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Dedicated to Yuri Manin, on the occasion of his 75" birthday

Abstract. Making use of noncommutative motives we relate exceptional collections
(and more generally semi-orthogonal decompositions) to motivic decompositions. On one hand
we prove that the Chow motive M(X)g of every smooth and proper Deligne—-Mumford
stack X, whose bounded derived category D?(X) of coherent schemes admits a full ex-
ceptional collection, decomposes into a direct sum of tensor powers of the Lefschetz mo-
tive. Examples include projective spaces, quadrics, toric varieties, homogeneous spaces, Fano
threefolds, and moduli spaces. On the other hand we prove that if M(X)g decomposes into
a direct sum of tensor powers of the Lefschetz motive and moreover Db (X) admits a semi-
orthogonal decomposition, then the noncommutative motive of each one of the pieces of the
semi-orthogonal decomposition is a direct sum of ®-units. As an application we obtain a sim-
plification of Dubrovin’s conjecture.

Introduction

Let X be a smooth and proper Deligne—-Mumford (DM) stack [11]. In order to study it
we can proceed in two distinct directions. On one direction we can associate to X its different
Weil cohomologies H*(X) (Betti, de Rham, /-adic, and others; see [3, Section 8]) or more
intrinsically its Chow motive M (X)g (with rational coefficients); see Section 1. On another
direction we can associate to X its bounded derived category DP(X) := DP(Coh(X)) of
coherent sheaves; see [37].

In several cases of interest (projective spaces, quadrics, toric varieties, homogeneous
spaces, Fano threefolds, moduli spaces, and others; see Section 2) the derived category D2 (X)
admits a “weak decomposition” into simple pieces. The precise formulation of this notion goes
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under the name of a full exceptional collection; consult [20, Section 1.4] for details. This mo-
tivates the following general questions:

Question A. What can be said about the Chow motive M (X)g of a smooth and proper
DM stack X whose bounded derived category D?(X) admits a full exceptional collection?
Does M (X)q also decomposes into simple pieces?

Question B. Conversely, what can be said about the bounded derived category D? (X))
of a smooth and proper DM stack X whose Chow motive M(X)g decomposes into simple
pieces?

In this article, making use of the theory of noncommutative motives, we provide a precise
and complete answer to Question A and a partial answer to Question B.

1. Statement of results

Throughout the article we will work over a perfect base field k. Let us denote by DM (k)
the category of smooth and proper DM stacks (over Spec(k)) and by & (k) its full subcategory
of smooth projective varieties. Recall from [3, Section 8] and [1, Section 4.1.3] the construction
of the (contravariant) functors

h(=)g : DM(k)® — DMChow(k)g. M(—)g : £ (k)® —> Chow(k)g

with values in the categories of Deligne-Mumford-Chow motives and Chow motives, respec-
tively. There is a natural commutative diagram

(1.1) DM (k)P ——— P (k)P

h(_)@J/ lM(—)@

DMChow(k)g —— Chow(k)q

and as shown in [41, Theorem 2.1] the lower horizontal functor is a QQ-linear equivalence.
By inverting it we obtain then a well-defined functor

(1.2) DM (k)P — Chow(k)g, X — M(X)q.

Our first main result, which provides an answer to Question A, is the following:

Theorem 1.1. Let X € DM(k). Assume that DP(X) admits a full exceptional col-

lection (E1,..., Epy) of length m. Then, there is a choice of integers (up to permutation)
l1,..., I €4{0,...,dim(X)} giving rise to a canonical isomorphism
(1.3) M(X)g ~L® @ ... ¢ L&,

where L € Chow(k)q denotes the Lefschetz motive and L® [ >0, its tensor powers (with the
convention L% = M (Spec(k))q); see [1, Section 4.1.5].
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Intuitively speaking, Theorem 1.1 shows that the existence of a full exceptional collec-
tion on D?(X) “quasi-determines” the Chow motive M (X)q@. The indeterminacy is only on
the number of tensor powers of the Lefschetz motive. Note that this indeterminacy cannot be
refined. For instance, the bounded derived categories of Spec(k) LI Spec(k) and P! admit full
exceptional collections of length 2 but the corresponding Chow motives are distinct

M (Spec(k))S? = M(Spec(k) LI Spec(k))q
# M(P')q = M(Spec(k))q & L.

