k \in \mathbb{R}^d / \Gamma^* \)

energy-crystal momentum dispersion relation

Discretization of the problem \(\mathcal{E} \):

Replace \(\mathbb{R}^d \) by \(\mathbb{Z}^d \) lattice

\(\Delta \) Laplacian replaced by finite difference \(\Delta \) (random walk in a lattice)

\(R \psi(n_1, \ldots, n_d) = \frac{d}{i=1} \psi(n_1, \ldots, n_i+1, \ldots, n_d) \)

\[+ \sum_{i=1}^{d} \psi(n_1, \ldots, n_{i-1}, n_{i+1}, \ldots, n_d) \]

\(\Delta_{\text{disc}} \psi(n_1, \ldots, n_d) = (2d - R) \psi(n_1, \ldots, n_d) \)

becomes

\[\begin{align*}
\Psi \in L^2(\Gamma) \text{ satisfying } \\
(R + V) \Psi &= (\lambda + 2d) \Psi \\
R \Psi &= \sum_{i=1}^{d} R_{\Psi_i} \Psi
\end{align*} \]

\((R_{\Psi_i} \Psi)(n_1, \ldots, n_d) = \Psi(n_1, \ldots, n_i+a_i, \ldots, n_d) \)

\(\Psi_{\Psi_i} = \Psi \) a.e. \(\Gamma \)
This classical theory of electron motion in solids does not work anymore when transverse magnetic field \(B \) is applied.

Classical Hall effect

Current density \(\vec{j} \) and electric field \(\vec{E} \) (Hall current)

\[
0 = \vec{E} + \vec{j} \times \vec{B}
\]

Equation of equilibrium of forces

- \(\vec{j} \times \vec{B} \) : intensity of Hall current
- \(\vec{E} \) : intensity electric field

Hall conductance

\[
\sigma_H = \frac{N_e s}{B}
\]

\(N_e \): density of charges

\[
\sigma_H = \frac{\gamma}{R_H}
\]

\(\gamma = \frac{e^2}{\hbar} \) filling factor (dimensionless)

\(R_H = \frac{h}{e^2} \) Hall resistance

* Integer Quantum Hall effect:

\(\sigma_H \) has quantized values at integer multiples of \(\frac{e^2}{h} \)

Klitzing, 1980

Laughlin, 1981

* Fractional QHE

Strom-

- Tsui, 1982

- Fractional values also occur

(\(\text{lower } T, \text{stronger } B \))
Magnetic field 2-form \(\omega = d\eta \)

\((B = \text{curl } A)\)

Schrödinger operator \(\Delta^\eta + V\)

\(\Delta^\eta = (d-i\eta)^*(d-i\eta) \quad \forall \text{ same independent approx. electric potential}\)

\(\gamma^* \omega = \omega \quad \text{translation invariance for 2-form of magnetic field}\)

but \(\omega - \gamma^* \omega = d(\eta - \gamma^* \eta)\)

does not mean invariant magnetic potential

\(d(\eta - \gamma^* \eta) = 0 \quad \text{only implies}\)

\(\eta - \gamma^* \eta = d\phi^\gamma \quad \text{(because } \mathbb{R}^\gamma \text{ non-cohom. closed form } \Rightarrow \text{exact)}\)

\(\phi^\gamma(x) = \int_{x_0}^x (\eta - \gamma^* \eta)\)

\(= \) \(T_\gamma \) translations no longer commute with \(\Delta^\eta\)

but twisted by phase \(\phi\) again commute

\(T_\delta \phi \gamma := \exp(i\phi_\delta) \cdot T_\delta \gamma\)
\[
(d-i\gamma) T^\phi_\gamma = T^\phi_y (d-i\gamma) \rightarrow \text{commute with } \Delta^1
\]

\(\gamma \in \Gamma: \)

\[
T^\phi_\gamma T^\phi_{\gamma'} = \sigma(\gamma, \gamma') T^\phi_{\gamma \gamma'}
\]

Don't form a commutative algebra anymore

with \(\sigma(\gamma, \gamma') = \exp(-i\phi(\gamma \times_0)) \) cocycle

and \(\phi_\gamma(x) + \phi_{\gamma'}(\gamma x) = \phi_{\gamma \gamma'}(x) \) independent of \(x \)

Notice usual \(T^\gamma \) generate \(C^*(\Gamma) \) group C*-alg.

