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Main reference:

Yuri Manin, M.M., Moduli Operad over F1, arXiv:1302.6526

Moduli spaces M0,n together with their operad structure descend
to F1, with descent data given in terms of “constructible sets over
the field with one element”
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What is the “field with one element”?
Finite geometries (q = pk , p prime)

#Pn−1(Fq) =
#(An(Fq) r {0})

#Gm(Fq)
=

qn − 1

q − 1
= [n]q

#Gr(n, j)(Fq) = #{Pj(Fq) ⊂ Pn(Fq)}

=
[n]q!

[j ]q![n − j ]q!
=

(
n

j

)
q

[n]q! = [n]q[n − 1]q · · · [1]q, [0]q! = 1

The origin of F1-geometry: Jacques Tits observed if take q = 1

Pn−1(F1) := finite set of cardinality n

Gr(n, j)(F1) := set of subsets of cardinality j

Is there an algebraic geometry over F1?
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Extensions F1n (Kapranov-Smirnov)

Monoid {0} ∪ µn (n-th roots of unity)
- Vector space over F1n : pointed set (V , v) with free action of µn
on V r {v}
- Linear maps: permutations compatible with the action

F1n ⊗F1 Z := Z[t, t−1]/(tn − 1)

Counting of points: for geometries X over Z, reductions mod p

Nq(X ) = #X (Fq), q = pr

Polynomially countable if Nq(X ) = PX (q) polynomial in q.
Counting of “points over the field with one element and its
extensions”

PX (m + 1) = #X (F1m)

Different approaches to F1-geometry: Soulé, Haran, Dourov,
Toen–Vaquie, Connes–Consani, López-Peña–Lorscheid
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We follow the approach to F1-geometry via torifications
(López-Peña–Lorscheid)

Idea: geometerize the expected behavior of the “counting of
points” function

Levels of torified structures:

Torification of the class in the Grothendieck ring

Geometric torification

Affine torification

Regular torification

Then we’ll also need a weaker form of geometric torification:
constructible torifications
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The Grothendieck ring of varieties K0(VZ)

generators [X ] isomorphism classes

[X ] = [X r Y ] + [Y ] for Y ⊂ X closed

[X ] · [Y ] = [X × Y ]

Tate (virtual) motives: Z[L] ⊂ K0(VZ), with L = [A1]

Universal Euler characteristics:
Any additive invariant of varieties: χ(X ) = χ(Y ) if X ∼= Y

χ(X ) = χ(Y ) + χ(X r Y ), Y ⊂ X

χ(X × Y ) = χ(X )χ(Y )

values in a commutative ring R is same thing as a ring
homomorphism

χ : K0(VZ)→ R
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Examples of additive invariants:

• Topological Euler characteristic
• Couting points over finite fields
• Gillet–Soulé motivic χmot(X ):

χmot : K0(V)[L−1]→ K0(M), χmot(X ) = [(X , id , 0)]

for X smooth projective; complex χmot(X ) = W ·(X )

Note: counting points over finite fields factors through the
Grothendieck ring, geometerize expected behavior of the counting
function as a condition on [X ] ∈ K0(VZ).
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• Grothendieck class torification
The class [X ] ∈ K0(VZ) in the Grothendieck ring satisfies

[X ] =
∑
k

akTk

with T = [Gm] = L− 1, and with coefficients ak ≥ 0.

• If [X ] ∈ Z[L] Tate motive, then polynomially countable
Nq(X ) = PX (q), then

#X (F1) = PX (1) = lim
q→1

Nq(X ) = a0

points over F1 and points over F1m :

#X (F1m) = PX (m + 1) =
∑
k

ak mk

where Nq(T) = Nq(A1 r {pt}) = q − 1
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Example: F1m -points of P1

Class [P1] = 1 + L = 2 + T and counting Nq(P1) = 1 + q

F1-points: #P1(F1) = 2, say P1 = Gm ∪ {0,∞}
F1m -points: #P1(F1m) = m + 2, given by {0,∞} and m-th
roots of unity in Gm

This suggest a more geometric notion of torification, as a
decomposition of the variety, not only of the Grothendieck class.
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• Geometric torification (López-Peña–Lorscheid)

Morphism of schemes eX : T → X from (finite) disjoint union of

tori T =
∐

j∈I Ti , Tj = Gdj
m, with restriction of eX to each torus an

immersion inducing bijection of k–points, eX (k) : T (k)→ X (k),
for every field k

• Affine torification
∃ affine covering {Uα} of X compatible with eX : ∀ Uα, ∃
subfamily {Tj | j ∈ Iα} of torification such that restriction
eX |∪j∈IαTj

torification of Uα

• Regular torification
Closure of tori Tj is union of other tori of the torification

