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About this “Geometry of Neuroscience” class

This class is based on a class designed and jointly taught by
Matilde Marcolli (math) and Doris Tsao (neuroscience) in 2017,
later taught by M.M. at the University of Toronto in 2018, and is
the basis for an ongoing book project Geometry of Neuroscience
with Doris Tsao (UC Berkeley)
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this class will cover:

@ Structures in the Brain: Neurons, Networks, Codes

Single neuron as a dynamical system

Hopfield equation and neural computation
Neural codes and homotopy types

Brain networks and random graphs

Directed algebraic topology and microcircuitry
Models of learning

Artificial and brain networks

Category theory of networks and resources
Integrated Information
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@ Vision: Visual Cortex, Segmentation/Tracking

The Visual System and deep networks

Gabor frames and signal analysis

Conformal geometry of the visual cortex

Contact geometry of the visual cortex

Gabor frames and contact geometry, Gabor bundles
Segmentation and tracking: differential topology
Segmentation: variational analysis

Tracking: algebraic geometry

Pattern Theorey

@ Language: Syntax as Brain Structure

e Universal Grammar hypothesis
e Merge and syntax
e Syntax in the brain
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In this lecture: Motivational Introduction, Gromov's idea of
“Ergosystems”

@ Misha Gromov, Structures, Learning, and Ergosystems, 2011

@ Misha Gromov, Ergostructures, Ergologic and the Universal
Learning Problem, 2013

Two provocative programmatic long papers about the goal of
mathematical understanding of learning and structures in the
biological brain
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Gromov's Ergobrain

e Gromov conjectures the existence of a mathematical structure
implementing the transformation of incoming signal to
representation in the brain: ergobrain

e a dynamic entity continuously built by the brain: (goal free)
structure learning

e with constraints from network architecture
e Gromov's proposed terminology:

@ neuro-brain: a (mathematical) model of the physiology of the
brain (chemical, electrical, connectivity, etc.)

@ ergo-brain: a “dynamical reduction” of neuro-brain (quotient)

@ ergo-system: like ergobrain but not necessarily derived from a
neurobrain

@ ego-mind: mental processes, interactions of organisms with
outside world

@ ergo-learning: spontaneous structure building process
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Why “ergosystem”?
Cogito ergo sum

| see therefore | am

I envy therefore | am

I love therefore | am
| dream therefore | am

“Therefore” = hope to understand consciousness
through reasoning/mathematics

Ergosystem is a machine for extracting structure from incoming
signals, through a process of goal-free learning (in contrast to
reinforcement learning)
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an analogy with the biology of cells (Gromov)
different levels: case of cells
© interaction with the environment (cytology)
@ selection of beneficial mutations (molecular genetics)
© biochemistry of proteins and cell structures
third level example: protein interaction networks (structure and
information)
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case of neuroscience: analogs of first two levels
@ psychology: observation of output signals following interaction
with input signals
@ neurophysiology: nervous system function from molecules and
cells to systems

missing the analog of the “biochemistry level” for cells

understanding of structures and the mechanisms that govern their
formation and functionality ( “structures’ in a mathematical sense:
mathematics is the study of structures)

language is an example of a structure in the human brain, but
many questions about the realization of its computational and
mathematical structure in the brain physiology
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Language as a model ergosystem

Linguistic information entering the ergobrain does not much depend on the
physical carrier of this information. This suggest a universal class of structures
encoding this information; our main objective is describing these structures,
which we call syntactic ergo-structures.

Such a structure is a combinatorial object X, a kind of a network made of finitely
many "atomic units = ergo-ideas". This network structure generalizes/refines
that of a graph, where some patterns are similar to those found in the
mathematical theory of n-categories.

The combinatorial structure is intertwined with a geometric one; both an
individual network X and the totality of these, say X, carry natural distance-like
geometries which are derived from combinatorics and, at the same time, are
used for constructing combinatorial relations.

The learning process is modeled by some transformation(s) L in the space X; the
resulting "educated learner" appears as an attractive fixed point x (or a class of
points) under this transformation(s).

The (ergo)learning processétransfqrmation) L starts from a space of signals and
eventually compresses (folds) the information they carry by some coclustering
algorithms into our x.
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Vision as a model ergosystem

* The input of the visual system amounts, roughly, to
arrays of pixels changing over time.

* How does brain segment groups of pixels into
objects, and learn that these objects are invariant
under O(3) transformations?

