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Two Parts of this Lecture

@ Neurons and the Brain: a quick neuroscience overview

@ Individual neurons as nonlinear dynamical systems
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Brains of different animals
o~/

T —

Jellyfish: Worm (C. Elegans):

* Simplest form of brain: “Nerve net” * 302 neurons

* 5600 neurons (sensory/motor/interneurons)
* Sensation/feeding/locomotion ¢ 7000 connections completely
* Box jellyfish has 24 eyes mapped

* Allows full understanding of simple
circuits (e.g., response to touch)
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Brains of different animals

Insects (Drosophila): Fish (Zebrafish):

* 100,000 neurons * 100,000 neurons

* Display sophisticated social and * Transparent in larval stage: can
cognitive behaviors (memory, image every single neuron during
spatial navigation) behavior

* Interesting behaviors: prey
capture, sleep

Matilde Marcolli Neurons and the Brain The Neuron as a Dynamical System



Brains of different animals

Mouse: Human:

* 4 million neurons * 100 billion neurons

* Shares many of the same features * Each hemisphere is size of extra
as human brain (both anatomically large pizza
and functionally) ¢ 4 km of axons per mm3
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Expansion of neocortex

Normal mouse (left) vs mouse

B-catenin in
progenitors (right)

ehinal
sulcus

superior
colliculus

cerebellum

Brain of an early mammal from 85 million years ago
(reconstructed based on fossil record)
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neocortex: six-layered structure, part of the cerebral cortex
involved in higher-order brain functions: sensory perception,
cognition, spatial reasoning, language

¥ FRONTAL
LOBE

-
MEMPORAL ¢
= (LoRE™

Human Neocortex

frontal lobe: attention, short-term memory, planning, motivation
parietal lobe: integrating sensory information, spatial sense, navigation
occipital lobe: visual

temporal lobe: smell and sound, semantics for speech and vision,
processing of complex stimuli, forming of long-term memory
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columnal structure

Pial Surface

Cortical domain .-

Layer 6 it

‘White Matter
D reconstruction of five columns in rat vibrissal cortex Oraly saction
underlying image from: @@@
Marcel Oberfiinder, Beyond the Cortical Column, Neuroinfomatics 2012 ceovanen

cortex is composed of discrete, modular columns of neurons,
characterized by a consistent connectivity profile (minicolumns,
basic units, same types of neurons and connectivity; combines into
modules, hypercolumns)
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Organization of Central Nervous
System
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The Neuron

Dendrites
Astrocyte (a type of glial cell)

Oligodendrocyte (a type of glial cell)

Neurons: nerve cells that send and receive signals

Glia: support cells that provide structure in the brain, maintain
homeostasis, insulation by forming myelin (oligodendrocytes),
provide nutrients (astrocytes), etc
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The Neuron

A
(B)

Basket cell
apical
dendrite
cell body
axon terminals
basal
dendrite”
Motor
neuron

to distant targets to muscle
via the white matter

Pyramidal cell
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Signaling between neurons

neuron cell body

nucleus
axon of
axon

previous
neuron
neuron cell body \

dendrites of
next neuron

axon
tips

electrical

synapse
signal

dendrites
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Circuit motifs

A. Feedforward excitation D. Lateral inhibition

. |. ( ..'. 4 Excitation
.—{4 —oe lEnhi::ition
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B. Feedforward inhibition E. Feedback/Recurrent inhibition F. Feedback/Recurrent excitation
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C. Convergence/divergence
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Hierarchical organization of brain
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The fruitfulness of “following the
anatomy”

Hubel and Wiesel: Orientation Selectivity Edvard & May-Britt Moser: Grid Cells

Place cell Grid cell

,/ N\

Stimulus orientation (deg)

it =Splkes

Michael Fee: Sparse HVC neurons

r Song motif y
Sylabie: a 3 c
8

Frequency [kHz]

HVC s neurons

If one wants to understand function in biology, one should study
structure —Francis Crick
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Single neuron level: signaling between neurons

Synaptic transmission

Transmitter is

stored in vesicles

Postsynaptic current causes

An action potential invades

the presynaptic terminal

Depolarization of presynaptic
terminal causes opening of
voltage-gated Ca?* channels

 influx of Ca®*

j Ca? causes vesicles to
fuse with presynaptic

membrane

Transmitter is
released into
synaptic cleft
via exocytosis

Transmitter binds
o receptor molecules

excitatory
postsynaptic potential that
changes the excitability of
the postsynaptic cell
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Calcium influx is necessary for
neurotransmitter release

Voltage-gated
calcium
channels
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Resting potential

®

K'-Cr” cotransporte
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! ! z [XTi
electrical potential.

