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Shannon Entropy/Information

@ bit memory storage unit = switch with two on/off positions =

digit O or 1
@ A set of switches with N = 2#A positions
@ possible states: write a number m = f:Ao_l sk 2¥ in binary

notation s, € {0,1}

@ need #A = Ilc;gggl bits to select one particular possible

configuration

@ b = log N measured in log2 units is the bit number

e if have probability p; of an event jin aset i€ {1,..., R} such
as a frequency of occurrence

pi:%v N:ZN,
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@ number of bits required to identify a particular configuration
a among all possible is log N

@ to select an « either select among all or first select which set
of N; elements it belongs to and then among these so
b; + log N; = log N hence b; = — log p;

@ Shannon information measure: the average of the b; with
respect to the probabilities p;

R
Z(P) =" pilogp;
i=1

@ Shannon Entropy: S(P) = —Z(P) (“negative information”, in
fact positive S(P) > 0)

@ measure of knowledge of the observed about what event to
expect knowing P = (p;) (least knowledge at the uniform
distribution, most knowledge at the delta measures §;)

@ if the events / are dynamical microstates of a physical system
then it is the entropy in the thermodynamic sense
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Khinchin Axioms and Shannon Entropy Zg(p1,- - -, PR)

e Khinchin Axioms

© continuous function of P = (p1,...,pr)
@ minimum at the uniform distribution (max for entropy):
1 1
Ir(=,...,=) <ZIgr(P
R(R’ ’ R) — R( )

© extendability: Zr(p1,---,pPr) = Zr+1(p1,-- -, PR, 0)
Q extensivity (implies additivity on independent subsystems)

Z(P) = Z(P") + Z P Z(QI7)

for a composite system P = (p;;) with p;j = Q(j|i) p} with
conditional probabilities Q(j|i) of j given i with conditional

information
Z(Qli) = 3 Qi) log ()

Note: case of independent subsystems p;; = p;p} gives
Z(P) =Z(P)+Z(P")
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Axiomatic characterization of the Shannon Entropy

e family of functionals Z = {Zg} satisfying Khinchin axioms agree
with the Shannon information up to a positive constant

Z(P)=C- Zp; log p;, for some C >0

@ at the uniform distribution: p; = Q(j|i) p} with pj =1/N and
N = R - r with p =1/R and Q(j|i) = 1/r obtain for
f(R) :=Zgr(%,..., %) a function with f(Rr) = f(R) + f(r)
and continuous

f(R)=—C-log(R) forsome C € R*

e also have f(R) > f(R + 1) by second and third axioms, so
Cc>0

o then from uniform to non-uniform: take p; and Q(jli) still
uniform but p} arbitrary f(N) =Z(P") + >, pi f(N;)

Z(P') = = D PHF(N) = F(N) = C > _ pilog i
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Rényi Entropy

e weaken the requirement of extensivity (non-extensive entropies)
and replace only with additivity on statistically independent
subsystems

pij = pip] = Z(P)=ZI(P")+ZI(P")

e then other solutions (not proportional to Shannon entropy):
Rényi information

1 R
To(P) = 51 loe(3>_ /)
i=1
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Shannon Entropy as limit of Rényi Entropy

@ Z3(P) defined for § € Ry with 3 # 1
@ limit when 8 — 1: expand ine =5 —1

ZP,'HE = Z pi exp(elog p;) ~ pr(l + elog p;)
i i i

=1+e) pilogp
i

so limit of the Rényi Entropy

. 1
!%IHE(P) = eli% - log(1+ EZ pi log pi)

1

= pilogpj = I(P)
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Kullback-Leibler Divergence (Relative Entropy)

@ given known probability distribution P = (p;) modified by
some process to a new Q = (g;) with g; > 0

@ want to evaluate the information transfer of this process:
bi(P) — bi(Q) = log(pi/qi)

@ estimate the mean value (in the known distribution)

KL(PIQ) : Zp, log(pi/ai)
@ non-negative because
IogX>1—; = Zpllogf>2p, 1—— =0

@ minimum value at 0 for P = Q (again because
log x > 1 — x~! except at at x = 1 where equal)

e if uniform distribution g; = 1/R then K(P|Q) = Z(P) + log R



Properties of Rényi Entropy

e monotonically increasing function: Zg(P) < Zg/(P) when
B < B for any P (so upper and lower bounds for Shannon
entropy for 5> 1 and 8 < 1)

@ check monotonicity:

0Zp(P) _
P; |
05 (1- Z °g
where escort probabilities

P!

3
2P

Kullback—Leibler Divergence is non-negative so monotonicity

P; =
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@ also another estimate for 5’ > 0 and 35’ > 0

-1 -1
LR = E ()

@ function x? convex for o > 1 and concave for 0 < o < 1 so

(Za}’) ZZaj-’, VYo >1
(Za;’) SZa;’, Vo<o<1

take a; = pf and o =3’/
Py e >N pf for f'>5>0

(Zpiﬁ)ﬂ,/ﬁ < Zpiﬁ' for 5 < ' <0
e then taking 1/’ power (and then log)
Qo) = (e
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@ monotonicity in § of

W(B) = (1= B)Ts = —log _p/

v(p)<w(B) for B >p
because pl-ﬁ > p}Bl and —log ), piﬁ < —log)_; p}Bl

@ also have concavity in 3
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Escort probabilities and statistical mechanics
o if write p; = exp(—b;) with >, p; = 1 (see later box-counting)
@ then associated escort distribution

p;

> Piﬂ
for § — oo largest p; dominates, for 5 — —oo smallest

@ analogy with statistical mechanics P; = exp(V — (8b;) with
V(3) = —log Z(B3) with partition function

=> exp(—Bb) =Y p}
@ Helmholtz free energy
F(5) =~ g Z(8) = 5 ¥(9)

@ directly related to Rényi information

Zs(P) |ogZp, = —7“’(@

P; =
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Entropy and Thermodynamics

@ probabilities p; of microstates of a physical system
@ M; value at state / of a random variable M: expectation value

(M)p = Z M; p;

@ max-ent principle: look for p;'s that maximize entropy
@ ‘“unbiased guess” in information theory: minimize information
@ generalized canonical distribution: p; such that

0Z(P) =" (1+logpi)épi =0

1

with >, M? ép; = 0 (all observables M?) and >, 0p; =0
e multiply these constraints by an arbitrary factor 5, (Lagrange
multipliers)

1

Z(Iog pi —V+ ZBJMIU)(SPi =0

Matilde Marcolli Entropy and Information



@ interpret then as probabilities

P; = exp(V — Z BeM?)

by imposing normalization condition > ;P; =1
@ normalization condition gives

V=—logZ(B) for Z(B)= ZGXP(—Z@/—M;’)

e Example: Gibbs distribution mean energy M = E = (E;) of a
system in thermodynamic equilibrium

P = ep((F — ) with F = u(5)

Helmholtz free energy at inverse temperature 5 =1/T
Z(B) = exp(—pF) = Zexp(—ﬁEi)

sum of microstates of the system with energies E;
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@ entropy in the thermodynamic sense for such a system is
S=B(E—-F)

@ Shannon entropy agrees with (expectation value of)
thermodynamic entropy

= PilogP; =Y ! FEIB(F - E;) = (S)
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Box-counting and Rényi entropy

bounded set E C R, say E [0, 1]V
probability measure 1 on [0, 1]V with support on E
divide [0, 1]V in boxes of equal size: cubes of side ¢

count number r of boxes that meet E in a subset of positive

J-measure
r<R~ e N

total number of boxes in [0, 1]V
e p; = pi(e€) probability assigned to the i-th box B;
pi = u(EN B;)

crowding index
log pi(e)
ai(€) = Iog'e

e it is also function of x point where the box is centered a(x, €)
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@ pointwise dimension a(x) = lim._,0 a(x, €) if limit exists (local
scaling exponent)

