Gromov's Ergobrain Program as a Mathematical Promenade

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017
Geometry of Neuroscience

References for this lecture:

- Misha Gromov, Structures, Learning, and Ergosystems, http://www.ihes.fr/~gromov/PDF/ergobrain.pdf
- Misha Gromov, Ergostructures, Ergologic and the Universal Learning Problem http://www.ihes.fr/~gromov/PDF/ergologic3.1.pdf

Gromov's Ergobrain

- Gromov conjectures the existence of a mathematical structure implementing the transformation of incoming signal to representation in the brain: ergobrain
- a dynamic entity continuously built by the brain: (goal free) structure learning
- with constraints from network architecture
- Gromov's proposed terminology:
- neuro-brain: a (mathematical) model of the physiology of the brain (chemical, electrical, connectivity, etc.)
- ergo-brain: a "dynamical reduction" of neuro-brain (quotient)
- ergo-system: like ergobrain but not necessarily derived from a neurobrain
- ego-mind: mental processes, interactions of organisms with outside world
- ergo-learning: spontaneous structure building process

The role of Mathematics

- long history of very successful interactions of mathematics and physics
- "The Unreasonable Effectiveness of Mathematics in the Natural Sciences" (Eugene Wigner, 1960): referring to physical science and how mathematics can drive new advances in physics
- in more recent years we have also seen the "unreasonable effectiveness of physics in the mathematical sciences" with new progress in mathematics driven by physics
- Biology has traditionally not put too much emphasis on theoretical ideas as a guiding principle for progress in the field; interactions between mathematics and biology are recent and still largely underdeveloped
- Gromov's speculation on mathematics and neuroscience: "basic mental processes can be meaningfully described, if at all, only in a broader mathematical context and this mathematics does not exist at the present day"

Example of mathematical viewpoint: symmetry

- several molecules occur with symmetries (icosahedral symmetry of viruses; helix and double helix symmetries in proteins and DNA, etc.)...
- energy and symmetry: configuration space \mathcal{M} of molecules with group action G, invariant energy functional E, typically local minima over G-symmetric configurations are local minima for all configuration
- information and symmetry: a symmetric form is specified by fewer parameters, preferable from the Shannon information viewpoint

Other Example: Hardy-Weinberg principle

- allele and genotype frequencies in a population would remain constant through generations in the absence of other evolutionary influences (mutation, selection, etc.)
- two alleles with frequencies $f_{0}(A)=p$ and $f_{0}(a)=q$
$f_{1}(A A)=p^{2}, f_{1}(a a)=q^{2}$ homozygotes, $f_{1}(A a)=2 p q$ heterozygotes with $p^{2}+q^{2}+2 p q=1$, ok for $q=1-p\left(\right.$ similar for n alleles $\left.a_{i}\right)$

Hardy-Weinberg equilibrium

- linear algebra identity: $M=\left(m_{i j}\right)$ matrix, $m_{i j} \geq 0$, and $\sum_{i j} m_{i j}=1$

$$
\begin{gathered}
M^{\prime}=\left(m_{i j}^{\prime}\right) \quad \text { with } m_{i j}^{\prime}=\left(\sum_{j} m_{i j}\right) \cdot\left(\sum_{i} m_{i j}\right) \\
\hat{M}=\frac{M^{\prime}}{\sum_{i j} m_{i j}^{\prime}} \\
\text { then } \hat{\hat{M}}=\hat{M}
\end{gathered}
$$

distribution of phenotype features depending on a single gene changes in the first generation but remains constant in the successive generations

- gene recombination not sufficient to explain evolution, in the absence of additional phenomena like gene mutation

Other Example: Complexity and Patterns

- Kolmogorov Complexity
shortest length of a program required to compute the given output (theory of computation, Turing machines)
- Gell-Mann Effective Complexity description length of "regularities" (structured patterns) contained in the object

