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Shannon Entropy/Information

bit memory storage unit = switch with two on/off positions =
digit 0 or 1

A set of switches with N = 2#A positions

possible states: write a number m =
∑#A−1

k=0 sk 2k in binary
notation sk ∈ {0, 1}
need #A = logN

log 2 bits to select one particular possible
configuration

b = logN measured in log 2 units is the bit number

if have probability pi of an event i in a set i ∈ {1, . . . ,R} such
as a frequency of occurrence

pi =
Ni

N
, N =

R∑
i=1

Ni
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number of bits required to identify a particular configuration
α among all possible is logN

to select an α either select among all or first select which set
of Ni elements it belongs to and then among these so
bi + logNi = logN hence bi = − log pi
Shannon information measure: the average of the bi with
respect to the probabilities pi

I(P) =
R∑
i=1

pi log pi

Shannon Entropy: S(P) = −I(P) (“negative information”, in
fact positive S(P) ≥ 0)

measure of knowledge of the observed about what event to
expect knowing P = (pi ) (least knowledge at the uniform
distribution, most knowledge at the delta measures δi )

if the events i are dynamical microstates of a physical system
then it is the entropy in the thermodynamic sense
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Khinchin Axioms and Shannon Entropy IR(p1, . . . , pR)

• Khinchin Axioms
1 continuous function of P = (p1, . . . , pR)
2 minimum at the uniform distribution (max for entropy):

IR(
1

R
, . . . ,

1

R
) ≤ IR(P)

3 extendability: IR(p1, . . . , pR) = IR+1(p1, . . . , pR , 0)
4 extensivity (implies additivity on independent subsystems)

I(P) = I(P ′) +
∑
i

p′i I(Q|i)

for a composite system P = (pij) with pij = Q(j |i) p′i with
conditional probabilities Q(j |i) of j given i with conditional
information

I(Q|i) =
∑
j

Q(j |i) logQ(j |i)

Note: case of independent subsystems pij = p′ip
′′
j gives

I(P) = I(P ′) + I(P ′′)
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Axiomatic characterization of the Shannon Entropy

• family of functionals I = {IR} satisfying Khinchin axioms agree
with the Shannon information up to a positive constant

I(P) = C ·
∑
i

pi log pi , for some C > 0

at the uniform distribution: pij = Q(j |i) p′i with pij = 1/N and
N = R · r with p′i = 1/R and Q(j |i) = 1/r obtain for
f (R) := IR( 1

R , . . . ,
1
R ) a function with f (Rr) = f (R) + f (r)

and continuous

f (R) = −C · log(R) for some C ∈ R∗

also have f (R) ≥ f (R + 1) by second and third axioms, so
C > 0
then from uniform to non-uniform: take pij and Q(j |i) still
uniform but p′i arbitrary f (N) = I(P ′) +

∑
i p
′
i f (Ni )

I(P ′) = −
∑
i

p′i (f (Ni )− f (N)) = C
∑
i

p′i log p′i
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Rényi Entropy

• weaken the requirement of extensivity (non-extensive entropies)
and replace only with additivity on statistically independent
subsystems

pij = p′ip
′′
j ⇒ I(P) = I(P ′) + I(P ′′)

• then other solutions (not proportional to Shannon entropy):
Rényi information

Iβ(P) =
1

β − 1
log(

R∑
i=1

pβi )
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Shannon Entropy as limit of Rényi Entropy

Iβ(P) defined for β ∈ R+ with β 6= 1

limit when β → 1: expand in ε = β − 1∑
i

p1+εi =
∑
i

pi exp(ε log pi ) ∼
∑
i

pi (1 + ε log pi )

= 1 + ε
∑
i

pi log pi

so limit of the Rényi Entropy

lim
ε→0
I1+ε(P) = lim

ε→0

1

ε
log(1 + ε

∑
i

pi log pi )

=
∑
i

pi log pi = I(P)
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Kullback–Leibler Divergence (Relative Entropy)

given known probability distribution P = (pi ) modified by
some process to a new Q = (qi ) with qi > 0

want to evaluate the information transfer of this process:
bi (P)− bi (Q) = log(pi/qi )

estimate the mean value (in the known distribution)

KL(P|Q) :=
∑
i

pi log(pi/qi )

non-negative because

log x ≥ 1− 1

x
⇒

∑
i

pi log
pi
qi
≥
∑
i

pi (1− pi
qi

) = 0

minimum value at 0 for P = Q (again because
log x > 1− x−1 except at at x = 1 where equal)

if uniform distribution qi = 1/R then K (P|Q) = I(P) + logR
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Properties of Rényi Entropy

monotonically increasing function: Iβ(P) ≤ Iβ′(P) when
β < β′ for any P (so upper and lower bounds for Shannon
entropy for β > 1 and β < 1)

check monotonicity:

∂Iβ(P)

∂β
=

1

(1− β)2

∑
i

Pi log(
Pi

pi
)

where escort probabilities

Pi =
pβi∑
j p

β
j

Kullback–Leibler Divergence is non-negative so monotonicity
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also another estimate for β′ > 0 and ββ′ > 0

β − 1

β
Iβ(P) ≥ β′ − 1

β′
Iβ′(P)

function xσ convex for σ > 1 and concave for 0 < σ < 1 so

(
∑
i

aσi ) ≥
∑
i

aσi , ∀σ > 1

(
∑
i

aσi ) ≤
∑
i

aσi , ∀0 < σ < 1

take ai = pβi and σ = β′/β

(
∑
i

pβi )β
′/β ≥

∑
i

pβ
′

i for β′ > β > 0

(
∑
i

pβi )β
′/β ≤

∑
i

pβ
′

i for β < β′ < 0

then taking 1/β′ power (and then log)

(
∑
i

pβi )1/β ≥ (
∑
i

pβ
′

i )1/β
′
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monotonicity in β of

Ψ(β) := (1− β)Iβ = − log
∑
i

pβi

Ψ(β) ≤ Ψ(β′) for β′ > β

because pβi ≥ pβ
′

i and − log
∑

i p
β
i ≤ − log

∑
i p

β′

i

also have concavity in β

∂2Ψ

∂β2
≤ 0
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Escort probabilities and statistical mechanics

if write pi = exp(−bi ) with
∑

i pi = 1 (see later box-counting)
then associated escort distribution

Pi =
pβi∑
i p

β
i

for β →∞ largest pi dominates, for β → −∞ smallest
analogy with statistical mechanics Pi = exp(Ψ− βbi ) with
Ψ(β) = − logZ (β) with partition function

Z (β) :=
∑
i

exp(−βbi ) =
∑
i

pβi

Helmholtz free energy

F (β) := − 1

β
logZ (β) =

1

β
Ψ(β)

directly related to Rényi information

Iβ(P) =
1

β − 1
log
∑
i

pβi = − 1

β − 1
Ψ(β)
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Entropy and Thermodynamics

probabilities pi of microstates of a physical system

Mi value at state i of a random variable M: expectation value

〈M〉P =
∑
i

Mi pi

max-ent principle: look for pi ’s that maximize entropy

“unbiased guess” in information theory: minimize information

generalized canonical distribution: pi such that

δI(P) =
∑
i

(1 + log pi )δpi = 0

with
∑

i M
σ
i δpi = 0 (all observables Mσ) and

∑
i δpi = 0

multiply these constraints by an arbitrary factor βσ (Lagrange
multipliers) ∑

i

(log pi −Ψ +
∑
σ

βσM
σ
i )δpi = 0
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interpret then as probabilities

Pi = exp(Ψ−
∑
σ

βσM
σ)

by imposing normalization condition
∑

i Pi = 1

normalization condition gives

Ψ = − logZ (β) for Z (β) =
∑
i

exp(−
∑
σ

βσM
σ
i )

Example: Gibbs distribution mean energy M = E = (Ei ) of a
system in thermodynamic equilibrium

Pi = exp(β(F − Ei )) with F =
1

β
Ψ(β)

Helmholtz free energy at inverse temperature β = 1/T

Z (β) = exp(−βF ) =
∑
i

exp(−βEi )

sum of microstates of the system with energies Ei
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entropy in the thermodynamic sense for such a system is

S = β(E − F )

Shannon entropy agrees with (expectation value of)
thermodynamic entropy

−
∑
i

Pi logPi = −
∑
i

eβ(F−Ei )β(F − Ei ) = 〈S〉
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Box-counting and Rényi entropy

bounded set E ⊂ RN , say E ⊂ [0, 1]N

probability measure µ on [0, 1]N with support on E

divide [0, 1]N in boxes of equal size: cubes of side ε

count number r of boxes that meet E in a subset of positive
µ-measure

r ≤ R ∼ ε−N

total number of boxes in [0, 1]N

pi = pi (ε) probability assigned to the i-th box Bi

pi = µ(E ∩ Bi )

crowding index

αi (ε) =
log pi (ε)

log ε

it is also function of x point where the box is centered α(x , ε)
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pointwise dimension α(x) = limε→0 α(x , ε) if limit exists (local
scaling exponent)

in terms of “bits numbers” pi = exp(−bi )

bi = −αi (ε) log ε

escort distribution

Pi = exp(Ψ− βbi )

