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Feynman motives and deletion-contraction relations

Paolo Aluffi and Matilde Marcolli

ABSTRACT. We prove a deletion-contraction formula for motivic Feynman
rules given by the classes of the affine graph hypersurface complement in the
Grothendieck ring of varieties. We derive explicit recursions and generating se-
ries for these motivic Feynman rules under the operation of multiplying edges
in a graph and we compare it with similar formulae for the Tutte polynomial
of graphs, both being specializations of the same universal recursive relation.
We obtain similar recursions for outerplanar graphs (given in full for chains of
polygons) and for graphs obtained by replacing an edge by a chain of triangles.
We show that the deletion-contraction relation can be lifted to the level of the
category of mixed motives in the form of a distinguished triangle, similarly to
what happens in categorifications of graph invariants.

1. Introduction

Recently, a series of results ([12], [5], [18], [9]) began to reveal the existence of a
surprising connection between the world of perturbative expansions and renormal-
ization procedures in quantum field theory and the theory of motives and periods
of algebraic varieties. This lead to a growing interest in investigating algebro-
geometric and motivic aspects of quantum field theory, see [2], [3], [4], [7], [13],
[19], [21], [33], [34], [35], for some recent developments. Some of the main ques-
tions in the field revolve around the motivic nature of projective hypersurfaces
associated to Feynman graphs. It is known by a general result of [5] that these
hypersurfaces generate the Grothendieck ring of varieties (after a suitable local-
ization). This implies that, for sufficiently complicated graphs, they can become
arbitrarily complex as motives. However, one would like to identify explicit condi-
tions on the Feynman graphs that ensure that the numbers obtained by evalating
the contribution of the corresponding Feynman integral can be described in algebro
geometric terms as periods of a sufficiently simple form, that is, periods of mixed
Tate motives. The reason to expect that this will be the case for significant classes
of Feynman graphs lies in extensive databases of calculations of such integrals (see
[12]) which reveal the pervasive appearance of multiple zeta values.

In [2], [3], [4] we approached the question of understanding the motivic prop-
erties of the hypersurfaces of Feynman graphs from the point of view of singularity
theory. In fact, the graph hypersurfaces are typically highly singular, with singular-
ity locus of low codimension. This has the effect that their motivic nature can often
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be simpler than what one would encounter in dealing with smooth hypersurfaces.
This makes it possible to control the motivic complexity in terms of invariants that
can measure effectively how singular the hypersurfaces are. To this purpose, in [3]
we looked at algebro-geometric objects that behave like Feynman rules in quantum
field theory, in the sense that they have the right type of multiplicative behavior
over disjoint unions of graphs and the right type of decomposition relating one-
particle-irreducible (1PT) graphs and more general connected graphs. The simplest
example of such algebro-geometric Feynman rules is the affine hypersurface com-
plement associated to a Feynman graph. This behaves like the expectation value
of a quantum field theory whose edge propagator is the Tate motive Q(1). Another
algebro-geometric Feynman rule we constructed in [3] is based on characteristic
classes of singular varieties, assembled in the form of a polynomial Cp(T') € Z[T]
associated to a Feynman graph I'.

In this paper, we investigate the dependence of these algebro-geometric Feyn-
man rules on the underlying combinatorics of the graphs. Our approach is based on
deletion—contraction relations, that is, formulae relating the invariant of a graph to
that of the graphs obtained by either deleting or contracting an edge. The results we
present in this paper will, in particular, answer a question on deletion—contraction
relations for Feynman rules asked by Michael Falk to the first author during the
Jaca conference, which motivated us to consider this problem.

It is well known that certain polynomial invariants of graphs, such as the
Tutte polynomial and various invariants obtained from it by specializations, sat-
isfy deletion—contraction relations. These are akin to the skein relations for knot
and link invariants, and make it possible to compute inductively the invariant for
arbitrary graphs, by progressively reducing it to simpler graphs with fewer edges.

We first show, in §2, that the Tutte polynomial and its specializations, the
Tutte—Grothendieck invariants, define abstract Feynman rules in the sense of [3].
We observe that this suggests possible modifications of these invariants based on
applying a Connes—Kreimer style renormalization in terms of Birkhoff factorization.
This leads to modified invariants which may be worthy of consideration, although
they lie beyond the purpose of this paper.