More generally What kind of mathematics?
General framework:
(1) Combinatorial objects: from graphs to n-categories (networks and relations)
(2) Transformations and symmetries: groups and generalizations (groupoids, Hopf algebras, operads, etc.)
(3) Probabilities and information/entropy: algebraic structures with superimposed probabilistic and thermodynamical (statistical physics) structures

- a more detailed list of the mathematical tookbox

Categories

- traditional setting of mathematics based on Set Theory, first example of categories: Sets (or Finite Sets)
- Category \mathcal{C} : Objects $X, Y, \cdots \in \mathcal{O}(\mathcal{C})$, Morphisms $\operatorname{Hom}_{\mathcal{C}}(X, Y)$,

$$
h \circ(g \circ f)=(h \circ g) \circ f
$$

associative composiiton $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} W$ and identity $1_{X} \in \operatorname{Hom}_{\mathcal{C}}(X, X)$ unit for composition

- Functors $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$, on objects $\mathcal{O}(\mathcal{C}) \ni X \mapsto F(X) \in \mathcal{O}\left(\mathcal{C}^{\prime}\right)$, on morphisms $F(f): F(X) \rightarrow F(Y)$ (covariant; also contravariant) with $F(g \circ f)=F(g) \circ F(f)$ and $F\left(1_{X}\right)=1_{Y}$
- Natural Transformations: $\eta: F \rightarrow G$, to every object a morphism $\eta_{X}: F(X) \rightarrow G(X)$ with $\eta_{Y} \circ F(f)=G(f) \circ \eta_{X}$

- Categories of Vector Spaces, Topological Spaces, Smooth Manifolds, Groups, Rings, etc.
... concept of mathematical structure

Higher Categorical Structures

- 2-Categories: a category \mathcal{C} where the sets $\operatorname{Hom}_{\mathcal{C}}(X, Y)$ are themselves the objects of a category (ie there are morphisms between morphisms: 2-morphisms)
- vertical and horizontal composition of 2-morphisms with exchange relation

$$
\left(\alpha \circ_{0} \beta\right) \circ_{1}\left(\gamma \circ_{0} \delta\right)=\left(\alpha \circ_{1} \gamma\right) \circ_{0}\left(\beta \circ_{1} \delta\right)
$$

- objects $=$ vertices; morphisms $=1$-cells; 2-morphisms $=2$-cells

Homotopy and Higher Category Theory

- Note: 2-category composition of 1-morphisms associative; bicategory associative up to 2-isomorphism
- Example: Objects $=$ points in an open set in the plane; Morphisms $=$ oriented paths connecting points; 2-morphisms $=$ homotopies of paths; composition up to homotopy... can also compose homotopies up to homotopy etc. ... higher n-categories (with n different levels of "isomorphism": 0-isomorphism equality, 1-isomorphism realized by invertible 1-morphisms; 2-isomorphism by 2-morphisms etc.)... ∞-categories
- Contemporary mathematical viewpoint is shifting more and more towards these higher (or ∞) structures and homotopy

Groups, Semigroups, Groupoids, Algebras, and Categories

- Group: small category with one object and all morphisms invertible (product, associativity, unit)
... symmetries (action by automorphisms)
- Group algebra $\mathbb{C}[G]$ (discrete group G) finitely supported functions $f: G \rightarrow \mathbb{C}$ with convolution

$$
\left(f_{1} \star f_{2}\right)(g)=\sum_{g=g_{1} g_{2}} f_{1}\left(g_{1}\right) f_{2}\left(g_{2}\right)
$$

involution $f^{*}(g) \equiv \overline{f\left(g^{-1}\right)}$

- Semigroup: small category with one object (not always inverses) ... actions by endomorphisms
- Semigroup algebra: $f: S \rightarrow \mathbb{C}$ with convolution

$$
\left(f_{1} \star f_{2}\right)(s)=\sum_{s=s_{1} s_{2}} f_{1}\left(s_{1}\right) f_{2}\left(s_{2}\right)
$$