Examples: Pn = An ∪ · · · ∪ A1 ∪ A0 affinely torified; Grassmanians
Gr(n, j) torified (cell decomposition), but not affine; smooth toric
varieties regular torification (torus orbits)

Matilde Marcolli (Caltech) joint work with Yuri Manin F1-geometry of Moduli Spaces



Morphisms in F1-geometry

• torified morphism:
Φ : (X , eX : TX → X )→ (Y , eY : TY → Y ) a triple
Φ = (φ, ψ, {φi}) with φ : X → Y morphism of Z-varieties,
ψ : IX → IY map of indexing sets and φj : TX ,j → TY ,ψ(j)

morphism of algebraic groups, φ ◦ eX |TX ,j
= eY |TY ,ψ(j)

◦ φj
• affinely torified morphism:
for every j the image of Uj under Φ is an affine subscheme of Y

• Remark: a torified morphism of affinely torified varieties is an
affinely torified morphism (Lorscheid)

Problem: When two torifications determine the same F1-structure?
Need a notion of equivalence (isomorphism) of torifications
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Torifications giving same F1-structure on a Z-variety X

Strong equivalence: identity morphism is torified.

Ordinary Equivalence: ∃ isomorphism of X that is torified.

Weak equivalence: X has a decompositions into disjoint
unions X = ∪jXj and X = ∪jX ′j , compatible with torifications,
and ∃ isomorphisms φi : Xi → X ′i that are torified.

Which equivalence relation determines what “changes of
coordinates” are allowed within F1-geometry

This also determines what morphisms of F1-varieties
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Morphisms of torified Z-varieties

Strong F1-morphisms (strongly torified): torified morphisms

Ordinary F1-morphisms (ordinarily torified): arbitrary
compositions of torified morphisms and isomorphisms

Weak F1-morphisms (weakly torified): arbitrary compositions
of torified morphisms and weak equivalences

Obtain in this way three different categories GT s ⊂ GT o ⊂ GT w

• Objects are pairs (XZ, T ) variety over Z and torification
• Morphisms are strong, ordinary, or weak morphisms
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Moduli Space M0,n

• moduli space of stable genus zero curves with n marked points

• Open strata: M0,n (n ≥ 4) complement of diagonals in product
n − 3 copies of P1 r {0, 1,∞}

• Compactification by boundary strata
∏

k M0,nk+1 with∑
k nk = n
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Generalization Td ,n (Chen–Gibney–Krashen)

• moduli space of n–pointed stable rooted trees of d–dimensional
projective spaces (T1,n = M0,n+1)

• oriented rooted trees τ , to each vertex v ∈ Vτ a Xv ' Pd , to
unique outgoing tail at v a choice of hyperplane Hv ⊂ Xv , to each
incoming tail f at v a point pv ,f in Xv with pv ,f 6= pv ,f ′ for f 6= f ′

and with pv ,f /∈ Hv

• Open stratum: THd ,n of Td ,n is configuration space of n distinct
points in Ad up to translation and homothety, complement of
diagonals

THd ,n ' (Ad r {0, 1})n−2 r ∆

• Compactification: boundary strata
∏

i THd ,ni with
∑

i ni = n

• Description as iterated blowup (related to Fulton-MacPherson
compactification of configuration spaces)

Matilde Marcolli (Caltech) joint work with Yuri Manin F1-geometry of Moduli Spaces



Moduli Space M0,n: torification of Grothendieck class

[M0,n] =
n−2∑
k=0

s(n − 2, k)
k∑

j=0

(
k

j

)
Tj

with s(m, k) = Stirling numbers of the first kind
(−1)m−ks(m, k) = #{σ ∈ Sm : σ = k-cycles }
This follows from class of open strata

[M0,n] = (T− 1)(T− 2) · · · (T− n + 2) =

(
T− 1

n − 3

)
(n − 3)!

= (−1)n(1− T)n−2, with (x)m = Γ(x + m)/Γ(x) = Pochhammer
symbol with (x)m =

∑m
k=0(−1)m−ks(m, k) xk

Note: some coeffs of [M0,n] negative, so not torified, but when
adding strata together torified
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Generating series in K0(VZ)Q[[t]]

ϕ(t) = t +
∞∑
n=2

[M0,n]
tn

n!

unique solution in t + t2K0(VZ)Q[[t]] of

(1 + L t − Lϕ(t))ϕ′(t) = 1 + ϕ(t)

Note: analogous to Manin’s result on Poincaré polynomial, since
Hodge-Tate (hp,q(XC) = 0 for p 6= q) hence if [X ] =