Ψ(β) = − log
∑
i

exp(−βbi ) = −(β − 1)Iβ(P)

and partition function

Z (β) =
∑
i

pβi =
∑
i

exp(−βbi )

Iβ(P) =
1

β − 1
logZ (β) =

1

β − 1
log
∑
i

pβi
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Rényi (box-counting) dimensions

the partition function Z (β) for pi = pi (ε) diverges for ε→ 0

but it satisfies a power law with exponent that gives an
associated dimension

Rényi dimension

D(β) = lim
ε→0

Iβ(Pε)

log ε
= lim

ε→0

1

log ε

1

β − 1
log
∑
i

pi (ε)
β

Z (β) ∼ε→0 ε
(β−1)D(β)
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Meaning of Rényi Dimensions

at β = 0 have I0(P) = − log r(ε) with r(ε) = min number of
boxes of size ε covering set E so D(0) is box-counting
dimension (with grid)

D(0) = − lim
ε→0

log r(ε)

log ε

Shannon entropy dimension: at β = 1 limit of Rényi entropies
is Shannon entropy Sh(P) = I(P) = −

∑
i pi log pi

D(1) = lim
ε→0

1

log ε

r(ε)∑
i=1

pi (ε) log pi (ε) = − lim
ε→0

Sh(Pε)

log ε
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D(2) is called correlation dimension: it estimates effects of
propagation of errors in iterates of a chaotic dynamical
system; shown by Yorke, Grebogi, Ott that for certain classes
of chaotic dynamical systems average period length
∼ ∆−D(2)/2 (where ∆ is a measure of precision)

limit β →∞ of D(β) measures scaling properties of region of
E where measure µ most concentrated

limit β → −∞ of D(β) regions where least concentrated

• Note: these Rényi dimensions D(β) = Dµ(β) depend also on the
measure µ used to compute pi = µ(E ∩ Bi ) for the boxes Bi
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Properties of Rényi Dimensions

positivity D(β) ≥ 0

monotonicity D(β′) ≤ D(β) for β′ ≥ β
other relation: for β′ ≥ β and ββ′ > 0

β′ − 1

β′
D(β′) ≥ β − 1

β
D(β)

limiting cases

D(β) ≤ β

β − 1
D(∞) for β > 1

D(β) ≥ β

β − 1
D(−∞) for β < 0

All of these properties follow from the corresponding properties of
the Rényi entropy
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Thermodynamic relations when box size ε→ 0

take V = − log ε so V →∞
dynamically homogeneous system if for large V quantities like
entropy S or observables Mσ become proportional to V

especially so that for β fixed and V →∞ ratios S/V or
Mσ/V remain finite

continuum limit: formally replace summations by integrals

Ψ = − log

∫ αmax

αmin

exp(−βαV ) γ(α) dα

density of states γ(α) dα umber of boxes with crowding index
between α and α + dα

expect asymptotic scaling behavior γ(α) = ε−f (α) for some
function f (α)

if γ(α) ∼ ε−f (α)

Ψ = − log

∫ αmax

αmin

exp((f (α)− βα)V ) dα
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• Saddle point approximation method

if integrand has only one maximum in interval then as
V →∞ integral concentrated near the maximum

in general: want to evaluate

I =

∫
exp(F (x)V )dx

for V →∞, with some smooth function F (x) with single max
at x = x0 (e.g. F (x) = −(x − x0)2)

with F ′(x0) = 0 and F ′′(x0) < 0

I ∼
∫

exp((F (x0) +
1

2
(x − x0)2F ′′(x0))V ) dx

=

(
2π

V F ′′(x0)

)1/2

exp(F (x0)V )

so have − log I ∼ −F (x0)V
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• Entropy Density

take F (α) = f (α)− βα
b := αV mean value of bit number

∑
i bipi with

bi = −αi log ε

with saddle point approximation

Ψ ∼ (βα− f (α))V = βb − S

α mean crowding index is like a mean energy density so
Ψ = βF = βE − S = βαV − S

so function f (α) is entropy density

f (α) = lim
V→∞

S

V

interpret f (α) as an estimate of the fractal dimension of a set
of boxes of average pointwise dimension α

f (α) = spectrum of local dimensions (multifractal)
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• Legendre transform

density τ(β)

τ(β) = lim
V→∞

Ψ

V

by previous relation of Ψ to Rényi entropy: function of Rényi
dimension

τ(β) = (β − 1)D(β)

Legedre transforms

S(b) = βb −Ψ(β) with
dΨ

dβ
= b,

dS

dβ
= β

f (α) = βα− τ(β) with
dτ

dβ
= α,

df

dα
= β

convex differentiable function F (x) Legendre transform

F ∗(w) := sup
x

(wx − F (x))
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value of Legendre transform F ∗(w) is the negative of the
y -intercept of the tangent line to the graph of F that has slope w
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take α(β) to be the value α where βα− f (α) takes minimum

from τ(β) = (β − 1)D(β) and Legendre transform get

α(β) = D(β) + (β − 1)D ′(β)

f (α(β)) = D(β) + β(β − 1)D ′(β)

for β = 0 and β = 1 this gives

f (α(0)) = D(0) = α(0) + D ′(0)

with D(0) box-counting dimension

f (α(1)) = D(1) = α(1)

entropy dimension
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Tsallis Entropy

Tsallis deformation of the Shannon entropy

Sq(P) =
1

q − 1

(
1−

∑
i

pqi

)
q → 1 limit recovers the Shannon entropy

lim
q→1

Sq(P) = S(P) = −
∑
i

pi log pi

For Shannon entropy have

S(P) = − lim
x→1

d

dx

∑
i

pxi

Tsallis entropy same property with respect to q-derivative

Sq(P) = − lim
x→1

Dq

∑
i

pxi

q-derivative

Dqf (x) =
f (qx)− f (x)

qx − x
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q-analogs and Tsallis entropy

q-derivative Dqx
n = 1−qn

1−q xn−1 = [n]qx
n−1

[n]q =
1− qn

1− q

q-analogs of the integers: limq→1[n]q = n

Tsallis entropy Sq(P) is a q-analog of Shannon entropy

non-extensive thermodynamics: X ,Y independent
P(X ,Y ) = P(X )P(Y )

Sq(X ,Y ) = Sq(X ) + Sq(Y ) + (1− q)Sq(X )Sq(Y )

lack of linearity over independent systems measured by 1− q
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Tsallis deformation of KL divergence

one-parameter deformation of the Kullback–Leibler divergence

KLα(P||Q) =
1

1− α
∑
i

Pi

(
(
Pi

Qi
)1−α − 1

)
.

recovers KL divergence in the limit α→ 1

KLα(P||Q)→α→1 KL(P||Q) =
∑
i

Pi log(
Pi

Qi
)

Matilde Marcolli Entropy and Information



q-analogs and geometry of the Tsallis entropy

J.P. Vigneaux, Information theory with finite vector spaces,
arXiv:1807.05152

combinatorial meaning of the Shannon entropy: asymptotics
of multinomial coefficients

lim
n→∞

log

(
n

k1, . . . , kN

)
= −

N∑
i=1

pi log pi (pi = ki/n)

∑
k1+···+kN=n

(
n

k1, . . . , kN

)
uk11 · · · u

kN
N = (u1 + · · ·+ uN)n

with
( n
k1,...,kN

)
= n!

k1!···kN !
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meaning of Shannon entropy and multinomial coefficients

sequence of length n with symbols in an alphabet
A = {z1, . . . , zN} with probabilities P = (Pz)

sequences generated by memoryless Bernoulli process with
probabilities P

cardinality of set of sequences of a certain type in P (eg ratio
of zeros and ones)(

n

P(z1)n, . . . ,P(zN)n

)
∼ exp(nS(P))

P(zi ) is fraction of zi entries in length n string, P(zi )n = ki
number of zi entries in message

each with probability approximately∏
z∈A

P(z)nP(z) ∼ exp(−nS(P))

Shannon’s principle: “it is possible for most purposes to treat
the long sequences as though there were just 2nS of them,
each with a probability 2−nS”
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q-analog of multinomial coefficients

q-analog of the integers [n]q = 1−qn
1−q

q-factorial [n]q! = [n]q[n − 1]q · · · [1]q
q-multinomial coefficients[

n
k1, . . . , kN

]
q

:=
[n]q!

