Motives in Quantum Field Theory

Matilde Marcolli

Geometry Seminar, Edinburgh, 2016

Matilde Marcolli Motives in Quantum Field Theory

A ₽

Quantum Field Theory perturbative (massless) scalar field theory

$$S(\phi) = \int \mathcal{L}(\phi) d^{D}x = S_{0}(\phi) + S_{int}(\phi)$$

in D dimensions, with Lagrangian density (Euclidean)

$$\mathcal{L}(\phi) = rac{1}{2} (\partial \phi)^2 + rac{m^2}{2} \phi^2 + \mathcal{L}_{int}(\phi)$$

Perturbative expansion: Feynman rules and Feynman diagrams

$$S_{eff}(\phi) = S_0(\phi) + \sum_{\Gamma} \frac{\Gamma(\phi)}{\# \operatorname{Aut}(\Gamma)}$$
 (1PI graphs)

$$\Gamma(\phi) = \frac{1}{N!} \int_{\sum_{i} p_{i}=0} \hat{\phi}(p_{1}) \cdots \hat{\phi}(p_{N}) U(\Gamma(p_{1}, \dots, p_{N})) d^{D} p_{1} \cdots d^{D} p_{N}$$
$$U(\Gamma(p_{1}, \dots, p_{N})) = \int I_{\Gamma}(k_{1}, \dots, k_{\ell}, p_{1}, \dots, p_{N}) d^{D} k_{1} \cdots d^{D} k_{\ell}$$
$$\ell = b_{1}(\Gamma) \text{ loops}$$

< ∃ >

Feynman rules for $I_{\Gamma}(k_1, \ldots, k_{\ell}, p_1, \ldots, p_N)$:

- Internal lines \Rightarrow propagator = quadratic form q_i

$$\frac{1}{q_1\cdots q_n}, \quad q_i(k_i)=k_i^2+m^2$$

- Vertices: conservation (valences = monomials in \mathcal{L})

е

$$\sum_{i\in E(\Gamma):s(e_i)=v}k_i=0$$

- Integration over k_i , internal edges

$$U(\Gamma) = \int \frac{\delta(\sum_{i=1}^{n} \epsilon_{v,i} k_i + \sum_{j=1}^{N} \epsilon_{v,j} p_j)}{q_1 \cdots q_n} \ d^D k_1 \cdots d^D k_n$$
$$n = \# E_{int}(\Gamma), \ N = \# E_{ext}(\Gamma)$$
$$\epsilon_{e,v} = \begin{cases} +1 & t(e) = v \\ -1 & s(e) = v \\ 0 & \text{otherwise,} \end{cases}$$

Parametric Feynman integrals

• Schwinger parameters $q_1^{-k_1} \cdots q_n^{-k_n} =$

$$\frac{1}{\Gamma(k_1)\cdots\Gamma(k_n)}\int_0^\infty\cdots\int_0^\infty e^{-(s_1q_1+\cdots+s_nq_n)}s_1^{k_1-1}\cdots s_n^{k_n-1}\ ds_1\cdots ds_n.$$

• Feynman trick

 σ

$$\frac{1}{q_1\cdots q_n}=(n-1)!\int \frac{\delta(1-\sum_{i=1}^n t_i)}{(t_1q_1+\cdots+t_nq_n)^n} dt_1\cdots dt_n$$

then change of variables $k_i = u_i + \sum_{k=1}^{\ell} \eta_{ik} x_k$

$$\eta_{ik} = \left\{ egin{array}{ccc} \pm 1 & ext{edge } \pm e_i \in & ext{loop } \ell_k \ 0 & ext{otherwise} \end{array}
ight.$$

$$U(\Gamma) = \frac{\Gamma(n - D\ell/2)}{(4\pi)^{\ell D/2}} \int_{\sigma_n} \frac{\omega_n}{\Psi_{\Gamma}(t)^{D/2} V_{\Gamma}(t, p)^{n - D\ell/2}}$$
$$u_n = \{t \in \mathbb{R}^n_+ | \sum_i t_i = 1\}, \text{ vol form } \omega_n$$

Graph polynomials

$$\Psi_{\Gamma}(t) = \det M_{\Gamma}(t) = \sum_{T} \prod_{e \notin T} t_e \quad \text{with} \quad (M_{\Gamma})_{kr}(t) = \sum_{i=0}^{n} t_i \eta_{ik} \eta_{ir}$$

Massless case m = 0:

$$V_{\Gamma}(t,p) = rac{P_{\Gamma}(t,p)}{\Psi_{\Gamma}(t)}$$
 and $P_{\Gamma}(p,t) = \sum_{C \subset \Gamma} s_C \prod_{e \in C} t_e$

cut-sets *C* (complement of spanning tree plus one edge) $s_C = (\sum_{v \in V(\Gamma_1)} P_v)^2$ with $P_v = \sum_{e \in E_{ext}(\Gamma), t(e)=v} p_e$ for $\sum_{e \in E_{ext}(\Gamma)} p_e = 0$ with deg $\Psi_{\Gamma} = b_1(\Gamma) = \deg P_{\Gamma} - 1$

$$U(\Gamma) = \frac{\Gamma(n - D\ell/2)}{(4\pi)^{\ell D/2}} \int_{\sigma_n} \frac{P_{\Gamma}(t, p)^{-n + D\ell/2} \omega_n}{\Psi_{\Gamma}(t)^{-n + D(\ell+1)/2}}$$

stable range $-n + D\ell/2 \ge 0$; log divergent $n = D\ell/2$:

$$\int_{\sigma_n} \frac{\omega_n}{\Psi_{\Gamma}(t)^{D/2}}$$

□ > 《 E > 《 E > _ E

Graph hypersurfaces

Residue of $U(\Gamma)$ (up to divergent Gamma factor)

$$\int_{\sigma_n} \frac{P_{\Gamma}(t,p)^{-n+D\ell/2} \omega_n}{\Psi_{\Gamma}(t)^{-n+D(\ell+1)/2}}$$

Graph hypersurfaces $\hat{X}_{\Gamma} = \{t \in \mathbb{A}^n \, | \, \Psi_{\Gamma}(t) = 0\}$

$$X_{\Gamma} = \{t \in \mathbb{P}^{n-1} | \Psi_{\Gamma}(t) = 0\} \quad \deg = b_1(\Gamma)$$