Hence, Theorem 1.1 furnish us the maximum amount of data, concerning the Chow motive,
that can be extracted from the existence of a full exceptional collection.

Corollary 1.2. Let X be a smooth and proper DM stack satisfying the conditions of
Theorem 1.1. Then, for every Weil cohomology H*(—) : DM (k)°® — VecGrg (with K a field
of characteristic zero) we have H" (X) = 0 for n odd and dim H" (X') < m for n even.

Corollary 1.2 can be used in order to prove negative results concerning the existence of a
full exceptional collection. For instance, if there exists an odd number n such that H" (X)) # 0,
then the category D?(X) cannot admit a full exception collection. This is illustrated in Corol-
lary 2.1. Moreover, Corollary 1.2 implies that a possible full exceptional collection on DP(X)
has length always greater or equal to the maximum of the dimensions of the K-vector
spaces H"(X), with n even.

Remark 1.3. After the circulation of this manuscript, Bernardara kindly informed us
that an alternative proof of Theorem 1.1 in the particular case where X is a smooth projective
complex variety can be found in [5]; see also [6]. Moreover, Kuznetsov kindly explained us
an alternative proof of Theorem 1.1 following some of Orlov’s ideas. Our approach is rather
different and can also be viewed as a further step towards the complete understanding of the
relationship between motives and noncommutative motives.

Recall from [38, Section 10] and [39, Section 5] the construction of the universal local-
izing invariant
U(—) : dgcat(k) — Mot(k).

Roughly speaking, U(—) is the universal functor defined on the category of differential graded
(dg) categories and with values in a triangulated category that inverts Morita equivalences
(see Section 4.2), preserves filtered (homotopy) colimits, and sends short exact sequences (i.e.
sequences of dg categories which become exact after passage to the associated derived cat-
egories; see [26, Section 4.6]) to distinguished triangles. Examples of localizing invariants
include algebraic K-theory, Hochschild homology, cyclic homology (and all its variants), and
even topological cyclic homology. Because of this universal property, which is reminiscent
from the theory of motives, Mot(k) is called the category of noncommutative motives. In or-
der to simplify the exposition let us denote by 1 the noncommutative motive U (k). Our sec-
ond main result, which provides a partial answer to Question B, is the following (recall from
[20, Section 1.4] the notion of semi-orthogonal decomposition).

" A natural generalization of the notion of full exceptional collection.
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Theorem 1.4. Let X be a DM stack such that M(X)qg =~ L @ ... L®" (for
some choice of integers Iy, ...,Ln €{0,...,dim(X)}). Assume that JDb_(X) admits a semi-
orthogonal decomposition (€Y, ... €7 ... €P) of length p and let Eég be the natural dg
enhancement of €;. Then, we have canonical isomorphisms

(1.4) UCp = lo® - ®lg, 1=j=p,
[ —.

nj

in the category Mot(k)(nQ obtained from Mot(k) by first taking rational coefficients and then
passing to the idempotent completion. Moreover,

p
2 nj=m
j=1

and for every localizing invariant L (with values in an idempotent complete Q-linear triangu-
lated category) the equality L(‘G(jg) = L(k)®" holds.

Note that Theorem 1.4 imposes strong conditions on the shape of a possible semi-ortho-
gonal decomposition of D?(X), whenever M (X)q@ decomposes into a direct sum of tensor
powers of the Lefschetz motive. Intuitively speaking, if a semi-orthogonal exists then each one
of its pieces is rather simple from the noncommutative viewpoint.