Having seen how the usual deletion—contraction relations of polynomial in-
variants of graphs fit in the language of Feynman rules, we consider in §3 our
main object of interest, which is those abstract Feynman rules that are of algebro-
geometric and motivic nature, that is, that are defined in terms of the affine graph
hypersurface complement and its class in the Grothendieck ring of varieties, or its
refinement introduced in [3], the ring of immersed conical varieties. We begin by
showing that the polynomial invariant Cr(T) we constructed in [3] in terms of
characteristic classes is not a specialization of the Tutte polynomial, hence it is
likely to be a genuinely new type of graph polynomial which may behave in a more
refined way in terms of deletion and contraction. To obtain an explicit deletion—
contraction relation, we consider the universal motivic Feynman rule defined by
the class U(T') = [A™ \ X7] in the Grothendieck ring of varieties of the comple-
ment of the affine graph hypersurface of a Feynman graph. Our first main result of
the paper is Theorem 3.8 where we show that U(T") satisfies a deletion—contraction
relation of the form

UM) =L [A" P\ (Xpee N Xpje)] = U N e),
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with L the Lefschetz motive. In §4 we reinterpret this result in terms of linear
systems and Milnor fibers. This deletion—contraction formula pinpoints rather pre-
cisely the geometric mechanism by which non-mixed Tate motives will start to
appear when the complexity of the graph grows sufficiently. In fact, it is the mo-
tivic nature of the intersection of the hypersurfaces )A(p\e N )A(p /e that becomes
difficult to control, even when the motives of the two hypersurfaces separately are
known to be mixed Tate.

We note that this confirms the main conclusion of §8 in [9], which is obtained by
very similar methods: in particular, our Theorem 3.3 reproduces the isomorphism
given in (8.2) of [9]. However, the formulas we obtain in Theorem 3.8 are not
equivalent to the corresponding relation (8.8) given in [9]; our (3.19) corrects an
oversight in (8.8) of [9]. The result of our Theorem 3.8 is also closely related to
Proposition 2.3 of [36].

We also note that Theorem 3.8 implies easily that graph hypersurfaces are
equivalent to constants in the stable birational equivalence ring Z[SB] (cf. [31]).
In particular, their classes do not generate the (unlocalized) Grothendieck ring of
varieties. This fact should be compared to the result of [5] mentioned above.

In §5 we investigate certain simple operations on graphs, under which one can
control explicitly the effect on the motivic Feynman rule U(T") using the deletion—
contraction relation. The first such example is the operation that replaces an edge
in a given graph by m parallel copies of the same edge. The effect on graph
hypersurfaces and their classes U(T") of iterations of this operation can be packaged
in the form of a generating series and a recursion, which is proved using the deletion—
contraction relation. The main feature that makes it possible to control the whole
recursive procedure in this case is a cancellation that eliminates the class involving
the intersection of the hypersurfaces and expresses the result for arbitrary iterations
as a function of just the classes U(T'), U(T' \ e) and U(I'/e). Our second main
result in the paper is Theorem 5.3, which identifies the recursion formula and the
generating function for the motivic Feynman rules under multiplication of edges in
a graph.

As a comparison, we also compute explicitly in §5.1 the recusion formula sat-
isfied by the Tutte polynomial for this same family of operations on graphs given
by multiplying edges.

Another class of graphs for which the resulting U(T') can be controlled in terms
of the deletion—contraction relations is the class of outerplanar graphs. It was
observed in [40] (cf. [15]) that outerplanar graphs have ‘probabilistic Kirchhoff
polynomial’. We give explicit recursion formulas for graphs consisting of chains
of polygons in §5.4, reducing the problem to the case of “lemon graphs” given by
chains of triangles. A similar recursion formula is in fact derived in §5.5 for all
graphs obtained from a given graph by replacing a chosen edge by a lemon graph.

We then show in §6 that the recursion relations and generating functions for the
motivic Feynman rule and for the Tutte polynomial under multiplication of edges in
a graph are in fact closely related. We show that they are both specializations, for
different choice of initial conditions, of the same universal recursion relation. We
formulate a conjecture for a recursion relation for the polynomial invariant Cr(T),
based on numerical evidence collected by [37]. It again consists of a specialization
of the same universal recursion relation, for yet another choice of initial conditions.
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In the last section we show that one can think of the motive of the hypersurface
complement in the Voevodsky triangulated category of mixed motives as a categori-
fication of the invariant U(T"), thinking of motives as a universal cohomology theory
and of classes in the Grothendieck ring as a universal Euler characteristic. This cat-
egorification has properties similar to the well known categorifications of the Jones
polynomial via Khovanov homology [28] and of the chromatic polynomial and the
Tutte polynomial [23], [27] via versions of graph cohomology. In fact, in all of these
cases the deletion—contraction relations are expressed in the categorification in the
form of a long exact cohomology sequence. We show that the same happens at the
motivic level, in the form of a distinguished triangle in the triangulated category
of mixed motives.

2. Abstract Feynman rules and polynomial invariants

We recall briefly how the Feynman rules of a perturbative scalar field theory are
defined, as a motivation for a more general notion of abstract Feynman rule, which
we then describe. The reader who does not wish to see the physical motivation can
skip directly to the algebraic definition of abstract Feynman rule given in Definition
2.1, and use that as the starting point. Since the main results of this paper concern
certain abstract Feynman rules of combinatorial, algebro-geometric, and motivic
nature, the quantum field theoretic notions we recall here serve only as background
and motivation.