[k1]q! · · · [kN ]q!
,

N∑
i=1

ki = n

when q = pr some prime p these count points over field Fq

[n]q = #P1(Fq),

[
n

k1, . . . , kN

]
q

= #Fk,n(Fq)

Fk,n variety of flags V1 ⊂ V2 ⊂ · · · ⊂ VN = Fn
q with

dimV` =
∑`

i=1 ki , flags of type k = (k1, . . . , kN)

q-binomial coefficient[
n
k

]
q

:=

[
n

k , n − k

]
q

= #{V ⊂ Fn
q, dimV = k}
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q-analog of Bernoulli generated sequences

statistical model where length n message is a flag of vector
spaces V1 ⊂ V2 ⊂ · · · ⊂ VN = Fn

q with dimV` r V`−1 = k`

choice of a flag in Fn
q replaces “a configuration of n-particles”

for configuration of particles total energy depends on type k

〈E 〉 = mean internal energy =
N∑
i=1

ki
n
Ei

with Ei energy associated to spin state zi ∈ A

for a flag V1 ⊂ V2 ⊂ · · · ⊂ VN = Fn
q energy

〈E 〉 =
N∑
i=1

ki
n
Ei =

N∑
i=1

dim(Vi )

n
Ẽi

with dimVk =
∑k

i=1 ki and Ẽi satisfying identity (Vi -energy)
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max-entropy principle

equations

〈E 〉 =
N∑
i=1

ki
n
Ei and

N∑
i=1

ki = n

do not determine uniquely k = (k1, . . . , kN)

max-entropy: among all solutions k of the equations select
the one that corresponds to the largest number of
configurations of the system

here it means maximizing the q-deformed multinomial
coefficient [

n
k1, . . . , kN

]
q
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Limiting behavior of q-multinomial coefficients

Pochhammer symbol

(a; x)n :=
n−1∏
k=0

(1− axk), (a; x)0 = 1

q-Gamma function Γq(n + 1) = [n]q!

Γq(x) = (q−1; q−1)∞ q(x2) (q − 1)1−x
∞∑
n=0

q−nx

(q−1; q−1)n

q-multinomial coefficients[
n

k1, . . . , kN

]
q

=
Γq(n + 1)

Γq(k1 + 1) · · · Γq(kN + 1)

quadratic Tsallis entropy Ts2(p1, . . . , pN) = 1−
∑N

i=1 p
2
i[

n
k1, . . . , kN

]
q

= (q−1; q−1)1−N∞ qn
2Ts2(

k1
n ,...,

kN
n )/2

∏N
i=1(q−(ki+1); q−1)∞
(q−(n+1); q−1)∞
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binary Bernoulli process and q-analog (A = {0, 1})
binary string produced by a Bernoulli process (p, 1− p)
Yn sum of the first n outputs
probability of Yn = k is

(n
k

)
pk(1− p)n−k (sequences with k

ones each with probablity pk(1− p)n−k)
q-binomial formula

(x+y)nq := (x+y)(x+qy) · · · (x+qn−1y) =
n∑

k=0

[
n
k

]
q

q(k2) ykxn−k

get probability distribution

Binq(k |n, x , y) :=

[
n
k

]
q

q(k
2) ykxn−k

(x + y)nq

Binq(k |n, θ) :=

[
n
k

]
q

q(k
2) θk

(−θ; q)n
, for θ = y/x ≥ 0

variable Yn with this distribution can be written as sum of n
independent variables Xi taking values in {0, 1} with

probabilities x
x+yqi−1 and yqi−1

x+yqi−1
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vector space valued stochastic processes

Grassmannian Gr(k , n) of k-dim subspaces in Fn
q and

Gr(n) = ∪kGr(k , n) total Grassmannian

fixed embeddings Fn
q ↪→ Fn+1

q relate Gr(n) & Gr(n + 1)

V0 = {0} trivial vector space, Vn+1 random variable with
values in Gr(n + 1)

for W ∈ Gr(n) (not in Gr(n − 1)) dilation

Diln+1(W ) = {V ∈ Gr(n+1) |W ⊂ V , V 6⊂ Gr(n), dimV−dimW = 1}

probability distribution

P(Vn+1 = V |Vn = W ,Xn+1 = 0) = δV ,W

P(Vn+1 = V |Vn = W ,Xn+1 = 1) =
χDiln+1(W )(V )

#Diln+1(W)

normalized characteristic function of set Diln+1(W )
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from this distribution get for dimV = k

P(Vn = V ) =
θkqk(k−1)/2

(−θ; q)n

P(dimVn = k) =

[
n
k

]
q

θkqk(k−1)/2

(−θ; q)n

show inductively for V ∈ Gr(n + 1) and V 6⊂ Fn
q

P(Vn+1 = V ) =
∑

W∈Gr(n)

P(Vn+1|Vn,Xn+1)P(Yn = W )P(Xn+1 = 1)

=
∑

W∈Gr(k−1,n),W⊂V

1

#Diln+1(W )

θk−1q(k−1
2 )

(−θ; q)n

θqn

1 + θqn

=
θkq(k−1

2 )qn

#Diln+1(V ∩ Fn
q)(−θ; q)n

where last uses W ⊂ V is in V ∩ Fn
q and same dim so

W = V ∩ Fn
q
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asymptotics

fixed d and n→∞

P(Vn ∈ Gr(n−d , n)) ∼ q−
1
2 (d−(

1
2−logq θ))

2+ 1
2 (

1
2−logq θ)

2

(q−(d+1); q−1)∞
(q−1; q−1)∞(−θ−1; q−1)∞

and sum over all d ≥ 0 of rhs equal to 1 (asymptotic
probability distribution)

analogous processes for multinomial case with alphabet
#A = N > 2

Question: are there other combinatorial quantities
generalizing q-multinomial coefficients with asymptotics

∼ exp(Tsα(p1, . . . , pn)nα + o(nα))

for α 6= 1, 2?

Fontené-Ward generalized multinomial coefficients

J.P. Vigneaux, A homological characterization of generalized
multinomial coefficients related to the entropic chain rule,
arXiv:2003.02021
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Summary of q-deformed information (binary case A = {0, 1})
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What is the “field with one element”? (Manin, Soulé, etc.)
Finite geometries (q = pk , p prime)

#Pn−1(Fq) =
#(An(Fq) r {0})

#Gm(Fq)
=

qn − 1

q − 1
= [n]q

#Gr(n, j)(Fq) = #{Pj(Fq) ⊂ Pn(Fq)}

=
[n]q!

[j ]q![n − j ]q!
=

(
n

j

)
q

[n]q! = [n]q[n − 1]q · · · [1]q, [0]q! = 1

The origin of F1-geometry: Jacques Tits observed if take q = 1

Pn−1(F1) := finite set of cardinality n

Gr(n, j)(F1) := set of subsets of cardinality j

Is there an algebraic geometry over F1?
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Extensions F1n (Kapranov-Smirnov)

Monoid {0} ∪ µn (n-th roots of unity)
- Vector space over F1n : pointed set (V , v) with free action of µn
on V r {v}
- Linear maps: permutations compatible with the action

F1n ⊗F1 Z := Z[t, t−1]/(tn − 1)

Counting of points: for geometries X over Z, reductions mod p

Nq(X ) = #X (Fq), q = pr

Polynomially countable if Nq(X ) = PX (q) polynomial in q.
Counting of “points over the field with one element and its
extensions”

PX (m + 1) = #X (F1m)

General question: can reformulate combinatorial interpretation of
Shannon and Tsallis entropies in terms of F1-geometry?

Matilde Marcolli Entropy and Information



Shannon and Rényi Entropy and Functional Equation

Rényi entropy Rβ(P) = −Iβ(P) = 1
1−β log(

∑
i p

β
i )

limβ→1Rβ(P) = S(P) = −I(P) Shannon entropy

Functional equation of Shannon entropy (extensivity)

H(x) + (1− x)H(
y

1− x
)− H(y)− (1− y)H(

x

1− y
) = 0

equivalently for ab = x and y = 1− a

S(ab) + (1− ab)S(
a(1− b)

1− ab
) = S(a) + aS(b)

More general functional equation

H(x) + (1− x)βH(
y

1− x
)− H(y)− (1− y)βH(

x

1− y
) = 0

Gy.Maksa, The general solution of a functional equation
related to the mixed theory of information, Aequationes
Mathematicae, Vol. 22 (1981), 90–96
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Functional equations and polylogarithms over finite fields

P. Elbaz-Vincent, H. Gangl, On poly(ana)logs. I. Compositio
Math. 130 (2002), no. 2, 161–210.

M.Kontsevich, The 11
2 -logarithm, Appendix to previous paper,

Compos. Math. 130 (2002) N.2, 211– 214.