Extracellular space
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Modeling the neuron

@ interplay of electrophysiology, bifurcation mechanism of
dynamical systems, and computational properties of neurons

@ neuron in terms of ions and channels

@ neuron in terms of input/output relations

@ neuron as a nonlinear dynamical system
e dynamical system near a transition (bifurcation) resting/spiking
activities

e deduce computational properties of neurons from studying
geometry of phase portrait at the bifurcations of the nonlinear
dynamical system
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Properties of neurons
@ about 10! neurons in the human brain
@ can transmit electric signals over long distances

@ neuron receives input from more than 10° other neurons
through synapses

@ organized in neuronal circuits
@ spikes main mean of communication between neurons

@ firing threshold of neurons
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Hodgkin-Huxley Model based on giant squid axon

Stellate
ganglion

Stellate nerve
with giant axon

o

Amplifier

Axon T

Reference electrode

T Recording electrode

=

L stimulus

Membrane potential (mV)

Eckert: Animal Physiology. W H Freeman and Co, N. Y2000, Fig 5-21
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Deriving the Hodgkin-Huxley Equation

@ all cells have a membrane potential Vi, = Vi, — Vout
difference of electric potential inside and outside the cell
membrane

@ resting potential = potential across the membrane when cell
is at rest: typical neuron —70mV

e Sodium/Potassium channels: non-gated channels (always
open) and voltage gated channels (open depending on
conditions on membrane potential)

@ inward current: positively charged ion entering membrane:
Na™ (raises membrane potential: depolarized)

@ outward current: positively charged ion leaving the cell KT, or
negatively charged entering the cell C/~ (hyperpolarized)
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First Step: Nernst—Planck equation describes general ion flux by
electrical and concentration gradients across a membrane

e C(x) concentration of some ion and V/(x) potential at some
point x € M on membrane, diffusive flux Jge, diffusion
constant D (depends on size of molecules)

oC
Jdifr = —Da

diffusion movement from high to low concentration
@ Electrical drift: electric field E = -9V /0x, p mobility

oV
Jarift = —Mca
o total flux across membrane: J = Jgigr + Jariee
@ at equilibrium J =0

@ corresponding current flux =0 is Nernst—Planck equation
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e then [dV =—-D/pu [dC/C so

AV = D log(
©

o Einstein relation: mobility and diffusion coefficient

kT
D=""
"

Boltzmann constant k, temperature T, charge g

@ Nerst equilibrium potential

kT C(x)
AV = Y log( C(x’))

@ Nernst—Planck equation for flux, diffusion parameter D

aC(X’t)—i—iC(x,t)av(X’t))

J(x, t) = =D Ox kT Ox
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Hodgkin-Huxley circuit

Nernst—Planck equation does not explain mechanism through
which channels open/close. Add voltage-gated conductance
variables to model the dynamics of action potentials.

Extracellular
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e fraction p; of open channels for ion /
dp;
= 4 — Pi i Pi
D= (V)1 - py) = (V)
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Hodgkin-Huxley Equation

in Hodgkin-Huxley model of giant squid axon:
@ persistent voltage gated KT current four activation gates
@ transient voltage gated Na™ current three activation gates
o leak current CI™

activation variables n, m (probability of activation gate open),
inactivation variable h (probability of inactivation gate open)

Cm dc\;M = —gin* (Vi — Vi) — gnam’h(Vi — Viva) — 81V — Vi)
d
i = oV = ) = B Vaa)n
= am(Vin)(1 = m) = m(Vaa)m
o = an(Van)(1 = ) = (V)

Vion reversal potential, where no net flow across membrane
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Propagation of the Action Potential V = Vi(x, t)

oV a 0?V
C—=——5+1—Ix—1In,— 1

0t 2RDx 1Tk
with a radius of axon, R resistance of axoplasm, and with currents
as above | = gm?h®(V — Vi,,) gate model

e nonlinearities in a(V) and (V)

Vin

ap (Vi) = 0.07exp (E)

0.01( Vi, +10) 0.1( Vi, +25)
ey~ emlVm)=—an—
() T ()