2.1. Feynman rules in perturbative quantum field theory. In pertur-
bative quantum field theory, the evaluation of functional integrals computing ex-
pectation values of physical observables is obtained by expanding the integral in a
perturbative series, whose terms are labeled by graphs, the Feynman graphs of the
theory, whose valences at vertices are determined by the Lagrangian of the given
physical theory. The number of loops of the Feynman graphs determines how far
one is going into the perturbative series in order to evaluate radiative corrections
to the expectation value. The contribution of individual graphs to the perturbative
series is determined by the Feynman rules of the given quantum field theory. In
the case of a scalar theory, these can be summarized as follows.

A graph I is a Feynman graph of the theory if all vertices have valence equal to
the degree of one of the monomials in the Lagrangian of the theory. Feynman graphs
have internal edges, which are thought of as matching pairs of half edges connecting
two of the vertices of the graph, and external edges, which are unmatched half edges
connected to a single vertex. A graph is 1-particle-irreducible (1PI) if it cannot be
disconnected by removal of a single (internal) edge.

We consider a scalar quantum field theory specified by a Lagrangian of the
form

(2.) £0) = [ (3007 + 56 + 7))

where we use Euclidean signature in the metric on the underlying spacetime R”
and the interaction term is a polynomial of the form

(22) Pg) =3 o
By
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In the following we will treat the dimension D of the underlying spacetime as a
variable parameter.
To a connected Feynman graph of a given scalar quantum field theory one
assigns a function V(I',p1,...,pn) of the external momenta in the following way.
Each internal edge e € F;,+(T") contributes a momentum variable k. € RP and
the function of the external momenta is obtained by integrating a certain density
function over the momentum variables of the internal edges,
dPk, dPk,

(2mP  (2m)P’
for n = #E;i(I'). We write k& = (k.) for the collection of all the momentum
variables assigned to the internal edges.

The term Zr(pi,...,pn, k1, .., kn) is constructed according to the following
procedure. Each vertex v € V(I') contributes a factor of \,(27)?, where ), is the
coupling constant of the monomial in the interaction term (2.2) in the Lagrangian
of order equal to the valence of v. One also imposes a conservation law on the
momenta that flow through a vertex,

(2.4) (k) :=06( Y ke— > ko),

s(e)=v t(e)=v

(23) V(F,p1,...,pN) = /Ir(pl,...,pN,kl,...,kn)

written after chosing an orientation of the edges of the graph, so that s(e) and
t(e) are the source and target of an edge e. When a vertex is attached to both
internal and external edges, the conservation law (2.4) at that vertex will be of
an analogous form §,(k,p), involving both the k variables of the momenta along
internal edges and the p variables of the external momenta. We will see later that
the dependence on the choice of the orientation disappears in the final form of the
Feynman integral.

Each internal edge e € E;,:(I') contributes an inverse propagator, that is, a
term of the form ¢, !, where q. is a quadratic form, which in the case of a scalar
field in the Euclidean signature is given by

(2.5) qe(ke) = K2 +m?,

Each external edge e € E..;(T') contributes an inverse propagator g.(p.) !,
with g.(pe) = p? +m?. The external momenta are assigned so that they satisfy the
conservation law ) p. = 0, when summed over the oriented external edges.

The integrand Zr(p1, .. .,pN, k1, - - ., ks ) is then a product

(2.6) H )‘v(27T)D 6y (K, p) H Qe(ke)71 H Qe(pe)il-

veV(T) e€Eint(T) e€Ecq ()

The Feynman rules defined in this way satisfy two main properties, which follow
easily from the construction described above (see [32], [35]).

The Feynman rules are multiplicative over disjoint unions of graphs (hence one
can reduce to considering only connected graphs):

(27) V(Papb s 7pN17p/17 . 7p3\72) = V(thh s 7pN1)V(F2>p/1> s 7p/N2)7

for a disjoint union I' = I'; U T's, of two Feynman graphs I'y and I's, with external
momenta p = (p1,...,pn,) and p’ = (pi,...,pl,), respectively.

Any connected graph I" can be obtained from a finite tree T' by replacing vertices
v of T" with 1PI graphs I', with number of external edges equal to the valence of
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the vertex v. Then the Feynman rules satisfy

(2.8) V(T,p) = H V (T, po) qe(pv)il 6((pv)e = (Por)e)-
VeV (T),e€EE;n(T),vEd(E)
The delta function in this expression matches the external momenta of the 1PI
graphs inserted at vertices sharing a common edge.
Up to a factor containing the inverse propagators of the external edges and the
coupling constants of the vertices, we write

V(F7p17" 7pN) = Cg(plw-‘upN) U(F7p17-"7pN)7

with € = [[,ev Ao(2m)P and e(py,...,pN) = Heer...r) ge(pe) ™! and the re-
maining term is

n N
(2 i1 €v,iki + Zj:l €0,5P;)
Q1(k1)"'Qn(kn) ’

where we have written the delta functions d,(k,p) of (2.4) equivalently in terms of
the edge-vertex incidence matrix of the graph, €,; = £1 when v = t(e) or v = s(e)
and €, ; = 0 otherwise. The Feynman integrals (2.9) still satisty the two properties
(2.7) and (2.8).

