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Gromov's Ergobrain

e Gromov conjectures the existence of a mathematical structure
implementing the transformation of incoming signal to
representation in the brain: ergobrain

e a dynamic entity continuously built by the brain: (goal free)
structure learning

e with constraints from network architecture
e Gromov's proposed terminology:

@ neuro-brain: a (mathematical) model of the physiology of the
brain (chemical, electrical, connectivity, etc.)

@ ergo-brain: a “dynamical reduction” of neuro-brain (quotient)

@ ergo-system: like ergobrain but not necessarily derived from a
neurobrain

@ ego-mind: mental processes, interactions of organisms with
outside world

@ ergo-learning: spontaneous structure building process
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The role of Mathematics

e long history of very successful interactions of mathematics and
physics
@ "The Unreasonable Effectiveness of Mathematics in the
Natural Sciences” (Eugene Wigner, 1960): referring to
physical science and how mathematics can drive new advances
in physics
@ in more recent years we have also seen the “unreasonable
effectiveness of physics in the mathematical sciences” with
new progress in mathematics driven by physics

e Biology has traditionally not put too much emphasis on
theoretical ideas as a guiding principle for progress in the field;
interactions between mathematics and biology are recent and still
largely underdeveloped

e Gromov's speculation on mathematics and neuroscience: “basic

mental processes can be meaningfully described, if at all, only in a
broader mathematical context and this mathematics does not exist
at the present day”

Matilde Marcolli and Doris Tsao Ergobrain



Example of mathematical viewpoint: symmetry

e several molecules occur with symmetries (icosahedral symmetry
of viruses; helix and double helix symmetries in proteins and DNA,
etc.)...

e energy and symmetry: configuration space M of molecules with
group action G, invariant energy functional E, typically local
minima over G-symmetric configurations are local minima for all
configuration

e information and symmetry: a symmetric form is specified by
fewer parameters, preferable from the Shannon information
viewpoint
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Other Example: Hardy-Weinberg principle

e allele and genotype frequencies in a population would remain
constant through generations in the absence of other evolutionary
influences (mutation, selection, etc.)

e two alleles with frequencies fy(A) = p and fy(a) = ¢
fi(AA) = p?, fi(aa) = g*> homozygotes, fi(Aa) =2pq heterozygotes

with p?2 + g? +2pg = 1, ok for g = 1 — p (similar for n alleles a;)
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Hardy-Weinberg equilibrium

e linear algebra identity: M = (mj;) matrix, m; > 0, and
dimi =1

M = (mfj) with mf-j = (Z mjj) - (Z mj;)

. M

M= —<——
ij Mij

then M=M

distribution of phenotype features depending on a single gene
changes in the first generation but remains constant in the
successive generations

e gene recombination not sufficient to explain evolution, in the
absence of additional phenomena like gene mutation
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Other Example: Complexity and Patterns
e Kolmogorov Complexity

shortest length of a program required to compute the given output
(theory of computation, Turing machines)

e Gell-Mann Effective Complexity

description length of “regularities” (structured patterns) contained
in the object
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More generally What kind of mathematics?

General framework:

© Combinatorial objects: from graphs to n-categories (networks
and relations)

@ Transformations and symmetries: groups and generalizations
(groupoids, Hopf algebras, operads, etc.)

© Probabilities and information /entropy: algebraic structures
with superimposed probabilistic and thermodynamical
(statistical physics) structures

e a more detailed list of the mathematical tookbox
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Categories

e traditional setting of mathematics based on Set Theory, first
example of categories: Sets (or Finite Sets)

e Category C: Objects X, Y,--- € O(C), Morphisms Hom¢(X, Y),
ho(gof)=(hog)of

o . f h . :
associative composiiton X — Y 5 73 W and identity
1x € Home(X, X) unit for composition