no longer necessarily involutive

- Groupoid: small category where all morphisms are invertible (product is defined only when target of first arrow is source of second)
... another type of symmetry
- Groupoid algebra $\mathcal{G}=\left(\mathcal{G}^{(0)}, \mathcal{G}^{(1)}, s, t\right)$ (objects and morphisms, source and target); algebra of functions $f: \mathcal{G}^{(1)} \rightarrow \mathbb{C}$ with convolution

$$
\left(f_{1} \star f_{2}\right)(\gamma)=\sum_{\gamma=\gamma_{1} \circ \gamma_{2}} f_{1}\left(\gamma_{1}\right) f_{2}\left(\gamma_{2}\right)
$$

and involution $f^{*}(\gamma)=\overline{f\left(\gamma^{-1}\right)}$

- Semigroupoid: a small category (associative composition of morphisms)
- Semigroupoid algebra: functions of morphisms with convolution

$$
\left(f_{1} \star f_{2}\right)(\phi)=\sum_{\phi=\phi_{1} \circ \phi_{2}} f_{1}\left(\phi_{1}\right) f_{2}\left(\phi_{2}\right)
$$

Topology and invariants

- Topological spaces and continuous functions (the study of shapes up to continuous deformations)
- Invariants: ways of distinguishing between topological spaces
- Invariants are functors from the category \mathcal{T} of Topological Spaces to another category (vector spaces, groups, rings, etc.)
- Homology: functor $H_{*}: \mathcal{T} \rightarrow \mathcal{V}_{\mathbb{Z}}$ to \mathbb{Z}-graded vector spaces

$$
H_{n}(X, \mathbb{Z})=\frac{\operatorname{Ker}\left(\partial_{n}: C_{n}(X, \mathbb{Z}) \rightarrow C_{n-1}(X, \mathbb{Z})\right)}{\operatorname{Image}\left(\partial_{n+1}: C_{n+1}(X, \mathbb{Z}) \rightarrow C_{n}(X, \mathbb{Z})\right)}
$$

$C_{n}(X, \mathbb{Z})$ abelian group spanned by n-simplexes of a triangulation of $X ; \partial_{n}$ (oriented) boundary map

Homology is independent of the choice of triangulation; it measures "holes" and "connectivity" in various dimensions

a triangulation of a surface of genus 3

Metric Spaces, Riemannian Manifolds

- Topological spaces with a quantitative measure of proximity: topology is induced by a metric (open sets generated by open balls in the metric)
- distance function (metric) $d: X \times X \rightarrow \mathbb{R}_{+}$with
- $d(x, y)=d(y, x)$ for all $x, y \in X$
- $d(x, y)=0$ iff $x=y$
- triangle inequality $d(x, y) \leq d(x, z)+d(z, y)$ for all

$$
x, y, z \in X
$$

- smooth manifold M (covered by local charts homeomorphic to \mathbb{R}^{n} with \mathcal{C}^{∞} changes of coordinates in charts overlap); tangent spaces $T_{x} M$ at all points (tangent bundle $T M$)
- Riemannian manifold: smooth manifold, metric structure determined by a metric tensor $g=\left(g_{\mu \nu}\right)$ symmetric positive, section of $T^{*} M \otimes T^{*} M$
- length of curves $L(\gamma)=\int g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)^{1 / 2} d t$, geodesic distance:

$$
d(x, y)=\inf _{\gamma} L(\gamma)
$$

Ambiguity, Galois Symmetry, Category Theory

- Symmetries describe ambiguities (up to isomorphism, up to invertible transformations, up to homotopy, etc.)
- Categorical viewpoint on Symmetry: need categories with good properties... very much like the category of vector spaces: abelian (kernels and cokernels), tensor, rigid (duality, internal Hom)
- fiber functor $\omega: \mathcal{C} \rightarrow \mathcal{V}$ to vector spaces preserving all properties (tensor, etc.) and symmetries

$$
G=\operatorname{Aut}(\omega)
$$

the invertible natural transformations of the fiber functor

- (\mathcal{C}, ω) as above: Tannakian category with Galois group G
- this includes: usual Galois theory; Motives; Regular-singular differential systems; symmetries of Quantum Field Theory, etc.