∑
k bkLk

Poincaré polynomial is PX (q) =
∑

k bkq2k

F1m -points: pn,m = M0,n(F1m)

ϕm(t) =
∑
n≥1

pn,m
tn

n!

solution of

(1 + (m + 1) t − (m + 1)ϕm(t))ϕ′m(t) = 1 + ϕm(t)
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Moduli Spaces Td ,n: torification of Grothendieck class

• Generating function

ψ(t) =
∑
n≥1

[Td ,n]
tn

n!

unique solution in t + t2K0(VZ)Q[[t]] of

(1 + Ld t − L [Pd−1]ψ(t))ψ′(t) = 1 + ψ(t)

with [Pd−1] = Ld−1
L−1

• Classes [Td ,n] ∈ K0(VZ) have decomposition into Tk with
ak ≥ 0: use repeated blowup description and blowup formula

[BlY (X )] = [X ] + [Y ]([PcodimX (Y )−1]− 1)

Get recursive relation

[Td,n+1] = ([Pd ]+nL [Pd−2])[Td,n]+L [Pd ]
∑

i+j=n+1,2≤i≤n−1

(
n

i

)
[Td,i ] [Td,j ]
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F1m -points of Td ,n

pn,m = NTd,n
(m + 1) = Td ,n(F1m) formally replacing L with m + 1

in Grothendieck class: generating function

ηm(t) =
∑
n≥1

pn,m

n!
tn.

solution of differential equation

(1 + (m + 1)d t − (m + 1)κd(m + 1)ηm)η′m = 1 + ηm,

with κd(q2) = q2d−1
q2−1

Question then: from Grothendieck classes to more geometric
notion of torification?
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Complemented subvarieties in F1-geometry

• Example of P1 = Gm ∪ {0,∞}: points {0,∞} have complement
that is still torified, but not if removing additional points

• X over Z with geometric torification T . A subvariety Y ⊂ X is
(strongly, ordinarily, weakly) complemented if both Y and X r Y
have geometric torifications and inclusions Y ↪→ X and
X r Y ↪→ X are (strongly, ordinarily, weakly) morphisms

• Usual in algebraic geometry: complement of a subvariety in a
variety not always a variety, but a constructible set

• A notion of constructible torifications: more general
complements of torifications inside other torifications with
positivity of Grothendieck classes
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Constructible sets over F1

• CF1 = class of constructible sets over Z that can be obtained,
starting from Gm, through of products, disjoint unions, and
complements.

• X = constructible set over Z. Constructible torification of X is
morphism of constructible sets eX : C → X , for some C ∈ CF1 ,
with restriction of eX to each component of C an immersion
inducing a bijections of k–points, for every field k.

• F1-constructible set = constructible set over Z with a
constructible torification, with Grothendieck class [X ] =

∑
k akTk

with ak ≥ 0

Note: Grothendieck class condition is needed in definition (does
not follow, unlike for geometric torifications)
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Categories of F1-constructible sets CT s ⊂ CT o ⊂ CT w

• Objects: pairs (XZ, C), with XZ a constructible set over Z and
C = {Ci} is a constructible torification of XZ

• morphisms strong, ordinary, or weak morphisms of constructibly
torified spaces

Blowups: XZ variety with a constructible torification, Y ⊂ X be a
closed subvariety with geometric torification and X r Y with
constructible torification (inclusions are strong, ordinary, weak
morphisms). Then blowup BlY (X ) has constructible torification so
that π : BlY (X )→ X (strong, ordinary, weak) morphism of
constructibly torified spaces.

If Y ⊂ X has complemented geometric torification then BlY (X )
has geometric torification.
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Constructible torification of M0,n

• Choice of a constructible torification of P1 minus three points

• P1 r {0,∞} = Gm has geometric torification,
P1 r {0, 1,∞} = Gm r {1} has constructible torification

• M0,n (n ≥ 4) complement of diagonals in product n− 3 copies of
P1 r {0, 1,∞}: removing diagonals taking complements of sets in
CF1 inside others: still in CF1 , constructible torification

• not an F1-constructible set structure on M0,n (no positivity of
Grothendieck class)

• but when combining strata [M0,n] has positivity

⇒ moduli spaces M0,n are F1-constructible sets
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Constructible torification of Td ,n

• Start with choice of constructible torification of Ad minus two
points

• Open stratum THd ,n of Td ,n is complement of diagonals

THd ,n ' (Ad r {0, 1})n−2 r ∆

with 0 = (0, . . . , 0) and 1 = (1, . . . , 1)

• constructible torification on Ad r {0, 1} determines constructible
torifications on products, diagonals, and complements

• positivity of Grothendieck class holds after assembling together
strata to get full Td ,n