• Relative cohomology: (range $-n + D\ell/2 \ge 0$)

$$H^{n-1}(\mathbb{P}^{n-1} \setminus X_{\Gamma}, \Sigma_n \setminus (\Sigma_n \cap X_{\Gamma})) \quad \text{with} \quad \Sigma_n = \{\prod_i t_i = 0\} \supset \partial \sigma_n$$

• Periods: $\int_{\sigma} \omega$ integrals of algebraic differential forms ω on a cycle σ defined by algebraic equations in an algebraic variety

Feynman integrals and periods

Parametric Feynman integral: algebraic differential form on cycle in algebraic variety

But... divergent: where $X_{\Gamma} \cap \sigma_n \neq \emptyset$, inside divisor $\Sigma_n \supset \sigma_n$ of coordinate hyperplanes

- Blowups of coordinate linear spaces defined by edges of 1PI subgraphs (toric variety P(Γ))
- Iterated blowup P(Γ) separates strict transform of X_Γ from non-negative real points
- Deform integration chain: monodromy problem; lift to $P(\Gamma)$
- Subtraction of divergences: Poincaré residuces and limiting mixed Hodge structure
- S. Bloch, E. Esnault, D. Kreimer, *On motives associated to graph polynomials*, arXiv:math/0510011.
- S. Bloch, D. Kreimer, *Mixed Hodge Structures and Renormalization in Physics*, arXiv:0804.4399.

イロン イヨン イヨン イヨン

Motives of algebraic varieties (Grothendieck) Universal cohomology theory for algebraic varieties (with realizations)

Mixed motives: varieties that are possibly singular or not projective (much more complicated theory than pure (smooth projective)!) Triangulated category \mathcal{DM} (Voevodsky , Levine, Hanamura)

$$\mathfrak{m}(Y)
ightarrow \mathfrak{m}(X)
ightarrow \mathfrak{m}(X\smallsetminus Y)
ightarrow \mathfrak{m}(Y)[1]$$

$$\mathfrak{m}(X \times \mathbb{A}^1) = \mathfrak{m}(X)(-1)[2]$$

Mixed Tate motives: $\mathcal{DMT} \subset \mathcal{DM}$ generated by the $\mathbb{Q}(m)$ Tate object: $\mathbb{Q}(1)$ formal inverse of Lefschetz motive $\mathbb{L} = h^2(\mathbb{P}^1)$ Over a number field: t-structure, abelian category of mixed Tate motives (vanishing result, M.Levine)

向下 イヨト イヨト

Periods and motives: Constraints on numbers obtained as periods from the motive of the variety!

• Periods of mixed Tate motives over \mathbb{Z} are $\mathbb{Q}[1/(2\pi i)]$ -combinations of Multiple Zeta Values

$$\zeta(k_1, k_2, \dots, k_r) = \sum_{n_1 > n_2 > \dots > n_r \ge 1} n_1^{-k_1} n_2^{-k_2} \cdots n_r^{-k_r}$$

Conjecture proved recently:

• Francis Brown, *Mixed Tate motives over* \mathbb{Z} , arXiv:1102.1312.

Feynman integrals and periods: MZVs as *typical* outcome:

• D. Broadhurst, D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, arXiv:hep-th/9609128

 \Rightarrow Conjecture (Kontsevich 1997): Motives of graph hypersurfaces are mixed Tate (or counting points over finite fields behavior)

Conjecture was first verified for all graphs up to 12 edges:

• J. Stembridge, *Counting points on varieties over finite fields related to a conjecture of Kontsevich*, 1998

But ... Conjecture is false!

- P. Belkale, P. Brosnan, *Matroids, motives, and a conjecture of Kontsevich*, arXiv:math/0012198
- Dzmitry Doryn, On one example and one counterexample in counting rational points on graph hypersurfaces, arXiv:1006.3533
- Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.
- Francis Brown, Dzmitry Doryn, *Framings for graph hypersurfaces*, arXiv:1301.3056
- Belkale–Brosnan: general argument shows "motives of graph hypersurfaces can be arbitrarily complicated"

• Doryn, Brown–Schnetz, Brown–Doryn: explicit counterexamples (14 edges)

Motives and the Grothendieck ring of varieties

- Difficult to determine explicitly the motive of X_{Γ} (singular variety!) in the triangulated category of *mixed motives*
- Simpler invariant (universal Euler characteristic for motives): class $[X_{\Gamma}]$ in the Grothendieck ring of varieties $K_0(\mathcal{V})$
 - generators [X] isomorphism classes

•
$$[X] = [X \setminus Y] + [Y]$$
 for $Y \subset X$ closed

•
$$[X] \cdot [Y] = [X \times Y]$$

Tate motives: $\mathbb{Z}[\mathbb{L}, \mathbb{L}^{-1}] \subset K_0(\mathcal{M})$ (K_0 group of category of pure motives: virtual motives)

Universal Euler characteristics:

Any additive invariant of varieties: $\chi(X) = \chi(Y)$ if $X \cong Y$

$$\chi(X) = \chi(Y) + \chi(X \smallsetminus Y), \quad Y \subset X$$

$$\chi(X \times Y) = \chi(X)\chi(Y)$$

values in a commutative ring $\ensuremath{\mathcal{R}}$ is same thing as a ring homomorphism

$$\chi: \mathcal{K}_0(\mathcal{V}) \to \mathcal{R}$$

Examples:

- Topological Euler characteristic
- Couting points over finite fields
- Gillet–Soulé motivic $\chi_{mot}(X)$:

$$\chi_{mot}: \mathcal{K}_0(\mathcal{V})[\mathbb{L}^{-1}] \to \mathcal{K}_0(\mathcal{M}), \quad \chi_{mot}(X) = [(X, id, 0)]$$

for X smooth projective; complex $\chi_{mot}(X) = W^{\cdot}(X)$

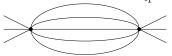
Universality: a dichotomy

- After localization (Belkale-Brosnan): the graph hypersurfaces
 X_Γ generate the Grothendieck ring localized at Lⁿ − L, n > 1
- Stable birational equivalence: the graph hypersurfaces span ℤ inside ℤ[SB] = K₀(𝔅)|_{𝔅=0}
- P. Aluffi, M.M. *Graph hypersurfaces and a dichotomy in the Grothendieck ring*, arXiv:1005.4470

