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interplay of electrophysiology, bifurcation mechanism of
dynamical systems, and computational properties of neurons

neuron in terms of ions and channels

neuron in terms of input/output relations

neuron as a nonlinear dynamical system

• dynamical system near a transition (bifurcation) resting/spiking
activities

• deduce computational properties of neurons from studying
geometry of phase portrait at the bifurcations of the nonlinear
dynamical system
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Properties of neurons

about 1011 neurons in the human brain

can transmit electric signals over long distances

neuron receives input from more than 105 other neurons
through synapses

organized in neuronal circuits

spikes main mean of communication between neurons

firing threshold of neurons
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Hodgkin-Huxley Model based on giant squid axon
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Deriving the Hodgkin-Huxley Equation

all cells have a membrane potential VM = Vin − Vout

difference of electric potential inside and outside the cell
membrane

resting potential = potential across the membrane when cell
is at rest: typical neuron −70mV

Sodium/Potassium channels: non-gated channels (always
open) and voltage gated channels (open depending on
conditions on membrane potential)

inward current: positively charged ion entering membrane:
Na+ (raises membrane potential: depolarized)

outward current: positively charged ion leaving the cell K+, or
negatively charged entering the cell Cl− (hyperpolarized)
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Nernst–Planck equation

C (x) concentration of some ion and V (x) potential at some
point x ∈ M on membrane, diffusive flux Jdiff , diffusion
constant D (depends on size of molecules)

Jdiff = −D ∂C
∂x

diffusion movement from high to low concentration

Electrical drift: electric field E = −∂V /∂x , valence z ∈ Z of
ion, µ mobility

Jdrift = −µzC ∂V
∂x

total flux across membrane: J = Jdiff + Jdrift

Einstein relation: mobility and diffusion coefficient

D =
kT

q
µ

Boltzmann constant k , temperature T , charge q

corresponding current flux =0 is Nernst–Planck equation
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Hodgkin-Huxley circuit

CM
dVM

dt
+ Iion = Iext

• fraction pi of open channels for ion i

dpi

dt
= αi (V )(1− pi )− βi (V )pi
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Hodgkin-Huxley Equation
in Hodgkin-Huxley model of giant squid axon:

persistent voltage gated K+ current four activation gates

transient voltage gated Na+ current three activation gates

leak current Cl−

activation variables n, m (probability of activation gate open),
inactivation variable h (probability of inactivation gate open)

CM
dVM

dt
= −gKn

4(VM −EK )− gNam
3h(VM −ENa)− gL(VM −EL)

dn

dt
= αn(V )(1− n)− βn(V )n

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h
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Propagation of the Action Potential V = VM(x , t)

C
∂V

∂t
=

a

2R

∂2V

∂x2
+ I − IK − INa − IL

with a radius of axon, R resistance of axoplasm, and with currents
as above I = gmahb(V − E ) gate model

• nonlinearities in α(V ) and β(V )

numerical treatment of equations
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Injected current I as bifurcation parameter
Shape of V (t) for increasing I (in nanoamps): not firing, firing a
single spike, cycle with train of spikes, sudden jump in amplitude
not gradual increase (bifurcation phenomenon)
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• Hodgkin–Huxley linearization at fixed point: two negative
eigenvalues and two complex eigenvalues (small positive real part)
• eigenvectors of negative eigenvalues evolve to zero (large t)
• eigenvectors of complex eigenvalue define center manifold:
solutions in 4-dim system flow towards center manifold in 2-dim
plane; limit cycle in center manifold plane
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FitzHugh–Nagumo Model
(simplified version of the Hodgkin-Huxley dynamics, 1961)
• neuron receiving signals along dendrites, processed in the soma,
single output along the axon
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voltage difference at one location in axon affects time
evolution of voltage differences at nearby locations

action potential propagates along the length of the axon

model time evolution of the action potential at a given site on
the axon

model diffusion of action potential along axon

Heuristics on the form of the equation: u(t) action potential at a
particular site on the axon
• damped harmonic oscillator (linear)

ü + ζu̇ + cu = 0

ζ constant: measures how oscillations are damped
• first order form

u̇ = −ζu − v
v̇ = cu
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• more refined model: nonlinear damped harmonic oscillator:
constant ζ replaced by function of u

ü + ζ(u2 − 1)u̇ + cu = 0

van der Pol equation (circuits)

u̇ = −ζ
(
u − u3

3

)
− v

v̇ = cu

first order form, with v̇ = −ü + ζ(u̇ − u2u̇)

• FitzHugh–Nagumo model based on a version of the nonlinear
damped harmonic oscillator
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Bonhoeffer- van der Pol nonlinear damped harmonic oscillator

u̇ = u − u3

3 − v + I
v̇ = cu − γ − dv

with parameters γ, c , d to be set empirically, and external forcing
term I = I (t)

• FitzHugh–Nagumo equation

u̇ = ag(u)− bv + I
v̇ = cu − dv

with g(u) a cubic polynomial g(u) = −u(u − θ)(u − 1)
• this only models action potential in time at a fixed site (no
varying spatial dimension), to include dependence on spatial
coordinate u = u(x , t)