The proofs of Theorems 1.1 and 1.4 rely on the “bridge” between Chow motives and
noncommutative motives established by Kontsevich; see [40, Theorem 1.1]. In what concerns
Theorem 1.1, we prove first that the dg enhancement ;ogg(x ) of D?(X) becomes isomorphic
in the category of noncommutative motives to the direct sum of m copies of the ®-unit. Then,
making use of the mentioned “bridge” we show that all the possible lifts of this direct sum are
the Chow motives of shape ~ L®1 @ ... @ L®m with [1,..., 1, € {0,...,dim(X)}. In what
concerns Theorem 1.4, the canonical isomorphisms (1.4) follow from the mentioned “bridge”
and from the decomposition of the noncommutative motive associated to !Oé’g (X); consult
Section 5 for details.

Dubrovin conjecture. At his ICM address [12], Dubrovin conjectured a striking con-
nection between Gromov—Witten invariants and derived categories of coherent sheaves. The
most recent formulation of this conjecture, due to Hertling—Manin—Teleman [19], is the fol-
lowing:

Conjecture. Let X be a smooth projective complex variety.

(i) The quantum cohomology of X is (generically) semi-simple if and only if X is Hodge—
Tate (i.e. its Hodge numbers 274 (X) are zero for p # ¢) and the bounded derived cate-
gory DP(X) admits a full exceptional collection.

(i) The Stokes matrix of the structure connection of the quantum cohomology identifies with
the Gram matrix of the exceptional collection.

Thanks to the work of Bayer, Golyshev, Guzzeti, Ueda, and others (see [2, 16, 18, 42]),
items (i)—(ii) are nowadays known to be true in the case of projective spaces (and its blow-
ups) and Grassmannians, while item (i) is also know to be true for minimal Fano threefolds.
Moreover, Hertling—Manin—Teleman proved that the Hodge—Tate property follows from the
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semi-simplicity of quantum cohomology. Making use of Theorem 1.1 we prove that the Hodge—
Tate property follows also from the existence of a full exceptional collection.

Proposition 1.5. (1) Let X be a smooth projective complex variety. If the bounded
derived category Db (X) admits a full exceptional collection, then X is Hodge—Tate.

(ii) Let X be a smooth projective variety defined over a field k which is embedded o - k — C
into the complex numbers. If the bounded derived category DP (X)) admits a full excep-
tional collection, then the complex variety Xy (obtained by base change along «) is
Hodge-Tate.

By item (i) of Proposition 1.5 we conclude then that the Hodge—Tate property is unnec-
essary in the above conjecture, and hence can be removed. As the referee kindly explained us,
Proposition 1.5 admits the following étale version:

Proposition 1.6. Let X be a smooth projective variety defined over a field k. Assume
that its bounded derived category fl)b(X ) admits a full exceptional collection. Then, for ev-
ery prime number [ different from the characteristic of k, the étale cohomology Hg, (X%, Q;)
(see [1, Section 3.4.1]) is a direct sum of tensor powers of the Lefschetz motive (considered as
a Q;-module over the Galois group Gal(k / k)).

Acknowledgement. The authors are very grateful to Roman Bezrukavnikov and Yuri
Manin for stimulating discussions and precise references. They would like also to thank Mar-
cello Bernardara, Alexander Kuznetsov, John Alexander Cruz Morales and Kirill Zaynullin for
detailed comments on a previous draft. They are also very grateful to the anonymous referee
for all his/her corrections, suggestions, and comments that greatly helped the improvement of
the article.

2. Examples of full exceptional collections

In this section we summarize the state of the art on the existence of full exceptional
collections.

Projective spaces. A full exceptional collection (O (—n),...,@(0)) of length n 4+ 1 on
the bounded derived category Db (P?) of the n'h projective space was constructed by Beilinson
in [4].