Since \(\Gamma \cong \mathbb{Z}^d \) lattice (abelian grp.)

\[
C^*(\Gamma) = C(\hat{\Gamma}) \quad \text{Pontryagin duality}
\]

\[
\hat{\Gamma} = \Gamma = \mathbb{R}^d / \Gamma^d \rightarrow C^*(\Gamma) = C(\text{Brillouin zone})
\]

Now with magnetic field \(T^\phi_\gamma \) generate a C*-algebra non-commutative

replaces Brillouin zone

* In the presence of a magnetic field

Brillouin zone becomes noncommutative
Discretized model on lattice $\Gamma = \mathbb{Z}^2$

Harper operator \leftrightarrow Magnetic Laplacian

(like Random walk operator \leftrightarrow Laplacian)

$$H_{\alpha_1, \alpha_2} \psi(m,n) = e^{-i\alpha_1 n} \psi(m+1,n)$$
$$+ e^{i\alpha_1 n} \psi(m-1,n)$$
$$+ e^{-i\alpha_2 m} \psi(m,n+1)$$
$$+ e^{i\alpha_2 m} \psi(m,n-1)$$

Magnetic translations $\sigma((m',n'),(m,n)) = \exp(-i(\alpha_1 m' + \alpha_2 n'))$

$$U = T^\sigma_{\gamma_1}, \quad V = T^\sigma_{\gamma_2}$$

$$\gamma_1 = (0,1), \quad (U \psi)(m,n) = \psi(m,n+1) e^{-i\alpha_2 m}$$
$$\gamma_2 = (1,0), \quad (V \psi)(m,n) = \psi(m+1,n) e^{-i\alpha_1 n}$$

$$H_{\alpha_1, \alpha_2} = U + U^* + V + V^*$$

$$UV = e^{i\theta} VU \quad \theta = \alpha_2 - \alpha_1$$

\Rightarrow Brillouin zone replaced by a noncommutative torus $T^2 \quad \Lambda_\theta$
In general Γ (discrete group)

$\sigma: \Gamma \times \Gamma \rightarrow U(1)$ multiplier:

$\sigma(\gamma_1, \gamma_2) \sigma(\gamma_1 \gamma_2, \gamma_3) = \sigma(\gamma_1, \gamma_2) \sigma(\gamma_2, \gamma_3) \quad \blacktriangleright$

$\sigma(\gamma_i, 1) = \sigma(1, \gamma_i) = 1$

$H = \chi^2(\Gamma)$

$$(L_\gamma \psi)(\gamma') = \psi(\gamma' \gamma) \sigma(\gamma, \gamma' \gamma')$$

$$(R^\sigma_\gamma \psi)(\gamma') = \psi(\gamma' \gamma) \sigma(\gamma', \gamma)$$

$$(L^{\sigma}_{\gamma} L^{\sigma}_{\gamma'}) = \sigma(\gamma, \gamma') L^{\sigma}_{\gamma \gamma'}$$

$$R^{\sigma}_{\gamma} R^{\sigma}_{\gamma'} = \sigma(\gamma, \gamma') R^{\sigma}_{\gamma \gamma'}$$

$\gamma_i \in \{\text{set of symmetric generators of } \Gamma \}$

$\text{generators & their inverses}$

$R_{\sigma} = \sum_{i=1}^{r} R^{\sigma}_{\gamma_i}$ Harper operator

$\gamma \cdot R_{\sigma}$ discretization of magnetic Laplacian on Γ
Algebra of observables

$C^*(\Gamma, \sigma)$ twisted group ring
generated by magnetic translations T^γ

equivalently $f : \Gamma \to \mathbb{C}$ fin. support

$$(f_1 \ast f_2)(\gamma) = \sum_{\gamma = \gamma_1 \gamma_2} f_1(\gamma_1) f_2(\gamma_2) \sigma(\gamma_1 \gamma_2)$$

(coycle id. = associativity)

$C^*_{\gamma}(\Gamma, \sigma)$ C^*-completuin in rep. on $l^2(\Gamma)$

(For $\Gamma = \mathbb{Z}^2$, $C^*_{\gamma}(\Gamma, \sigma) = A_\theta$ NC torus)

discrete analog of spectral problem for magnetic Laplacian

$R_\sigma \psi + V \psi = E \psi$

$(\frac{\partial^2}{\partial x^2} \psi = R_\sigma \psi + V \psi \ \psi \in l^2(\Gamma)$

Schrödinger eq.