P. Elbaz-Vincent, H. Gangl, Finite polylogarithms, their
multiple analogues and the Shannon entropy, Geometric
science of information, 277–285, Lecture Notes in Comp. Sci.,
9389, Springer, 2015.
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Finite Logarithm

finite logarithm: finite field Fq, char p

L(p)1 (x) =

p−1∑
k=1

xk

k

compare with usual − log(1− x) =
∑

m≥1
xm

m

Kontsevich observed: the finite logarithm is a solution to the
general functional equation for β = p

L(p)1 (a)− L(p)1 (b) + apL(p)1 (
b

a
) + (1− a)pL(p)1 (

1− b

1− a
) = 0
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Functional equation

the functional equation

L(p)1 (a)− L(p)1 (b) + apL(p)1 (
b

a
) + (1− a)pL(p)1 (

1− b

1− a
) = 0

is a specialization to (∞, 0, 1, a, b) of the 5-terms relation

5∑
i=1

(−1)iδ(x1, . . . , x̂i , . . . , x5)L(p)1 (cr(x1, . . . , x̂i , . . . , x5)),

cr(a, b, c , d) :=
a− c

a− d

b − d

b − c
, δ(a, b, c , d) = (a− d)(b − c)

5-terms relation is in fact equivalent to functional equation
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Cohomological interpretation of the functional equation

function ϕ : Fp × Fp → Fp, zero if x + y = 0 and

ϕ(x , y) = (x + y)H(
x

x + y
), if x + y 6= 0

is a 2-cocycle

ϕ(b, c)− ϕ(a + b, c) + ϕ(a, b + c)− ϕ(b, c) = 0

to see use H(x) = H(1− x) and set X = x
x+y+z and

Y = y
x+y+z in functional equation

ϕ = dη coboundary if ϕ(x , y) = −η(x + y) + η(x) + η(y)
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ϕ is homogeneous so if coboundary
ϕ(λx , λy) = −λη(x + y) + λη(x) + λη(y)

obtain additive morphism ψλ(x) = η(λx)− λη(x), determined
by ψλ(1)

check that satisfies µψλ(1) = ψλ(µ) and
ψλµ(1) = ψλ(µ) + λψµ(1) so

ψλm(1) = mλm−1ψλ(1)

F∗p generated by a primitive root ω with ωp−1 = 1 and

0 = ψ1(1) = (p − 1)ωp−2ψω(1) ⇒ ψω(1) = 0

this gives η(λx) = λη(x) then η additive map so dη = 0 so
ϕ 6= 0 cannot be a coboundary

Kontsevich: solutions of general functional equation give
non-zero 2-cocycles in H2(Z/pZ,Z/pZ) ' Z/pZ
so functional equation has 1-dim space of solutions,

determines L(p)1 up to a constant factor
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Finite Polylogarithms

Finite polylogs:

L(p)n (x) =

p−1∑
k=1

xk

kn

Properties of Finite Polylogs

satisfy differential relation

dL(p)n (x) = L(p)n−1 d log(x)

and periodicity relation (Frobenius action x 7→ xp)

L(p)n+p−1 = L(p)n

inversion relation

L(p)n (x) = (−1)nxpL(p)n (1/x)

if the field Fq contains m-th roots of 1 also relation
(duplication for m = 2)

L(p)n (xm) = mn−1
∑
ζm=1

1− xpm

1− ζpxp
L(p)n (ζx)
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Functional equations for L(p)2 for p > 3

for L(p)1 functional equation together with inversion and

duplication relation identify L(p)1 uniquely

functional equation for L(p)2 (3-term relation)

xpF (1− 1

x
)− F (x) + F (1− x) = 0

this equation has a space of solutions of dimension at least
1 + p−1

3

τi ,p(x) = x i (1− x)i (xp−3i + (−1)i ), i = 0, . . . , (p − 1)/3

give independent solutions

additional equations for L(p)2 (duplication)

2(1 + xp)F (x) + 2(1− xp)H(−x)− F (x2) = 0

with functional equation above these characterize L(p)2 up to a
constant factor
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Information Loss: categorical formulation (Baez–Fritz–Leinster)

revisiting Khinchin axioms characterizing Shannon entropy in
categorical terms

category FinProb of probabilities (X ,P) and morphisms
f : X → Y measure preserving functions

Qy =
∑

x∈f −1(y)

Px

information loss F : MorFinProb → R+

axioms of information loss
1 functoriality: F (f ◦ g) = F (f ) + F (g) on composable

morphisms
2 convex linearity: F (λf ⊕ (1− λ)g) = λF (f ) + (1− λ)F (g)

where λf ⊕ (1− λ)g induced on (X t Y , λP ⊕ (1− λ)Q)
3 continuity: F (f ) continuous function of f
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If F satisfies axioms above then F (f ) = c (S(P)− S(Q)) for
some c ≥ 0 and with S(P) = −

∑
i pi log pi the Shannon

entropy

first note that S(P)− S(Q) satisfies axioms: key fact

S(P)− S(Q) = −
∑
i

pi log pi +
∑
j

qj log qj =
∑
i∈X

pi log
qf (i)
pi

a conditional entropy

to show that any F with info-loss axioms is proportional to
S(P)− S(Q) use Faddeev reformulation of Khinchin axioms
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Faddeev formulation of Khinchin axioms

I mapping probability measures on finite sets to R+ satisfying
1 I invariant under bijections
2 I continuous
3 for P = (p1, . . . , pn) and 0 ≤ t ≤ 1

I(tp1, (1− t)p1, p2, . . . , pn) = I(p1, . . . , pn) + p1I(t, 1− t)

then I must be a constant non-negative multiple of the
Shannon entropy S(P)

key is equivalence between last condition and extensivity of
the Shannon entropy

S(P ′) = S(P) +
∑
i

PiS(Q|i) for P ′ = (PiQ(j |i))
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Baez-Fritz-Leinster information loss characterization

unique morphism 1P : (X ,P)→ ({x}, 1) in FinProb (losing
all information about (X ,P) by collapsing it to a single point)

1P = 1Q ◦ f for all f : (X ,P)→ (Y ,Q)

F (1P) = F (1Q) + F (f ) so F (f ) = F (1P)− F (1Q)

set I(P) = F (1P) and show this entropy function is indeed
Shannon entropy by showing it satisfies Faddeev
characterization
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Characterization of Tsallis entropy (Baez-Fritz-Leinster)

Tsallis information loss Fα : MorFinProb → R+

axioms of information loss
1 functoriality: Fα(f ◦ g) = Fα(f ) + Fα(g) on composable

morphisms
2 convex linearity: Fα(λf ⊕ (1− λ)g) = λαF (f ) + (1− λ)αF (g)

where λf ⊕ (1− λ)g induced on (X t Y , λP ⊕ (1− λ)Q)
3 continuity: F (f ) continuous function of f

then Fα(f ) = c (Tsα(P)− Tsα(Q)) Tsallis entropy

similar argument but replacing extensivilty property of
Shannon entropy with nonextensive version of Tsallis

version of Faddeev characterization for Tsα(P)

Iα(tp1, (1− t)p1, p2, . . . , pn) = I(p1, . . . , pn) + pα1 I(t, 1− t)
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Kullback–Leibler divergence and Fisher–Rao metric

Kullback–Leibler divergence KL(P|Q) =
∑

i pi log(pi/qi ) is
not a metric
...but up to first order approximation it defines a metric

KL(P|P + dP) =
∑
i

pi log(
pi

pi + dpi
)

expansion∑
i

pi log(
pi

pi + εqi
= −

∑
i

pi log(1 + ε
pi
qi

)

= −
∑
i

piε
pi
qi

+
1

2

∑
i

pi (ε
pi
qi

)2 + o(ε2)

with
∑

i qi = 0 (since pi + εqi probability) so first term
quadratic
Fisher-Rao information metric

ds2 =
∑
i

dp2i
pi
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Properties of the Fisher–Rao metric

with change of coordinates Xi =
√
pi with dXi = dpi

2
√
pi

becomes Euclidean metric

ds2 =
∑
i

dX 2
i

but restricted to locus
∑

i X
2
i =

∑
i pi = 1, i.e. metric

induced by ambient Euclidean space on the unit sphere
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Hessian Riemannian metrics: with a convex potential Φ

gij = ∂i∂j Φ

totally symmetric rank 3 tensor

Aijk = ∂i∂j∂k Φ

Fisher-Rao metric tensor ds2 =
∑

ij gij(P)dpidpj is Hessian of
the Shannon entropy

gij(P) = −1

4
∂i∂j S(P) =

1

4
∂i∂j

∑
k

pk log pk

as −∂jS(P) = 1 + log pj and ∂j(1 + log pj) = δij p
−1
i

if T stochastic matrix T ≥ 0 and
∑

i Tij = 1∑
i

(T dp)2i
pi

≤
∑
i

dp2i
pi
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Levi-Civita connection (Christoffel symbols)