Notice that the property (2.8) expressing the Feynman rule for connected
graphs in terms of Feynman rules for 1PI graphs has a simpler form in the case
where either all external momenta are set equal to zero and the theory is massive
(m # 0), or all external momenta are equal. In such cases (2.8) reduces to a product

U(r,p) = U@)#F® T Uy, ),
veV(T)

(2.9) U, p1,...,pn) =

with U(L) the inverse propagator assigned to a single edge.

2.2. Abstract Feynman rules. In [3] we abstracted the two properties of
Feynman rules recalled above and used them to define a class of algebro-geometric
Feynman rules.

More precisely, we defined an abstract Feynman rule in the following way. These
are just maps of 1PI graphs to commutative rings, so one can simply refer to them as
“1PI rules” or just multiplicative rules. The terminology “abstract Feynman rules”
we adopt here is in view of the specific subclass of algebro-geometric Feynman
rules we will be focusing on in the rest of the paper. In particular, unlike the
concrete physical Feynman rules, these in general are not expressible in terms of
data attached to edges and vertices.

DEFINITION 2.1. An abstract Feynman rule is a map from the set of (isomor-
phism classes of) finite graphs to a commutative ring R, with the property that it
is multiplicative over disjoint unions of graphs,

(2.10) UM Uly) =U(I)U(T2),

and such that, for a connected graph I' = U,cy()['y obtained by inserting 1PI
graphs I, at the vertices of a tree T, it satisfies

(2.11) U(T) =U(L)#F® T U(T,),
veV (T)

where U(L) is the inverse propagator, that is, the value assigned to the graph con-
siting of a single edge.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



FEYNMAN MOTIVES AND DELETION-CONTRACTION RELATIONS 27

The multiplicative property with respect to disjoint unions of graphs, together
with the second property which implies that 1PI graphs are sufficient to determine
completely the Feynmal rule, means that an abstract Feynman rule with values in
R can be reformulated as a ring homomorphism from a Hopf algebra H of Feynman
graphs to R.

In fact, one of the main points of the Connes—Kreimer theory [16] is the fact
that the BPHZ renormalization procedure can be applied to any morphism of com-
mutative algebras from H to a target commutative ring, provided that the target R
is endowed with an additional Rota-Baxter structure of weight —1 (in the formu-
lation of [22]). The morphism U : H — R, in this setting, has absolutely nothing
to do with the coproduct structure of H, since it is only a ring homomorphism.
Where the Hopf algebra structure of H and the Rota-Baxter structure of R enter
in the BPHZ renormalization procedure is in the recursive formula of Birkhoff fac-
torization that separate U into a “renormalized” part and a “counterterm” part.
Thus, provided one lands in a commutative ring R which admits a Rota-Baxter
structure of weight —1, one can use the coproduct structure of H to apply BPHZ
renormalization to any abstract Feynman rule with values in R.

In this general setting, since we are not choosing a particular Lagrangian of
the theory, the Hopf algebra is not the usual Connes—Kreimer Hopf algebra [16],
which depends on the Lagrangian of a particular theory but the larger Hopf algebra
referred to in [10] and [29] as the “core Hopf algebra”. As an algebra (or a ring)
this is a polynomial algebra generated by all 1PI graphs and the coproduct is of
the form

(2.12) AD)=T®1+1aT+ Y yaT/y,
yCI'

where the sum is over subgraphs whose connected components are 1PI. The quotient
I'/~ is obtained by shrinking each component of v to a single vertex. The Hopf
algebra is graded by loop number (or by number of internal edges) and the antipode
is defined inductively by

ST)=-T =Y ST/
A Rota—Baxter operator of weight X is a linear operator ¥ : R — R satisfying
(2.13) Tz)2(y) = T=T(y)) + T(T()y) + AT (zy).

In the case where A = —1, such an operator determines a decomposition of the ring
R into two commutative unital rings R4 defined by Ry = (1 — T)R and R_ the
ring obtained by adjoining a unit to the nonunital TR. An example of (R,%) is
given by Laurent series with the projection onto the polar part.

