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References for this lecture:

Misha Gromov, Structures, Learning, and Ergosystems,
http://www.ihes.fr/∼gromov/PDF/ergobrain.pdf
Misha Gromov, Ergostructures, Ergologic and the Universal
Learning Problem
http://www.ihes.fr/∼gromov/PDF/ergologic3.1.pdf
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Gromov’s Ergobrain
• Gromov conjectures the existence of a mathematical structure
implementing the transformation of incoming signal to
representation in the brain: ergobrain

• a dynamic entity continuously built by the brain: (goal free)
structure learning

• with constraints from network architecture

• Gromov’s proposed terminology:

neuro-brain: a (mathematical) model of the physiology of the
brain (chemical, electrical, connectivity, etc.)

ergo-brain: a “dynamical reduction” of neuro-brain (quotient)

ergo-system: like ergobrain but not necessarily derived from a
neurobrain

ego-mind: mental processes, interactions of organisms with
outside world

ergo-learning: spontaneous structure building process
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The role of Mathematics

• long history of very successful interactions of mathematics and
physics

“The Unreasonable Effectiveness of Mathematics in the
Natural Sciences” (Eugene Wigner, 1960): referring to
physical science and how mathematics can drive new advances
in physics

in more recent years we have also seen the “unreasonable
effectiveness of physics in the mathematical sciences” with
new progress in mathematics driven by physics

• Biology has traditionally not put too much emphasis on
theoretical ideas as a guiding principle for progress in the field;
interactions between mathematics and biology are recent and still
largely underdeveloped

• Gromov’s speculation on mathematics and neuroscience: “basic
mental processes can be meaningfully described, if at all, only in a
broader mathematical context and this mathematics does not exist
at the present day”
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Example of mathematical viewpoint: symmetry

• several molecules occur with symmetries (icosahedral symmetry
of viruses; helix and double helix symmetries in proteins and DNA,
etc.)...

• energy and symmetry: configuration space M of molecules with
group action G , invariant energy functional E , typically local
minima over G -symmetric configurations are local minima for all
configuration

• information and symmetry: a symmetric form is specified by
fewer parameters, preferable from the Shannon information
viewpoint
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Other Example: Hardy-Weinberg principle

• allele and genotype frequencies in a population would remain
constant through generations in the absence of other evolutionary
influences (mutation, selection, etc.)

• two alleles with frequencies f0(A) = p and f0(a) = q

f1(AA) = p2, f1(aa) = q2 homozygotes, f1(Aa) = 2pq heterozygotes

with p2 + q2 + 2pq = 1, ok for q = 1− p (similar for n alleles ai )
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Hardy-Weinberg equilibrium

• linear algebra identity: M = (mij) matrix, mij ≥ 0, and∑
ij mij = 1

M ′ = (m′ij) with m′ij = (
∑
j

mij) · (
∑
i

mij)

M̂ =
M ′∑
ij m
′
ij

then ˆ̂M = M̂

distribution of phenotype features depending on a single gene
changes in the first generation but remains constant in the
successive generations

• gene recombination not sufficient to explain evolution, in the
absence of additional phenomena like gene mutation
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Other Example: Complexity and Patterns

• Kolmogorov Complexity

shortest length of a program required to compute the given output
(theory of computation, Turing machines)

• Gell-Mann Effective Complexity

description length of “regularities” (structured patterns) contained
in the object
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More generally What kind of mathematics?

General framework:

1 Combinatorial objects: from graphs to n-categories (networks
and relations)

2 Transformations and symmetries: groups and generalizations
(groupoids, Hopf algebras, operads, etc.)

3 Probabilities and information/entropy: algebraic structures
with superimposed probabilistic and thermodynamical
(statistical physics) structures

• a more detailed list of the mathematical tookbox
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Categories

• traditional setting of mathematics based on Set Theory, first
example of categories: Sets (or Finite Sets)

• Category C: Objects X ,Y , · · · ∈ O(C), Morphisms HomC(X ,Y ),

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

associative composiiton X
f→ Y

g→ Z
h→W and identity

1X ∈ HomC(X ,X ) unit for composition
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• Functors F : C → C′, on objects O(C) 3 X 7→ F (X ) ∈ O(C′), on
morphisms F (f ) : F (X )→ F (Y ) (covariant; also contravariant)
with F (g ◦ f ) = F (g) ◦ F (f ) and F (1X ) = 1Y