ﬁn(Vm)=0412ﬁexp(§‘:) ,f)’,,,(l/;n]=4exp(%) Bu(Vin) = — 1
m:p( n )+1

an(Vim) =

numerical treatment of equations
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Injected current | as bifurcation parameter

Shape of V/(t) for increasing I (in nanoamps): not firing, firing a
single spike, cycle with train of spikes, sudden jump in amplitude
not gradual increase (bifurcation phenomenon)
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e Hodgkin—Huxley linearization at fixed point: two negative
eigenvalues and two complex eigenvalues (small positive real part)
e eigenvectors of negative eigenvalues evolve to zero (large t)

e eigenvectors of complex eigenvalue define center manifold:
solutions in 4-dim system flow towards center manifold in 2-dim
plane; limit cycle in center manifold plane

nft)
1o
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FitzHugh—Nagumo Model

(simplified version of the Hodgkin-Huxley dynamics, 1961)

® neuron receiving signals along dendrites, processed in the soma,
single output along the axon

" Dendrites (dendritic tree)

initial segment, axon hillock

myelin
Axon sheath
- 7
ST = Terminals
Endings
Buttons
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@ voltage difference at one location in axon affects time
evolution of voltage differences at nearby locations

@ action potential propagates along the length of the axon

@ model time evolution of the action potential at a given site on
the axon

@ model diffusion of action potential along axon

Heuristics on the form of the equation: u(t) action potential at a
particular site on the axon
e damped harmonic oscillator (linear)

i+¢u+cu=0

¢ constant: measures how oscillations are damped
o first order form

u=—Cu—v

vV =cu
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e more refined model: nonlinear damped harmonic oscillator:
constant ( replaced by function of u

i+ ¢(u?—1)i+cu=0

van der Pol equation (circuits)

u:—C(u—“g)—v

v =-cu

first order form, with v = —ii + ((v — v?0)

e FitzHugh—Nagumo model based on a version of the nonlinear
damped harmonic oscillator (more general form of van der Pol
equation)
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Bonhoeffer-van der Pol nonlinear damped harmonic oscillator
u=u-— ”; —v+
v=cu—~vy—dv
with parameters v, ¢, d to be set empirically, and external forcing
term | = I(t)
e FitzHugh—Nagumo equation
u=ag(u)—bv+1
v=cu—dv
with g(u) a cubic polynomial g(u) = —u(u — 6)(u — 1)
e this only models action potential in time at a fixed site (no

varying spatial dimension), to include dependence on spatial
coordinate u = u(x, t)

2
8—‘;:ag(u)—bv+/+m%
of = cu—dv

used for propagation of signals (traveling waves) in excitable media
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Discrete modeling of FitzHugh—Nagumo for numerical simulations
e fixed increment A >0
e time derivative A~ (u(x, t + A) — u(x, t))
@ space second derivative
A% (u(x + A, t) —2u(x, t) + u(x — A, t))
e obtain a finite difference equation ux(n) = u(kA, nA)

ur(n+1) = uk(n) — Auk(n)(uk(n) — 0)(ux(n) — 1) — ave(n) + kU(n)
vk(n+ 1) = Bvk(n) + yvi(n)

coefficients A = aA, a = bA, = cA, v=1— dA and diffusion
term (from space second derivative)

U(n) = A~ (uksa(n) — 2uk(n) + ug-1(n))

without external forcing
e empirical assumption: «a, 3 small, # near 1/2 and v < 1 near one
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this type of discrete system: Coupled Map Lattice
@ only u, v on a discrete set: lattice AZ x AZ CR xR
@ any time step modeled by a local map f = (f1, ) : R? — R?

A(u,v)=uv—Au(u—0)(u—1)—av
f(u,v) = Bu+qv
@ local maps at each site coupled together by interaction terms
like U
Coupled Map Lattices are a useful method for studying PDEs

Main problem is controlling the error term that can grow rapidly
after a number of iterations
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Local Map

u—Au(u—0)(u—1)—av
Bu+yv

f:(u,v)|—>{

e Fixed point analysis: (u,v) = (0,0) = (0, 0) fixed point for all
values of parameters

v= lffyu’ Au(u—0)(u—1)+

ofB

=0
l—fyu

(real) solutions of second equation

u:;<0+1i\/(9—1)2—A(ia_67)>

discrimimant is nonnegative iff A > Ag
4a8
(1-7)@1-6)
e 0 < A < Ap only one fixed point (u, v) = (0,0); A= Ao one
additional fixed point; A > Ag origin and two more_fixed points