Γρνσ =
1

2
gρµ(∂σgµν + ∂νgµσ − ∂µgνσ)

convention of summation over repeated indices for tensor
calculus

Riemannian curvature Rρσµν

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

for Hessian metrics

Γijk =
1

2
∂i∂j∂k Φ

Rijkl =
1

2
(Sjikl − Sijkl)

Sijkl =
1

2

∂4Φ

∂i∂j∂k∂l
− 1

2
g rs ∂3Φ

∂i∂k∂r

∂3Φ

∂j∂l∂s
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Conjugate connections manifolds

conjugate connections manifold (M, g ,∇,∇∗)

X 〈Y ,Z 〉 = 〈∇XY ,Z 〉+ 〈Y ,∇∗XZ 〉

for all X ,Y ,Z smooth vector fields and 〈, 〉 pairing via g

given (M, g ,∇) unique dual structure (M, g ,∇∗) and
(∇∗)∗ = ∇
parallel transport along the dual connections preserves the
metric

〈X ,Y 〉γ(0) = 〈Π∇γ (X ),Π∇
∗

γ (Y )〉γ(t)
average ∇̄ = 1

2(∇+∇∗) is self dual hence it is the Levi-Civita
connection of g characterized by

X 〈Y ,Z 〉 = 〈∇̄XY ,Z 〉+ 〈Y , ∇̄XZ 〉

∂kgij = 〈∇̄∂k∂i , ∂j〉+ 〈∂i , ∇̄∂k∂j〉

Γ̄k
ij =

∑
l

1

2
gkl(∂igil + ∂jgil − ∂lgij)
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Statistical manifolds

statistical manifold (M, g ,A) with Amari–Chentsov tensor

A(X ,Y ,Z ) = 〈∇XY −∇∗XY ,Z 〉

Aijk = Γk
ij − Γ∗kij Aijk = A(∂i , ∂j , ∂k) = 〈∇∂i∂j −∇

∗
∂i
∂j , ∂k〉

totally symmetric cubic tensor

useful fact: if a torsion-free affine connection ∇ has constant
curvature κ then its conjugate ∇∗ has same constant curvature κ

R∇(X ,Y )Z = κ (g(Y ,Z )X − g(X ,Z )Y )

R∇(X ,Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z

R∇(∂j , ∂k)∂i =
∑
`

R`jki ∂`

(for details of proof: O.Calin, C.Udriste, Geometric Modeling in

Probability and Statistics, Springer, 2014 [Proposition 8.1.4]
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α-families and deformed connections

statistical manifold (M, g ,A)

∇LC Levi-Civita connection of the metric g

one-parameter families of connections

Γαijk = ΓLC
ijk −

α

2
Aijk , Γ−αijk = ΓLC

ijk +
α

2
Aijk

gives a conjugate connections manifold
(M, g ,∇−α,∇α = (∇−α)∗)

starting from conjugate connections manifold (M, g ,∇,∇∗):
α-deformations

Γαijk =
1 + α

2
Γijk +

1− α
2

Γ∗ijk

dual flat structures

(M, g ,A) is α-flat if ∇α is flat

Rα = −R−α so also ∇−α (dual) flat

α = ±1: ∇-flat iff ∇∗-flat
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Kullback–Leibler divergence and thermodynamics

for probability distribution Pn = e−βλn

Z(β) with partition function

Z (β) = Tr(e−βH) and Spec(H) = {λn} Shannon entropy is
thermodynamic entropy

S =

(
1− β ∂

∂β

)
logZ (β)

S = −
∑
n

Pn logPn =
∑
n

Pn logZ (β) + β
∑
n

Pnλn

with
∑

n Pnλn = ∂
∂β logZ (β)

free energy F = − logZ (β)
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Qx = e−βHx

Z(β) with Z (β) =
∑

x e
−βHx partition function, and

P = given probability distribution

Gibbs free energy given by

G (P) = − logZ (β) +
∑
x

Px log
Px

Qx
,

Kullback–Leibler divergence

KL(P|Q) = G (P) + logZ (β)

free energy is minimization of Gibbs energy over configuration
space: since KL(P|Q) ≥ 0

min
P

G (P) = − logZ (β)
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mean field theory when computation of free energy not
directly accessible, consider a trial Hamiltonian H̃ with
probability distribution Px = Z̃ (β)−1e−βH̃x and

Z̃ (β) :=
∑

x e
−βH̃x

Helmholtz free energy

−
∑
x

Px logPx = log Z̃ (β) + β〈H̃〉 = (1− β ∂

∂β
) log Z̃ (β)

∑
x

Px log
Px

Qx
= log

Z (β)

Z̃ (β)
+ β〈H − H̃〉.

mean field theory assumption 〈H〉 = 〈H̃〉 (averages in the
probability Px) then get∑
x

Px log
Px

Qx
= − log Z̃ (β)+β〈H̃〉+logZ (β)−β〈H〉 = log

Z (β)

Z̃ (β)
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1–parameter family of commuting Hamiltonians H(ε) analytic
in ε with

H(ε) = H̃ + ε
∂H̃

∂ε
|ε=0 + O(ε2)

then have∑
x

PxHx(ε) ∼
∑
x

Px H̃x + ε
∑
x

Px
∂Hx(ε)

∂ε
|ε=0.

generalized force corresponding to variable ε

Lx = −∂Hx(ε)

∂ε
|ε=0

〈L〉 =
∑
x

PxLx =
1

β

∂

∂ε
logZε(β)|ε=0,

where Zε(β) =
∑

x e
−βH(ε)
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for Px(ε) = Zε(β)−1e−βH(ε) have

logPx(ε) = − logZε(β)− β(H̃x + εLx + O(ε2))

Kullback–Leibler divergence
∑

x Px log Px
Px (ε)

=∑
x

Px logPx +logZε(β)+β
∑
x

Px H̃x +εβ
∑
x

PxLx +O(ε2) =

−(1−β ∂

∂β
) log Z̃ (β)+logZε(β)+β

∑
x

Px H̃x+ε
∂

∂ε
logZε(β)|ε=0

+O(ε2) = log
Zε(β)

Z̃ (β)
+ ε

∂

∂ε
logZε(β)|ε=0 + O(ε2)

is completely described in terms of partition functions (up to
higher order)
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Information Geometry

S. Amari, Differential-Geometrical Methods in Statistics,
Lecture Notes in Statistics, vol. 28. Springer, 1985.

S. Amari, Information Geometry and Its Applications,
Springer, 2016.

S. Amari, H. Nagaoka, Methods of Information Geometry,
American Mathematical Society, 2007

S. Amari, A. Chichoki, Information Geometry derived of
divergence functions, Bull. Polish Acad. Sci. Tech. Ser.,
Vol.58 (2010), No. 1, 183–195

F. Nielsen, An Elementary Introduction to Information
Geometry, Entropy, 2020, 22, 1100, 61 pages
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Fisher–Rao metric and Information Geometry

Probability distributions depend on a space of parameters
P = P(γ) = (Px(γ)) with γ = (γ1, . . . , γr )

Fisher–Rao information metric given by

gij(γ) :=
∑
x

Px(γ)
∂ logPx(γ)

∂γi

∂ logPx(γ)

∂γj
.

for commuting Hamiltonians H(γ)

Px(γ) =
e−βHx (γ)

Zγ(β)
, Zγ(β) =

∑
x

e−βHx (γ),

generalized forces

Lx ,i = −∂Hx(γ)

∂γi
,

then Fisher-Rao metric

gij(γ) =
∂ logZγ(β)

∂γi

∂ logZγ(β)

∂γj
+ β2

∑
x

Px(γ)Lx ,iLx ,j
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Hessian and KL-divergence

Fisher–Rao metric is Hessian matrix of Kullback–Leibler
divergence

gij(γ0) =
∂2

∂γi∂γj
KL(P(γ)|P(γ0))|γ=γ0

equivalently

gab =
∑
n

Pn ∂a logPn ∂b logPn =
∑
n

∂aPn ∂bPn

Pn

= −
∑
n

Pn ∂a∂b logPn = ∂a∂bKL(P|Q)|P=Q

Amari-Chentsov tensor

statistical manifold (M, g ,A) manifold with Riemannian
metric and a totally symmetric 3-tensor A (Amari-Chentsov
tensor)