@ in terms of “bits numbers” p; = exp(—b;)
bi = —aj(e) log e
@ escort distribution

P; = exp(V — Bb;)
W(B) = ~log > _ exp(~fbi) = ~(8 ~ 1)Zs(P)

@ and partition function

= ZP,B = ZGXP(—/J’bi)
1
Ip(P) = 5= log Z(5)

G- Iog E Py
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Rényi (box-counting) dimensions

@ the partition function Z(3) for p; = pi(e) diverges for ¢ — 0

@ but it satisfies a power law with exponent that gives an
associated dimension

@ Rényi dimension
Zp(Pe)

. B .
(8) = lim = e = lim |0g65 i g2 P’

Z(B) ~esg €B1PB)
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Meaning of Rényi Dimensions

e at 3 =0 have Zp(P) = — log r(e) with r(e) = min number of
boxes of size € covering set E so D(0) is box-counting
dimension (with grid)

|
D(0) = — lim 87 (9)
e—0 |Og6

@ Shannon entropy dimension: at 5 = 1 limit of Rényi entropies
is Shannon entropy Sh(P) = Z(P) = — > _; pilog p;
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@ D(2) is called correlation dimension: it estimates effects of
propagation of errors in iterates of a chaotic dynamical
system; shown by Yorke, Grebogi, Ott that for certain classes
of chaotic dynamical systems average period length
~ A=DP@)/2 (where A is a measure of precision)

e limit § — oo of D() measures scaling properties of region of
E where measure p most concentrated

e limit § — —oo of D(f3) regions where least concentrated

e Note: these Rényi dimensions D(3) = D, () depend also on the
measure p used to compute p; = u(E N B;) for the boxes B;
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Properties of Rényi Dimensions
e positivity D(8) > 0
e monotonicity D(5") < D(B) for 8’ > 3
@ other relation: for 3 > 3 and 83" >0

=1 0 81
7 D) = =5=D(9)

o limiting cases

B
D(B) > LD(—c>o) for <0

D(B) < %D(oo) for B>1
1

All of these properties follow from the corresponding properties of
the Rényi entropy
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Thermodynamic relations when box size € — 0

o take V = —logeso V —

@ dynamically homogeneous system if for large V quantities like
entropy S or observables M? become proportional to V

@ especially so that for /3 fixed and V — oo ratios S/V or
M? [V remain finite

@ continuum limit: formally replace summations by integrals

V= —log /amax exp(—paV)y(a) da

e density of states () dae umber of boxes with crowding index
between o and o + da

@ expect asymptotic scaling behavior v(a) = e () for some
function f ()

o if y(a) ~ e f(@

V= —log / " exp(F(a) — Ba)V) da

min
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e Saddle point approximation method

o if integrand has only one maximum in interval then as
V — oo integral concentrated near the maximum

@ in general: want to evaluate

7= /exp(F(x)V)dx
for V' — oo, with some smooth function F(x) with single max
at x = xp (e.g. F(x) = —(x —x0)?)

e with F/(x0) =0 and F"(x0) <0

Z~ /exp((F(Xo) + %(x — x0)2F"(x0)) V) dx

or 1/2
= (\/F”(Xo)> exp(F(x0) V)
@ so have —logZ ~ —F(xg)V



e Entropy Density
e take F(a) = f(a) — fa
@ b:= aV mean value of bit number ). bip; with
b,‘ = —Qj Ioge

@ with saddle point approximation
Vo~ (Ba—f(a)V=pb-S

@ «a mean crowding index is like a mean energy density so
V=pF=BE-S=0paV-S

@ so function f(«) is entropy density
f(a) = lim S

e interpret f(a) as an estimate of the fractal dimension of a set
of boxes of average pointwise dimension «

e f(a) = spectrum of local dimensions (multifractal)
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e Legendre transform
e density 7(3)

v
7(8) = lim v,

@ by previous relation of W to Rényi entropy: function of Rényi
dimension

7(8) = (8 —1) D(B)

@ Legedre transforms

. dv dS
S(b) = pb—W(B) with Pk b, 95 3
f(a) = Ba—T1(B) with Z; = a, % =

e convex differentiable function F(x) Legendre transform

F*(w) := Sl),l(p(WX — F(x))
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f(x)-wx tangent envelope

value of Legendre transform F*(w) is the negative of the
y-intercept of the tangent line to the graph of F that has slope w
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@ take «(/3) to be the value o where fa — f(«) takes minimum
e from 7(8) = (8 — 1)D(3) and Legendre transform get

a(B) = D(8) + (8 - 1)D'(B)

f(e(B)) = D(B) + B(B —1)D'(B)
o for 3 =0 and 8 =1 this gives

f((0)) = D(0) = a(0) + D'(0)
with D(0) box-counting dimension
f(a(1)) = D(1) = (1)

entropy dimension
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Tsallis Entropy
@ Tsallis deformation of the Shannon entropy

1
Sq(P):il (1_ E P?)
9= i
@ g — 1 limit recovers the Shannon entropy

I|m Sq(P) = ZP: log pj

@ For Shannon entropy have

Tsallis entropy same property with respect to g-derivative

Sq(P) = — lim Dg > _ pf

g-derivative
f(gx) — f(x)
D,f(x) = —————~
af(x) gx — X
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g-analogs and Tsallis entropy

n

e g-derivative Dgx" = 111‘27 x"71 = [n]gx"71
1—-4g"
[n]q - 1— q

g-analogs of the integers: limg_1[n]g = n
e Tsallis entropy Sq(P) is a g-analog of Shannon entropy

@ non-extensive thermodynamics: X, Y independent
P(X,Y) =P(X)P(Y)

Sq(X, Y) = 5¢(X) + 54(Y) + (1 = 9)54(X)S5¢(Y)

lack of linearity over independent systems measured by 1 — g
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Tsallis deformation of KL divergence

@ one-parameter deformation of the Kullback—Leibler divergence

KL (P||Q) = 72/3 < 1).

@ recovers KL divergence in the limit ¢ — 1

Lo(P||Q) —a—1 KL(P||Q) = ZP Iog
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g-analogs and geometry of the Tsallis entropy

e J.P. Vigneaux, Information theory with finite vector spaces,
arXiv:1807.05152

@ combinatorial meaning of the Shannon entropy: asymptotics
of multinomial coefficients

N
_ n
lim_log (kl,...,k/v> :_;Pibgpi (pi = ki/n)

n
2 <k1,...,kN>“:fl"'U/kVN_(U1+"'+UN)"

ki+--+ky=n

with (

n!