The Connes—Kreimer interpretation [16] [17] of the BPHZ renormalization pro-
cedure as a Birkhoff factorization of loops with values in the affine group scheme
dual to the Hopf algebra of Feynman graphs can be formulated equivalently in
terms of the Rota—Baxter structure [22]. The Connes—Kreimer recursive formula
for the Birkhoff factorization of an algebra homomorphism U : H — R is given as
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n [16] by
U_(D)= —T U@+ > U_(y)U(T/y)
(2.14) et
U,T) = (1- )+ > U_()UT/y)
~yCI*

Of these, the U_ term gives the counterterms and the U, gives the renormalized
value.

One can see here explicitly how, although the multiplicative property of Feyn-
man rules only relates to the algebra, not the coalgebra, structure of the Hopf alge-
bra of Feynman graphs, the coproduct and the antipode enter essentially in (2.14),
which gives the renormalization of a arbitrary abstract Feynman rules, purely al-
gebraically in terms of a Rota—Baxter structure of weight —1 on the target ring R
(see [17], [22]).

We now show that the notion of abstract Feynman rule is very natural. In
fact, a broad range of classical combinatorial invariants of graphs define abstract
Feynman rules.

2.3. Tutte—Grothendieck polynomials as a Feynman rules. For a finite
graph I', one denotes by I' \ e the graph obtained by deleting an edge e € E(I")
and by T'/e the graph obtained by contracting an edge e € E(T') to a vertex.
They are called, respectively, the deletion and contraction of I" at e. A class of
invariants of graphs that behave well with respect to the operations of deletion and
contraction are known as the Tutte-Grothendieck invariants [11], [14], [20]. The
terminology comes from the Tutte polynomial, which is the prototype example of
such invariants, and from the formulation in terms of Grothendieck rings of certain
categories, as in [14].

Tutte-Grothendieck invariants of graphs are defined as functions F(I') from
the set of (isomorphism classes of) finite graphs to a polynomial ring Cle, 3,7, z, y]
which satisfy the following properties.

F(T) = ~#VT) if the set of edges is empty, E(I") = (.
F(T) =xF(T \ e) if the edge e € E(T') is a bridge.
F{I)=yF(T'/e) if e € E(T') is a looping edge.

For e € E(T") not a bridge nor a looping edge,

(2.15) F(T)=aF(T'/e)+ BF(T \e).

Recall that an edge is a bridge (or isthmus) if the removal of e disconnects the
graph I'. A looping edge is an edge that starts and ends at the same vertex. The
relation (2.15) is the deletion—contraction relation. By repeatedly applying it until
one falls into one of the other case, this makes it possible to completely determine
the value of a Tutte-Grothendieck invariant for all graphs.

Tutte—Grothendieck invariants are specializations of the Tutte polynomial. The
latter is defined by the properties that

(2.16) Tr(z,y) = z'y’,
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if the graph I' consists of ¢ bridges, j looping edges and no other edges, and by the

deletion—contraction relation

(217) 7}(:13,3;) :%\e(xvy)+7}/e(x7y)

Clearly the relation (2.17) together with (2.16) determine the Tutte polynomial for

all graphs. The closed formula is given by the “sum over states” formula

(2.18) Tr(z,y) = Z(CE _ 1)#V(F)—bo(F)—(#V('y)—bo(w))(y _ 1)#E(’)’)—#V(’Y)+bo(7),
yCI’

where the sum is over subgraphs v C T with vertex set V(y) = V(I') and edge set
E(y) C E(T"). This can be written equivalently as

Tr(z,y) = Z(x — 1) =bo(D)(yy _ 1)0r (M),
~CT

An equivalent way to express the recursive relations computing the Tutte polyno-
mials is the following:

e If e € E(I') is neither a looping edge nor a bridge the deletion—contraction
relation (2.17) holds.
e If e € E(T) is a looping edge then

Te(@,y) = yTrje(w,y)-
e If e € E(T) is a bridge then

Tr(z,y) = 2Tre(@,y)
e If T has no edges then Tr(z,y) = 1.
This is a special form of those stated above for Tutte—Grothendieck invariants, upon
setting a = 8 = v = 1. We write them explicitly for convenience, since we will
refer to them again in §5 and §6 below.
A Tutte-Grothendieck invariant satisfying (2.15) is then obtained from the
Tutte polynomial by specialization

2.19 F(T) = ~bo(D) o #V(ID)=bo(T) gy (1) -, (AL Yy
(2.19) (1) =~""a T )

Among the invariants that can be obtained as specializations of the Tutte poly-
nomial are the chromatic polynomial of graphs and the Jones polynomial of links,
viewed as an invariant of an associated planar graph, [38], [26].

The chromatic polynomial P(T', \) is a specialization of the Tutte polynomial
through

(2.20) P(T,\) = (—1)#V IO =b@ \boM71.(1 — X, 0).