Quadrics. In this family of examples we assume that k is of characteristic zero. Let
(V,q) be a non-degenerate quadratic form of dimension n > 3 and Q, C P(V) be the asso-
ciated smooth projective quadric of dimension d = n — 2. In the case where k is moreover
algebraically closed, Kapranov [23] constructed the following full exceptional collection on
the derived category D? (Qq):

(Z(—=d),0(=d +1),...,0(-1),0) ifd isodd,
(Z4(—d),2_(—d),0(—=d + 1),...,0(—1),09) ifd iseven,

where X+ (and X) denote the spinor bundles. When k is not algebraically closed, Kapranov’s
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full exceptional collection was generalized by Kuznetsov [28] into a semi-orthogonal decom-
position

@.1) (DP(Clp(Qy)). O(=d + 1).....0),
where Clo(Q,) denotes the even part of the Clifford algebra associated to Q.

Toric varieties. Let X be a projective toric variety with at most quotient singularities
and B an invariant Q-divisor whose coefficients belong to the set {’r;1 11 € Zso}. A full
exceptional collection on the bounded derived category D?(X) of the stack X associated to
the pair (X, B) was constructed by Kawamata in [25].

Homogeneous spaces. In a recent work [29], Kuznetsov—Polishchuk conjectured the
following important result:

Conjecture. Assume that the base field k is algebraically closed and of characteris-
tic zero. Then, for every semisimple algebraic group G and parabolic subgroup P C G the
bounded derived category D?(G/P) admits a full exceptional collection.

As explained by Kuznetsov—Polishchuk in [29, page 3], this conjecture is known to be
true in several cases. For instance, when G is a simple algebraic group of type A, B, C, D,
Ee, F4 or G2 and P is a certain maximal parabolic subgroup, a full exceptional collection
on D?(G/P) has been constructed. The case of an arbitrary maximal parabolic subgroup P
of a simply connected simple group G of type B, C or D was also treated by Kuznetsov—
Polishchuk in [29, Theorem 1.2].

Fano threefolds. In this family of examples we assume that the base field k is alge-
braically closed and of characteristic zero. Fano threefolds have been classified by Iskovskih
and Mori—Mukai into 105 different deformation classes; see [21,22,34]. Making use of Orlov’s
results, Ciolli [10] constructed for each one of the 59 Fano threefolds X which have vanish-
ing odd cohomology a full exceptional collection on D?(X) of length equal to the rank of
the even cohomology. By combining these results with Corollary 1.2 we obtain the following
characterization:

Corollary 2.1. Let X be a Fano threefold. Then, the derived category DP(X) admits
a full exceptional collection if and only if the odd cohomology of X vanishes.

Moduli spaces. In a recent work, Manin and Smirnov [33] constructed a full excep-
tional collection on the bounded derived category Db (ﬂo,n) of the moduli space of n-pointed
stable curves of genus zero. This was done by an inductive blow-up procedure which combines
Keel’s presentation of ﬂo,n with Orlov’s decomposition theorem.

3. Motivic decompositions
Thanks to Theorem 1.1 the Chow motive (with rational coefficients) of every one of the

examples of Section 2 decomposes into a direct sum of tensor powers of the Lefschetz motive.
We would like to bring the attention of the reader to the fact that these motivic decompositions
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can in general be obtained using simple geometric arguments. Moreover, they have been es-
tablished long before the corresponding full exceptional collections; consult for instance the
work of Brosnan [7], Chen—Gibney—Krashen [8], Chernousov—Gille-Merkurjev [9], Gille—
Petrov—Semenov—Zainoulline [13], Gorchinskiy—Guletskii [17], Karpenko [24], Kock [27],
Manin [32], Rost [35,36], and others.

In the case of quadrics (when k is algebraically closed and of characteristic zero) the
precise motivic decomposition is the following:

M(Spec(k))o ®L & --- & L®” if d is odd,

M ~
(Ga)e {M(Spec(k))Q eL®- L @ LW/ ifd iseven.