Formal Languages and Grammars

- A very general abstract setting to describe languages (natural or artificial: human languages, codes, programming languages, ...)
- Alphabet: a (finite) set \mathfrak{A}; elements are letters or symbols
- Words (or strings): $\mathfrak{A}^{m}=$ set of all sequences $a_{1} \ldots a_{m}$ of length m of letters in \mathfrak{A}
- Empty word: $\mathfrak{A}^{0}=\{\epsilon\}$ (an additional symbol)

$$
\mathfrak{A}^{+}=\cup_{m \geq 1} \mathfrak{A}^{m}, \quad \mathfrak{A}^{\star}=\cup_{m \geq 0} \mathfrak{A}^{m}
$$

- concatenation: $\alpha=a_{1} \ldots a_{m} \in \mathfrak{A}^{m}, \beta=b_{1} \ldots b_{k} \in \mathfrak{A}^{k}$

$$
\alpha \beta=a_{1} \ldots a_{m} b_{1} \ldots b_{k} \in \mathfrak{A}^{m+k}
$$

associative $(\alpha \beta) \gamma=\alpha(\beta \gamma)$ with $\epsilon \alpha=\alpha \epsilon=\alpha$

- semigroup \mathfrak{A}^{+}; monoid \mathfrak{A}^{\star}
- Length $\ell(\alpha)=m$ for $\alpha \in \mathfrak{A}^{m}$
- subword: $\gamma \subset \alpha$ if $\alpha=\beta \gamma \delta$ for some other words $\beta, \delta \in \mathfrak{A}^{\star}$:
- prefix β and suffix δ
- Language: a subset of \mathfrak{A}^{\star}
- Question: how is the subset constructed?
- Rewriting system on \mathfrak{A} : a subset \mathcal{R} of $\mathfrak{A}^{\star} \times \mathfrak{A}^{\star}$
- $(\alpha, \beta) \in \mathcal{R}$ means that for any $u, v \in \mathfrak{A}^{\star}$ the word $u \alpha v$ rewrites to $u \beta v$
- Notation: write $\alpha \rightarrow_{\mathcal{R}} \beta$ for $(\alpha, \beta) \in \mathcal{R}$
- \mathcal{R}-derivation: for $u, v \in \mathfrak{A}^{\star}$ write $u \dot{\rightarrow}_{\mathcal{R}} v$ if \exists sequence $u=u_{1}, \ldots, u_{n}=v$ of elements in \mathfrak{A}^{\star} such that $u_{i} \rightarrow_{\mathcal{R}} u_{i+1}$

Grammar: a quadruple $\mathcal{G}=\left(V_{N}, V_{T}, P, S\right)$

- V_{N} and V_{T} disjoint finite sets: non-terminal and terminal symbols
- $S \in V_{N}$ start symbol
- P finite rewriting system on $V_{N} \cup V_{T}$
$P=$ production rules
Language produced by a grammar \mathcal{G} :

$$
\mathcal{L}_{\mathcal{G}}=\left\{w \in V_{T}^{\star} \mid S \stackrel{\bullet}{\rightarrow}_{p} w\right\}
$$

language with alphabet V_{T}

The Chomsky hierarchy of formal languages
Types:

- Type 0:unrestricted grammars
- Type 1: context-sensitive grammars
- Type 2: context-free grammars
- Type 3: regular grammars

Language of type n if produced by a grammar of type n
(formal languages will be discussed in more detail later in the class)

from: M.Rohrmeier, W.Zuidema, G.A.Wiggins, C.Scharff, "Principles of structure building in music, language and animal song" Phil. Trans.