“The mathematics of building/identifying the O(3)-symmetry of the
visual perception field is similar to but more complicatedthan how
Alfred Sturtevantreconstructedin 1913 linearity of the gene
arrangements on the basis of distributions of phenotype linkages
long before the advent of the molecular biology and discovery of
DNA.”

Matilde Marcolli Ergobrain



The role of Mathematics

e long history of very successful interactions of mathematics and physics

@ "“The Unreasonable Effectiveness of Mathematics in the Natural
Sciences” (Eugene Wigner, 1960): referring to physical science and
how mathematics can drive new advances in physics

@ in more recent years we have also seen the “unreasonable
effectiveness of physics in the mathematical sciences” with new
progress in mathematics driven by physics

@ there is also an ongoing “unreasonable effectiveness of mathematics
in linguistics” which suggests a broader role in brain
structures / ergosystems

e Biology has traditionally not put too much emphasis on theoretical
ideas as a guiding principle for progress in the field; interactions between
mathematics and biology are recent and still largely underdeveloped

e Gromov's speculation on mathematics and neuroscience: “basic mental
processes can be meaningfully described, if at all, only in a broader
mathematical context and this mathematics does not exist at the present
day” ... or does it?
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Example of mathematical viewpoint: symmetry

e several molecules occur with symmetries (icosahedral symmetry
of viruses; helix and double helix symmetries in proteins and DNA,
etc.)...

e energy and symmetry: configuration space M of molecules with
group action G, invariant energy functional E, typically local
minima over G-symmetric configurations are local minima for all
configuration

e information and symmetry. a symmetric form is specified by
fewer parameters, preferable from the Shannon information
viewpoint
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Symmetry constraints and simplifies the space of possibilities

What is the architecture of the
ergobrain? An analogy to viruses

“In the end of the day, the symmetry of viruses depends
on the structural constrains imposed by the geometry of
the physical space which allows the existence of such
improbable objects as icosahedra.

Similarly, we expect that the constrains of the
mathematical space (which we have not defined yet)
where ergosystems reside will have a strong structural
imprint on a possible architecture of the ergobrain. For
example, we want to understand what in the (ergo)brain
is responsible for the unreasonable power of our visual
system which allowed a discovery o)‘ icosahedra by
humans (at least) as early as -400.”
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Example of how algebra constraints systems behavior and reveals
universal laws

a biology example: Hardy-Weinberg principle

e allele and genotype frequencies in a population would remain
constant through generations in the absence of other evolutionary
influences (mutation, selection, etc.)

e two alleles with frequencies f(A) = p and fy(a) = g (with
p+ g =1) (similar for n alleles a;)

e expected genotype proportions next generation

fi(AA) = p?, fi(aa) = q°> homozygotes, f1(Aa) = 2pq heterozygotes
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o still satisfying f1(AA) + f1(aa) + f1(Aa) = p> + ¢*> +2pg =1
@ ok for g =1 — p giving
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@ new distribution of alleles depending on distribution of
genotypes (at k-th generation)
1 1
fi(A) = f(AA) + Efk(Aa) and fx(a) = fx(aa) + Efk(Aa)
@ so at first new generation
fi(A) = p*+pg =p=f(A) and f(a)=q’+pq=q=fa)
f(AA) = p* = fo(A)?, fi(aa) = ¢° = fi(a)’, fi(Aa) = 2pq = 2f(A)fy(a)



then to compute (f,11(AA), fri1(Aa), frr1(aa))
@ probability of, say, AA-aa combination is 2f,(AA)f,(aa) and
results in Aa: write result as (0, 1,0)
@ summing analogous count for all six possible combinations

(fn+1(AA)7 fn+l(Aa)7 fn+1(aa)) =

((F(AQ) + 5 o(AQ))2, (F(AA)+ 3 ol A))(Fa(a2) - o(A2)), (fa(aa) - o A2))?)
= ((AY, 25(A)2), (o))

e while (f1(AA), fi(Aa), fi(aa)) need not be the same as
(fo(AA), fo(Aa), fo(aa)), since (f1(A), fu(a)) = (fo(A), fo(a))
will then have all

(fa(AA), fo(Aa), fa(aa)) = (A (AA), f1(Aa), fi(aa))

everyrthing stabilizes by the second generation

@ gene recombination not sufficient to explain evolution, in the
absence of additional phenomena like gene mutation
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What kind of mathematics?

General framework:

© Combinatorial objects: from graphs to n-categories (networks
and relations)

@ Transformations and symmetries: groups and generalizations
(groupoids, categories, Hopf algebras, operads, etc.)