Lrjof ] fr.l:_r;
~
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e Functors F : C — C’, on objects O(C) 2 X — F(X) € O(C’), on
morphisms F(f) : F(X) — F(Y) (covariant; also contravariant)
with F(g o f) = F(g) o F(f) and F(1x) = 1y

e Natural Transformations: 7 : F — G, to every object a morphism
nx : F(X) = G(X) with ny o F(f) = G(f) o nx

i
F(X) —=—F(Y)

e Categories of Vector Spaces, Topological Spaces, Smooth
Manifolds, Groups, Rings, etc.
.. concept of mathematical structure
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Higher Categorical Structures

e 2-Categories: a category C where the sets Hom¢ (X, Y) are
themselves the objects of a category (ie there are morphisms
between morphisms: 2-morphisms)

e vertical and horizontal composition of 2-morphisms with
exchange relation

(aog B) o1 (v000) = (ao17) 00 (Bo16)

VAV VAVAY;

e objects = vertices; morphisms = 1-cells; 2-morphisms = 2-cells
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Homotopy and Higher Category Theory

e Note: 2-category composition of 1-morphisms associative;
bicategory associative up to 2-isomorphism

e Example: Objects = points in an open set in the plane;
Morphisms = oriented paths connecting points; 2-morphisms =
homotopies of paths; composition up to homotopy... can also
compose homotopies up to homotopy etc. ... higher n-categories
(with n different levels of “isomorphism”: 0-isomorphism equality,
1-isomorphism realized by invertible 1-morphisms; 2-isomorphism
by 2-morphisms etc.)... co-categories

e Contemporary mathematical viewpoint is shifting more and more
towards these higher (or co) structures and homotopy
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Groups, Semigroups, Groupoids, Algebras, and Categories

e Group: small category with one object and all morphisms
invertible (product, associativity, unit)
. symmetries (action by automorphisms)

e Group algebra C[G] (discrete group G) finitely supported
functions f : G — C with convolution

(Axh)&)= > fla)h(e)
£=8182

involution *(g) = f(g~1)

e Semigroup: small category with one object (not always inverses)
. actions by endomorphisms

e Semigroup algebra: f : S — C with convolution
(AxB)s)= Y Als)h(x)
s=s15)

no longer necessarily involutive
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e Groupoid: small category where all morphisms are invertible
(product is defined only when target of first arrow is source of
second)

. another type of symmetry

e Groupoid algebra G = (G(®,G(1) s t) (objects and morphisms,
source and target); algebra of functions f : G — C with
convolution

(AxR)M) = > Aln)a(n)
Y=71072

and involution *(y) = W

e Semigroupoid: a small category (associative composition of
morphisms)

e Semigroupoid algebra: functions of morphisms with convolution

(AxB) (@)= Y. A(d1)h(¢2)
¢=¢p10¢2
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Topology and invariants

e Topological spaces and continuous functions (the study of
shapes up to continuous deformations)

e Invariants: ways of distinguishing between topological spaces

e Invariants are functors from the category 7 of Topological
Spaces to another category (vector spaces, groups, rings, etc.)

e Homology: functor H, : 7 — Vz to Z-graded vector spaces

~ Ker(0n: Go(X,Z) — Co1(X, Z))
Ha(X,Z) = Image(Opt1 @ Cor1(X,Z) = Co(X,Z))

Cn(X,Z) abelian group spanned by n-simplexes of a triangulation
of X; Op (oriented) boundary map
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Homology is independent of the choice of triangulation; it
measures “holes” and “connectivity” in various dimensions

a triangulation of a surface of genus 3
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Metric Spaces, Riemannian Manifolds
e Topological spaces with a quantitative measure of proximity:
topology is induced by a metric (open sets generated by open balls
in the metric)
e distance function (metric) d : X x X — R, with

e d(x,y)=d(y,x) for all x,y € X

o d(x,y)=0iff x=y

e triangle inequality d(x, y) < d(x,z) + d(z,y) for all

x,y,z€ X

e smooth manifold M (covered by local charts homeomorphic to
R"™ with C* changes of coordinates in charts overlap); tangent
spaces T, M at all points (tangent bundle TM)
e Riemannian manifold: smooth manifold, metric structure
determined by a metric tensor g = (g,,,) symmetric positive,
section of T"M ® T*M
o length of curves L(y) = [ g(7'(t),+(t))'/? dt, geodesic distance:

d(x,y) = inf L(v)
Y



Ambiguity, Galois Symmetry, Category Theory

e Symmetries describe ambiguities (up to isomorphism, up to
invertible transformations, up to homotopy, etc.)