" )
Kook AR
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meaning of Shannon entropy and multinomial coefficients
@ sequence of length n with symbols in an alphabet
A = {z1,...,zy} with probabilities P = (P;)
@ sequences generated by memoryless Bernoulli process with
probabilities P
e cardinality of set of sequences of a certain type in P (eg ratio
of zeros and ones)

n
~ S(P
(P(zl)n,...,P(zN)n> exp(n5(P))
P(z;) is fraction of z; entries in length n string, P(z;)n = k;
number of z; entries in message
@ each with probability approximately

[1 P(2)""®) ~ exp(~nS(P))
ze

@ Shannon’s principle: “it is possible for most purposes to treat
the long sequences as though there were just 2" of them,
each with a probability 2-"°"
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g-analog of multinomial coefficients

@ g-analog of the integers [n]q = 11__""
o g-factorial [n]g! = [n]g[n — 1]4-- - [1]4

@ g-multinomial coefficients

kioookn 1o [kt [kle! &

@ when g = p" some prime p these count points over field Fg

n

_ 1 _
o= #P ). |, "y | =P
Fi,n variety of flags V1 C Vo C -+ C Viy = Fg with

dim V, = 30_, k;, flags of type k = (ki, . .., kn)
@ g-binomial coefficient

n n o )
[k]q::[k,n—k]q:#{vcm‘q, dim V = k}
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g-analog of Bernoulli generated sequences

@ statistical model where length n message is a flag of vector
spaces V1 C Vo C -+ C Vy = Fg with dim Vy, \ V1 = ky

e choice of a flag in Fg replaces “a configuration of n-particles”

o for configuration of particles total energy depends on type k

N
. ki
(E) = mean internal energy = E 1 F’E,-
=

with E; energy associated to spin state z; €

o foraflag Vi C Vo C--- C Vy =g energy

ZN: ko ZN: dim(Vi) 2

i=1 i=1

s|x

with dim V) = Efle ki and E; satisfying identity (V;-energy)
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max-entropy principle

@ equations

ki
(E) :ZFE,- and > ki=n
i=1 i=1
do not determine uniquely k = (ki, ..., kn)

@ max-entropy: among all solutions k of the equations select
the one that corresponds to the largest number of
configurations of the system

@ here it means maximizing the g-deformed multinomial

coefficient
[ ’ }
ki,-okn |,
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Limiting behavior of g-multinomial coefficients
@ Pochhammer symbol

n—1

(a;x)p := H(l —axk), (a;x)p=1

k=0
e g-Gamma function 'g(n + 1) = [n],!

S N DS ENE o S R
a0 = (@70 D a2 (=D D oy,

@ g-multinomial coefficients

{ n } B Mg(n+1)
ki,..., kn q_ Fq(k1+1)-~rq(k,\,+1)

e quadratic Tsallis entropy Tsy(p1,...,pn) =1 — vazl p?

N [ (k _
n = (q g )N T (4., kTN)/2Hi:1(q (it g oo
bk [T T e (-0 g )
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binary Bernoulli process and g-analog (2 = {0,1})
@ binary string produced by a Bernoulli process (p,1 — p)
@ Y, sum of the first n outputs
e probability of Y, = k is (})p*(1 — p)"* (sequences with k
ones each with probablity p*(1 — p)"—*)
@ g-binomial formula

n n— . n K n—
(x+y)g = (x+y)(x+ay) - (x+q" ty) = [ p ] q(2) ykxn*
q
@ get probability distribution

. n
Bing(k|n, x,y) = [ P } 7(X—|—y)"
q q

——F, for=y/x>0

kg (=0:q)n v/

@ variable Y, with this distribution can be written as sum of n
independent variables X; taking values in {0,1} with

I x yg'~!
probabilities == and -
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vector space valued stochastic processes

o Grassmannian Gr(k, n) of k-dim subspaces in Fy and
Gr(n) = Uk Gr(k, n) total Grassmannian

o fixed embeddings Fg — FZH relate Gr(n) & Gr(n+1)

e V= {0} trivial vector space, V,1+1 random variable with
values in Gr(n+1)
e for W € Gr(n) (not in Gr(n — 1)) dilation

Dil,1 (W) ={V € Gr(n+1)|W C V, V & Gr(n), dim V—dim W =1}
@ probability distribution
P(Vigr = V|Va = W, Xp11 =0) = v.w

XDil,yq (W (V)

normalized characteristic function of set Dil, 1 (W)
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o from this distribution get for dim V = k
gk gk(k=1)/2

PV =V) ==
| ; gk gk(k=1)/2
P(dim V, = k) = { k L(—e;q)n

o show inductively for V € Gr(n+1) and V ¢ IFj

P(Vps1=V) = Z P(Vas1| Vi, Xop1) P(Yn = W)P(Xnt1 = 1)
WeGr(n)

B Z 1 Gk_lq(kzl) Qq"

N #Dilp 1 (W) (—60;9)n 1+06qg"

WeGr(k—1,n),WcCV
qu(kgl)q"
~ #Dilyy 1 (V NFR)(—0;q)n

where last uses W C Visin V ﬂIFg and same dim so
W =VnFg
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asymptotics

o fixed d and n — oo

g 3(d—(3—log, 0))+1 (1 —log, G)Z(q—(d+1); 7 Ve

(@75 g o070 )

@ and sum over all d > 0 of rhs equal to 1 (asymptotic
probability distribution)

@ analogous processes for multinomial case with alphabet
#A=N>2

@ Question: are there other combinatorial quantities
generalizing g-multinomial coefficients with asymptotics

P(V, € Gr(n—d,n)) ~

~ exp(Tsa(pi1s- - -, pn)n™ + o(n))
for a #£ 1,27
@ Fontené-Ward generalized multinomial coefficients

e J.P. Vigneaux, A homological characterization of generalized
multinomial coefficients related to the entropic chain rule,
arXiv:2003.02021
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Summary of g-deformed information (binary case 2 = {0,1})

Concept Shannon case g-case

Message at time n Vector subspace

Word w € {0,1}"

(n-message) v C Fq”
Type Number of ones Dimension
Number of (”) [n}
n-messages of type k k klq
Probability of a - gFgh(h—1)/2
f -t

n-message of type k (—0;q)n
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What is the “field with one element”? (Manin, Soulé, etc.)
Finite geometries (g = p¥, p prime)

#(A"(F) ~{0})  ¢"—1

#Pn_l(Fq) = #Gm(Fq) - q-— 1 = [”]q

#Gr(n, j)(Fq) = #{P/(Fq) C P"(Fq)}

[n]g! = [nlg[n —1]q---[1]g, [0]g! =1

The origin of [F1-geometry: Jacques Tits observed if take g =1
P""1(F;) := finite set of cardinality n

Gr(n,j)(F1) := set of subsets of cardinality j

Is there an algebraic geometry over 17?7
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Extensions F1» (Kapranov-Smirnov)

Monoid {0} U pp (n-th roots of unity)

- Vector space over Fin: pointed set (V, v) with free action of u,
on V~ {v}

- Linear maps: permutations compatible with the action

Fin ®p, Z := Z[t, t 1] /(t" — 1)
Counting of points: for geometries X over Z, reductions mod p
Ng(X) = #X(Fq), q=p

Polynomially countable if Ng(X) = Px(q) polynomial in g.
Counting of “points over the field with one element and its

extensions”
Px(m+1) = #X(Fym)

General question: can reformulate combinatorial interpretation of
Shannon and Tsallis entropies in terms of F;-geometry?
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Shannon and Rényi Entropy and Functional Equation
@ Rényi entropy R3(P) = —Z5(P) = ﬁ log(D>; p,ﬂ)
o limg_,; Rg(P) = S(P) = —Z(P) Shannon entropy
e Functional equation of Shannon entropy (extensivity)

H(x) + (L= )H(Z) = ) = (1= Y)H(;=) =0

equivalently forab=xandy=1—2a

S(ab) + (1 — ab)s(2L=5)

) = S(a) + as(b)

More general functional equation

X
1—y

H(x) + (1 - x)°H(=2—) — H(y) - (1 - y)? H(

1—x

)=0

Gy.Maksa, The general solution of a functional equation
related to the mixed theory of information, Aequationes
Mathematicae, Vol. 22 (1981), 90-96
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Functional equations and polylogarithms over finite fields

e P. Elbaz-Vincent, H. Gangl, On poly(ana)logs. |. Compositio
Math. 130 (2002), no. 2, 161-210.