Graph hypersurfaces: computing in the Grothendieck ring

• P. Aluffi, M.M. *Feynman motives of banana graphs*, arXiv:0807.1690

Example: banana graphs $\Psi_{\Gamma}(t) = t_1 \cdots t_n (\frac{1}{t_1} + \cdots + \frac{1}{t_n})$

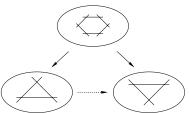


$$[X_{\Gamma_n}] = \frac{\mathbb{L}^n - 1}{\mathbb{L} - 1} - \frac{(\mathbb{L} - 1)^n - (-1)^n}{\mathbb{L}} - n(\mathbb{L} - 1)^{n-2}$$

where $\mathbb{L} = [\mathbb{A}^1]$ Lefschetz motive and $\mathbb{T} = [\mathbb{G}_m] = [\mathbb{A}^1] - [\mathbb{A}^0]$ $X_{\Gamma^{\vee}} = \mathcal{L}$ hyperplane in \mathbb{P}^{n-1} Γ^{\vee} = dual graph = polygon Method: Dual graph and Cremona transformation

$$\mathcal{C}:(t_1:\cdots:t_n)\mapsto (\frac{1}{t_1}:\cdots:\frac{1}{t_n})$$

outside S_n singularities locus of $\Sigma_n = \{\prod_i t_i = 0\}$, ideal $I_{S_n} = (t_1 \cdots t_{n-1}, t_1 \cdots t_{n-2} t_n, \cdots, t_1 t_3 \cdots t_n)$



$$\Psi_{\Gamma}(t_1,\ldots,t_n) = (\prod_e t_e)\Psi_{\Gamma^{\vee}}(t_1^{-1},\ldots,t_n^{-1})$$
$$\mathcal{C}(X_{\Gamma} \cap (\mathbb{P}^{n-1} \smallsetminus \Sigma_n)) = X_{\Gamma^{\vee}} \cap (\mathbb{P}^{n-1} \smallsetminus \Sigma_n)$$

isomorphism of X_{Γ} and $X_{\Gamma^{\vee}}$ outside of Σ_n

For banana graph case obtain:

$$[\mathcal{L} \smallsetminus \Sigma_n] = [\mathcal{L}] - [\mathcal{L} \cap \Sigma_n] = \frac{\mathbb{T}^{n-1} - (-1)^{n-1}}{\mathbb{T} + 1}$$
$$X_{\Gamma_n} \cap \Sigma_n = \mathcal{S}_n \quad \text{with} \quad [\mathcal{S}_n] = [\Sigma_n] - n\mathbb{T}^{n-2}$$
$$[X_{\Gamma_n}] = [X_{\Gamma_n} \cap \Sigma_n] + [X_{\Gamma_n} \smallsetminus \Sigma_n]$$

Using Cremona transformation: $[X_{\Gamma_n}] = [S_n] + [\mathcal{L} \setminus \Sigma_n]$

In particular get topological information on the X_{Γ_n} $\Rightarrow \chi(X_{\Gamma_n}) = n + (-1)^n$

□→ ★ 国 → ★ 国 → □ 国

Sum over graphs

Even when non-planar: can transform by Cremona (new hypersurface, not of dual graph)

 \Rightarrow graphs by removing edges from complete graph: fixed vertices

$$S_N = \sum_{\#V(\Gamma)=N} [X_{\Gamma}] \frac{N!}{\#\operatorname{Aut}(\Gamma)} \in \mathbb{Z}[\mathbb{L}],$$

Tate motive (though $[X_{\Gamma}]$ individually need not be)

• Spencer Bloch, *Motives associated to sums of graphs*, arXiv:0810.1313

Suggests that although individual graphs need not give mixed Tate contribution, the sum over graphs in Feynman amplitudes (fixed loops, not vertices) may be mixed Tate

向下 イヨト イヨト

Deletion-contraction relation

In general cannot compute explicitly $[X_{\Gamma}]$: would like relations that simplify the graph... but cannot have *true* deletion-contraction relation, else always mixed Tate... What kind of deletion-contraction?

• P. Aluffi, M.M. *Feynman motives and deletion-contraction relations*, arXiv:0907.3225

• Graph polynomials: Γ with $n \ge 2$ edges, deg $\Psi_{\Gamma} = \ell > 0$

$$\Psi_{\Gamma} = t_e \Psi_{\Gamma \smallsetminus e} + \Psi_{\Gamma / e}$$

$$\Psi_{\Gamma\smallsetminus e} = \frac{\partial \Psi_{\Gamma}}{\partial t_n} \quad \text{ and } \quad \Psi_{\Gamma/e} = \Psi_{\Gamma}|_{t_n=0}$$

• General fact: $X = \{\psi = 0\} \subset \mathbb{P}^{n-1}$, $Y = \{F = 0\} \subset \mathbb{P}^{n-2}$

$$\psi(t_1,\ldots,t_n)=t_nF(t_1,\ldots,t_{n-1})+G(t_1,\ldots,t_{n-1})$$

 \overline{Y} = cone of Y in \mathbb{P}^{n-1} : Projection from $(0:\cdots:0:1) \Rightarrow$ isomorphism

$$X \smallsetminus (X \cap \overline{Y}) \stackrel{\sim}{\longrightarrow} \mathbb{P}^{n-2} \smallsetminus Y$$