Royal Soc. B, 370 (2015) N. 1664

Turing machine $\quad T=\left(Q, F, \mathfrak{A}, I, \tau, q_{0}\right)$

- Q finite set of possible states
- F subset of Q : the final states
- \mathfrak{A} finite set: alphabet (with a distinguished element B blank symbol)
- $I \subset \mathfrak{A} \backslash\{B\}$ input alphabet
- $\tau \subset Q \times \mathfrak{A} \times Q \times \mathfrak{A} \times\{L, R\}$ transitions with $\{L, R\}$ a 2-element set
- $q_{0} \in Q$ initial state
qaq' $a^{\prime} L \in \tau$ means T is in state q, reads a on next square in the tape, changes to state q^{\prime}, overwrites the square with new letter a^{\prime} and moves one square to the left
- tape description for T : triple (a, α, β) with $a \in \mathfrak{A}, \alpha: \mathbb{N} \rightarrow \mathfrak{A}$, $\beta: \mathbb{N} \rightarrow \mathfrak{A}$ such that $\alpha(n)=B$ and $\beta(n)=B$ for all but finitely many $n \in \mathbb{N}$ (sequences of letters on tape right and left of a)
- configuration of $T:(q, a, \alpha, \beta)$ with $q \in Q$ and (a, α, β) a tape description
- configuration c^{\prime} from c in a single move if either
- $c=(q, a, \alpha, \beta), q a q^{\prime} a^{\prime} L \in \tau$ and $c^{\prime}=\left(q^{\prime}, \beta(0), \alpha^{\prime}, \beta^{\prime}\right)$ with $\alpha^{\prime}(0)=a^{\prime}$ and $\alpha^{\prime}(n)=\alpha(n-1)$, and $\beta^{\prime}(n)=\beta(n+1)$
- $c=(q, a, \alpha, \beta), q a q^{\prime} a^{\prime} R \in \tau$ and $c^{\prime}=\left(q^{\prime}, \alpha(0), \alpha^{\prime}, \beta^{\prime}\right)$ with $\alpha^{\prime}(n)=\alpha(n+1)$, and $\beta^{\prime}(0)=a^{\prime}, \beta^{\prime}(n)=\beta(n-1)$
- computation $c \rightarrow c^{\prime}$ in T starting at c and ending at c^{\prime} : finite sequence $c=c_{1}, \ldots, c_{n}=c^{\prime}$ with c_{i+1} from c_{i} by a single move
- computation halts if c^{\prime} terminal configuration, $c^{\prime}=(q, a, \alpha, \beta)$ with no element in τ starting with qa
- word $w=a_{1} \cdots a_{n} \in \mathfrak{A}^{\star}$ accepted by T if for $c_{w}=\left(q_{0}, a_{1} \cdots a_{n}\right)$ there is a computation in T of the form $c_{w} \rightarrow c^{\prime}=(q, a, \alpha, \beta)$ with $q \in F$
- Language recognized by T

$$
\mathcal{L}_{T}=\left\{w \in \mathfrak{A}^{\star} \mid w \text { is accepted by } T\right\}
$$

- Turing machine T deterministic if for given $(q, a) \in Q \times \mathfrak{A}$ there is at most one element of τ starting with qa

Automata and Formal Languages

- Types and Machine Recognition:

The different types of formal languages in the Chomsky hierarchy are recognized by:

- Type 0: Turing machine
- Type 1: linear bounded automaton
- Type 2: non-deterministic pushdown stack automaton
- Type 3: finite state automaton
(automata and formal languages will be discussed in more detail later in the class)
- A Key Idea: languages are a type of mathematical structure