∂u
∂t = ag(u)− bv + I + κ∂

2u
∂x2

∂v
∂t = cu − dv

used for propagation of signals (traveling waves) in excitable media
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Discrete modeling of FitzHugh–Nagumo for numerical simulations

• fixed increment ∆ > 0

time derivative ∆−1(u(x , t + ∆)− u(x , t))

space second derivative
∆−2(u(x + ∆, t)− 2u(x , t) + u(x −∆, t))

• obtain a finite difference equation uk (n) = u(k∆, n∆)

uk (n + 1) = uk (n)− Auk (n)(uk (n)− θ)(uk (n)− 1)− αvk (n) + κU(n)
vk (n + 1) = βvk (n) + γvk (n)

coefficients A = a∆, α = b∆, β = c∆, γ = 1− d∆ and diffusion
term (from space second derivative)

U(n) = ∆−1(uk+1(n)− 2uk (n) + uk−1(n))

without external forcing
• empirical assumption: α, β small, θ near 1/2 and γ < 1 near one
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this type of discrete system: Coupled Map Lattice

only u, v on a discrete set: lattice ∆Z×∆Z ⊂ R× R
any time step modeled by a local map f = (f1, f2) : R2 → R2

f1(u, v) = u − Au(u − θ)(u − 1)− αv
f2(u, v) = βu + γv

local maps at each site coupled together by interaction terms
like U

Coupled Map Lattices are a useful method for studying PDEs

Main problem is controlling the error term that can grow rapidly
after a number of iterations
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Local Map

f : (u, v) 7→
{

u − Au(u − θ)(u − 1)− αv
βu + γv

• Fixed point analysis: (u, v) = (0, 0) = f (0, 0) fixed point for all
values of parameters

v =
β

1− γ
u, Au(u − θ)(u − 1) +

αβ

1− γ
u = 0

(real) solutions of second equation

u =
1

2

(
θ + 1±

√
(θ − 1)2 − 4αβ

A(1− γ)

)
discrimimant is nonnegative iff A ≥ A0

A0 =
4αβ

(1− γ)(1− θ)2

• 0 < A < A0 only one fixed point (u, v) = (0, 0); A = A0 one
additional fixed point; A > A0 origin and two more fixed points
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• change of behavior of the equation at the threshold A = A0

• Stability of fixed points: Df = ( ∂fi
∂xj

)ij Jacobian matrix describes

linear approximation in neighborhood of fixed points

f (x) = f (p) + Df (p)(x − p) + R(x − p)

error term R (nonlinearities) sufficiently small if sufficiently near
fixed point p
• Two dimensional cases: T : R2 → R2 linear map, with
eigenvalues µ, λ not on unit circle

|λ| ≤ |µ| < 1: attractive fixed point (0, 0)

|λ| < 1 < |µ|: saddle point (0, 0)

1 < |λ| ≤ |µ|: repelling fixed point (0, 0)
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Behavior changes across discriminant curve Tr(A)2 − 4 det(A) = 0

Fixed point stability for two dimensional systems A = Df (p)
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FitzHugh–Nagumo linearization

Df (u, v) =

(
1− Aθ + 2A(1 + θ)u − 3Au2 −α

β γ

)
eigenvalues at (u, v) of fixed point give stability
• if α, β sufficiently small eigenvalues approximated by γ and value
of 1− Aθ + 2A(1 + θ)u − 3Au2 at fixed point
• at fixed point (u, v) = (0, 0) eigenvalue close to γ and 1− Aθ:
have |1− Aθ| < 1 for 0 < A < 2/θ = A1

for 0 < A < A1 and γ < 1: attracting fixed point (0, 0)

for A > A1 and γ < 1: saddle point (0, 0)

have A1 > A0 so when stability of (0, 0) changes have already
two more fixed points
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• stability at other fixed point: approximate location of fixed
points and approximate value of Df

• fixed points on cubic v = −A
αu(u − θ)(u − 1): points of

intersection of this cubic curve with the line v = uβ/(1− γ)

• if β very small (compared to 1− γ) line almost horizontal and
fixed points approximated by intersection of cubic curve with
v = 0: fixed points approximated by (0, 0), (θ, 0), (1, 0)

• at (θ, 0): eigenvalues of linearization Df approximately γ and
1 + Aθ − Aθ2, since 0 < θ < 1, second eigenvalue > 1 and saddle
point for all A

• at (1, 0): eigenvalues of linearization Df approximately γ and
1 + Aθ − A; second eigenvalue > 1 when 0 < A < 2/(1− θ) = A2,
for A < A2 attractive fixed point, for A > A2 saddle
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cubic curve and line and stability of fixed points

Cases:

A0 < A < min{A1,A2}: three fixed points: origin stable, first
fixed point saddle and second stable; trajectory approaching
first fixed point separatrix between basins of attraction of
origin and second fixed point
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value before A1 where second eigenvalue 1− Aθ at origin
changes sign, reverses direction of left/right motion of
trajectories near origin

similar reversal at second fixed point near A ∼ 1/(1− θ)

if A1 < A2 origin changes behavior to saddle before second
fixed point

in this range what happens to trajectories now leaving the
origin in near horizontal direction? first fixed point also saddle
repelling in horizontal direction...