白 と く ヨ と く ヨ と

Then deletion-contraction: for $\widehat{X}_{\Gamma} \subset \mathbb{A}^n$

$$[\mathbb{A}^n\smallsetminus \widehat{X}_{\Gamma}] = \mathbb{L}\cdot [\mathbb{A}^{n-1}\smallsetminus (\widehat{X}_{\Gamma\smallsetminus e}\cap \widehat{X}_{\Gamma\backslash e})] - [\mathbb{A}^{n-1}\smallsetminus \widehat{X}_{\Gamma\smallsetminus e}]$$

if e not a bridge or a looping edge

$$[\mathbb{A}^n\smallsetminus \widehat{X}_{\Gamma}] = \mathbb{L}\cdot [\mathbb{A}^{n-1}\smallsetminus \widehat{X}_{\Gamma\smallsetminus e}] = \mathbb{L}\cdot [\mathbb{A}^{n-1}\smallsetminus \widehat{X}_{\Gamma/e}]$$
 if *e* bridge

$$egin{aligned} & [\mathbb{A}^n\smallsetminus\widehat{X}_{\Gamma}]=(\mathbb{L}-1)\cdot[\mathbb{A}^{n-1}\smallsetminus\widehat{X}_{\Gamma\smallsetminus e}]\ &=(\mathbb{L}-1)\cdot[\mathbb{A}^{n-1}\smallsetminus\widehat{X}_{\Gamma/e}] \end{aligned}$$

if e looping edge

Note: intersection $\widehat{X}_{\Gamma \smallsetminus e} \cap \widehat{X}_{\Gamma/e}$ difficult to control motivically: first place where non-Tate contributions will appear

Example of application: Multiplying edges Γ_{me} obtained from Γ by replacing edge e by m parallel edges ($\Gamma_{0e} = \Gamma \setminus e, \ \Gamma_e = \Gamma$) Generating function: $\mathbb{T} = [\mathbb{G}_m] \in K_0(\mathcal{V})$

$$\sum_{m\geq 0} \mathbb{U}(\Gamma_{me}) \frac{s^m}{m!} = \frac{e^{\mathbb{T}s} - e^{-s}}{\mathbb{T} + 1} \mathbb{U}(\Gamma) \\ + \frac{e^{\mathbb{T}s} + \mathbb{T}e^{-s}}{\mathbb{T} + 1} \mathbb{U}(\Gamma \smallsetminus e) \\ + \left(s e^{\mathbb{T}s} - \frac{e^{\mathbb{T}s} - e^{-s}}{\mathbb{T} + 1}\right) \mathbb{U}(\Gamma/e).$$

e not bridge nor looping edge: similar for other cases For doubling: inclusion-exclusion

$$\mathbb{U}(\Gamma_{2e}) = \mathbb{L} \cdot [\mathbb{A}^n \smallsetminus (\hat{X}_{\Gamma} \cap \hat{X}_{\Gamma_o})] - \mathbb{U}(\Gamma)$$
$$[\hat{X}_{\Gamma} \cap \hat{X}_{\Gamma_o}] = [\hat{X}_{\Gamma/e}] + (\mathbb{L} - 1) \cdot [\hat{X}_{\Gamma \smallsetminus e} \cap \hat{X}_{\Gamma/e}]$$

then cancellation

$$\mathbb{U}(\Gamma_{2e}) = (\mathbb{L} - 2) \cdot \mathbb{U}(\Gamma) + (\mathbb{L} - 1) \cdot \mathbb{U}(\Gamma \smallsetminus e) + \mathbb{L} \cdot \mathbb{U}(\Gamma/e)$$

Example of application: Lemon graphs and chains of polygons $\Lambda_m =$ lemon graph *m* wedges; $\Gamma_m^{\Lambda} =$ replacing edge *e* of Γ with Λ_m Generating function: $\sum_{m>0} \mathbb{U}(\Gamma_m^{\Lambda})s^m =$

$$\frac{(1-(\mathbb{T}+1)s)\mathbb{U}(\Gamma)+(\mathbb{T}+1)\mathbb{T}s\,\mathbb{U}(\Gamma\smallsetminus e)+(\mathbb{T}+1)^2s\,\mathbb{U}(\Gamma/e)}{1-\mathbb{T}(\mathbb{T}+1)s-\mathbb{T}(\mathbb{T}+1)^2s^2}$$

e not bridge or looping edge; similar otherwise Recursive relation:

$$\mathbb{U}(\Lambda_{m+1}) = \mathbb{T}(\mathbb{T}+1)\mathbb{U}(\Lambda_m) + \mathbb{T}(\mathbb{T}+1)^2\mathbb{U}(\Lambda_{m-1})$$

 $a_m = \mathbb{U}(\Lambda_m)$ is a *divisibility sequence*: $\mathbb{U}(\Lambda_{m-1})$ divides $\mathbb{U}(\Lambda_{n-1})$ if *m* divides *n*

伺い イヨト イヨト ニヨ

Determinant hypersurfaces and Schubert cells

Mixed Tate question reformulated in terms of determinant hypersurfaces and intersections of unions of Schubert cells in flag varieties

• P. Aluffi, M.M. *Parametric Feynman integrals and determinant hypersurfaces*, arXiv:0901.2107

$$\Upsilon:\mathbb{A}^n o\mathbb{A}^{\ell^2},\quad \Upsilon(t)_{kr}=\sum_i t_i\eta_{ik}\eta_{ir},\quad \hat{X}_{\Gamma}=\Upsilon^{-1}(\hat{\mathcal{D}}_{\ell})$$

determinant hypersurface $\hat{\mathcal{D}}_{\ell} = \{\det(x_{ij}) = 0\}$

$$[\mathbb{A}^{\ell^2} \smallsetminus \hat{\mathcal{D}}_{\ell}] = \mathbb{L}^{\binom{\ell}{2}} \prod_{i=1}^{\ell} (\mathbb{L}^i - 1) \Rightarrow \text{ mixed Tate}$$

When Υ embedding

$$U(\Gamma) = \int_{\Upsilon(\sigma_n)} \frac{\mathcal{P}_{\Gamma}(x, p)^{-n + D\ell/2} \omega_{\Gamma}(x)}{\det(x)^{-n + (\ell+1)D/2}}$$

If $\hat{\Sigma}_{\Gamma}$ normal crossings divisor in \mathbb{A}^{ℓ^2} with $\Upsilon(\partial \sigma_n) \subset \hat{\Sigma}_{\Gamma}$

 $\mathfrak{m}(\mathbb{A}^{\ell^2}\smallsetminus\hat{\mathcal{D}}_\ell,\hat{\Sigma}_{\Gamma}\smallsetminus(\hat{\Sigma}_{\Gamma}\cap\hat{\mathcal{D}}_\ell))\quad\text{mixed Tate motive}?$

Combinatorial conditions for embedding $\Upsilon : \mathbb{A}^n \smallsetminus \hat{X}_{\Gamma} \ \hookrightarrow \ \mathbb{A}^{\ell^2} \smallsetminus \hat{\mathcal{D}}_{\ell}$

- Closed 2-cell embedded graph $\iota : \Gamma \hookrightarrow S_g$ with $S_g \smallsetminus \Gamma$ union of open disks (faces); closure of each is a disk.
- Two faces have at most one edge in common
- Every edge in the boundary of two faces

Sufficient: Γ 3-edge-connected with closed 2-cell embedding of face width \geq 3.