Aabc = A(∂a, ∂b, ∂c) = 〈∇a∂b −∇∗a∂b, ∂c〉
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Divergence functions and Bregman generators

divergence function on manifold M: differentiable,
non-negative real valued function D(x |y), for x , y ∈ M, that
vanishes only when x = y and such that the Hessian in the
x–coordinates evaluated at y = x is positive definite

divergence function determines a statistical manifold

gab = ∂xa∂xbD(x |y)|y=x

Aabc = (∂xa∂xb∂yc − ∂xc∂ya∂yb)D(x |y)|y=x

this Amari-Chentsov tensor Aabc vanishes identically if
divergence D(x |y) is symmetric

statistical manifold induced by Bregman generator if there is a
potential Φ (locally)

D(x |y) = Φ(x)− Φ(y)− 〈∇Φ(y), x − y〉
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Statistical manifold of Shannon entropy

space of probability distributions on a (finite) set with KL
divergence and Fisher-Rao metric

Amari-Chentsov 3-tensor given by

Aabc =
∑
i

Pi ∂a logPi ∂b logPi ∂c logPi =
∑
i

∂aPi ∂bPi ∂cPi

P2
i

= (∂a∂b∂c ′ − ∂c∂a′∂b′)KL(P|Q)|P=Q

with a, b, c variation indices for P and a′, b′, c ′ for Q

Bregman generator is the Shannon information

Φ(P) = −S(P) =
∑
i

Pi logPi

KL(P|Q) = Φ(P)− Φ(Q)− 〈∇Φ(Q),P − Q〉
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Bregman potential and dual coordinates

as above divergence with Bregman potential

D(x |y) = Φ(x)− Φ(y)− 〈∇Φ(y), x − y〉

dual potential: Legendre transform

Ψ(η) = sup
x
{〈x , η〉 − Φ(x)}

if Φ lower semicontinuous and convex then Legendre
transform Ψ = Φ∨ is involutive (Φ∨)∨ = Φ

in a dually flat manifold: dual affine coordinate systems
η = ∇Φ(x) and x = ∇Ψ(η)
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Linear case

Special case: if dependence of P on parameters is linear

∂a∂bP = 0

then the Amari-Chenstov tensor is the tensor of third
derivatives of the Bregman potential

Aabc = ∂a ∂b ∂c Φ

in case of Shannon entropy recover previous case of rank 3
tensor of Fisher-Rao metric

gab = ∂a∂bΦ, Aabc = ∂a ∂b ∂c Φ

with potential the Shannon entropy
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Divergence functions, flatness and decomposability

given a divergence function D(P|Q) additional requirements
1 invariance under invertible transformations of variables
2 decomposability: D(P|Q) =

∑
i d(pi , qi ) for some function d

(e.g. KL(P|Q) = −
∑

i pi log(qi/pi ))
3 flatness: Riemannian metric g (Hessian) and dual pair of

connections ∇,∇∗ related by the metric, require these have
vanishing curvature (dually flat structure)

invariant + decomposable ⇔ D(P|Q) =
∑

i pi f (qi/pi ) some
differentiable convex function f

only divergence satisfying all 3 properties is KL
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Dual connections of a divergence function

divergence D(P|Q)
metric (pos def Hessian: quadratic term in expansion) g (D)

D(P + ξ|P + η) ∼ 1

2

∑
i ,j

g
(D)
ij (P)ξiηj + higher order terms

cubic term determines a connection

h
(D)
ijk = ∂ig

(D)
jk + Γ

(D)
jk,i

connection ∇(D) with Christoffel symbols

Γ
(D)
ij ,k = Γ

(D)
ji ,k

dual divergence D∗(P|Q) := D(Q|P)
determines same metric g (D∗) = g (D)

dual connection ∇(D∗), dual to ∇(D) under g (D)

duality condition for connections ∇,∇∗ under metric g : for
any triple of vector fields V ,W ,Z

Z g(X ,Y ) = g(∇ZX ,Y ) + g(X ,∇∗ZY )
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Geodesics and Pythagorean relation

given a triple (g (Df ),∇(Df ),∇(D∗f )) associated to a divergence
(for some convex function f )

Df (P|Q) =
∑
i

Pi f (
Qi

Pi
)

in the space of probabilities P have both ∇(Df )-geodesics and
∇(D∗f )-geodesics

paths γ(t) solutions of geodesic equation

γ̈(t)k +
∑
ij

Γk
ij(γ(t)) γ̇ i (t)γ̇j(t) = 0,

with Γk
ij Christoffel symbols of corresponding connection

P,Q,R three probability distributions: consider ∇(D)-geodesic
from P to Q and ∇(D∗-geodesic from Q to R

if these meet orthogonally at Q, then Pythagorean relation

Df (P|R) = Df (P|Q) + Df (Q|R)
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Dually flat structure and projection

Pythagorean theorem: if D(P|Q) defines a dually flat
structure then

D(P|R) = D(P|Q) + D(Q|R)

when P,Q,R form an orthogonal triangle, namely when
geodesic paths PQ and QR orthogonal

dual flat coordinate systems x = (xa) and η = (ηa) related by
Legendre transform

take paths γ(t) = (1− t)x(Q) + tx(R) and
γ∨(t) = (1− t)η(P) + tη(Q)

d

dt
γ = x(R)− x(Q),

d

dt
γ∨ = η(Q)− η(P)

the two paths are orthogonal in the metric

〈η(Q) = η(P), x(R)− x(Q)〉 = 0

this gives the Pythagorean relation above (Amari, 2016)
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Projection theorem of Information Geometry (Amari)

P and submanifold P /∈M: ∇(D)-geodesic from P meets M
orthogonally

Q∗ = argminQ∈MD(P|Q)

full space MF of probabilities (depending on parameters),
submanifold MI satisfying given constraints

given P minimization problem for KL divergence

KL(P|Qmin) = min
Q∈MI

KL(P|Q)

argmin Qmin can be found by orthogonal projection of P onto
MI

orthogonal projection: dual geodesic (η-coords) connecting P
and Qmin orthogonal to any tangent vector in MI at Qmin

if submanifold MI itself flat, for any other point Q ∈MI and
geodesics PQmin and QminQ ⇒ orthogonal triangle so

KL(P|Q) = KL(P|Qmin) + KL(Qmin,Q)

with Q = Qmin minimizing lhs
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dual Pythagorean theorems in a dually flat space
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Frobenius Manifolds and Information Geometry

Yu.I. Manin, Frobenius Manifolds, Quantum Cohomology, and
Moduli Spaces, Colloquium Publications, Vol. 47, American
Mathematical Society, 1999.

C. Hertling, Yu.I. Manin, Weak Frobenius manifolds, Int.
Math. Res. Notices 6 (1999), 277–286

C. Hertling, M. Marcolli (Eds.), Frobenius manifolds.
Quantum cohomology and singularities, Aspects of
Mathematics, E36, Vieweg, 2004.

N. Combe, Yu.I. Manin, F-manifolds and geometry of
information, Bull. Lond. Math. Soc. 52 (2020), 777–792

N. Combe, Ph. Combe, H. Nencka, Frobenius Statistical
Manifolds and Geometric Invariants, Geometric Science of
Information 2021, Lecture Notes in Computer Science,
Vol.12829, pp. 565–573, Springer, 2021.

N. Combe, Yu.I. Manin, M. Marcolli, Geometry of
Information: classical and quantum aspects, arXiv:2107.08006
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Frobenius Manifolds

Frobenius manifold (M, g ,Φ) a manifold M with flat metric g
and potential Φ so that (in local affine coordinates) tensor
Aabc = ∂a∂b∂cΦ defines associative, commutative
multiplication with unit

∂a ◦ ∂b =
∑
c

Aab
c∂c

equivalently g(∂a ◦ ∂b, ∂c) = Aabc

associativity condition for multiplication: WDVV
(Witten–Dijkgraaf–Verlinde–Verlinde) nonlinear differential
equations for potential Φ

Abceg
ef Afad = Abaeg

ef Afcd , with Aabc = ∂a∂b∂cΦ

first structure connection (λ parameter)

∇λ,∂a∂b = λ
∑
c

Aab
c∂c = λ∂a ◦ ∂b

associativity of product and existence of potential equivalent
to connection ∇λ being flat
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F -manifolds

or “weak Frobenius manifold”, introduced by Hertling–Manin

F -manifold (M, ◦, e) is a manifold with a commutative and
associative multiplication ◦ on the tangent bundle TM with a
unit vector field e

F -manifold is a Frobenius manifold if ◦ induced by a flat
metric g and a potential Φ

for both F -manifolds and Frobenius can also include Euler
vector field E =

∑
a xa∂a

difficulty of upgrading F -manifolds to Frobenius manifolds is
flatness of the metric
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Frobenius and F -manifolds in algebraic geometry

notion of Frobenius manifold first introduced by Dubrovin in
the mathematical formulation of TQFT

B. Dubrovin, Geometry of 2D topological field theories,
Integrable systems and quantum groups, Lecture Notes in
Mathematics 1620, 120–348, Springer 1993.

applications in singularity theory: Saito’s Frobenius structure
on moduli (unfolding) spaces of germs of isolated singularities
of hypersurfaces

Gromov–Witten invariants and quantum cohomology
(Kontsevich–Manin, Barannikov–Kontsevich)
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Frobenius manifolds and Gromov-Witten invariants

M = H∗(X ,Z) with (X , ω) compact symplectic manifold

Gromov-Witten invariants IXg ,n(γa1 , . . . , γan), with

γai ∈ Hdi (X ,C), counts genus g pseudoholomorphic curves in
X homological constraints imposed at n points of the curve

γa homogeneous basis of H∗(X ,C) and ta dual basis

g =
1

2

∑
a,b

ηabdt
adtb

ηab =

∫
γa ∪ γb

metric from intersection product

Frobenius manifold potential

Φ =
∑
n≥3

1

n!