e Categorical viewpoint on Symmetry: need categories with good
properties... very much like the category of vector spaces: abelian
(kernels and cokernels), tensor, rigid (duality, internal Hom)

e fiber functor w : C — V to vector spaces preserving all properties
(tensor, etc.) and symmetries

G = Aut(w)

the invertible natural transformations of the fiber functor
e (C,w) as above: Tannakian category with Galois group G

e this includes: usual Galois theory; Motives; Regular-singular
differential systems; symmetries of Quantum Field Theory, etc.

Matilde Marcolli and Doris Tsao Ergobrain



Formal Languages and Grammars

e A very general abstract setting to describe languages (natural or
artificial: human languages, codes, programming languages, .. .)

e Alphabet: a (finite) set A; elements are letters or symbols

e Words (or strings): 2™ = set of all sequences a; ...an, of length
m of letters in 2

e Empty word: A% = {€} (an additional symbol)

AT = Umzlﬁl’", A* = Umzomm

e concatenation: o =ay...am €A™, S =by... b € A¥
aﬂzal...ambl...bke%’”k

associative (af3)y = a(8v) with e« = ae =
e semigroup A"; monoid A*
e Length /() = m for o € A™
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e subword: v C « if a = +6 for some other words (3,6 € A*:
e prefix 5 and suffix §

e Language: a subset of A*
e Question: how is the subset constructed?

e Rewriting system on 2f: a subset R of * x 2A*
e (a, ) € R means that for any u, v € 2* the word
uav rewrites to ufv

e Notation: write « —g (3 for (o, 8) € R
e R-derivation: for u,v € A* write u 5 v if 3 sequence
u=uy,...,up, =v of elements in A* such that u; -»x uj11
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Grammar: a quadruple G = (W, V7, P, S)

@ Vy and V7 disjoint finite sets: non-terminal and terminal
symbols

e S € V) start symbol
@ P finite rewriting system on Vy U V71

P = production rules

Language produced by a grammar G:
[,g:{WE V;—|5L>p W}

language with alphabet VT
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The Chomsky hierarchy of formal languages
Types:

Type O:unrestricted grammars
Type 1: context-sensitive grammars

Type 2: context-free grammars

Type 3: regular grammars

Language of type n if produced by a grammar of type n

(formal languages will be discussed in more detail later in the class)
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from: M.Rohrmeier, W.Zuidema, G.A.Wiggins, C.Scharff, " Principles of
structure building in music, language and animal song” Phil. Trans
Royal Soc. B, 370 (2015) N.1664
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Turing machine T=(Q,F,A1,7,q)

Q finite set of possible states

F subset of Q: the final states

2 finite set: alphabet (with a distinguished element B blank
symbol)

I C A~ {B} input alphabet

TCQxAx Q xAx{L,R} transitions
with {L, R} a 2-element set

@ go € Q initial state

gaq’a’L € T means T is in state g, reads a on next square in the
tape, changes to state g/, overwrites the square with new letter &’
and moves one square to the left

Matilde Marcolli and Doris Tsao Ergobrain



e tape description for T: triple (a,c, 8) with a € A, o : N — 2,
B : N — 2 such that a(n) = B and 3(n) = B for all but finitely
many n € N (sequences of letters on tape right and left of a)

e configuration of T: (q,a,a, ) with g € Q and (a, a, 3) a tape
description
e configuration ¢’ from c in a single move if either
e c=(q,a,,3), gag’d'L € 7 and ¢’ = (¢, 5(0), &, B') with
a/(0) = & and &/(n) = a(n—1), and '(n) = B(n+1)
e c=(q,a,,0), qag’ad R € 7 and ¢’ = (¢, (0), &/, B’) with
o'(n) =a(n+1), and p'(0) = 2, p'(n) = B(n—1)
e computation ¢ — ¢’ in T starting at ¢ and ending at ¢’: finite
sequence ¢ = ¢, ...,Ccy = ¢’ with ¢;iy1 from ¢; by a single move

e computation halts if ¢’ terminal configuration, ¢’ = (q, a, «, 3)
with no element in 7 starting with ga