In the case of an alternating link L, the Jones polynomial is a specialization of the
associated (positive) checkerboard graph I'y by

J(L,t) = (—1)wt#V T =#V Iy )+3w)/4 Tr, (—t,—1/t),

with w the writhe (algebraic crossing number) and 'y the positive and negative
checkerboard graphs associated to L, [11].

PROPOSITION 2.2. The Tutte polynomial invariant defines an abstract Feynman
rule with values in the polynomial ring Clx,y], by assigning

(2.21) UT)="Tr(z,y), with inverse propagator U(L) = x.
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Similarly, any Tutte—Grothendieck invariant determines an abstract Feynman rule
with values in Cla, 8,7, x,y] by assigning U(T') = F(T') with inverse propagator
UL) =u.

PROOF. It suffices to check that the Tutte polynomial is multiplicative over
disjoint unions of graphs and that, under the decomposition of connected graphs
into a tree with 1PI graphs inserted at the vertices, it satisfies the property (2.11).
The multiplicative property is clear from the closed expression (2.18), since for
I' =T; UTy we can identify subgraphs v C I with V(y) = V/(I") and E(y) C E(I")
with all possible pairs of subgraphs (71,72) with V() = V(I';) and E(~;) C E(T;),
with bo(7) = bo(v1) +bo(72), #V (L) = #V(I'1) +#V (I'2), and #E(7) = #E() +
#E(72). Thus, we get

Tr(x,y) = ZV (yirm )(3; — 1)Po()+bo(72)=bo(I) (3 — 1)br(71)+b1(72)
={71,72

= ﬁ‘l(xay)ﬁ‘z(x>y)

The second property for connected and 1PI graphs follows from the fact that, when
writing a connected graph in the form I' = U, ey (1) 'y, with T, 1PI graphs inserted
at the vertices of the tree T, the internal edges of the tree are all bridges in the
resulting graph, hence the property of the Tutte polynomial for the removal of
bridges gives

7}(1'7 y) = x#EiM(T) 7}\L,le@r,*Mt(T)E'(xa y)

Then one obtains an abstract Feynman rule with values in R = C|x, y] of the form
(2.21).

In fact, the multiplicative property follows from the same property for the
Tutte polynomial and the specialization formula (2.19). The case of connected and
1PI graphs again follow from the property of Tutte—Grothendieck invariants that
F(T) = 2F (I \ e), when e € E(T') is a bridge, exactly in the same way as in the
case of Tr(z,y). O

This implies that both the chromatic and the Jones polynomial, for instance,
can be regarded as abstract Feynman rules.

As we have mentioned above, whenever the ring R where an abstract Feynman
rule takes values has the structure of a Rota—Baxter algebra of weight —1, withe
Rota-Baxter operator T, the Feynman rule can be renormalized as in (2.14).

Thus, for example, when one considers specializations of the Tutte polynomial
such as the Jones polynomial, which take values in a ring of Laurent series, one
can introduce a renormalized version of the invariant obtained by performing the
Birkhoff factorization of the corresponding character of the Hopf algebra of Feyn-
man graphs. It would be interesting to see if properties of the coefficients of the
Jones polynomial, such as the fact that they are not finite type invariants, may
be affected by this renormalization procedure. This simply means that one applies
the BPHZ procedure, in the general abstract form given in [16] and [22] to the
morphism of commutative algebras defined by the abstract Feynman rule given by
the Jones polynomial (seen as a specialization of the Tutte polynomial). This takes
values in the ring of Laurent series, where one can use the projection on the polar
part as the usual Rota-Baxter structure of weight —1. Notice that the regularized
term is not just the subtraction of the polar part but it is given by the BPHZ
recursive formula (2.14). We will not go into further details here as this is beyond
the main purpose of this paper.
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3. Graph hypersurfaces and deletion-contraction relations

In [3] we considered in particular abstract Feynman rules that are algebro-
geometric or motivic, which means that they factor through the information of the
affine hypersurface defined by the Kirchhoff polynomial of the graph, which ap-
pears in the parametric form of Feynman integrals. We recall here how the graph
hypersurfaces are defined and how they arise in the original context of parametric
Feynman integrals. We recall from [3] how one can use the affine hypersurface com-
plement to define algebro-geometric and motivic Feynman rules, and we then prove
that motivic Feynman rules satisfy a more complicated variant of the deletion—
contraction relation discussed above.