Face width: largest $k \in \mathbb{N}$, every non-contractible simple closed curve in S_g intersects Γ at least k times (∞ for planar).

Note: 2-edge-connected =1PI; 2-vertex-connected conjecturally implies face width ≥ 2

・ 同 ト ・ ヨ ト ・ ヨ ト …

Identifying the motive $\mathfrak{m}(X, Y)$. Set $\hat{\Sigma}_{\Gamma} \subset \hat{\Sigma}_{\ell,g}$ $(f = \ell - 2g + 1)$

$$\hat{\Sigma}_{\ell,g} = L_1 \cup \cdots \cup L_{\binom{f}{2}}$$

$$\begin{cases} x_{ij} = 0 & 1 \le i < j \le f - 1 \\ x_{i1} + \dots + x_{i,f-1} = 0 & 1 \le i \le f - 1 \end{cases}$$

$$\mathfrak{m}(\mathbb{A}^{\ell^2}\smallsetminus\hat{\mathcal{D}}_\ell,\hat{\Sigma}_{\ell,\boldsymbol{g}}\smallsetminus(\hat{\Sigma}_{\ell,\boldsymbol{g}}\cap\hat{\mathcal{D}}_\ell))$$

 $\hat{\Sigma}_{\ell,g} = \text{normal crossings divisor } \Upsilon_{\Gamma}(\partial \sigma_n) \subset \hat{\Sigma}_{\ell,g}$ depends only on $\ell = b_1(\Gamma)$ and $g = \min$ genus of S_g

• Sufficient condition: Varieties of frames mixed Tate?

$$\mathbb{F}(V_1,\ldots,V_\ell):=\{(v_1,\ldots,v_\ell)\in\mathbb{A}^{\ell^2}\smallsetminus\hat{\mathcal{D}}_\ell\,|\,v_k\in V_k\}$$

向下 イヨト イヨト

Varieties of frames

• Two subspaces: $(d_{12} = \dim(V_1 \cap V_2))$

$$[\mathbb{F}(V_1, V_2)] = \mathbb{L}^{d_1+d_2} - \mathbb{L}^{d_1} - \mathbb{L}^{d_2} - \mathbb{L}^{d_{12}+1} + \mathbb{L}^{d_{12}} + \mathbb{L}$$

• Three subspaces $(D = \dim(V_1 + V_2 + V_3))$

$$[\mathbb{F}(V_1, V_2, V_3)] = (\mathbb{L}^{d_1} - 1)(\mathbb{L}^{d_2} - 1)(\mathbb{L}^{d_3} - 1)$$

$$egin{aligned} &-(\mathbb{L}-1)((\mathbb{L}^{d_1}-\mathbb{L})(\mathbb{L}^{d_{23}}-1)+(\mathbb{L}^{d_2}-\mathbb{L})(\mathbb{L}^{d_{13}}-1)+(\mathbb{L}^{d_3}-\mathbb{L})(\mathbb{L}^{d_{12}}-1)\ &+(\mathbb{L}-1)^2(\mathbb{L}^{d_1+d_2+d_3-D}-\mathbb{L}^{d_{123}+1})+(\mathbb{L}-1)^3 \end{aligned}$$

• Higher: difficult to find suitable induction

- Other formulation: $Flag_{\ell, \{d_i, e_i\}}(\{V_i\})$ locus of complete flags $0 \subset E_1 \subset E_2 \subset \cdots \subset E_\ell = E$, with dim $E_i \cap V_i = d_i$ and dim $E_i \cap V_{i+1} = e_i$: are these mixed Tate? (for all choices of d_i, e_i)
- $\mathbb{F}(V_1, \ldots, V_\ell)$ fibration over $Flag_{\ell, \{d_i, e_i\}}(\{V_i\})$: class $[\mathbb{F}(V_1, \ldots, V_\ell)]$

$$= [\textit{Flag}_{\ell, \{d_i, e_i\}}(\{V_i\})](\mathbb{L}^{d_1} - 1)(\mathbb{L}^{d_2} - \mathbb{L}^{e_1})(\mathbb{L}^{d_3} - \mathbb{L}^{e_2}) \cdots (\mathbb{L}^{d_r} - \mathbb{L}^{e_{r-1}})$$

 $Flag_{\ell, \{d_i, e_i\}}(\{V_i\}) \text{ intersection of unions of Schubert cells in flag varieties}$ $\Rightarrow Kazhdan-Lusztig?$ Different approach to regularization and renormalization

• M.M., Xiang Ni, *Rota-Baxter algebras, singular hypersurfaces, and renormalization on Kausz compactifications*, arXiv:1408.3754.

Main ingredients:

- Algebraic renormalization (Hopf algebras and Rota-Baxter algebras)
- Hypersurfaces and Rota–Baxter algebras of meromorphic forms
- Forms with logarithmic poles and Leray residues
- Wonderful compactifications

Developed for Feynman integrals in configuration spaces in

• O. Ceyhan, M.M. Algebraic renormalization and Feynman integrals in configuration spaces, arXiv:1308.5687

向下 イヨト イヨト

Regularization and renormalization

Removing divergences from Feynman integrals by adjusting bare parameters in the Lagrangian

$$\mathcal{L}_E = rac{1}{2} (\partial \phi)^2 (1 - \delta Z) + \left(rac{m^2 - \delta m^2}{2}
ight) \phi^2 - rac{\mathbf{g} + \delta \mathbf{g}}{6} \phi^3$$

Regularization: replace divergent integral $U(\Gamma)$ by function $U^{z}(\Gamma)$ with pole ($z \in \mathbb{C}^{*}$ in DimReg, ϵ deformation of X_{Γ} , etc.) Renormalization: consistency over subgraphs (Hopf algebra structure)