e M.Kontsevich, The lé—logarithm, Appendix to previous paper,
Compos. Math. 130 (2002) N.2, 211- 214.

o P. Elbaz-Vincent, H. Gangl, Finite polylogarithms, their
multiple analogues and the Shannon entropy, Geometric
science of information, 277-285, Lecture Notes in Comp. Sci.,
9389, Springer, 2015.
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Finite Logarithm
o finite logarithm: finite field IFy, char p

p—1 4

X
ﬁgp)(x) = Z i
k=1

compare with usual —log(1 —x) =3 ;%
@ Kontsevich observed: the finite logarithm is a solution to the

general functional equation for 5 = p

—b
1—a

£0a) ~ £0(b) + LD + (1 P LP(—2) =
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Functional equation

@ the functional equation
b

£0(a) - L) + 2L ) + (- apLP (=) -

is a specialization to (00, 0,1, a, b) of the 5-terms relation

5
' S ) L3P (cr(xa, . %0 x5)),

Z(—l)’(S(xl, ey Xy, X5

i=1
a—cb—d
cr(a, b, c,d) = b ¢ d(a,b,c,d)=(a—d)(b—c)
@ 5-terms relation is in fact equivalent to functional equation
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Cohomological interpretation of the functional equation

e function ¢ : F, x F, — Fp, zero if x +y = 0 and

Pl6y) = (X FH( ) ifx+y £0

is a 2-cocycle

o(b,c) —p(a+ b,c)+¢(a,b+c)—p(b,c) =0

@ to see use H(x) = H(1 — x) and set X = T,z and
oy . .
Y = iz in functional equation

@ © = dn coboundary if o(x,y) = —n(x +y) + n(x) + n(y)
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@  is homogeneous so if coboundary
P(Ax, Ay) = =An(x +y) + An(x) + An(y)
@ obtain additive morphism 5 (x) = n(Ax) — An(x), determined

by ¥(1)
@ check that satisfies p1)(1) = ¥, (1) and
Pau(1) = Ua(p) + Au(1) so

Yam(1) = mA™ Ly (1)

o [, generated by a primitive root w with wP™l =1 and

0=1v1(1) = (p— DwP2h,(1) = ,(1)=0

e this gives n(Ax) = An(x) then n additive map so dn =0 so
 # 0 cannot be a coboundary

@ Kontsevich: solutions of general functional equation give
non-zero 2-cocycles in H?(Z/pZ,7./pZ) ~ 7./ pZ.

@ so functional equation has 1-dim space of solutions,
determines Egp) up to a constant factor
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Finite Polylogarithms

@ Finite polylogs:
p—1 i

£(P) L

Properties of Finite Polylogs
o satisfy differential relation

dciP) (x) = £$,p_)1 d log(x)
and periodicity relation (Frobenius action x — xP)

Egﬁzp—l = ff)

@ inversion relation
£P(x) = (-1)"xPLY(1/x)
o if the field Fy; contains m-th roots of 1 also relation
(duplication for m = 2)

E(P) - m1 Z CP P (CX)

C’"l
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Functional equations for Egp) forp>3

o for £§p) functional equation together with inversion and
duplication relation identify E(lp) uniquely
e functional equation for Egp) (3-term relation)
1
xPF(1-=)—F(x)+ F(1—x)=0
X
@ this equation has a space of solutions of dimension at least
1y e
Tip(x) = x'(1 = x) (xP"¥ + (=1)'), i=0,....(p—1)/3

give independent solutions
e additional equations for Egp) (duplication)
2(1 4+ xP)F(x) +2(1 — xP)H(—x) — F(x*) =0
(p)

e with functional equation above these characterize L5 up to a
constant factor
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Information Loss: categorical formulation (Baez—Fritz—Leinster)

@ revisiting Khinchin axioms characterizing Shannon entropy in
categorical terms

@ category FinProb of probabilities (X, P) and morphisms
f : X = Y measure preserving functions

Q= > P

x€f~1(y)

o information loss F : Morginpron — Ry
@ axioms of information loss
@ functoriality: F(f o g) = F(f) + F(g) on composable
morphisms
Q convex linearity: F(Af & (1 — X)g) = AF(f) + (1 — X\)F(g)
where Af @ (1 — X)g induced on (XU Y, AP & (1 —A)Q)
© continuity. F(f) continuous function of f
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e If F satisfies axioms above then F(f) = c(S(P) — S(Q)) for
some ¢ > 0 and with S(P) = — ). p;log p; the Shannon
entropy

e first note that S(P) — S(Q) satisfies axioms: key fact
qf (i
S(P)—S(Q) =~ pilogpi+Y _qilogg = pilog —
i j iex Pi
a conditional entropy

@ to show that any F with info-loss axioms is proportional to
S(P) — S(Q) use Faddeev reformulation of Khinchin axioms
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Faddeev formulation of Khinchin axioms

@ 7 mapping probability measures on finite sets to R satisfying
© 7 invariant under bijections
@ 7 continuous

Q for P=(p1,...,pn)and 0 <t <1

Z(tp1, (1 — t)p1, p2, - - - s Pn) = Z(p1, - - - Pn) + P1L(L, 1 — 1)

@ then Z must be a constant non-negative multiple of the
Shannon entropy S(P)

@ key is equivalence between last condition and extensivity of
the Shannon entropy

S(P') =S(P) + Z PiS(Qli)  for P'=(P;iQ(jl))
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Baez-Fritz-Leinster information loss characterization

@ unique morphism 1p : (X, P) — ({x},1) in FinProb (losing
all information about (X, P) by collapsing it to a single point)

@ lp=1gofforall f:(X,P)—(Y,Q)

e F(1p) = F(1lg)+ F(f) so F(f) = F(1p) — F(1g)

@ set Z(P) = F(1p) and show this entropy function is indeed
Shannon entropy by showing it satisfies Faddeev
characterization
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Characterization of Tsallis entropy (Baez-Fritz-Leinster)

@ Tsallis information loss Fy : Morrinpron — Ry
@ axioms of information loss
@ functoriality: F,(f o g) = F,(f) + Fa(g) on composable
morphisms
@ convex linearity: Fo(Af & (1 —X)g) = A*F(f)+ (1 - A\)“F(g)
where Af @ (1 — A)g induced on (XU Y, AP ® (1 —-A)Q)
© continuity: F(f) continuous function of f
then Fo(f) = c(Tsa(P) — Tsa(Q)) Tsallis entropy

similar argument but replacing extensivilty property of
Shannon entropy with nonextensive version of Tsallis

@ version of Faddeev characterization for Ts,(P)

Ioz(tph (]- - t)PlaP2> s 7pn) = I(pla .- '7pn) + p%-’z(ta 1- t)
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Kullback—Leibler divergence and Fisher—Rao metric
o Kullback-Leibler divergence KL(P|Q) = >_; pilog(pi/qi) is
not a metric
@ ...but up to first order approximation it defines a metric

KL(P|P + dP) = Zp; log(—2——)

pi + dpi

@ expansion

Y pilog(—2 = 3" pilog(1 + 6%)
i i !

pi + €qi

Pi 1 Pi\2 2
= — i€e—+ = ile—)" + ole
S a5 Al +ole)

with >~ g; = 0 (since p; + eq; probability) so first term
quadratic
@ Fisher-Rao information metric
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Properties of the Fisher—Rao metric
o with change of coordinates X; = \/p; with dX; = %
becomes Euclidean metric

ds® = " dX?