• Natural Transformations: η : F → G , to every object a morphism
ηX : F (X )→ G (X ) with ηY ◦ F (f ) = G (f ) ◦ ηX

• Categories of Vector Spaces, Topological Spaces, Smooth
Manifolds, Groups, Rings, etc.
... concept of mathematical structure
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Higher Categorical Structures

• 2-Categories: a category C where the sets HomC(X ,Y ) are
themselves the objects of a category (ie there are morphisms
between morphisms: 2-morphisms)

• vertical and horizontal composition of 2-morphisms with
exchange relation

(α ◦0 β) ◦1 (γ ◦0 δ) = (α ◦1 γ) ◦0 (β ◦1 δ)

• objects = vertices; morphisms = 1-cells; 2-morphisms = 2-cells
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Homotopy and Higher Category Theory

• Note: 2-category composition of 1-morphisms associative;
bicategory associative up to 2-isomorphism

• Example: Objects = points in an open set in the plane;
Morphisms = oriented paths connecting points; 2-morphisms =
homotopies of paths; composition up to homotopy... can also
compose homotopies up to homotopy etc. ... higher n-categories
(with n different levels of “isomorphism”: 0-isomorphism equality,
1-isomorphism realized by invertible 1-morphisms; 2-isomorphism
by 2-morphisms etc.)... ∞-categories

• Contemporary mathematical viewpoint is shifting more and more
towards these higher (or ∞) structures and homotopy
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Groups, Semigroups, Groupoids, Algebras, and Categories

• Group: small category with one object and all morphisms
invertible (product, associativity, unit)
... symmetries (action by automorphisms)

• Group algebra C[G ] (discrete group G ) finitely supported
functions f : G → C with convolution

(f1 ? f2)(g) =
∑

g=g1g2

f1(g1)f2(g2)

involution f ∗(g) ≡ f (g−1)

• Semigroup: small category with one object (not always inverses)
... actions by endomorphisms

• Semigroup algebra: f : S → C with convolution

(f1 ? f2)(s) =
∑

s=s1s2

f1(s1)f2(s2)

no longer necessarily involutive
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• Groupoid: small category where all morphisms are invertible
(product is defined only when target of first arrow is source of
second)
... another type of symmetry

• Groupoid algebra G = (G(0),G(1), s, t) (objects and morphisms,
source and target); algebra of functions f : G(1) → C with
convolution

(f1 ? f2)(γ) =
∑

γ=γ1◦γ2

f1(γ1)f2(γ2)

and involution f ∗(γ) = f (γ−1)

• Semigroupoid: a small category (associative composition of
morphisms)

• Semigroupoid algebra: functions of morphisms with convolution

(f1 ? f2)(φ) =
∑

φ=φ1◦φ2

f1(φ1)f2(φ2)
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Topology and invariants

• Topological spaces and continuous functions (the study of
shapes up to continuous deformations)

• Invariants: ways of distinguishing between topological spaces

• Invariants are functors from the category T of Topological
Spaces to another category (vector spaces, groups, rings, etc.)

• Homology: functor H∗ : T → VZ to Z-graded vector spaces

Hn(X ,Z) =
Ker(∂n : Cn(X ,Z)→ Cn−1(X ,Z))

Image(∂n+1 : Cn+1(X ,Z)→ Cn(X ,Z))

Cn(X ,Z) abelian group spanned by n-simplexes of a triangulation
of X ; ∂n (oriented) boundary map
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Homology is independent of the choice of triangulation; it
measures “holes” and “connectivity” in various dimensions

a triangulation of a surface of genus 3
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Metric Spaces, Riemannian Manifolds

• Topological spaces with a quantitative measure of proximity:
topology is induced by a metric (open sets generated by open balls
in the metric)

• distance function (metric) d : X × X → R+ with

d(x , y) = d(y , x) for all x , y ∈ X
d(x , y) = 0 iff x = y
triangle inequality d(x , y) ≤ d(x , z) + d(z , y) for all
x , y , z ∈ X

• smooth manifold M (covered by local charts homeomorphic to
Rn with C∞ changes of coordinates in charts overlap); tangent
spaces TxM at all points (tangent bundle TM)

• Riemannian manifold: smooth manifold, metric structure
determined by a metric tensor g = (gµν) symmetric positive,
section of T ∗M ⊗ T ∗M

• length of curves L(γ) =
∫
g(γ′(t), γ′(t))1/2 dt, geodesic distance:

d(x , y) = inf
γ
L(γ)
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Ambiguity, Galois Symmetry, Category Theory

• Symmetries describe ambiguities (up to isomorphism, up to
invertible transformations, up to homotopy, etc.)