Ao =
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e change of behavior of the equation at the threshold A = Ag

e Stability of fixed points: Df = (%)U Jacobian matrix describes
J
linear approximation in neighborhood of fixed points

f(x) = f(p) + Df(p)(x — p) + R(x — p)

error term R (nonlinearities) sufficiently small if sufficiently near
fixed point p

e at a fixed point p = f(p) of a nonlinear function, with
linearization Df(pystabilﬁy properties of fixed point determined by
eigenvalues of linearization.

e for fixed point (0,0) and T : R? — R? linearization with
eigenvalues 1, A not on unit circle

o |\ < |u| < 1: attractive fixed point (0, 0)
e |\ <1< |u|: saddle point (0,0)
o 1 < |\ < |ul: repelling fixed point (0,0)
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Behavior near fixed points depending on eigenvalues of linearization

Real
eigenvalues

Complex
conjugate
eigenvalues

Stable
[Agl <1

Stable point
[l <1, Jagl <1

N\
N

[24] = |25 <1

Stable spiral
focus

Lyapunov stable*
[hgl =1

Neutral point

[l =1, ool <1 [l =1, 2] =1

[l = 25l =1

Neutral
center

Unstable
[Aql > 1

Saddle point Unstable point

gl > 1, |2g] <1

NSNS
SN N

gl > 1, [2g] > 1

1] = 2] > 1

Unstable spiral
focus

Fixed point stability for two dimensional discrete dynamical systems
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FitzHugh—Nagumo linearization

— — 2
DFf (u, v) = ( 1 A9+2A(Z/l8+ 0)u — 3Au ’ya )

eigenvalues at (u, v) of fixed point give stability
e if o, 8 sufficiently small eigenvalues approximated by v and value
of 1 — A + 2A(1 + 0)u — 3Au? at fixed point
e at fixed point (u,v) = (0,0) eigenvalue close to v and 1 — A6:
have |[1 — Af| <1for0 < A<2/0=A;

e for 0 < A< Aj and v < 1: attracting fixed point (0, 0)

e for A > A; and v < 1: saddle point (0,0)

@ have A; > Ag so when stability of (0,0) changes have already

two more fixed points
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e stability at other fixed point: approximate location of fixed
points and approximate value of Df

o fixed points on cubic v = —2u(u — 0)(u — 1): points of
intersection of this cubic curve with the line v = uf5/(1 —7)

e if 5 very small (compared to 1 — =) line almost horizontal and
fixed points approximated by intersection of cubic curve with

v = 0: fixed points approximated by (0,0), (6,0), (1,0)

e at (0,0): eigenvalues of linearization Df approximately + and
1+ A0 — A#?, since 0 < 0 < 1, second eigenvalue |A| > 1 and
saddle point for all A

e at (1,0): eigenvalues of linearization Df approximately ~ and
1+ Af — A; second eigenvalue |A\| > 1 when
0<A<2/(1—-0)= A, for A< A attractive fixed point, for
A > A, saddle
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cubic curve and line and stability of fixed points
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e Ap < A< min{Aj, Ay}: three fixed points: origin stable, first
fixed point saddle and second stable; trajectory approaching
first fixed point separatrix between basins of attraction of
origin and second fixed point
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@ value before A; where second eigenvalue 1 — A0 at origin
changes sign, reverses direction of left/right motion of
trajectories near origin

@ similar reversal at second fixed point near A~ 1/(1 — )

e if A; < A; origin changes behavior to saddle before second
fixed point

@ in this range what happens to trajectories now leaving the
origin in near horizontal direction? first fixed point also saddle
repelling in horizontal direction...