∑
a1,...,an

ta1 · · · tan IXg ,n(γa1 , . . . , γan)

e = ∂/∂t0

Matilde Marcolli Entropy and Information



Cones and characteristic functions (Combe–Manin)

X finite set, RX real vector space spanned by X , probability
simplex ∆X (extremal points basis of RX )

union of all oriented half-lines in RX starting at 0: open
convex cone

more general convex cones: R fin dim real vector space and
V ⊂ R subset closed under addition and multiplication by
positive reals, ∆V simplex in V

require that closure of V does not contain any real linear
subspace of positive dimension

characteristic function of convex cone V with dual W ⊂ R∨

V 3 x 7→ ϕV (x) =

∫
W

e−〈x ,x
′〉dvolW (x ′)

with translation invariant volume form of R∨

metric on V (hence on ∆V ) given by

gij =
∂2

∂x i∂x j
logϕV Γi

jk =
∑
l

1

2
g il∂i∂j∂l logϕV
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F -manifolds: flat structure and vector potential

flat structure: torsionless flat connection ∇ and T ∇M ⊂ TM
with T ∇M = Ker∇ flat vector fields

flat F -manifold (M, ◦, e,∇) flat connection with ∇e = 0 and
∇+ α◦ flat for all α ∈ C
then there is a vector potential F = (F i ) with

∂j ◦ ∂k = c ijk∂i , c ijk = ∂j∂kF
i

equivalently for any X ,Y ∈ T ∇M and F vector potential

X ◦ Y = [X , [Y ,F ]]

associativity of ◦ quadratic differential constraint on F
“oriented associativity equations”

in Frobenius case vector potential comes from derivatives of
scalar potential and metric

see Yu.I.Manin, F-manifolds with flat structure and Dubrovin’s
duality, Advances in Mathematics 198 (2005) 5–26.
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F -manifold structure on cones and statistical manifolds

∆V with metric g with potential logϕV

the WDVV equations for Aabc = ∂a∂b∂c logϕV

Abceg
ef Afad = Abaeg

ef Afcd

are trivially satisfied for this choice of potential logϕ

ϕ(X ) =

∫
e−〈X ,Y 〉dv(Y ) =

n∏
i=1

∫
e−XiYidYi =

n∏
i=1

ϕi (Xi )

some notation: for dimV = n and I ⊂ {1, . . . n}

ϕI =
∏
i∈I

ϕi , ϕI c =
∏
i /∈I

ϕi

ψi =

∫
Yie
−XiYidYi = −∂iφi , ψI =

∏
i∈I

ψi

ψi ,ki =

∫
Y ki
i e−XiYidYi , ψI ,k =

∏
i∈I

ψi ,ki
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then have

∂a logϕ =
∂aϕ

ϕ
=
−ψa ϕac

ϕ
= −ψa

ϕa

metric

gab = ∂a∂b logϕ = δab∂a
−ψa

ϕa
= δab(

ψa,2

ϕa
− ψ2

a

ϕ2
a

)

positivity ψa,2ϕa ≥ ψ2
a by Cauchy-Schwartz

(

∫
Y 2e−XY dY )(

∫
e−XY dY ) ≥ (

∫
Ye−XY dY )2

Aabc similarly just

Aiii = −
ψi ,3

ϕi
+ 3

ψiψi ,2

ϕ2
i

− 2
ψ3
i

ϕ3
i

and both sides of WDVV are A2
aaag

aa so F -manifold, not flat
so not Frobenius
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More general statistical manifolds and WDVV equation

statistical manifold (M, g ,A) is a Frobenius manifold if the
Amari–Chentsov tensor satisfies

Abceg
ef Afad = Abaeg

ef Afcd

equivalent to equation for Bregman potential Φ

〈∂e∇Φ(P), ∂a∂bP〉g ef 〈∂f∇Φ(P), ∂c∂dP〉+

〈∂e∇Φ(P), ∂a∂bP〉g ef 〈∂c∂d∇Φ(P), ∂f P〉+
〈∂a∂b∇Φ(P), ∂eP〉g ef 〈∂f∇Φ(P), ∂c∂dP〉+
〈∂a∂b∇Φ(P), ∂eP〉g ef 〈∂c∂d∇Φ(P), ∂f P〉 =

〈∂e∇Φ(P), ∂a∂cP〉g ef 〈∂f∇Φ(P), ∂b∂dP〉+
〈∂e∇Φ(P), ∂a∂cP〉g ef 〈∂b∂d∇Φ(P), ∂f P〉+
〈∂a∂c∇Φ(P), ∂eP〉g ef 〈∂f∇Φ(P), ∂b∂dP〉+
〈∂a∂c∇Φ(P), ∂eP〉g ef 〈∂b∂d∇Φ(P), ∂f P〉

give usual WDVV equation for Φ in the linear case where
Aabc = ∂a∂b∂cΦ
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Frobenius manifold structures?

can use flat families ∇α to improve to Frobenius?
(Combe-Combe-Nencka)

is there a deformation Φα of potential logϕV that still
satisfies WDVV but nontrivially?

proposed version of “statistical Gromov–Witten invariants”
(Combe-Combe-Nencka) related to higher mutual
informations

can these provide a Φα as in GW case with flat Frobenius
structure?

F -manifold structures on cones (and probability spaces)
similar setting to F -manifold and Frobenius manifold
structures for singularities and unfolding of singularities
(Saito, Hertling, etc)
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Hochschild cohomology

A associative algebra over a field K (say C)

M an A-bimodule (ie two commuting actions a(mb) = (am)b)

C 0(A,M) = M and Cn(A,M) = Hom(A⊗n,M) (tensor over
K)

Hochschild coboundary δ : Cn(A,M)→ Cn+1(A,M)

n = 0 then (δm)(a) = am −ma difference between left and
right action
n > 0 then

(δf )(a0, . . . , an) = a0f (a1, . . . , an)

+
n∑

i=1

(−1)i f (a1, . . . , aiai+1, . . . , an)

+(−1)nf (a0, . . . , an−1)an

satisfies δ2 = 0 so Hochschild cohomology
HH∗(A,M) = H∗(C ∗(A,M), δ) = Ker(δ)/Im(δ)
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note how it generalizes case of groups: for an abelian group
and f : G⊗n → Z (trivial action on Z)

(δf )(a0, . . . , an) = f (a1, . . . , an)+

n−1∑
i=1

(−1)i f (a0, . . . , ai + ai+1, . . . , an) + (−1)nf (a0, . . . , an−1)

special case M = A∗ = Hom(A,K), then
Hom(A⊗n,A∗) = Hom(A⊗(n+1),K) with
f (a1, . . . , an)(a0) =: ϕ(a0, a1, . . . , an) and δf = bϕ with

(bϕ)(a0, . . . , an+1) =
n∑

i=0

(−1)iϕ(a0, . . . , aiai+1, . . . , an)

+(−1)n+1ϕ(an+1a0, a1, . . . , an)
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Example: HH0(A,M) = {m ∈ M | am = ma, ∀a ∈ A} in case
of M = A∗ traces
HH0(A,A∗) = {τ : A→ K | τ(ab) = τ(ba), ∀ab ∈ A}
Example: M-valued derivations modulo inner derivations
(coboundaries)

HH1(A,M) = Ker(δ)/Im(δ)

Ker(δ) = {f : A→ M | f (ab) = af (b) + f (a)b, ∀a, b ∈ A}

Im(δ) = {f : A→ M | f (a) = [m, a] = ma− am}
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Mutual Information and Hochschild cohomology