but restricted to locus >_; X? =", p; = 1, i.e. metric
induced by ambient Euclidean space on the unit sphere
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@ Hessian Riemannian metrics: with a convex potential ®
gij = 0;0; ®
@ totally symmetric rank 3 tensor
Ajjik = 0;0;0k ®
o Fisher-Rao metric tensor ds? = >_;&ij(P)dpidp; is Hessian of

the Shannon entropy

1 1
gi(P) = —30i0;S(P) = ;0,0 ) _ plog p
k

4
as —9;S(P) = 1+ log p; and 9;(1 + log p;) = &; p; *
o if T stochastic matrix T >0and > ; T;j =1

(T dp); dp?
Z Pi SZ Pi

i i
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@ Levi-Civita connection (Christoffel symbols)

1
M = Egp“(aogm/ + 0v8uo — Ou8vo)

convention of summation over repeated indices for tensor
calculus

@ Riemannian curvature R?;,,

A A
RP oy = 0ul g = Ol + T\ Ty = ToAT o

@ for Hessian metrics
1
Cijk = 56;81-8;( d

1

5 (Sjiki — Sijwr)

1 o' 1, 2o o
0;0k0; 9;0,0s

Sik = 55377 — 58
00,0060, 2

Rijk =




Conjugate connections manifolds
@ conjugate connections manifold (M, g, V,V*)

for all X, Y, Z smooth vector fields and (,) pairing via g
e given (M, g, V) unique dual structure (M, g, V*) and

(V) =V
@ parallel transport along the dual connections preserves the
metric

<X7 Y>ﬁ/(0) = <HX(X)7 ”X*(Y»v(t)

e average V = %(V + V*) is self dual hence it is the Levi-Civita
connection of g characterized by

X<YaZ> = <?XY’ Z> + <Y36XZ>
Okgij = (Vo,0i,9j) + (9, Vo, 0)

_ 1
/
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Statistical manifolds
e statistical manifold (M, g, A) with Amari—Chentsov tensor
AX,Y,Z) = (VxY - V%Y, 2)

Aje =Tk =5 Ay = A0;,0;,0k) = (Vo,0; — V5,0;, k)
@ totally symmetric cubic tensor

useful fact: if a torsion-free affine connection V has constant
curvature x then its conjugate V* has same constant curvature x

RY(X,Y)Z = r(g(Y,Z2)X —g(X,2)Y)
RY(X,Y)Z :=VxVyZ - VyVxZ —Vx v Z

aj’ak Z Jk'

(for details of proof: O.Calin, C.Udriste, Geometric Modeling in
Probability and Statistics, Springer, 2014 [Proposition 8.1.4]
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a-families and deformed connections
e statistical manifold (M, g, A)
o VL€ Levi-Civita connection of the metric g
@ one-parameter families of connections

a _ rLC « —a _ rLC «
i = T = 5 A Tyt =T + 5 Ak

@ gives a conjugate connections manifold
(M7 g7 v_a7 Va = (V—a)*)
@ starting from conjugate connections manifold (M, g, V,V*):

a-deformations

1+« 11—«
e = Tk~ Tl

dual flat structures
o (M,g,A)is a-flat if V¥ is flat
@ R*=—R % soalso V¢ (dual) flat
o o= =+1: V-flat iff V*-flat



Kullback-Leibler divergence and thermodynamics

o for probability dlstrlbutlon Pn = Z(BB)" with partition function

Z(B) = Tr(e=#") and Spec(H) = {\,} Shannon entropy is
thermodynamic entropy

5= (115, ) e 2(5)
—> PalogPn=> Pylog Z(B)+ B8 Pahn

with 3, Po), = 55 log Z(5)
o free energy F = —log Z(3)
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° Q= (ﬂ) with Z(8) = 3_, e #Hx partition function, and
P = given probability distribution

@ Gibbs free energy given by
Px
G(P) = —logZ(B) + Z Py log R

@ Kullback—Leibler divergence
KL(P|Q) = G(P) +log Z(3)

@ free energy is minimization of Gibbs energy over configuration
space: since KL(P|Q) >0

mFi>n G(P) = —log Z(B)
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@ mean field theory when computation of free energy not
directly accessible, consider a trial Hamiltonian A with
probability distribution Py = Z(B) ! e~ and
Z(B) =3 e

@ Helmholtz free energy

— 3" Pulog P = log Z(B3) + B(H) = (1 5.2 )10g 2(8)

ap

Px _| Z(ﬂ)
zxjpxlog@— 2(B)+6< A).

@ mean field theory assumption (H) = (H) (averages in the
probability Py) then get

3" Pelog o = —log Z(9)+(f) +log Z(3)~5{H) = log 51
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o l-parameter family of commuting Hamiltonians H(e) analytic
in € with

-~ OH
H(e) = H + Eakzo + 0(€%)

@ then have
ZPH ZPH+ ZPOH

@ generalized force corresponding to variable €

_ OHy(e)
Lx — Oe ’5:0

ZP Ly = 3 0 —l0g Z.(8)|c=o,

where Z.(8) = 3, e #H()
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o for P,(e) = Z.(8)*e PH() have

log Py (€) = — log Z.(3) — B(Hyx + €L + O(€?))

e Kullback-Leibler divergence ), Py log Pf(xe) =

> Pilog Putlog Zi(B)+ 8> Pcfh+eB) | Pel+O(e%) =

B 5 .0
_(1_5%) log Z(8)+log Z.(8)+8 Z Pufltelog Z(8)]e=0

+0(e2) = log é((g)) + €2 log Z.(8) =0 + O()

is completely described in terms of partition functions (up to
higher order)
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Information Geometry

@ S. Amari, Differential-Geometrical Methods in Statistics,
Lecture Notes in Statistics, vol. 28. Springer, 1985.

o S. Amari, Information Geometry and Its Applications,
Springer, 2016.

@ S. Amari, H. Nagaoka, Methods of Information Geometry,
American Mathematical Society, 2007

@ S. Amari, A. Chichoki, Information Geometry derived of
divergence functions, Bull. Polish Acad. Sci. Tech. Ser.,
Vol.58 (2010), No. 1, 183-195

o F. Nielsen, An Elementary Introduction to Information
Geometry, Entropy, 2020, 22, 1100, 61 pages
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Fisher—Rao metric and Information Geometry
@ Probability distributions depend on a space of parameters
P = P(7) = (P«(7)) with v = (71,...,7)
@ Fisher—Rao information metric given by

8i(1) = 32 Po() PG G

e for commuting Hamiltonians H(~)

e_ﬂHx('Y)
P(7) = 5 Z(B) =) e 0,
( ) Z’y(/B) 7( ) -
@ generalized forces
X, | 8’}/,' )

@ then Fisher-Rao metric

.\ _ OlogZ,(B)0log Z,
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Hessian and KL-divergence
@ Fisher—Rao metric is Hessian matrix of Kullback—Leibler
divergence

2
070

gij(70) = KL(P(7)IP(70)) =0

@ equivalently

02P 0pPp
gab:ZP,, 0 log P, Op log P :Z%

= —Z P, 0,0plog P, = 8aabKL(P‘Q)‘P=Q

Amari-Chentsov tensor

e statistical manifold (M, g, A) manifold with Riemannian
metric and a totally symmetric 3-tensor A (Amari-Chentsov
tensor)

Aabc = A(aaa ab, 8c) = <vaab - V;&b, ac>



Divergence functions and Bregman generators

@ divergence function on manifold M: differentiable,
non-negative real valued function D(x|y), for x,y € M, that
vanishes only when x = y and such that the Hessian in the
x—coordinates evaluated at y = x is positive definite

@ divergence function determines a statistical manifold
8ab = Ox,0x, D(x|y)|y=x

Aabc = (8XaaXba}’c - 8Xcayaayb)D(X‘y)|)’=X

@ this Amari-Chentsov tensor A, vanishes identically if
divergence D(x|y) is symmetric