Probabilities and Entropy

- mathematical structures (especially algebraic structures) endowed with probabilities
- a successful approach in formal languages and generative grammars: probabilistic grammars (generative rules applied with certain probabilities)
- other algebraic structures can be made probabilistic: groups, semigroups, groupoids, semigroupoids... all like directed graphs: assign probabilities at each successive choice of next oriented edge in a path... like Markov processes
- also attach information measures (entropy) to algebraic structures (operations weighted by entropy functionals): information algebras
The Key Idea: in applications to Biology all mathematical structures should be endowed with probabilistic weights and entropy/information weights

Kolmogorov complexity

- Let $T_{\mathcal{U}}$ be a universal Turing machine (a Turing machine that can simulate any other arbitrary Turing machine: reads on tape both the input and the description of the Turing machine it should simulate)
- Given a string w in an alphabet \mathfrak{A}, the Kolmogorov complexity

$$
\mathcal{K}_{T_{\mathcal{U}}}(w)=\min _{P: T_{\mathcal{U}}(P)=w} \ell(P)
$$

minimal length of a program that outputs w

- universality: given any other Turing machine T

$$
\mathcal{K}_{T}(w)=\mathcal{K}_{T_{\mathcal{U}}}(w)+c_{T}
$$

shift by a bounded constant, independent of $w ; c_{T}$ is the Kolmogorov complexity of the program needed to describe T for $T_{\mathcal{U}}$ to simulate it

- any program that produces a description of w is an upper bound on Kolmogorov complexity $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- think of Kolmogorov complexity in terms of data compression
- shortest description of w is also its most compressed form
- can obtain upper bounds on Kolmogorov complexity using data compression algorithms
- finding upper bounds is easy... but NOT lower bounds

with $m(x)=\min _{y \geq x} \mathcal{K}(y)$

Problem

Kolmogorov complexity is NOT a computable function

- suppose list programs P_{k} (increasing lengths) and run through $T_{\mathcal{U}}$: if machine halts on P_{k} with output w then $\ell\left(P_{k}\right)$ is an upper bound on $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- but... there can be an earlier P_{j} in the list such that $T_{\mathcal{U}}$ has not yet halted on P_{j}
- if eventually halts and outputs w then $\ell\left(P_{j}\right)$ is a better approximation to $\mathcal{K}_{T_{\mathcal{U}}}(w)$
- would be able to compute $\mathcal{K}_{T_{\mathcal{U}}}(w)$ if can tell exactly on which programs P_{k} the machine $T_{\mathcal{U}}$ halts
- but... halting problem is unsolvable

Kolmogorov Complexity and Entropy

- Independent random variables X_{k} distributed according to

Bernoulli measure $\mathbb{P}=\left\{p_{a}\right\}_{a \in \mathfrak{A}}$ with $p_{a}=\mathbb{P}(X=a)$

- Shannon entropy $S(X)=-\sum_{a \in \mathfrak{A}} \mathbb{P}(X=a) \log \mathbb{P}(X=a)$
- $\exists c>0$ such that for all $n \in \mathbb{N}$

$$
S(X) \leq \frac{1}{n} \sum_{w \in \mathcal{W}^{n}} \mathbb{P}(w) \mathcal{K}(w \mid \ell(w)=n) \leq S(X)+\frac{\# \mathfrak{A} \log n}{n}+\frac{c}{n}
$$

- expectaction value

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left(\frac{1}{n} \mathcal{K}\left(X_{1} \cdots X_{n} \mid n\right)\right)=S(X)
$$

average expected Kolmogorov complexity for length n descriptions approaches Shannon entropy

Gell-Mann Effective Complexity

- unlike Kolmogorov complexity does not measure description length of whole object
- based on description length of "regularities" (structured patterns) contained in the object
- a completely random sequence has maximal Kolmogorov complexity but zero effective complexity (it contains no structured patterns)
- based on measuring Kolmogorov complexity of subsequences
- criticized because it requires a criterion for separating subsequences into regularities and random