• Kreimer, Connes–Kreimer, Connes–M.: Hopf algebra of Feynman graphs and BPHZ renormalization method in terms of Birkhoff factorization and differential Galois theory

• Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of Rota-Baxter algebras

・回 ・ ・ ヨ ・ ・ ヨ ・ …

BPHZ renormalization method:

• Preparation:

$$ar{R}(\Gamma) = U(\Gamma) + \sum_{\gamma \in \mathcal{V}(\Gamma)} C(\gamma) U(\Gamma/\gamma)$$

• Counterterm: projection onto polar part

$$C(\Gamma) = -T(\bar{R}(\Gamma))$$

• Renormalized value:

$$R(\Gamma) = \bar{R}(\Gamma) + C(\Gamma)$$
$$= U(\Gamma) + C(\Gamma) + \sum_{\gamma \in \mathcal{V}(\Gamma)} C(\gamma)U(\Gamma/\gamma)$$

< ≣⇒

æ

< ∃ >

Connes–Kreimer Hopf algebra $\mathcal{H} = \mathcal{H}(\mathcal{T})$ (depends on theory $\mathcal{L}(\phi)$)

- \bullet Free commutative algebra in generators Γ 1PI Feynman graphs
- Grading: loop number (or internal lines)

$$\deg(\Gamma_1\cdots\Gamma_n)=\sum_i\deg(\Gamma_i),\quad \deg(1)=0$$

• Coproduct:

$$\Delta(\Gamma) = \Gamma \otimes 1 + 1 \otimes \Gamma + \sum_{\gamma \in \mathcal{V}(\Gamma)} \gamma \otimes \Gamma / \gamma$$

• Antipode: inductively

$$S(X) = -X - \sum S(X')X''$$

for $\Delta(X) = X \otimes 1 + 1 \otimes X + \sum X' \otimes X''$

Extended to gauge theories (van Suijlekom): Ward identities as Hopf ideals

Algebraic renormalization (Ebrahimi-Fard, Guo, Kreimer)

• Rota-Baxter algebra of weight $\lambda = -1$: \mathcal{R} commutative unital algebra; $T : \mathcal{R} \to \mathcal{R}$ linear operator with

$T(x)T(y) = T(xT(y)) + T(T(x)y) + \lambda T(xy)$

- Example: T = projection onto polar part of Laurent series
- T determines splitting $\mathcal{R}_+ = (1 T)\mathcal{R}$, $\mathcal{R}_- =$ unitization of $T\mathcal{R}$; both \mathcal{R}_\pm are algebras

• Feynman rule $\phi : \mathcal{H} \to \mathcal{R}$ commutative algebra homomorphism from CK Hopf algebra \mathcal{H} to Rota–Baxter algebra \mathcal{R} weight -1

$$\phi \in \operatorname{Hom}_{\operatorname{Alg}}(\mathcal{H}, \mathcal{R})$$

• Note: ϕ does not know that ${\mathcal H}$ Hopf and ${\mathcal R}$ Rota-Baxter, only commutative algebras

(4回) (注) (注) (注) (注)

• Birkhoff factorization $\exists \phi_{\pm} \in \operatorname{Hom}_{Alg}(\mathcal{H}, \mathcal{R}_{\pm})$

$$\phi = (\phi_- \circ S) \star \phi_+$$

where $\phi_1 \star \phi_2(X) = \langle \phi_1 \otimes \phi_2, \Delta(X) \rangle$

• Connes-Kreimer inductive formula for Birkhoff factorization:

$$\phi_{-}(X) = -T(\phi(X) + \sum \phi_{-}(X')\phi(X''))$$
$$\phi_{+}(X) = (1 - T)(\phi(X) + \sum \phi_{-}(X')\phi(X''))$$
where $\Delta(X) = 1 \otimes X + X \otimes 1 + \sum X' \otimes X''$

- 4 同 2 4 日 2 4 日 2 日 日

Example of algebraic renormalization (Connes–Kreimer):

• Dimensional Regularization: $U^{z}_{\mu}(\Gamma(p_{1},\ldots,p_{N}))$

$$=\int \mu^{z\ell} d^{D-z} k_1 \cdots d^{D-z} k_\ell l_{\Gamma}(k_1,\ldots,k_\ell,p_1,\ldots,p_N)$$

Laurent series in $z\in\Delta^*\subset\mathbb{C}^*$

• Rota-Baxter algebra: T = projection onto polar part of Laurent series

- loop $= \phi \in \operatorname{Hom}(\mathcal{H}, \mathbb{C}(\{z\}))$ (germs of meromorphic functions)
- Feynman integral $U(\Gamma) = \phi(\Gamma)$ counterterms $C(\Gamma) = \phi_{-}(\Gamma)$ renormalized value $R(\Gamma) = \phi_{+}(\Gamma)|_{z=0}$

・吊り ・ヨン ・ヨン ・ヨ

Rota-Baxter algebras of meromorphic forms smooth hypersurface $Y = \{f = 0\}$ in \mathbb{P}^n

• $\mathcal{M}^{\star}_{\mathbb{P}^n,Y}$ = meromorphic forms, poles (arbitrary order) on Y

$$\omega = \sum_{p \ge 0} \frac{\alpha_p}{f^p} \mapsto T(\omega) = \sum_{p \ge 1} \frac{\alpha_p}{f^p}$$

Rota–Baxter (graded) algebra of weight -1

$$T(x)T(y) = T(xT(y)) + T(T(x)y) - T(xy)$$

• Restrict to $\Omega^{\star}_{\mathbb{P}^n}(\log(Y))$ forms with log poles:

$$\omega = \frac{df}{f} \wedge \xi + \eta \mapsto T(\omega) = \frac{df}{f} \wedge \xi$$

Rota-Baxter identity becomes

$$T(xy) = T(xT(y)) + T(T(x)y) = xT(y) + T(x)y$$

hence T is a *derivation*

Pole subtraction: $\omega \mapsto (1 - T)\omega$

Vanishing Leray residue $\omega = d \log(f) \wedge \xi + \eta$

$$\operatorname{Res}_{Y}(\omega) = \xi$$

holomorphic form on X

Can extend to:

- Smooth hypersurface Y in a smooth projective X;
- Normal crossings divisor Y in a smooth projective X;
- Singular hypersurface Y in a smooth projective X: using Saito's forms with log poles and residues

$$h\omega = rac{df}{f} \wedge \xi + \eta, \quad \operatorname{Res}_{Y}(\omega) = rac{1}{h}\xi$$

General strategy for Feynman integrals

• (graded) Hopf algebra of Feynman graphs $\Gamma_1 \cdot \Gamma_2 = (-1)^{\#E(\Gamma_1)\#E(\Gamma_2)}\Gamma_2 \cdot \Gamma_1$

• Fixed number of loops ℓ : a smooth projective variety X_{ℓ} and a (singular) hypersurface $Y_{\ell} \subset X_{\ell}$, such that the motive $m(X_{\ell})$ is mixed Tate

• A morphism of graded algebras $\phi : \mathcal{H} \to \mathcal{M}^*_{X_{\ell}, Y_{\ell}}$

$$\phi(\Gamma) = \eta_{\Gamma}$$

algebraic differential form on X_ℓ with polar locus Y_ℓ

- Rota–Baxter operator T (polar part) on $\mathcal{M}^*_{X_\ell,Y_\ell}$
- \Rightarrow Birkhoff decomposition ϕ_{\pm} gives holomorphic form $\phi_{+}(\Gamma)$ on X_{ℓ}

$$\int_{\sigma}\phi_+(\Gamma)$$

is a *period* of a mixed Tate motive (always)

Especially nice situation:

When the relevant cohomology class in $H^*(X_\ell \smallsetminus Y_\ell)$ can be represented by a form with logarithmic poles

Main steps: \mathcal{X} smooth projective variety and $\mathcal{Z} \subset \mathcal{X}$ divisor

- Grothendieck comparison theorem: de Rham cohomology H^{*}_{dR}(X \ Z) hypercohomology of meromorphic de Rham complex
- Logarithmic comparison theorem:

 $H^{\star}_{dR}(\mathcal{X} \smallsetminus \mathcal{Z}) \simeq \mathbb{H}^{\star}(\mathcal{X}, \Omega^{\star}_{\mathcal{X}}(\log \mathcal{Z}))$

• From hypercohomology to logarithmic forms

Key issue: when the two last properties apply!

・吊り イヨト イヨト ニヨ

Logarithmic Comparison theorem

$$H^{\star}_{dR}(\mathcal{X} \smallsetminus \mathcal{Z}) \simeq \mathbb{H}^{\star}(\mathcal{X}, \Omega^{\star}_{\mathcal{X}}(\log \mathcal{Z}))$$

Examples:

- Normal crossings divisors (Deligne)
- Locally quasi-homogeneous free divisors (F. J. Castro-Jiménez, D. Mond, and L. Narvaéz-Macarro)

Compactification of GL_{ℓ} with boundary normal crossings divisor (Kausz) so have Logarithmic Comparison

Then need to show the relevant class is represented by an actual logarithmic form, not just a hypercohomology class...

Then can use restriction of Rota–Baxter operator T to forms with log poles $\Omega^*_{X_\ell}(\log(Y_\ell))$

 \Rightarrow The Birkhoff factorization formula simplifies drastically (no correction terms from subdivergences, only pole subtraction)

Application to parametric Feynman integrals

Assume $n \ge (\ell + 1)D/2$ and consider algebraic differential form (take $p \in \mathbb{Q}$)

$$\eta_{\Gamma} = \frac{\mathcal{P}_{\Gamma}(x,p)^{-n+D\ell/2}\omega_{\Gamma}(x)}{\det(x)^{-n(\ell+1)D/2}}$$

on $\mathbb{A}^{\ell^2} \smallsetminus \hat{\mathcal{D}}_{\ell} = \mathrm{GL}_{\ell}$

$$\phi(\Gamma) = \eta_{\Gamma} \in \mathcal{M}^*_{\mathbb{P}^{\ell^2 - 1}, \mathcal{D}_{\ell}}$$

apply Birkhoff factorization and evaluate convergent integral

$$\int_{\Sigma_{g,\ell}} \phi_+(\Gamma)$$

of algebraic form $\phi_+(\Gamma)$.

¬<</p>

Kausz compactification

better method: reduce to forms with logarithmic poles

Need a better *compactification* of GL_{ℓ}

• PGL_{ℓ} has a wonderful compactification \overline{PGL}_{ℓ} in the sense of DeConcini–Procesi (Vainsencher)

• Iterated blowup description: $X_0 = \mathbb{P}^{\ell^2 - 1}$, loci Y_i matrices rank *i*, with \overline{Y}_i closure in X_{i-1}

$$X_i = \mathrm{Bl}_{\bar{Y}_i}(X_{i-1})$$

 $X_{\ell-1} = \overline{\operatorname{PGL}}_{\ell}$ smooth; Y_i are PGL_i -bundles over a product of Grassmannians Kausz compactification KGL_{ℓ} :

- \bullet Kausz compactification = closure of ${\rm GL}_\ell$ inside wonderful compactification of ${\rm PGL}_{\ell+1}$
- Iterated blowup with $\mathcal{X}_0 = \mathbb{P}^{\ell^2}$,

$$\mathcal{X}_i = \mathrm{Bl}_{\mathcal{Y}_{i-1} \cup \mathcal{H}_i}(\mathcal{X}_{i-1})$$

with $\mathcal{Y}_i \subset \mathbb{A}^{\ell^2}$ matrices rank *i* and \mathcal{H}_i matrices at infinity, in $\mathbb{P}^{\ell^2-1} = \mathbb{P}^{\ell^2} \smallsetminus \mathbb{A}^{\ell^2}$

- the X_i are smooth and blowup loci disjoint unions of $\overline{PGL_i}$ -bundles and KGL_i -bundles over a product of Grassmannians
- \bullet complement of GL_ℓ in $\operatorname{\mathcal{K}\operatorname{GL}}_\ell$ is normal crossings divisor
- I. Kausz, A modular compactification of the general linear group, Documenta Math. 5 (2000) 553–594