@ statistical manifold induced by Bregman generator if there is a
potential ® (locally)

D(x|y) = ®(x) = ®(y) = (VO(y),x —y)
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Statistical manifold of Shannon entropy

@ space of probability distributions on a (finite) set with KL
divergence and Fisher-Rao metric

@ Amari-Chentsov 3-tensor given by

02Pi OpP; O P;
Z P2

I 1

Asbe = Y _ P;0;log P; 0 log P; O log P; =
= (02060 — 000y )KL(P|Q)|p=q

with a, b, ¢ variation indices for P and &', b, ¢’ for Q

@ Bregman generator is the Shannon information

®(P)=-S(P)=> PilogP;

KL(P|Q) = ®(P) — #(Q) — (V®(Q),P - Q)
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Bregman potential and dual coordinates

@ as above divergence with Bregman potential
D(x]y) = &(x) = ®(y) = (Vo(y),x — y)
@ dual potential: Legendre transform

V(n) = 5txlp{<x,77> — ®(x)}

@ if ® lower semicontinuous and convex then Legendre
transform W = @V is involutive (¢V)Y = ¢

@ in a dually flat manifold: dual affine coordinate systems
n = V®(x) and x = VV¥(n)
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Linear case

@ Special case: if dependence of P on parameters is linear
020,P =0

@ then the Amari-Chenstov tensor is the tensor of third
derivatives of the Bregman potential

Aabc = 83 ab ac ¢

@ in case of Shannon entropy recover previous case of rank 3
tensor of Fisher-Rao metric

8ab = 020p®,  Aspc = 05050 ®

with potential the Shannon entropy

Matilde Marcolli Entropy and Information



Divergence functions, flatness and decomposability
@ given a divergence function D(P|Q) additional requirements

@ invariance under invertible transformations of variables

@ decomposability: D(P|Q) =), d(pi, qi) for some function d
(e.g- KL(P|Q) = —2_; pilog(ai/pi))

© flatness: Riemannian metric g (Hessian) and dual pair of
connections V, V* related by the metric, require these have
vanishing curvature (dually flat structure)

e invariant + decomposable < D(P|Q) = )", pi f(qi/pi) some
differentiable convex function f

@ only divergence satisfying all 3 properties is KL
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Dual connections of a divergence function
o divergence D(P|Q)
@ metric (pos def Hessian: quadratic term in expansion) g(D)

D(P+ &P +n) ZgUD) 7}’ + higher order terms

@ cubic term determines a connection
D D
D = 08 + 1)
e connection V(P) with Christoffel symbols

D D
rii =ik

dual divergence D*(P|Q) := D(Q|P)

determines same metric g(P") = g(P

dual connection V(P dual to V(P) under g(P)

duality condition for connections V, V* under metric g: for
any triple of vector fields V, W, Z

Zg(X,Y)=g(VzX,Y)+g(X,VzY)



Geodesics and Pythagorean relation
e given a triple (g(Pr), V(Pr) V(D7) associated to a divergence
(for some convex function f)

Df(P|Q) = ZPf

@ in the space of probabilities P have both V(Df)—geodesics and
V(D7) _geodesics
@ paths (t) solutions of geodesic equation

+Zr (v(8)) ¥(0)¥(r) =0,

with Ff-J‘- Christoffel symbols of corresponding connection

e P, Q, R three probability distributions: consider V(P)-geodesic
from P to Q and V(P"_geodesic from Q to R
@ if these meet orthogonally at @, then Pythagorean relation

D¢(PIR) = Dr(P|Q) + Dr(QIR)
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Dually flat structure and projection

@ Pythagorean theorem: if D(P|Q) defines a dually flat
structure then

D(P|R) = D(P|Q) + D(QIR)

when P, @, R form an orthogonal triangle, namely when
geodesic paths PQ and QR orthogonal

@ dual flat coordinate systems x = (x?) and n = (),) related by
Legendre transform

e take paths y(t) = (1 — t)x(Q) + tx(R) and
7'(t) = (1= t)n(P) + tn(Q)

d d

27 = x(R) =x(Q), 7" =n(Q) = n(P)

@ the two paths are orthogonal in the metric
(n(Q) = n(P), x(R) —x(Q)) =0

e this gives the Pythagorean relation above (Amari, 2016)
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Projection theorem of Information Geometry (Amari)
o P and submanifold P ¢ M: V(P)_geodesic from P meets M
orthogonally
Q" = argminge D(P|Q)
e full space M £ of probabilities (depending on parameters),
submanifold M, satisfying given constraints
@ given P minimization problem for KL divergence

KL('D|Qmin) = Qngj\rjl, KL(P’Q)

@ argmin Qmin can be found by orthogonal projection of P onto
M;

@ orthogonal projection: dual geodesic (n-coords) connecting P
and @i, orthogonal to any tangent vector in M; at Qnmin

@ if submanifold M; itself flat, for any other point @ € M, and
geodesics PQpmin and Qmin@ = orthogonal triangle so

KL(P|Q) = KL('D|Qmm) + KL(Qmin; Q)

with @ = Qunin minimizing lhs
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p(X,Y)

. [ Mp
min Dg.(pllq)
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Y(P.Q) Li " (Q,R)

v*(P,Q) Lr 7(Q,R)

P

'---""-._ )
v ".
-

----- R
Q
D'(P:R)=D'(P:Q)+ D' (Q: R)

Q
DP:R)=D(P:Q)+ D(@Q:R)
dual Pythagorean theorems in a dually flat space
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Frobenius Manifolds and Information Geometry

@ Yu.l. Manin, Frobenius Manifolds, Quantum Cohomology, and
Moduli Spaces, Colloquium Publications, Vol. 47, American
Mathematical Society, 1999.

o C. Hertling, Yu.l. Manin, Weak Frobenius manifolds, Int.
Math. Res. Notices 6 (1999), 277-286

e C. Hertling, M. Marcolli (Eds.), Frobenius manifolds.
Quantum cohomology and singularities, Aspects of
Mathematics, E36, Vieweg, 2004.

@ N. Combe, Yu.l. Manin, F-manifolds and geometry of
information, Bull. Lond. Math. Soc. 52 (2020), 777-792

@ N. Combe, Ph. Combe, H. Nencka, Frobenius Statistical
Manifolds and Geometric Invariants, Geometric Science of
Information 2021, Lecture Notes in Computer Science,
Vol.12829, pp. 565-573, Springer, 2021.

@ N. Combe, Yu.l. Manin, M. Marcolli, Geometry of
Information: classical and quantum aspects, arXiv:2107.08006
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Frobenius Manifolds
e Frobenius manifold (M, g, ®) a manifold M with flat metric g
and potential ® so that (in local affine coordinates) tensor
Aspe = 0,050-P defines associative, commutative
multiplication with unit

0300 = Z Aab0c
c

equivalently g(0, 0 Op, 0c) = Aabc

@ associativity condition for multiplication: WDVV
(Witten—Dijkgraaf—Verlinde-Verlinde) nonlinear differential
equations for potential ¢

AbcegefAfad = AbaegefAfcdy with Aabc = aaabacq)

e first structure connection (\ parameter)

V0,06 =AY Asp e = 2050 O
Cc

@ associativity of product and existence of potential equivalent
to connection V) being flat
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F-manifolds
@ or “weak Frobenius manifold”, introduced by Hertling—Manin

e F-manifold (M, o, e) is a manifold with a commutative and
associative multiplication o on the tangent bundle TM with a
unit vector field e

@ F-manifold is a Frobenius manifold if o induced by a flat
metric g and a potential ¢

@ for both F-manifolds and Frobenius can also include Euler
vector field E = )" x50,

o difficulty of upgrading F-manifolds to Frobenius manifolds is
flatness of the metric

Matilde Marcolli Entropy and Information



Frobenius and F-manifolds in algebraic geometry
@ notion of Frobenius manifold first introduced by Dubrovin in
the mathematical formulation of TQFT

@ B. Dubrovin, Geometry of 2D topological field theories,
Integrable systems and quantum groups, Lecture Notes in
Mathematics 1620, 120-348, Springer 1993.