Spec (R_σ) complement: open sets (band structure)

for many $\psi \to$ bands

so many \sim Cantor set as spectrum

Hofstadter butterfly: $\theta \in \mathbb{Q}$ or $\mathbb{R}\setminus\mathbb{Q}$

Counting gaps in the spectrum

\uparrow

Counting projections in $C^*_{\gamma}(\Gamma, \sigma)$

$P_E = \chi_{[0, E]} (H_\gamma \psi)$ spectral projections \uparrow here if E in a gap
\[P_E = \int_C \frac{d\lambda}{\lambda - H_{\gamma, V}} = \int_C R_\lambda \, d\lambda \quad \text{if } C \supset \text{Spec} \quad \text{i.e. } E \text{ not in Spec} \]

\[R_\lambda = (\lambda - H_{\gamma, V})^{-1} \quad \text{resolvent} \]

\[G_\lambda^*(\Gamma, \sigma) \text{ closed under holomorphic functional calculus} \]

\[\Rightarrow P_E \subset G_\lambda^*(\Gamma, \sigma) \]

Canonical faithful trace

\[\tau : \mathcal{M}(\Gamma, \sigma) \to \mathbb{C} \]

von Neumann alg.

\[\text{closure of } C(\mathcal{F}, \sigma) \quad \text{in } \mathcal{B}(L^2(\Gamma)) \text{ weak top.} \]

\[\tau(a) = \langle a s_1, s_1 \rangle_{L^2(\Gamma)} \quad \{ s_1 \text{ canonical basis of } L^2(\Gamma) \} \]

\[\text{extended to } \quad \tau \otimes \text{Tr} : K_0(G_\lambda^*(\Gamma, \sigma)) \to \mathbb{R} \]

Range of the trace

\[\text{e.g. for NC torus } \quad \boxed{\mathbb{Z}_0 + \mathbb{Z} \subseteq \mathbb{C} \subseteq \mathbb{R}} \]

So when \(\theta \in \mathbb{Q} \) know there are only fin. many gaps

When \(\theta \notin \mathbb{R} \cup \mathbb{Q} \) indication that so-many but not sure as values could be on other projections

Conjectural
\(S_0 = \mathbb{L}(s) \delta \phi \) \\
\(S = \{ 0, 1 \} \) \\
\(R = \bigcap_{k \in \mathbb{N}} \text{Dom}(s^k) \)

Conductance cocycle. Kubo formula.

\[
\sigma_H = \tau \left(P F \left[s_1 P, s_2 P \right] \right)
\]

(from transport theory, current density in \(y \) direction)

= functional derivative \(s_1 \) of \(H_0 \) by \(A_1 \)-component of magnetic potential

\[
\text{value of current} \quad tr(P s H) \quad \text{proj state of system}
\]

\[
i \, tr(P[s_3 P, s_i P]) = -i \, E_z \, tr(P[s_2 P, s_i P])
\]

\[
E = -\frac{\partial A}{\partial t} \quad \text{will be a cyclic cocycle}
\]

Conductance cocycle

\[
tr_K(f_0, f_1, f_2) = tr(f_0 (s_1 f_1) s_2 (f_2) - s_2 (f_1) s_1 (f_2))
\]

for elements \(f_0, f_1, f_2 \in \mathcal{C}(\Gamma, \sigma) \)

\[
\sigma_E = tr_K(P_E, P_E, P_E)
\]

Values of conductance: range of this "trace" (index pairing) of cyclic cohomology & \(K \)-theory.

b) **Theorem on ordinary traces**

\[
\therefore \Rightarrow \mathbb{Z} \text{-valued}
\]