P. Baudot, D. Bennequin, The homological nature of entropy,
Entropy 17 (2015) no. 5, 3253– 3318.

mutual information I(X ,Y ) = S(X ) + S(Y )− S(X ,Y ) with
Shannon entropy

S(X ) = −
∑
i

P(X = xi ) logP(X = xi )

for extensivity property use notation
S(X ,Y ) = S(X ) + X · S(Y ) (think of as coboundary)

more generally, random variables Xi , probability P, and some
entropy functional F (X1, . . . ,XN ;P)
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define (left) action X0 · F (and trivial right action)

X0·F (X1, . . . ,XN ;P) :=
∑
i

P(X0 = xi )F (X1, . . . ,XN |X0 = xi )

then Hochschild coboundary

(δF )(X0, . . . ,XN ;P) = X0 · F (X1 . . . ,XN ;P)

+
N−1∑
i=1

F (X1 . . . ,XiXi+1, . . . ,XN ;P) + (−1)NF (X0, . . . ,XN ;P)

also consider version where also left action trivial and
corresponding δ̃ Hochschild coboundary as above with first
term just F (X1 . . . ,XN ;P)
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Shannon higher mutual informations

for J ⊂ {1, . . . ,N} join XJ of the Xi random variables with
i ∈ J (composite system)

IN(X1 . . . ,XN ;P) :=
N∑

k=1

(−1)k−1
∑
#J=k

S(XJ ;P)

then I2m = δ̃δ · · · δδ̃S (with (m − 1) δ’s and m δ̃’s) and
I2m+1 = −δδ̃δ · · · δδ̃S (with m δ’s and m δ̃’s)

I2m is a δ̃-cocycle (coboundary) and I2m+1 is a δ-cocycle
(coboundary)
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More on cohomological information theory

J.P. Vigneaux, Generalized information structures and their
cohomology, arXiv:1709.07807

J.P. Vigneaux, A homological characterization of generalized
multinomial coefficients related to the entropic chain rule,
arXiv:2003.02021

J.P. Vigneaux, Topology of statistical systems. A
cohomological approach to information theory, PhD Thesis,
Institut de mathématiques de Jussieu, Université de Paris
Diderot, 2019
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Vigneaux’s categorical formalism of information structures

finite information structure: (S ,M) pair of a thin category S
(observables) and a functor M : S → F to category of finite
probability spaces

category S : objects X ∈ Obj(S) random variables values in a
finite probability space; a morphism π : X → Y if the random
variable Y is coarser than X (values of Y determined by
values of X )

if there are morphisms X → Y and X → Z then YZ = Y ∧ Z
(random variable given by joint measurement of Y and Z )
also an object of S .

category S has a terminal object 1, random variable with
value set {?} a singleton

Matilde Marcolli Entropy and Information



Category of finite information structures

functor M : S → F maps a random variable X to the finite
probability space given by its range of values MX

morphisms π : X → Y map to surjections M(π) : MX → MY

value set MX∧Y is a subset of MX ×MY

category IS of finite information structures

objects pairs (S ,M) as above
morphisms ϕ : (S ,M)→ (S ′,M,′ ) pairs ϕ = (ϕ0, ϕ

#) of a
functor φ0 : S → S ′ and a natural transformation
φ# : M → M ′ ◦ φ0 with properties:
φ0(1) = 1
φ0(X ∧Y ) = φ0(X )∧ φ0(Y ) whenever X ∧Y is an object in S

for all X the morphism φ#X : MX → M ′φ0(X ) is a surjection
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products and coproducts

category IS has finite products (S × S ′,M ×M ′) with objects
pairs (X ,X ′) of random variables with value set MX ×M ′X ′

IS also has finite coproducts (S ∨ S ′,M ∨M ′) with objects
Obj(S∨S ′) = Obj(S)∨Obj(S ′) = Obj(S)tObj(S ′)/1S ∼ 1S ′
and value set MX or M ′X ′ if X ∈ Obj(S) or X ′ ∈ Obj(S ′)
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Probability functors

probability functor Q : (S ,M)→ ∆

object X mapped to a simplicial set QX of probabilities on the
set MX

QX is a subset of the simplex Π(MX ) of all probability
distributions on MX

morphisms π : X → Y mapped to morphism π∗ : QX → QY

with
π∗(P)(y) =

∑
x∈π−1(y)

P(x)

For each X ∈ Obj(S) there is a semigroup

SX = {Y ∈ Obj(S) | ∃π : X → Y }

with product Y ∧ Z

semigroup algebra AX := R[SX ]
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Functor of measurable functions

contravariant functors F(Q) : (S ,M)→ Vect

assign to objects X ∈ Obj(S) and probabilities PX ∈ QX the
vector space of real valued (measurable) functions on
(MX ,PX )

assigns to a morphism π : X → Y the map
F(Q)(π) : f 7→ f ◦ π∗
action σα of the semigroup SX on F(QX ) by

σα(Y ) : f 7→ Y (f )(PX ) =
∑

y∈EY :Y∗PX (y)6=0

(Y∗PX (y))α f (PX |π−1(y))

for Y ∈ SX and for some arbitrary α > 0

AX -module structure Fα(QX ) on F(QX ), determined by the
semigroup action σα
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Modules over sheaves of algebras

category A-Mod of modules over the sheaf of algebras
X 7→ AX

A-Mod is an abelian category

sequence Bn(X ) of free AX -modules generated by symbols
[X1 | . . . |Xn] with {X1, . . . ,Xn} ⊂ SX
with boundary maps ∂n : Bn → Bn−1 of Hochschild form

∂n[X1 | . . . |Xn] = X1 [X2 | . . . |Xn]

+
n−1∑
k=1

(−1)k [X1 | . . . |XkXk+1 | . . . |Xn]

+ (−1)n[X1 | . . . |Xn−1].

modules Bn(X ) give a projective bar resolution of the trivial
AX -module
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Functorial Hochschild cochain complex

functor C •(Fα(Q)) : (S ,M)→ Ch(R) to category of cochain
complexes

objects X ∈ Obj(S) mapped cochain complexes
(C •(Fα(QX )), δ)

C •(Fα(QX ))n = Hom
AX

(Bn(X ),Fα(QX ))

natural transformations of functors Bn → Fα(Q) compatible
with A-action

coboundary δ given by Hochschild coboundary

δ(f )[X1 | . . . |Xn+1] = X1(f )[X2 | . . . |Xn+1]

+
n∑

k=1

(−1)k f [X1 | . . . |XkXk+1 | . . . |Xn+1]

+ (−1)n+1f [X1 | . . . |Xn].
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Hochschild cohomology and entropy functionals

complex C •((S ,M),Fα(Q)) := (C •(Fα(QX )), δ) with
cohomology

H•((S ,M),Fα(Q))

zeroth cohomology is R when α = 1 and zero otherwise

first cohomology: any non-trivial 1-cocycle is locally a
multiple of the Tsallis entropy

Sα[X ](P) =
1

α− 1

1−
∑
x∈MX

P(x)α

 ,

for α 6= 1 or of the Shannon entropy for α = 1

higher cohomologies represent all possible higher mutual
information functionals
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KL divergence

information structures (S ,M) and (S ′,M ′) and a joint
random variable (X ,Y ) with values in a finite set
MXY ⊂ MX ×M ′Y with X ∈ Obj(S) and Y ∈ Obj(S ′)

pair of probability functors Q : (S ,M)× (S ′,M ′)→ ∆ and
Q′ : (S ,M)× (S ′,M ′)→ ∆,

simplicial sets Q(X ,Y ) and Q′(X ,Y ) are subsimplicial sets of the

full simplex Π(MXY )

contravariant functor F (2)(Q,Q′) : (S ,M)× (S ′,M ′)→ Vect

maps (X ,Y ) 7→ F (2)(X ,Y ) vector space of real valued
(measurable) functions on simplicial set of probabilities
Q(X ,Y ) ×Q′(X ,Y )
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X ∈ Obj(S),Y ∈ Obj(S ′), the semigroup S(X ,Y ) acts on

F (2)(X ,Y ) by
((X ′,Y ′) · f )(P,Q) =∑

(x′,y ′)∈MX ′Y ′

P(x ′, y ′)αQ(x ′, y ′)1−α f ((P,Q)|(X ′,Y ′)=(x′,y ′))

(X ′,Y ′) ∈ SX and (P,Q) ∈ Q(X ,Y ) ×Q′(X ,Y ) with

{(X ′,Y ′) = (x ′, y ′)} = π−1(x ′, y ′) under surjection
π : M(X ′,Y ′) → M(X ,Y ) determined by morphism
π : (X ′,Y ′)→ (X ,Y )

F (2)
α (Q,Q′) denotes F (2)(Q,Q′) with A-module structure

Kullback–Leibler divergence (Tsallis α-deformation) is a

1-cocycle in resulting chain complex (C •(F (2)
α (Q,Q′)), δ)
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