3.1. Parametric Feynman integrals and graph hypersurfaces. The Feyn-
man rules (2.9) for a scalar quantum field theory can be reformulated in terms of
Feynman parameters (see [6], [25]) in the form of an integral of an algebraic differ-
ential form on a cycle with boundary in the complement of a hypersurface defined
by the vanishing of the graph polynomial. The parametric form of the Feynman
integral, in the massless case m = 0, is given by

L(n—59 [ Pe(t,p) """,
(3.1) U,p1s-.pN) = e /O_ Wp(t) DD/

where n = #E;,;(I') and ¢ = b;(I"). The domain of integration is the simplex
on ={t € R} | >, t; = 1}. The Kirchhoff-Symanzik polynomial ¥r(t) is given by

(3.2) i)=Y ] t

TCT e¢ E(T)

n

where the sum is over all the spanning forests T' (spanning trees in the connected
case) of the graph I' and for each spanning forest the product is over all edges of T
that are not in that spanning forest. The polynomial Pr(t,p), often referred to as
the second Symanzik polynomial, is similarly defined in terms of the combinatorics
of the graph, using cut sets instead of spanning trees, and it depends explicitly on
the external momenta of the graph (see [6] §18). In the following, we assume for
simplicity to work in the “stable range” where —n+ D/¢/2 > 0. In this case, further
assuming that for general choice of the external momenta the polynomials Wr(¢)
and Pr(t,p) do not have common factors, the parametric Feynman integral (3.1) is
defined in the complement of the hypersurface

(3.3) Xp = {t € A" | Up(t) = 0}.
Since ¥r is homogeneous of degree ¢, one can reformulate the period computation
in projective space in terms of the hypersurface

Xr = {t e P" | Up(t) =0},
see [9]. Up to a divergent Gamma-factor, one is then interested in understanding
the nature of the remaining integral (the residue of the Feynman graph)
PF(t7p)_n+DZ/2wn

(3~4) - \Ilp(t)*”JrD(”l)/Q ’

viewed (possibly after eliminating divergences) as a period of an algebraic variety.
The complexity of the period depends on the motivic complexity of the part of the
cohomology of the algebraic variety that is involved in the period evaluation. In
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this case, the integration is on the domain o;, with boundary don C S _contained
in the divisor 3, C A" given by the union of coordinate hyperplanes S, = {t €
A™| T], t: = 0}, hence one considers the relative cohomology

(3.5) H Y P X, 2, N (Xr N E,)),

where X, is the divisor of coordinate hyperplanes in P"~!. More precisely, the
relative cohomology involved in the period computation is

H" Y (P\Y,B~(BNY)),

where P — P! is an iterated blowup, Y is the strict transform of Xt and B
is the total inverse image of ¥, as in [9]. The main question one would like to
address is under what conditions on the graph these cohomologies are realizations
of mixed Tate motives, which in turn gives a strong bound on the complexity of
the periods. In this paper we concentrate on the graph hypersurfaces X and the
affine hypersurface complements A" !~ )?1".

A way to understand the motivic complexity of (3.5) is to look at classes in
the Grothendieck ring of varieties. A result of Belkale-Brosnan [5] shows that the
classes [Xr] of the graph hypersurfaces generate the Grothendieck ring (after a
localization), so they can be arbitrarily complex as motives and not only of mixed
Tate type. It is still possible, however, that the piece of the cohomology involved
in (3.4) may still be mixed Tate even if Xt itself contains non-mixed Tate strata.

3.2. Algebro-geometric and motivic Feynman rules. Coming back to
abstract Feynman rules, we observed in [3] that the affine hypersurface complement
A"~ 5(:1‘ behaves like a Feynman rule, in the sense that it satisfies the multiplicative
property under disjoint unions of graphs
(3.6) A"~ Xr = (A™ ~ Xp,) x (A" < Xp,),
for I' = I'; UTy a disjoint union. The role of the inverse propagator is played by
the affine line Al

We introduced in [3] a Grothendieck ring of immersed conical varieties F which
is generated by the equivalence classes [)? ] up to linear changes of coordinates of
varieties X C AN embedded in some affine space, that are defined by homogeneous
ideals (affine cones over projective varieties), with the usual inclusion—exclusion
relation R R L

[X] =[]+ [X\Y]
for Y ¢ X a closed embedding. This maps to the usual Grothendieck ring of
varieties Ky()) by passing to isomorphism classes of varieties.

We then defined in [3] algebro-geometric and motivic Feynman rules in the
following way.

DEFINITION 3.1. An algebro geometric Feynman rule is an abstract Feynman
rule U : H — R, which factors through the Grothendieck ring of immersed conical
varieties,

(3.7) U(r) = I(ja" ~ Kr)),
where [A™ \ 5(:1‘] is the class in F of the affine graph hypersurface complement
and I : F — R is a ring homomorphism. A motivic Feynman rule is an abstract

Feynman rule thcﬁf similarly factors through the Grothendieck ring of varieties as in
(3.7) with [A™~ Xr] the class in Ko(V) and a ring homomorphism I : Ko(V) — R.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



FEYNMAN MOTIVES AND DELETION-CONTRACTION RELATIONS 33

Algebro-geometric Feynman rules can be used to construct additive invariants
of the graph hypersurface complements that may be useful in studying some of
their motivic properties. It should be noted, however, that the period itself does
not factor through the Grothendieck class of the affine hypersurface complement.