▲□ → ▲ 田 → ▲ 田 → □

Motive of the Kausz compactification $m(KGL_{\ell})$

• Chow motive of a blowup along a smooth locus (Manin)

$$m(Bl_Y(X)) = m(X) \oplus \bigoplus_{r=1}^{codim(Y)-1} m(Y) \otimes \mathbb{L}^{\otimes r},$$

• motives of Grassmannians G(d, n) (Köck)

$$m(G(d, n)) = \bigoplus_{\lambda \in W^d} \mathbb{L}^{\otimes |\lambda|}$$

$$W^d = \{\lambda = (\lambda_1, \dots, \lambda_d) \in \mathbb{N}^d \mid n - d \ge \lambda_1 \ge \dots \ge \lambda_d \ge 0\}$$

and $|\lambda| = \sum_i \lambda_i$

then inductively:

• motive of a $\overline{PGL_i}$ -bundle over a product of Grassmannians: has a "sufficiently good" cell decomposition so that motive of Fbundle B over Z decomposes as a product

 $m(B) \simeq m(F) \otimes m(Z)$

 \bullet for $K\mathrm{GL}_i\text{-bundles}$ over products of Grassmannians also show inductively that have good cell decomposition

Conclusion 1: the motive $m(KGL_{\ell})$ is mixed Tate

Hodge filtration

 \bullet Hodge filtration of Deligne's mixed Hodge structure on $\mathcal{U}=\mathcal{X}\smallsetminus\mathcal{Z}$

 $F^{p}H^{k}_{dR}(\mathcal{U}) = \operatorname{Im}(\mathbb{H}^{k}(\mathcal{X}, \Omega^{\geq p}_{\mathcal{X}}(\log \mathcal{Z})) \to \mathbb{H}^{k}(\mathcal{X}, \Omega^{\star}_{\mathcal{X}}(\log \mathcal{Z})))$

- Hodge filtration $F^pH^k_{dR}(\mathcal{U})$ induced by naive filtration on $\Omega^\star_{\mathcal{X}}(\log \mathcal{Z})$
- for $n = \dim \mathcal{X}$ the piece $F^n H^n_{dR}(\mathcal{U})$ of the Hodge filtration is realized by global sections of the (algebraic) logarithmic de Rham complex
- Frölicher spectral sequence for double complex $K^{p,q}$:

$$F^{p}K^{n} = \bigoplus_{r \ge p, r+s=n} K^{r,s}$$

$$E_{0}^{p,q} = \operatorname{Gr}_{p}^{F}K^{p+q} = F^{p}K^{p+q}/F^{p+1}K^{p+q} = K^{p,q}$$

$$E_{1}^{p,q} = H^{p+q}(\operatorname{Gr}_{p}^{F}K^{\star}) = H^{q}(K^{p,\star})$$

$$E_{\infty}^{p,q} = \operatorname{Gr}_{p}^{F}H^{p+q}(K^{\star})$$

for the Hodge filtration this gives

$$\begin{split} E_1^{p,q} &= H^q(\mathcal{X}, \Omega^p_{\mathcal{X}}(\log \mathcal{Z})) \\ E_{\infty}^{p,q} &= F^p H_{dR}^{p+q}(\mathcal{U}) / F^{p+1} H_{dR}^{p+q}(\mathcal{U}) \\ \text{so } E_1^{n,0} &= H^0(\mathcal{X}, \Omega^n_{\mathcal{X}}(\log \mathcal{Z})) \text{ and } E_{\infty}^{n,0} &= F^n H_{dR}^n(\mathcal{U}) \end{split}$$

• Deligne proved that for Z normal crossings the spectral sequence of the Hodge filtration degenerates at the E_1 term so

$$F^{n}H^{n}_{dR}(\mathcal{U}) = H^{0}(\mathcal{X}, \Omega^{n}_{\mathcal{X}}(\log \mathcal{Z}))$$

Form with logarithmic poles

- Question: when is the Feynman amplitude η_{Γ} in $F^{n}H^{n}_{dR}(\mathcal{U})$?
- log divergent graphs: with number of edges $n = \#E_{\Gamma}$ and the number of loops $\ell = b_1(\Gamma)$ satisfying

$$n=\frac{D\ell}{2}$$

can prove that for log divergent graphs

$$[\eta_{\Gamma}] \in F^n H^n_{dR}(\mathrm{GL}_{\ell})$$

so represented by form with

Renormalized amplitude

• meromorphic form η with $[\eta] \in F^n H^n_{dR}(GL_\ell)$, with $n \leq \ell^2 = \dim K GL_\ell$,

• there is a form β on KGL_{ℓ} with logarithmic poles along the normal crossings divisor Z_{ℓ} , such that

$$[\beta] = [\eta] \in H^n_{dR}(K\mathrm{GL}_\ell \smallsetminus \mathcal{Z}_\ell) = H^n_{dR}(\mathrm{GL}_\ell)$$

• after a simple pole subtraction one obtains

$$\int_{\tilde{\Upsilon}(\sigma_n)}\beta^{+}$$

which is a period of $\mathfrak{m}(\mathit{K}\mathrm{GL}_\ell, \Sigma_{\ell,g})$

Conclusion 2: for log divergent graphs the renormalized Feynman integral

$$\int_{\pi^{-1}(\Sigma_{g,\ell})} (1-T) \eta_{\Gamma}$$

is a period of $K\mathrm{GL}_\ell$

Other graphs

- KGL_{ℓ} has a cellular decomposition with one big cell X
- there is a form $\beta_{\Gamma} = \beta_{\Gamma,D,\ell,p}$ on the big cell X with logarithmic poles along \mathcal{Z}_{ℓ} and $[\eta_{\Gamma}|_X] = [\beta_{\Gamma}] \in H^*_{dR}(X \smallsetminus \mathcal{Z})$
- integral

$$\int_{X\cap\tilde{\Upsilon}(\sigma_n)}\eta_{\mathsf{\Gamma}}|_X$$

Birkhoff factorization $\phi^+(\Gamma) = \beta_{\Gamma}^+$ on $\beta_{\Gamma} = \beta_{\Gamma,D,\ell,p}$

... but information loss for certain graphs with respect to other renormalization methods

伺い イヨト イヨト 三日