• Categorical viewpoint on Symmetry: need categories with good
properties... very much like the category of vector spaces: abelian
(kernels and cokernels), tensor, rigid (duality, internal Hom)

• fiber functor ω : C → V to vector spaces preserving all properties
(tensor, etc.) and symmetries

G = Aut(ω)

the invertible natural transformations of the fiber functor

• (C, ω) as above: Tannakian category with Galois group G

• this includes: usual Galois theory; Motives; Regular-singular
differential systems; symmetries of Quantum Field Theory, etc.
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Formal Languages and Grammars

• A very general abstract setting to describe languages (natural or
artificial: human languages, codes, programming languages, . . .)

• Alphabet: a (finite) set A; elements are letters or symbols

• Words (or strings): Am = set of all sequences a1 . . . am of length
m of letters in A

• Empty word: A0 = {ε} (an additional symbol)

A+ = ∪m≥1Am, A? = ∪m≥0Am

• concatenation: α = a1 . . . am ∈ Am, β = b1 . . . bk ∈ Ak

αβ = a1 . . . amb1 . . . bk ∈ Am+k

associative (αβ)γ = α(βγ) with εα = αε = α
• semigroup A+; monoid A?

• Length `(α) = m for α ∈ Am
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• subword: γ ⊂ α if α = βγδ for some other words β, δ ∈ A?:
• prefix β and suffix δ

• Language: a subset of A?

• Question: how is the subset constructed?

• Rewriting system on A: a subset R of A? × A?

• (α, β) ∈ R means that for any u, v ∈ A? the word
uαv rewrites to uβv

• Notation: write α→R β for (α, β) ∈ R
• R-derivation: for u, v ∈ A? write u

•→R v if ∃ sequence
u = u1, . . . , un = v of elements in A? such that ui →R ui+1
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Grammar: a quadruple G = (VN ,VT ,P,S)

VN and VT disjoint finite sets: non-terminal and terminal
symbols

S ∈ VN start symbol

P finite rewriting system on VN ∪ VT

P = production rules

Language produced by a grammar G:

LG = {w ∈ V ?
T |S

•→P w}

language with alphabet VT
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The Chomsky hierarchy of formal languages

Types:

Type 0:unrestricted grammars

Type 1: context-sensitive grammars

Type 2: context-free grammars

Type 3: regular grammars

Language of type n if produced by a grammar of type n

(formal languages will be discussed in more detail later in the class)
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from: M.Rohrmeier, W.Zuidema, G.A.Wiggins, C.Scharff, ”Principles of

structure building in music, language and animal song” Phil. Trans.

Royal Soc. B, 370 (2015) N.1664
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Turing machine T = (Q,F ,A, I , τ, q0)

Q finite set of possible states

F subset of Q: the final states

A finite set: alphabet (with a distinguished element B blank
symbol)

I ⊂ Ar {B} input alphabet

τ ⊂ Q × A× Q × A× {L,R} transitions
with {L,R} a 2-element set

q0 ∈ Q initial state

qaq′a′L ∈ τ means T is in state q, reads a on next square in the
tape, changes to state q′, overwrites the square with new letter a′

and moves one square to the left
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• tape description for T : triple (a, α, β) with a ∈ A, α : N→ A,
β : N→ A such that α(n) = B and β(n) = B for all but finitely
many n ∈ N (sequences of letters on tape right and left of a)

• configuration of T : (q, a, α, β) with q ∈ Q and (a, α, β) a tape
description

• configuration c ′ from c in a single move if either

c = (q, a, α, β), qaq′a′L ∈ τ and c ′ = (q′, β(0), α′, β′) with
α′(0) = a′ and α′(n) = α(n − 1), and β′(n) = β(n + 1)

c = (q, a, α, β), qaq′a′R ∈ τ and c ′ = (q′, α(0), α′, β′) with
α′(n) = α(n + 1), and β′(0) = a′, β′(n) = β(n − 1)