As explained by Brosnan in [7, Remark 2.1], this motivic decomposition still holds over an ar-
bitrary field k of characteristic zero when d is odd.” Hence, by combining the semi-orthogonal
decomposition (2.1) of Kuznetsov with Theorem 1.4, we conclude that the isomorphism

(3.1) U(DE (Clo(Q9))f = UCI(Qg))g = 1o

holds for every smooth projective quadric Q4 of odd dimension.

Remark 3.1. The referee kindly explained us that (3.1) follows automatically from the
fact that the even part of the Clifford algebra of every split odd dimensional quadric is a matrix
algebra (and hence Morita equivalent to the base field).

The case of Fano threefolds X is quite interesting because the construction of the full
exceptional collection precedes the precise description of M (X)g, which was only recently
obtained by Gorchinskiy—Guletskii in [17, Theorem 5.1]. Concretely, we have the following
isomorphism:

M(X)q ~ M(Spec(k))g ® M (X) ®L®* @ (M'(J) 9 L) & (L®*)® ¢ M>(X) @ L&,

where M 1(X), M (X) are the Picard and Albanese motives respectively, b = b (X) = b4(X)
is the Betti number, and J is a certain abelian variety defined over k, which is isogenous to the
intermediate Jacobian J2(X) if k = C.

Remark 3.2. Note that since the Lefschetz motive (and its tensor powers) have trivial
odd cohomology, we can conclude directly from Theorem 1.1 and Corollary 2.1 that the derived
category DP(X) of a Fano threefold X admits a full exceptional collection if and only if
M (X))@ decomposes into a direct sum of tensor powers of the Lefschetz motive.

4. Preliminaries

4.1. Notations. Throughout the article we will reserve the letter k£ for our perfect base
field. The standard idempotent completion construction will be written as (—)¥.

2) The referee kindly explained us that the analogous result with d even is false: a counterexample is given
by the quadric in P3 over C () given the equation xy + z2 = tw?.
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4.2. Differential graded categories. A differential graded (dg) category, over our base
field k, is a category enriched over cochain complexes of k-vector spaces (morphisms sets are
complexes) in such a way that composition fulfills the Leibniz rule

d(fog)=d(f)og+ (1% fod(e);

consult Keller’s ICM address [26]. The category of dg categories will be denoted by dgcat(k).
Given a dg category + we will write H?(A) for the associated k-linear category with the
same objects as » and morphisms given by H®(#)(x, y) := H%A(x, y), where H® denotes the
0™-cohomology. A dg category + is called pre-triangulated if the associated category HO(A)
is triangulated. Finally, a Morita equivalence is a dg functor A — B which induces an equiv-
alence D(A) — D(B) on the associated derived categories; see [26, Section 4.6].

4.3. Orbit categories. Let € be an additive symmetric monoidal category and O € €
be a ®-invertible object. As explained in [40, Section 7], we can then consider the orbit cate-
gory €/_g . It has the same objects as € and morphisms given by

Homeg, o, (X,Y) 1= @HOH]*@(X, Y @ O®).
reZ

The composition law is induced from €. Concretely, given objects X, Y and Z and morphisms

f ={fr}rez € P Home(X.Y ® OF"),

rez

g = {gs)sez € PHome(¥, Z ® 0%),

SEZ

the /™-component of the composition g o f is the finite sum
D (g1-r ® 0% )0 .
-

Under these definitions, we obtain an additive category €/_g@ and a canonical additive projec-
tion functor 7(—) : € — €L g@. Moreover, 7 (—) is endowed with a natural 2-isomorphism
7(—) o (— ® O) = w(—) and is 2-universal among all such functors.

4.4. K¢-motives. Recall from Gillet—Soulé [14, Section 5] and [15, Section 5] the con-
struction® of the symmetric monoidal functor £ (k)°® — KM(k)q with values in the category
of Ko-motives (with rational coefficients). Since Ko-motives are probably more familiar to the
reader than noncommutative motives, we explain here the precise connection between the two.