© Probabilities and information/entropy and complexity:
algebraic structures with superimposed probabilistic and
thermodynamical (statistical physics) structures

@ Topological and Metric: proximity, similarity, deformation,
homotopy, distance, measurement, manifolds, shapes

© Grammars: formal languages, logic, types, compositional
structures

we'll meet several of these along the way, for now just a quick
glimpse of some notions
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Categories

e traditional setting of mathematics based on Set Theory, first
example of categories: Sets (or Finite Sets)

e Category C: Objects X, Y,--- € O(C), Morphisms Hom¢(X, Y),
ho(gof)=(hog)of

associative composiiton X Ly & 75 wWand identity
1x € Home(X, X) unit for composition
f
X —Y
gof hog

Z——W
h
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e Functors F : C — C’, on objects O(C) 3 X — F(X) € O(C’), on
morphisms F(f) : F(X) — F(Y) (covariant; also contravariant)
with F(gof)=F(g)o F(f) and F(1x) =1y

e Natural Transformations: 7 : F — G, to every object a morphism
nx : F(X) = G(X) with ny o F(f) = G(f) onx

F(x) 2% Fey)

| |

G(X) 5 G(Y)

e Categories of Vector Spaces, Topological Spaces, Smooth
Manifolds, Groups, Rings, etc.
.. concept of mathematical structure
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Example: directed graphs are functors

<

@ category 2 with two objects V/, E and two non-identity
morphisms s, t : E — V

e functor G : 2 — Sets, sets Vs and Eg (vertices, edges) and
maps of sets s¢, tg : Eg — Vi source and target maps of
directed edges

@ natural transformation 7 : G — G’ is usual notion of map of
directed graphs

nv:Ve— Ve and ng:Eg— Eg
preserving incidence relations
nvosc=sg one and nyote=te onE
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Higher Categorical Structures

e 2-Categories: a category C where the sets Hom¢ (X, Y) are
themselves the objects of a category (ie there are morphisms
between morphisms: 2-morphisms)

e vertical and horizontal composition of 2-morphisms with
exchange relation

(o9 B) o1 (7 000) = (cwo1y) o9 (Bo16)

D DA AN D
VALVAVAY,

e objects = vertices; morphisms = 1-cells; 2-morphisms = 2-cells
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Homotopy and Higher Category Theory

e Note: 2-category composition of 1-morphisms associative;
bicategory associative up to 2-isomorphism

e Example: Objects = points in an open set in the plane;
Morphisms = oriented paths connecting points; 2-morphisms =
homotopies of paths; composition up to homotopy... can also
compose homotopies up to homotopy etc. ... higher n-categories
(with n different levels of “isomorphism”: 0O-isomorphism equality,
1-isomorphism realized by invertible 1-morphisms; 2-isomorphism
by 2-morphisms etc.)... co-categories

e Contemporary mathematical viewpoint is shifting more and more
towards these higher (or co) structures and homotopy
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Groups, Semigroups, Groupoids, Algebras, and Categories

e Group: small category with one object and all morphisms
invertible (product, associativity, unit)
. symmetries (action by automorphisms)

e Group algebra C[G] (discrete group G) finitely supported
functions f : G — C with convolution

(A*h)(g Z fi(g1)f(g2)

g=g18
involution f*(g) = f(g~1)

e Semigroup: small category with one object (not always inverses)
. actions by endomorphisms

e Semigroup algebra: f: S — C with convolution
(Axh)(s)= Y Als1)f(s)
5=515)

no longer necessarily involutive
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e Groupoid: small category where all morphisms are invertible
(product is defined only when target of first arrow is source of
second)

. another type of symmetry

e Groupoid algebra G = (G(®,G(1) s, t) (objects and morphisms,
source and target); algebra of functions f : G - C with
convolution

(AxR)() = > A(n)fh(r)
Y=71972

and involution *(y) = W

e Semigroupoid: a small category (associative composition of
morphisms)

e Semigroupoid algebra: functions of morphisms with convolution

(Axh) (@)= > Ald1)h(¢)
p=¢10¢2
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Topology and invariants

e Topological spaces and continuous functions (the study of
shapes up to continuous deformations)

e Invariants: ways of distinguishing between topological spaces

e Invariants are functors from the category 7 of Topological
Spaces to another category (vector spaces, groups, rings, etc.)

e Homology: functor H, : T — V7 to Z-graded vector spaces

Ker(0, : Co(X,Z) — Ch_1(X,Z))
Image(an+1 : Cn+1(XvZ) - Cn(XaZ))