• computation c → c ′ in T starting at c and ending at c ′: finite
sequence c = c1, . . . , cn = c ′ with ci+1 from ci by a single move

• computation halts if c ′ terminal configuration, c ′ = (q, a, α, β)
with no element in τ starting with qa
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• word w = a1 · · · an ∈ A? accepted by T if for cw = (q0, a1 · · · an)
there is a computation in T of the form cw → c ′ = (q, a, α, β)
with q ∈ F

• Language recognized by T

LT = {w ∈ A? |w is accepted by T}

• Turing machine T deterministic if for given (q, a) ∈ Q × A there
is at most one element of τ starting with qa
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Automata and Formal Languages

• Types and Machine Recognition:

The different types of formal languages in the Chomsky hierarchy
are recognized by:

Type 0: Turing machine

Type 1: linear bounded automaton

Type 2: non-deterministic pushdown stack automaton

Type 3: finite state automaton

(automata and formal languages will be discussed in more detail
later in the class)

• A Key Idea: languages are a type of mathematical structure
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Probabilities and Entropy

• mathematical structures (especially algebraic structures)
endowed with probabilities

• a successful approach in formal languages and generative
grammars: probabilistic grammars (generative rules applied with
certain probabilities)

• other algebraic structures can be made probabilistic: groups,
semigroups, groupoids, semigroupoids... all like directed graphs:
assign probabilities at each successive choice of next oriented edge
in a path... like Markov processes

• also attach information measures (entropy) to algebraic
structures (operations weighted by entropy functionals):
information algebras

The Key Idea: in applications to Biology all mathematical
structures should be endowed with probabilistic weights and
entropy/information weights
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Kolmogorov complexity

• Let TU be a universal Turing machine (a Turing machine that
can simulate any other arbitrary Turing machine: reads on tape
both the input and the description of the Turing machine it should
simulate)

• Given a string w in an alphabet A, the Kolmogorov complexity

KTU (w) = min
P:TU (P)=w

`(P),

minimal length of a program that outputs w

• universality: given any other Turing machine T

KT (w) = KTU (w) + cT

shift by a bounded constant, independent of w ; cT is the
Kolmogorov complexity of the program needed to describe T for
TU to simulate it
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• any program that produces a description of w is an upper bound
on Kolmogorov complexity KTU (w)

• think of Kolmogorov complexity in terms of data compression

• shortest description of w is also its most compressed form

• can obtain upper bounds on Kolmogorov complexity using data
compression algorithms

• finding upper bounds is easy... but NOT lower bounds
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with m(x) = miny≥x K(y)
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Problem
Kolmogorov complexity is NOT a computable function

• suppose list programs Pk (increasing lengths) and run through
TU : if machine halts on Pk with output w then `(Pk) is an upper
bound on KTU (w)

• but... there can be an earlier Pj in the list such that TU has not
yet halted on Pj

• if eventually halts and outputs w then `(Pj) is a better
approximation to KTU (w)

• would be able to compute KTU (w) if can tell exactly on which
programs Pk the machine TU halts

• but... halting problem is unsolvable
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Kolmogorov Complexity and Entropy

• Independent random variables Xk distributed according to
Bernoulli measure P = {pa}a∈A with pa = P(X = a)

• Shannon entropy S(X ) = −
∑

a∈A P(X = a) logP(X = a)

• ∃c > 0 such that for all n ∈ N

S(X ) ≤ 1

n

∑
w∈Wn

P(w)K(w | `(w) = n) ≤ S(X ) +
#A log n

n
+

c

n

• expectaction value

lim
n→∞

E(
1

n
K(X1 · · ·Xn | n)) = S(X )

average expected Kolmogorov complexity for length n descriptions
approaches Shannon entropy
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Gell-Mann Effective Complexity

• unlike Kolmogorov complexity does not measure description
length of whole object

• based on description length of “regularities” (structured
patterns) contained in the object

• a completely random sequence has maximal Kolmogorov
complexity but zero effective complexity (it contains no structured
patterns)

• based on measuring Kolmogorov complexity of subsequences

• criticized because it requires a criterion for separating
subsequences into regularities and random
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