fixed point linear approximation incomplete picture: also look
at behavior of periodic orbits! trajectories leaving origin
attracted by a periodic orbit period 2, f (f (u, v)) = (u, v),
that appears around origin when A > A1

• Morse-Smale system: a dynamical system where finitely many
periodic orbits (including fixed points) and all orbits converge to a
periodic orbit
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Period Doubling

• FitzHugh-Nagumo model is a Morse–Smale dynamical system in
range of parameter A discusses above

• when further increasing the value of the parameter A beyond
max{A1,A2} orbit of order 2 stops being attractive, two further
points of order 4 appear near each (now unstable) order 2 point:
new attractive period 4 orbit

• cascade of period doubling: the period 4 orbits becomes unstable
giving rise of a stable period 8 orbit etc. with stable period 2n

becoming unstable and new stable period 2n+1 orbit emerging
from the bifurcation

• numerical estimates indicate bifurcation values An of the
parameter A converge to a value A∞ when n→∞
• the dynamical system is Morse–Smale in the range A < A∞

• in fact two sequences of such periodic orbits: one around (0, 0)
to the left of the stable curve through the first fixed point ∼ (θ, 0)
and one for the second fixed point ∼ (1, 0) to the right of the
stable curve through the first fixed point

• what happens for A ≥ A∞?
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Constructing Bifurcation Diagrams

Fix a value of parameter A and an initial condition (u, v)
(near origin)

Compute a sufficiently large number of iterates

Plot resulting position f n(u, v)

Repeat for other values of A

Repeat whole process for other initial conditions (near second
fixed point, near other fixed points where expect to find
period doubling cascade)

Typically one such bifurcation diagram (near one of the fixed
points involved) looks like the following picture
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Bifurcation Diagrams
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Cascade Bifurcations and Chaos Theory

• What is happening in these diagrams beyond the period doubling
series, for A ≥ A∞: see a much more complicated behavior and
periodic orbits of periods other than 2n; also find orbits dense in a
Cantor set, not approaching periodic orbit

• universal behavior: An − An−1 ∼ Cδn Feigenbaum constant δ
(universal constant)

• Sharkovsky’s ordering of the natural numbers:

3 < 5 < 7 < 9 < 11 < · · ·

< 2 · 3 < 2 · 5 < 2 · 7 < 2 · 9 < 2 · 11 < · · ·
< 2n · 3 < 2n · 5 < 2n · 7 < 2n · 9 < 2n · 11 < · · ·
· · · < 2n < 2n−1 < · · · < 8 < 4 < 2 < 1

• Sharkovsky’s theorem: if a continuous map h : R→ R has a
periodic point of period m ∈ N, then it also has periodic points of
any period n ∈ N where n > m in the Sharkovsky’s ordering
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• if a map h : R→ R has only finitely many periodic orbits then all
have periods powers of 2

• the result requires h : R→ R (based on Mean Value Theorem),
not true for maps h : C→ C (for instance, eg h(z) = e2πi/nz
where all periodic orbits period n)

• Sharkovsky’s theorem very useful result to explain cascade period
doubling phenomena by reducing to a one-dimensional dynamics

• Tien-Yien Li; James A. Yorke, Period Three Implies Chaos, The
American Mathematical Monthly, Vol. 82, No. 10. (Dec., 1975),
pp. 985–992

• period three implies infinitely many periodic orbits of arbitrary
periods in N and sensitive dependence on initial conditions for
orbits (which do not necessarily converge to a periodic orbit
anymore)

• typical behavior past A ≥ A∞ at the end of the period doubling
cascade: chaos region with arbitrary periodic orbits
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Bifurcation Diagrams in the FitzHugh–Nagumo model varying A
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Bifurcation Diagram in the FitzHugh–Nagumo model for electric
potential x = u as function of varying parameter A

from

http://iopscience.iop.org/article/10.1088/1367-2630/12/5/053040
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In terms of trajectories (u(t), v(t)) of the original continuous
FitzHugh–Nagumo ODE

fixed points E0 and E2 are stable and E1 is unstable
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fixed points E0 and E2 are stable, with an unstable periodic orbit
around E2
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with also an external forcing I : limit cycle appears through Hopf
bifurcation near E0, moves upward with increasing I and disappears

in another Hopf bifurcation near E2
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a sequence of orbits for descrasing values of I
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Resulting picture of the model
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with external forcing term I move the cubic curve and the
intersections with line
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Varying external forcing
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Conclusion

Single neuron is a complicated nonlinear dynamical system

Spiking behavior arises from bifurcation pattern and stability
properties of equilibria (fixed points) and occurrence of
limiting cycles

Varying parameters (injected current J and parameter A)
creates pattern of bifurcations

Possibility of bifurcation cascades and chaos

We will later deal with larger neuronal architectures beyond single
neuron case
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