Hn(X,Z) =

Cn(X,Z) abelian group spanned by n-simplexes of a triangulation
of X; Oy (oriented) boundary map
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Homology is independent of the choice of triangulation; it
measures “holes” and “connectivity” in various dimensions

a triangulation of a surface of genus 3
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Metric Spaces, Riemannian Manifolds
e Topological spaces with a quantitative measure of proximity:
topology is induced by a metric (open sets generated by open balls
in the metric)
e distance function (metric) d : X x X — Ry with

e d(x,y)=d(y,x) for all x,y € X

o d(x,y)=0iff x=y

e triangle inequality d(x, y) < d(x,z) + d(z,y) for all

x,y,z€ X

e smooth manifold M (covered by local charts homeomorphic to
R"™ with C* changes of coordinates in charts overlap); tangent
spaces T, M at all points (tangent bundle TM)
e Riemannian manifold: smooth manifold, metric structure
determined by a metric tensor g = (g,,,) symmetric positive,
section of T"M ® T*M
o length of curves L(y) = [ g(7'(t),7(t))'/? dt, geodesic distance:

d(x,y) = inf L(v)
Y



Probabilities and Entropy

e mathematical structures (especially algebraic structures)
endowed with probabilities

e a successful approach in formal languages and generative
grammars: probabilistic grammars (generative rules applied with
certain probabilities)

e other algebraic structures can be made probabilistic: groups,
semigroups, groupoids, semigroupoids... all like directed graphs:
assign probabilities at each successive choice of next oriented edge
in a path... like Markov processes

e also attach information measures (entropy) to algebraic
structures (operations weighted by entropy functionals):
information algebras

The Key Idea: in applications to Biology all mathematical
structures should be endowed with probabilistic weights and
entropy/information weights
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Complexity and Patterns
e Kolmogorov Complexity

shortest length of a program required to compute the given output
(theory of computation, Turing machines)

e Gell-Mann Effective Complexity

description length of “regularities” (structured patterns) contained
in the object
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Ambiguity, Galois Symmetry, Category Theory (math examples of
interplay between properties of categories and geometric
symmetries/ambiguities)

e Symmetries describe ambiguities (up to isomorphism, up to
invertible transformations, up to homotopy, etc.)

e Categorical viewpoint on Symmetry: need categories with good
properties... very much like the category of vector spaces: abelian
(kernels and cokernels), tensor, rigid (duality, internal Hom)

e fiber functor w : C — V to vector spaces preserving all properties
(tensor, etc.) and symmetries G = Aut(w) the invertible natural
transformations of the fiber functor

e (C,w) as above: Tannakian category with Galois group G

e this includes: usual Galois theory; Motives; Regular-singular
differential systems; symmetries of Quantum Field Theory, etc.

e what interplay between categorical compositional structures and
symmetries in neuroscience?
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Structures in the brain

Mathematical tools have expanded and evolved as more levels of
structure in the brain are studied from small scales (single neurons,
microcircuitry) to large scales (connectome) and in modeling
neural codes

o differential equations, dynamical systems: functioning of
single neuron, ion channels, synaptic connections

@ topology: random graphs, connectivity, directed algebraic
topology concurrent and distributed computing, simplicial
complexes (activation complex, microcircuitry)

@ homotopy: neural codes, patterns of brain activity and
reconstruction of stimulus space

@ category theory: allocation of resources to networks,
interactions between different types of resources

@ information structures: integrated information, quantitative
approaches to consciousness
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Visual system

Modeling the structure of the V1 visual cortex involves a novel
interplay of different mathematical tools: signal analysis (Gabor
frames) and contact geometry (modeling the connectivity of the
V1 cortex) and conformal geometry of the retinal map. The main
problem of segmentation and tracking in vision also involves an
interplay of very different areas of mathematics: differential
topology, variational analysis, algebraic geometry

@ signal analysis: receptor fields of V1 neurons

conformal geometry: retinotopic mapping to the V1 cortex
contact geometry: connectivity of the V1 cortex
differential topology: segmentation and tracking

variational analysis: image segmentation

algebraic geometry: image tracking
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Language system
A good mathematical modeling of language as a computational
system can be obtained by algebraic methods. The problem of
identifying neurocomputational mechanisms realizing this
computational model is developing and involves an interplay of
algebra, analysis, topology
@ algebra: Hopf algebras, magmas, semirings, operads play a
role in the modeling of syntax of human language
@ topology: semantic spaces rely on notions of proximity and
similarity
@ representations: realizations of the algebra of syntax in
neurocomputational settings
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