@ fixed point linear approximation incomplete picture: also look
at behavior of periodic orbits! trajectories leaving origin
attracted by a periodic orbit period 2, f(f(u,v)) = (u,v),
that appears around origin when A > A;

e Morse-Smale system: a dynamical system where finitely many
periodic orbits (including fixed points) and all orbits converge to a
periodic orbit
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Period Doubling

e FitzHugh-Nagumo model is a Morse—Smale dynamical system in
range of parameter A discusses above

e when further increasing the value of the parameter A beyond
max{A1, A2} orbit of order 2 stops being attractive, two further
points of order 4 appear near each (now unstable) order 2 point:
new attractive period 4 orbit

e cascade of period doubling: the period 4 orbits becomes unstable
giving rise of a stable period 8 orbit etc. with stable period 2"
becoming unstable and new stable period 2" orbit emerging
from the bifurcation

e numerical estimates indicate bifurcation values A, of the
parameter A converge to a value A, when n — oo

e the dynamical system is Morse-Smale in the range A < Ay

e in fact two sequences of such periodic orbits: one around (0, 0)
to the left of the stable curve through the first fixed point ~ (6,0)
and one for the second fixed point ~ (1,0) to the right of the
stable curve through the first fixed point
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Constructing Bifurcation Diagrams
e Fix a value of parameter A and an initial condition (u, v)
(near origin)
Compute a sufficiently large number of iterates
Plot resulting position f"(u, v)
Repeat for other values of A

Repeat whole process for other initial conditions (near second
fixed point, near other fixed points where expect to find
period doubling cascade)

Typically one such bifurcation diagram (near one of the fixed
points involved) looks like the following picture
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Bifurcation Diagrams
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Cascade Bifurcations and Chaos Theory

e What is happening in these diagrams beyond the period doubling
series, for A > A,: see a much more complicated behavior and
periodic orbits of periods other than 27; also find orbits dense in a
Cantor set, not approaching periodic orbit

e universal behavior: A, — A,_1 ~ C4" Feigenbaum constant ¢
(universal constant)

e Sharkovsky's ordering of the natural numbers:
35T <I<CII< -
<2:3<2:5<2-7<2-9<2-11<---
<2M.3<2" 5 <27 <29 <2 11 < -
<"l c8<4<2<

e Sharkovsky's theorem: if a continuous map h: R — R has a
periodic point of period m € N, then it also has periodic points of
any period n € N where n > m in the Sharkovsky's ordering
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e if a map h: R — R has only finitely many periodic orbits then all
have periods powers of 2

e the result requires h: R — R (based on Mean Value Theorem),
not true for maps h: C — C (for instance, eg h(z) = *™//"z
where all periodic orbits period n)

e Sharkovsky’s theorem very useful result to explain cascade period
doubling phenomena by reducing to a one-dimensional dynamics

e Tien-Yien Li; James A. Yorke, Period Three Implies Chaos, The
American Mathematical Monthly, Vol. 82, No. 10. (Dec., 1975),
pp. 985-992

e period three implies infinitely many periodic orbits of arbitrary
periods in N and sensitive dependence on initial conditions for
orbits (which do not necessarily converge to a periodic orbit
anymore)

e typical behavior past A > A, at the end of the period doubling
cascade: chaos region with arbitrary periodic orbits
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Bifurcation Diagrams in the FitzHugh—Nagumo model varying A
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6) with & 5, a RUN
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Bifurcation Diagram in the FitzHugh—Nagumo model for electric
potential x = u as function of varying parameter A
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max(x)
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from
http://iopscience.iop.org/article/10.1088/1367-2630/12/5/053040
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In terms of trajectories (u(t), v(t)) of the original continuous
FitzHugh—Nagumo ODE

E2

fixed points Ep and E; are stable and E; is unstable
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0.2  EO

fixed points Eg and E; are stable, with an unstable periodic orbit
around E;
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2 °
with also an external forcing /: limit cycle appears through Hopf
bifurcation near Ep, moves upward with increasing / and disappears
in another Hopf bifurcation near E)
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a sequence of orbits for values of /
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Resulting picture of the model
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V-W plane plot o
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Varying external forcing

25
25
2
2
=16
v =15
I s
a 3
5 2
5 -
g 9
g § o
08 =
spiking
resting ~ 5
B resting
-2 -1 o 1 2 E
e mbrane potential, \f 3

1 o 1
Femhrane Rotertial V
25

2

recovery variable, W
oo b

spiking blocked

resting

-1 0 1
mermbrane petential, V




Conclusion
@ Single neuron is a complicated nonlinear dynamical system

@ Spiking behavior arises from bifurcation pattern and stability
properties of equilibria (fixed points) and occurrence of
limiting cycles

e Varying parameters (injected current Z and parameter A)
creates pattern of bifurcations

@ Possibility of bifurcation cascades and chaos

We will later deal with larger neuronal architectures beyond single
neuron case
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