Recall from Lunts—Orlov [31, Theorem 2.13] that the triangulated category D?(X) of
every smooth projective variety X (or more generally of every smooth and proper Deligne—
Mumford stack) admits a unique differential graded enhancement i)é’g (X). In particular, we
have an equivalence HO(JDé’g (X)) ~ DP(X) of triangulated categories. Since X is regular,
every bounded complex of coherent sheaves is perfect (up to isomorphism) and so we have
moreover a natural Morita equivalence @gs rf(X ) >~ e‘()é’g (X). The assignment X +—> ﬂ)gge nc(X )
gives then rise to a well-defined (contravariant) functor from J (k) to dgcat(k). As explained in

3 As explained in loc. cit., the category KM(k)q is originally due to Manin [32].
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the proof of [40, Theorem 1.1], there is a well-defined Q-linear additive fully faithful symmetric
monoidal functor 63 making the following diagram commute:

perf

P (k)P —=2——  dgcat(k)

[ T

KM(k)g ————— Mot(k)3).
03

Intuitively speaking, the category of Kp-motives embeds fully faithfully into the category of
noncommutative motives.

5. Proof of Theorem 1.1

Let us denote by (E;), 1 < j < m, the smallest triangulated subcategory of Db(X)
generated by the object E;. As explained in [20, Example 1.60] the full exceptional collection
(E1,...,Ej, ..., Ey) of length m gives rise to the semi-orthogonal decomposition

DO(X) = ((E1)s. o AEj)s . (Em)),

with (E;) ~ DP(k) for 1 < J < m. As explained in Section 4.4, the triangulated category
DP(X) admits a (unique) dg enhancement i)é’g(X) such that Ho(i)é’g(X)) ~ DP(X). Let
us denote by (Ej)qg the dg enhancement of (E;). Note that HO((Ej)dg) ~ (E;) and that
(Ej)ag ~ JDé’g (k). Recall from Section 1 that we have a well-defined universal localizing in-
variant

U(—) : dgcat(k) — Mot(k).

Lemma 5.1. The inclusions of dg categories i)é’g(k) >~ (Ej)dg — JDé’g(X), 1<j<m,
give rise to an isomorphism

5.1) P UDE, (k) => UDE(X)).
j=1

Proof. For every 1 <i <m,let (Ej,..., Ey) be the full triangulated subcategory of
DP(X) generated by the objects E;, ..., En. Since by hypothesis (E1, ..., Ep) is a full ex-
ceptional collection of DP(X), we obtain the following semi-orthogonal decomposition:

(Ei.....Em) =((Ei), (Ei41..... Em)).

Now, let A, B and € be pre-triangulated dg categories (with 8 and € full dg subcat-
egories of ») inducing a semi-orthogonal decomposition HO(A) = (HO(.B), HO(‘€)). As ex-
plained in [38, Section 12-13], we have then a split short exact sequence

ve

kT kN
5.2) 0 B A € 0,

LB

where t g (resp. te) denotes the inclusion of B (resp. of €) on 4. Consequently, (5.2) is mapped
by the universal localizing invariant U(—) to a distinguished split triangle and so the inclu-
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sions (g and e give rise to an isomorphism U(B) @ U(€) = U(+A) in Mot(k). By applying
this result to the dg enhancements

A=(Ei,....Em)dg. B:=(Ei)ag. € :=(Eit1,....Em)dg
we then obtain an isomorphism
(5.3) (DL (k) ® UEi41. ... Em)ag) —> U(Ei..... Em)dg)
forevery 1 <i < m. A recursive argument using (5.3) and the fact that
DL(X) = (E1..... Em)ag

gives then rise to the above isomorphism (5.1). O

Consider the following commutative diagram:

D)
Di"(-)
(5.4) DM (k)P ——— P (k)P dgcat(k)
— U(—
m lM( o l ©
Chow(k)g Mot (k)

n(—)l l(—)c”@
f
Chow(k)ol-00(1) — x5 Mot(k)q-
Some explanations are in order. The lower-right rectangle is due to Kontsevich; see [40, The-
orem 1.1]. The category Chow(k)g/gq) is the orbit category associated to the Tate mo-
tive Q(1) (which is the ®-inverse of the Lefschetz motive L) and R(—) is a Q-linear additive
fully-faithful functor; recall from Section 4.4 since X is regular we have a natural Morita
equivalence i)gg rf(X ) ~ i)é’g(x ). Finally, the upper-left triangle in the above diagram is the
one associated to (1.1)—(1.2).
The commutativity of the above diagram (5.4), the natural Morita equivalence

D& (k) ~ Dk (Spec(k))

of dg categories, and the fact that the functor R(—) is additive and fully faithful, imply that the
image of (5.1) under (—)(B can be identified with the isomorphism

m

(5.5) P 7 (M(Speck)q) — m(M (X))
j=1

in the orbit category Chow(k)q/-gq(1)- Hence, as M (Spec(k))q is the ®-unit of Chow(k)q
and the automorphism — ® Q(1) of Chow(k)q is additive, there are morphisms

i = {fr}reZ € @HomChow(k)@ (M(X)Q’ @Q(1)®r)

rez j=1

and

g = {gs)sez € @ Homepowg (EB M(Spec(k))g. M(X)g ® @(1)@”)

SEZ Jj=1
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verifying the equalities g o / =id and f o g = id. The equivalence of categories
Chow(k)g >~ DMChow(k)q,

combined with the construction of the category of Deligne—-Mumford—Chow motives (see
[3, Section 8]), implies that

HOMChow (k) (M(X)@, &y Q(1)®’) ~ @ A9mOF (X x Spec(k))

Jj=1 J=1

and that

Homchow (k) (@ M (Spec(k))g, M(X)g ® Q(1)®S) ~ @ A’ (Spec(k) x X)),
J=1

J=1

where A*(—) denotes the rational Chow ring of DM stacks defined by Vistoli in [43]. Hence,
we conclude that f = Oforr # {—dim(X),...,0} and that g¢ = Ofors # {0,...,dim(X)}.
The sets of morphisms

{(fo;:0<l<dim(X)} and {g @ Q()®D:0 </ <dim(X)}

give then rise to well-defined morphisms

dim(X) m dim(X) m
o: M(X)g — P P w: P PomE — MX)g
1=0 j=1 I=0 j=1

in Chow(k)q. The composition W o ® agrees with the 0-component of the composition
g o f = idrm0g)-
Le. it agrees with idps(x), - Since
Q¥ =L¥,

we conclude then that M (X)) is a direct summand of the Chow motive @}ii;néX) @;’;1 L%
By definition of the Lefschetz motive we have the following equalities:

HomChOW(k)Q) (L®pa L®q) = Spq : Q’ p, q Z O,

where 6,4 stands for the Kronecker symbol. As a consequence, M(X)q is in fact isomor-

phic to a subsume of the Chow motive EB‘;Z}EX) @7;1 L®! indexed by a certain subset S of
{0,...,dim(X)} x {1,...,m}. By construction of the orbit category we have natural isomor-

phisms
7T(L®l) — m(M(Spec(k))g), [>0.

Hence, since the direct sum in the left-hand-side of (5.5) contains m terms, we conclude that
the cardinality of S is also m. This means that there is a choice of integers (up to permutation)
I1,...,Ln €40,...,dim(X)} giving rise to a canonical isomorphism

M(:X:)Q ~ L®ll @ e @L@lm

in Chow(k)q. The proof is then achieved.
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6. Proof of Corollary 1.2

Since by hypothesis K is a field of characteristic zero, the universal property of the
category Chow(k)g of Chow motives with rational coefficients (see [1, Proposition 4.2.5.1]
with F = Q) furnish us a (unique) additive symmetric monoidal functor H*(—) making the
right-hand-side triangle of the diagram