@ applications in singularity theory: Saito's Frobenius structure
on moduli (unfolding) spaces of germs of isolated singularities
of hypersurfaces

@ Gromov—Witten invariants and quantum cohomology
(Kontsevich—Manin, Barannikov—Kontsevich)
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Frobenius manifolds and Gromov-Witten invariants
e M = H*(X,Z) with (X,w) compact symplectic manifold
e Gromov-Witten invariants Ign(val, <ev3y7Ya,), With

Ya; € H%(X, C), counts genus g pseudoholomorphic curves in
X homological constraints imposed at n points of the curve

@ 7, homogeneous basis of H*(X,C) and t? dual basis

1 b
g= 5 Zb: nabdtadt
a

UabZ/%U%

metric from intersection product
@ Frobenius manifold potential

1
_ E E ai a X
¢ = ﬁ t "'tnIg,n(valv"eran)
n>3 " a1,..,an
@ e= a/ato



Cones and characteristic functions (Combe—Manin)

@ X finite set, RX real vector space spanned by X, probability
simplex Ax (extremal points basis of RX)

@ union of all oriented half-lines in RX starting at 0: open
convex cone

@ more general convex cones: R fin dim real vector space and
V' C R subset closed under addition and multiplication by
positive reals, Ay simplex in V

@ require that closure of V does not contain any real linear
subspace of positive dimension

@ characteristic function of convex cone V with dual W c RY

V3x—=opy(x)= / e~ %) dvolyy (x')
w

with translation invariant volume form of R
e metric on V (hence on Ay) given by
% i L i
8ii = 5 ion logpy T = Z 58 9,0;0, log ov
I
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F-manifolds: flat structure and vector potential

@ flat structure: torsionless flat connection V and T,\y CTm
with 7Y = KerV flat vector fields

e flat F-manifold (M, o, e, V) flat connection with Ve = 0 and
V + «ao flat for all « € C

@ then there is a vector potential F = (F') with
9j 0 Ok = cj0j,  cjj = O;OkF’
@ equivalently for any X, Y € T,\y and F vector potential
XoY =[X,[Y,F]]

@ associativity of o quadratic differential constraint on F
“oriented associativity equations”

@ in Frobenius case vector potential comes from derivatives of
scalar potential and metric

@ see Yu.l.Manin, F-manifolds with flat structure and Dubrovin's
duality, Advances in Mathematics 198 (2005) 5-26.
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F-manifold structure on cones and statistical manifolds
o Ay with metric g with potential log ¢y
@ the WDVV equations for A pc = 9,050, log v
AbcegEfAfad - AbaegefAfcd

are trivially satisfied for this choice of potential log ¢

n n

o0 = [ e auy) = T[ [ e av; =[] ix)

=1 i=1

@ some notation: for dmV =nand | C {1,...n}

or=1ei wrc=]]¢i

icl i¢l
Vi = / Yie XYidY; = —0i¢i, i =[] i
iel
vis = [ VeV v =T
iel
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@ then have

a9 —1a Pac _%

Oslogp = —F = —""" =
2 ¥ Pa
@ metric
— a2 2
8ab = 020p |Og90 = 5ab6a73 = 5ab( 3 7;)
Pa Pa P2

positivity 1,20, > 92 by Cauchy-Schwartz

(/ Y2e—XYdY)(/ e XVdy) > (/ Ye XY dY)?

@ A.pc similarly just

Ql)l3 11”%2 _ 2¢3
Pi 90, 90,

and both sides of WDVV are A2,,g?? so F-manifold, not flat
so not Frobenius
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More general statistical manifolds and WDVV equation

e statistical manifold (M, g, A) is a Frobenius manifold if the
Amari—-Chentsov tensor satisfies

Abce8® Atad = Abacg® Ared
@ equivalent to equation for Bregman potential ¢
(0eVD(P), 8,0,P) g (9 VO(P), D04 P)+
(0eVO(P), 0,05P)g (0:04V ®(P), ¢ P)
{0205V O(P), 0. P)g (0 VO(P), 0c04P)
(0205VP(P), 0 P) g (0c04V ®(P), ¢ P) =
(0eVD(P), 0,0.P)g* (0:VO(P), Dp0y P)+
(0.VO(P), 0,0-P) g (0,04 VP (P), ¢ P)+
(0,0:VO(P), 0. P)g® (9 VO(P), 004 P)+
(020.V (P ),aeP>gef<abadv¢(P)7afP>
o give usual WDVV equation for ® in the linear case where
Aabe = 0200 P

+
_|_



Frobenius manifold structures?

@ can use flat families V¢ to improve to Frobenius?
(Combe-Combe-Nencka)

@ is there a deformation &, of potential log ¢y, that still
satisfies WDVV but nontrivially?

@ proposed version of “statistical Gromov—Witten invariants”
(Combe-Combe-Nencka) related to higher mutual
informations

@ can these provide a ®, as in GW case with flat Frobenius
structure?

@ F-manifold structures on cones (and probability spaces)
similar setting to F-manifold and Frobenius manifold
structures for singularities and unfolding of singularities
(Saito, Hertling, etc)
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Hochschild cohomology
@ A associative algebra over a field K (say C)
@ M an A-bimodule (ie two commuting actions a(mb) = (am)b)
o C°(A,M) = M and C"(A, M) = Hom(A®" M) (tensor over
K)
@ Hochschild coboundary 6 : C"(A, M) — C"(A, M)

o n =0 then (dm)(a) = am — ma difference between left and
right action
e n> 0 then

(6f)(ag, - ..,an) = aof(a1,...,an)

+§ f(at, ..., aiai41,- -, an)

—|—(—1) f(ao,---,an—1)an

e satisfies 62 = 0 so Hochschild cohomology
HH*(A, M) = H*(C*(A, M), 0) = Ker(6)/Im(9)
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@ note how it generalizes case of groups: for an abelian group
and f : G®" — Z (trivial action on Z)

(5f)(a0, .. .,a,,) = f(al, .. .,a,,)+

n—1

S (1) F(a0r - a+ a1, 3n) + (1) F (20, 2n 1)
i=1
@ special case M = A* = Hom(A, K), then
Hom(A®", A*) = Hom(A®("+1) K) with
f(a1,...,an)(a0) =: ¢(ao, a1, ..., an) and df = by with

(bgp)(QOa ) an+1) = Z(_l)iSO(aOv ceey@ididly e, an)
i=0

+(_1)n+180(an+1307 aly ...y an)
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o Example: HHY(A, M) = {m € M |am = ma, Va € A} in case
of M = A* traces
HHO(A, A*) = {7 : A — K| 7(ab) = 7(ba), Vab € A}

@ Example: M-valued derivations modulo inner derivations
(coboundaries)

HHY(A, M) = Ker(8)/Im(0)

Ker(d) = {f : A— M| f(ab) = af(b) + f(a)b, Va,b € A}
Im(6) ={f: A— M|f(a) =[m,a] = ma— am}
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Mutual Information and Hochschild cohomology

e P. Baudot, D. Bennequin, The homological nature of entropy,
Entropy 17 (2015) no. 5, 3253- 3318.