Matilde Marcolli and Doris Tsao Ergobrain



e word w = a; - - - ap, € A* accepted by T if for ¢, = (qo, a1+ - an)
there is a computation in T of the form ¢, — ¢’ = (q, a,, B)
with g € F

e Language recognized by T

L1 ={w e A" | wis accepted by T}

e Turing machine T deterministic if for given (g,a) € Q x 2 there
is at most one element of 7 starting with ga
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Automata and Formal Languages

e Types and Machine Recognition:

The different types of formal languages in the Chomsky hierarchy
are recognized by:

Type 0: Turing machine

Type 1: linear bounded automaton

Type 2: non-deterministic pushdown stack automaton

Type 3: finite state automaton

(automata and formal languages will be discussed in more detail
later in the class)

e A Key ldea: languages are a type of mathematical structure
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Probabilities and Entropy

e mathematical structures (especially algebraic structures)
endowed with probabilities

e a successful approach in formal languages and generative
grammars: probabilistic grammars (generative rules applied with
certain probabilities)

e other algebraic structures can be made probabilistic: groups,
semigroups, groupoids, semigroupoids... all like directed graphs:
assign probabilities at each successive choice of next oriented edge
in a path... like Markov processes

e also attach information measures (entropy) to algebraic
structures (operations weighted by entropy functionals):
information algebras

The Key Idea: in applications to Biology all mathematical
structures should be endowed with probabilistic weights and
entropy/information weights
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Kolmogorov complexity

e Let Ty be a universal Turing machine (a Turing machine that
can simulate any other arbitrary Turing machine: reads on tape
both the input and the description of the Turing machine it should
simulate)

e Given a string w in an alphabet 2, the Kolmogorov complexity

,CTM (W) - P:Tz,rlrzi‘:r’])zwg(P)7

minimal length of a program that outputs w

e universality: given any other Turing machine T
]CT(W) = /CTM(W) +cr

shift by a bounded constant, independent of w; crt is the
Kolmogorov complexity of the program needed to describe T for
Ty to simulate it
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e any program that produces a description of w is an upper bound
on Kolmogorov complexity K1,,(w)

e think of Kolmogorov complexity in terms of data compression
e shortest description of w is also its most compressed form

e can obtain upper bounds on Kolmogorov complexity using data
compression algorithms

e finding upper bounds is easy... but NOT lower bounds
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with m(x) = min,>, K(y)
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Problem
Kolmogorov complexity is NOT a computable function

e suppose list programs Py (increasing lengths) and run through
Ty if machine halts on Py with output w then ¢(Py) is an upper
bound on Kr,,(w)

e but... there can be an earlier P; in the list such that T;; has not
yet halted on P;

o if eventually halts and outputs w then £(P;) is a better
approximation to Kr,,(w)

e would be able to compute Kr,,(w) if can tell exactly on which
programs Py the machine Ty, halts

e but... halting problem is unsolvable
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Kolmogorov Complexity and Entropy

e Independent random variables X} distributed according to
Bernoulli measure P = {p,}.ca with p, = P(X = a)

e Shannon entropy S(X) = — > o P(X = a)log P(X = a)
e Jdc > 0 such that for all n € N

Alogn ¢
, #B3logn ¢
n n

S(X) < % > P(w)K(w|4w) = n) < S(X)
wewn

e expectaction value

lim B(2K(X1- - X | ) = S(X)

n—o00 n

average expected Kolmogorov complexity for length n descriptions
approaches Shannon entropy
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Gell-Mann Effective Complexity
e unlike Kolmogorov complexity does not measure description
length of whole object

e based on description length of “regularities” (structured
patterns) contained in the object

e a completely random sequence has maximal Kolmogorov
complexity but zero effective complexity (it contains no structured
patterns)

e based on measuring Kolmogorov complexity of subsequences

e criticized because it requires a criterion for separating
subsequences into regularities and random
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