⇒ moduli spaces Td ,n are F1-constructible sets
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Operad structure of M0,n

• Operad M(n) = M0,n+1 with compositions

M(n)×M(m1)× · · · ×M(mn)→M(m1 + · · ·+ mn)

• Composition maps are strong morphisms of constructibly torified
spaces

• Symmetric group Sn acts on M0,n permuting marked points

• Action of Sn ordinary morphisms of F1-constructible sets
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Operad structure of Td ,n

• composition (inclusion of boundary strata)

Td ,k × Td ,n1 × · · · × Td ,nk → Td ,n1+···+nk

• compositions are strong morphisms of constructible torifications

• Isomorphisms Td ,S
'→ Td ,S ′ for S ′

'→ S with S set of marked
points, #S = n. These are ordinary morphisms of constructible
torifications

• Forgetful morphisms: Td ,S → Td ,S ′ for S ′ ⊂ S with #S ′ ≥ 2.
These are strong morphisms of F1-constructible sets
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Blueprint approach to F1-geometry (Lorscheid)

Blueprint: A//R
• a commutative multiplicative monoid A
• associated semiring N[A]

• set of relations
R ⊂ N[A]× N[A]

written as
∑

ai ≡
∑

bj , for (
∑

ai ,
∑

bj) ∈ R.

Example: Plücker embedding of Grassmannian G (2, n) ↪→ P(n2)−1

gives blueprint structure to G (2, n) with R generated by Plücker
relations

xijxkl + xilxjk = xikxjl , for 1 ≤ i < j < k < l ≤ n

idea: Use explicit equations for M0,n obtained by an embedding
into a toric variety to give blueprint structure to M0,n
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Blueprint structure of M0,n

• Can embed M0,n ↪→ X∆ a toric variety, so that intersection with
torus is M0,n (Gibney–Maclagan and Tevelev)

• Can obtain explicit equations for M0,n in the Cox ring of the
toric variety X∆ (Gibney–Maclagan and Keel–Tevelev)

• monoid
A = F1[xI : I ∈ I] := {

∏
I

xnI
I }nI≥0,

with I = {I ⊂ {1, . . . n}, 1 ∈ I , #I ≥ 2,#I c ≥ 2} where
Q[xI , : I ∈ I] Cox ring of X∆

• relations

R′ =

 ∏
ij∈I , kl /∈I

xI +
∏

il∈I , jk /∈I

xI ≡
∏

ik∈I , jl /∈I

xI : 1 ≤ i < j < k < l ≤ n

 ,
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• S−1
f R

′ localization with respect to submonoid generated by
element f =

∏
I xI

• Obtain blueprint structure on M0,n

OF1(M0,n) = A//R

with blueprint relations R = S−1
f R

′ ∩ A

Note: the blueprint notion of F1-structure is weaker than notions
based on torification (no constraints on motive and zeta functions)
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What about higher genus? Moduli spaces Mg ,n

• Mg ,n stacks rather than schemes

• Morphisms: inclusion of boundary strata

Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2

forgetting markings
Mg ,n → Mg ,n−1,

gluing two marked points together

Mg ,n+2 → Mg+1,n

• Stable curves of genus zero with marked points have
constructible torifications, but not higher genus

• Can’t have F1-constructible set structure on Mg ,n (motive not
Tate in general, so can’t have decomposition of Grothendieck class
into tori)
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Genus zero locus M
0
g ,n

• Inside higher genus moduli space there is a “genus zero part”

• M
0
g ,n is closure of locus of irreducible g -nodal curves in Mg ,n

• These curves have normalization given by a smooth rational
curve with 2g + n marked points

• subgroup G ⊂ S2g of permutations of these 2g additional
marked points that commute with the product
(12)(34) · · · (2g − 1 2g) of g transpositions

• normalization of M
0
g ,n is identified with quotient M0,2g+n/G .
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Blueprint structure for M0,2g+n/G

• group G acts on a blueprint A//R by automorphisms if
automorphisms of monoid A preserving blueprint relations R
• action of G on M0,2g+n automorphisms of blueprint
OF1(M0,2g+n)

• Noncommutative geometry point of view: replace quotient with
crossed product

• Monoid crossed product Ao G with (a, g)(a′, g ′) = (ag(a′), gg ′)

• Semiring crossed product N[A] o G finite sums
∑

(ai , gi ) with
ai ∈ A and gi ∈ G with (ai , gi )(aj , gj) = (aigi (aj), gigj)

• RG elements ((
∑

ai , g), (
∑

bj , g))

• crossed product blueprint (A//R) o G pair (Ao G ,RG )

• Blueprint structure of rational locus: OF1(M0,2g+n) o G
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