e mutual information Z(X, Y) = S(X) + S(Y) — S(X, Y) with
Shannon entropy

S(X) = Z P(X = x;) log P(X = x;)

@ for extensivity property use notation
S(X,Y)=5(X)+ X-S(Y) (think of as coboundary)

@ more generally, random variables X;, probability P, and some
entropy functional F(Xi,...,Xyn; P)
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o define (left) action Xp - F (and trivial right action)

Xo-F(Xt1,...,Xn;P) : Z]P’ F(X1,. .., Xn|Xo = x;)

@ then Hochschild coboundary

(OF)(Xor -, Xni P) = Xo - F(Xq...., X P)

+YF(Xyo o XX, X P) + (F1)VF(Xo, - X P)

@ also consider version where also left action trivial and
corresponding § Hochschild coboundary as above with first
term just F(X1...,Xn; P)
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Shannon higher mutual informations

e for J C {1,..., N} join X, of the X; random variables with
i € J (composite system)

N
In(Xa .. X P) = (=)' Y S(X,;P)

k=1 #J=k

e then Ipp, = (id---é(iS (with (m —1) é's and m 4's) and
Tom+1 = —009 -+ -80S (with m §'s and m §'s)

o Tom is a d-cocycle (coboundary) and Zyp41 is a d-cocycle
(coboundary)
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More on cohomological information theory

o J.P. Vigneaux, Generalized information structures and their
cohomology, arXiv:1709.07807

e J.P. Vigneaux, A homological characterization of generalized
multinomial coefficients related to the entropic chain rule,
arXiv:2003.02021

e J.P. Vigneaux, Topology of statistical systems. A
cohomological approach to information theory, PhD Thesis,
Institut de mathématiques de Jussieu, Université de Paris
Diderot, 2019
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Vigneaux's categorical formalism of information structures

e finite information structure: (S, M) pair of a thin category S
(observables) and a functor M : S — F to category of finite
probability spaces

@ category S: objects X € Obj(S) random variables values in a
finite probability space; a morphism 7 : X — Y if the random
variable Y is coarser than X (values of Y determined by
values of X)

@ if there are morphisms X — Y and X — Zthen YZ =Y AZ
(random variable given by joint measurement of Y and Z)
also an object of S.

@ category S has a terminal object 1, random variable with
value set {*} a singleton
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Category of finite information structures

@ functor M : S — F maps a random variable X to the finite
probability space given by its range of values Mx

@ morphisms 7 : X — Y map to surjections M(7) : Mx — My

@ value set Mxy is a subset of Mx x My
@ category ZS of finite information structures
e objects pairs (S, M) as above
o morphisms ¢ : (S, M) — (S, M,") pairs ¢ = (o, ™) of a
functor ¢ : S — S’ and a natural transformation
¢* - M — M’ o ¢ with properties:

] ¢0(1) == 1
o Po(XAY)=¢o(X)Ado(Y) whenever X A Y is an object in S
e for all X the morphism qbﬁ My — /\/I(;D(X) is a surjection
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products and coproducts
e category ZS has finite products (S x S’, M x M) with objects
pairs (X, X’) of random variables with value set Mx x M4,

@ ZS also has finite coproducts (S VvV S', M v M) with objects
Obj(SVS') = Obj(S)VObj(S') = Obj(S)LIObj(S')/15 ~ 1s
and value set Mx or My, if X € Obj(S) or X' € Obj(5’)
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Probability functors
e probability functor Q : (S,M) — A

@ object X mapped to a simplicial set Qx of probabilities on the
set My

@ Qx is a subset of the simplex [M1(Mx) of all probability
distributions on Mx

@ morphisms 7 : X — Y mapped to morphism 7, : Ox — Qy
with

x€r~1(y)
@ For each X € Obj(S) there is a semigroup
Sx ={Y €O0bj(S)|aIn: X = Y}

with product Y A Z
e semigroup algebra Ax := R[Sx]
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Functor of measurable functions
e contravariant functors F(Q) : (S, M) — Vect

@ assign to objects X € Obj(S) and probabilities Px € Qx the
vector space of real valued (measurable) functions on
(Mx, Px)

@ assigns to a morphism 7 : X — Y the map
F(Q)m): fr fom,

@ action o, of the semigroup Sx on F(Qx) by

oa(Y) : f = Y(F)(Px) = S (YPx()* F(Pxla1(y))
YEEy : YiPx(y)#0

for Y € Sx and for some arbitrary a > 0

o Ax-module structure F,(Qx) on F(Qx), determined by the
semigroup action o,
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Modules over sheaves of algebras

@ category A-Mod of modules over the sheaf of algebras
X = Ax

e A-Mod is an abelian category
@ sequence B,(X) of free Ax-modules generated by symbols
[Xl | |Xn] with {Xl,...,Xn} C Sx
@ with boundary maps 0, : B, — B,_1 of Hochschild form
On[Xo | .. [ Xa]l = Xe[Xo|...| Xn]

n—1

+ Y D X XX || X
k=1
+ (=D"X]. . [ Xooal-

e modules B,(X) give a projective bar resolution of the trivial
Ax-module
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Functorial Hochschild cochain complex

e functor C*(F,(Q)) : (S, M) — Ch(R) to category of cochain
complexes

@ objects X € Obj(S) mapped cochain complexes
(C*(Fa(2x)),9)

C*(Fa(@x))" = Hom(Ba(X), Fa(Qx))

X

natural transformations of functors B, — F,(Q) compatible
with A-action

@ coboundary § given by Hochschild coboundary
S(AIX .. [ Xopa] = Xu(F)[Xz|. .. | Xnsa]

+ Z YFIX || XeXiewn | - - | Xyt

+ ( 1)"+1f[x1 AR
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Hochschild cohomology and entropy functionals
e complex C*((S, M), Fo(Q)) := (C*(Fa(Qx)), d) with
cohomology
H*((S, M), Fa(Q))
@ zeroth cohomology is R when a =1 and zero otherwise

o first cohomology: any non-trivial 1-cocycle is locally a
multiple of the Tsallis entropy

1
SalXI(P)=——7 |1~ > P,
x€Mx
for a # 1 or of the Shannon entropy for « =1

@ higher cohomologies represent all possible higher mutual
information functionals
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KL divergence

e information structures (S, M) and (S, M’) and a joint
random variable (X, Y) with values in a finite set
Mxy C Mx x M{, with X € Obj(S) and Y € Obj(5’)

@ pair of probability functors Q : (S, M) x (S, M') — A and
Q :(S,M) x(S',M)— A,

@ simplicial sets Q(X7y) and Q’(va) are subsimplicial sets of the
full simplex M(Mxy)

e contravariant functor F®(Q, Q') : (S, M) x (§', M) — Vect

e maps (X, Y) — F@(X,Y) vector space of real valued
(measurable) functions on simplicial set of probabilities
Qx,v) X Qx.v)
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o X € Obj(S), Y € Obj(S'), the semigroup S(x,y) acts on
FO(X,Y) by
(X, Y)-£)(P,Q) =
> Py Y)Y (P Q) vy=(x )
(X’,y')EMxly/
(X/, Y/) € SX and (P, Q) S Q(X,y) X Ql(ny) with
{(X",Y") = (x',y")} = 771X, y’) under surjection
7 Mx:yry = M(x,y) determined by morphism
7 (X, Y) = (X,Y)
° féf)(g, Q') denotes f(2)(Q, Q') with A-module structure
o Kullback-Leibler divergence (Tsallis a-deformation) is a
1-cocycle in resulting chain complex (C’(F&z)(Q, Q),0)
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