DME)Y® — P)? T, VecGrye

o, |

Chow(k)g

commutative. Note that the commutativity of the left-hand-side triangle holds by construction.
By hypothesis D?(X) admits a full exceptional collection of length m and so by Theorem 1.1
there is a choice of integers (up to permutation) /1, ..., [, € {0,...,dim(X)} giving rise to
a canonical isomorphism

M(X)gp ~L® @... @ L&,

Since the functor H*(—) is additive and symmetric monoidal and H*(X) = H*(M(X)g),
we obtain then the following identification:

H*(X) ~ H*(L)®"' & --- @ H*(L)®".
As proved in [1, Proposition 4.2.5.1] we have

K, n=2,

W(L):{O "2

and so we conclude that H"(X) = 0 for n odd and that dim H"(X) < m for n even.

7. Proof of Theorem 1.4

As the proof of Lemma 5.1 shows, we can replace (E;)qq by the dg category
€, C DE(X)

and hence obtain the isomorphism
p .
P ucey) ~ UDE (X))
j=1

in Mot(k). Since by hypothesis M(X)g =~ L®1 @ ... @ L®m  one concludes then from the
above commutative dlagram (5.4) and from the fact that R( ) is fully-faithful that the direct
sum B = ‘l,((‘€djg)(Q is isomorphic to the direct sum 1 @ - - - @ 1g (with m-terms). As a con-
sequence, for every 1 < j < p, there exists a well-defined non-negative integer 7, such that

(7.1) UG ~ 1o @ ®1g and Zn,_m
—_—

n; Jj=1
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Now, let L : dgcat(k) — T be a localizing invariant. Since by hypothesis 7 is an idempo-
tent complete QQ-linear triangulated category, we obtain from the universal property of U(—)
(see [38, Theorem 10.5]) an induced Q-linear triangulated functor

L : Mot(k)gy — T

such that Z(‘U(A)(n@) = L(+A) for every dg category 4. By the above isomorphism (7.1) we
conclude then that .
L(€g)) ~ L(k)®"

as claimed. This concludes the proof.

8. Proof of Proposition 1.5

Let us start by proving item (i). Since by hypothesis DP(X) admits a full exceptional
collection, there is by Theorem 1.1 a choice of integers (up to permutation)

liy...ilm €{0,...,dim(X)}
giving rise to a canonical isomorphism
8.1 M(X)g ~ L& & ... @ L8 ¢ Chow(C)q.

We now proceed as in the proof of Corollary 1.2. Let us denote by Ry the realization functor
from Chow(C)q to Q-Hodge structures; see [30, Section V.2.3]. Thanks to (8.1) we obtain the
isomorphism Ry (M(X)g) ~ Ry (L)®! & --- & Ry (L)®. Since

I, p=gq,
h?9(Rg (L)) =
0’ p # q’

we conclude then that the Hodge numbers h?4(X) are zero for p # ¢, i.e. that X is Hodge—
Tate. This concludes the proof of item (i).
Let us now prove item (ii). As in the proof of item (i), there is a choice of integers (up to
permutation)
l1y..., I, €{0,...,dim(X)}

giving rise to an isomorphism
(8.2) M(X)g ~ L% @ ... @ L®" ¢ Chow(k)q.

The field embedding « : k — C gives rise to a Q-linear additive symmetric monoidal base
change functor

Chow(k)g —> Chow(C)g, M(X)g — M(Xa)0,

which preserves the Lefschetz motive; see [1, Section 4.2.3]. Consequently, using (8.2) we
obtain the canonical isomorphism M (X)g =~ L® @... @ L®m in Chow(C)gq. Now, using
the arguments of item (i), we conclude that X is Hodge—Tate and so the proof is finished.
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9. Proof of Proposition 1.6

The proof is similar to the one of Proposition 1.5; simply use the realization functor to

étale cohomology instead of the realization functor to Q-Hodge structure.
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