It is natural to ask whether these abstract Feynman rules, like the exam-
ples of abstract Feynman rules we have described in §2.3 above, satisfy deletion—
contraction relations. We show in §3.4 below that there is a deletion—contraction re-
lation for the graph hypersurfaces and their classes in the Grothendieck ring, which
is, however, of a more subtle form than the one satisfied by Tutte—Grothendieck
invariants. We first show that the polynomial invariant of graphs we introduced in
[3] as an example of an algebro-geometric Feynman rule which is not motivic (it
does not factor through the Grothendieck ring) is not a specialization of the Tutte
polynomial.

3.3. The Chern—Schwartz—MacPherson Feynman rule. In particular,
we constructed in [3] an algebro-geometric Feynman rule given by a polynomial in-
variant Cr(T) constructed using Chern—Schwartz—MacPherson characteristic classes
of singular varieties. Without going into the details of the definition and properties
of this invariant, for which we refer the reader to [3], we just mention briefly how
it is obtained. One obtains a ring homomorphism Icgps @ F — Z[T] from the ring
of immersed conical varieties to a polynomial ring by assigning to the class [)/(: ] of
a variety in F the polynomial

ICSM([)?]) =ag+a T+ ---anTV

where X c AN (viewed as a locally closed subscheme of PY) has Chern-Schwartz—
MacPherson (CSM) class

cx(lg) = ao[P°] + a1 [P'] + - —ay[PV]

in the Chow group (or homology) of PV . Tt is shown in [3] that this is well defined
and is indeed a ring homomorphism, which involves some careful analysis of the
behavior of CSM classes for joins of projective varieties. One then defines the
polynomial invariant of graphs as

Cr(T) = Icsa ([A™ ~ Xr]).

It is natural to ask whether this polynomial invariant may be a specialization of
the Tutte polynomial. We show in the remaining of this section that this is not the
case: the invariant Cp(T) is not a specialization of the Tutte polynomial, hence it
appears to be a genuinely new invariant of graphs.

PROPOSITION 3.2. The polynomial invariant Cr(T') is not a specialization of
the Tutte polynomial.

PROOF. We show that one cannot find functions = z(T') and y = y(T) such
that

Cr(T) = Tr(x(T),y(T)).
First notice that, if e € E(T") is a bridge, the polynomial Cr(T") satisfies the relation

(3.8) Cr(T) = (T +1)Cr(T).
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In fact, (T 4 1) is the inverse propagator of the algebro-geometric Feynman rule
U(T") = Cr(T') and the property of abstract Feynman rules for 1PI graphs connected
by a bridge gives (3.8). In the case where e € E(T') is a looping edge, we have

(3.9) Cr(T) =T Cr/e(T).

In fact, adding a looping edge to a graph corresponds, in terms of graph hyper-
surfaces, to taking a cone on the graph hypersurface and intersecting it with the
hyperplane defined by the coordinate of the looping edge. This implies that the
universal algebro-geometric Feynman rule with values in the Grothendieck ring F
of immersed conical varieties satisfies

U(r) = ([A'] = HU(T/e)

if e is a looping edge of T' and U(I') = [A" ~ Xp] € F. The property (3.9) then
follows since the image of the class [Al] is the inverse propagator (T + 1). (See
Proposition 2.5 and §2.2 of [3].)

This implies that, if Cr(T") has to be a specialization of the Tutte polynomial,
the relations for bridges and looping edges imply that one has to identify z(T) =
T + 1 and y(T) = T. However, this is not compatible with the behavior of the
invariant Cr(7T') on more complicated graphs. For example, for the triangle graph
one has Cr(T) = T(T + 1)? while the specialization Tr(x(T),y(T)) = (T +1)? +
(T+1)+T. O

The reason for this discrepancy is the fact that, while any algebro-geometric
or motivic Feynman rule will have the same behavior as the Tutte polynomial for
looping edges and bridges, the more general deletion—contraction relation does not
hold. The class [A™ \ X] in the Grothendieck ring of varieties Ko()V) satisfies a
more subtle deletion—contraction relation, which we now describe.

3.4. Deletion—contraction for motivic Feynman rules. We begin by con-
sidering a more general situation, which we then specialize to the case of the graph
hypersurfaces. In this general setting, we consider two homogeneous polynomials
F and G of degree £ — 1 and ¢, respectively, in variables tq,...,t,_1, with n > 2.
Let

(310) ’Q/J(th R ,tn) = tnF(tl, R ,tnfl) + G(tl, e 7Ifn,l).

Thus, % is homogeneous of degree ¢ in t1,...,t,. Assume that both F' and G and
not identically zero, so that it makes sense to consider the hypersurfaces defined
by these polynomials. Cases where either F' or G are zero are easily analyzed
separately. We denote then by X and Y the projective hypersurfaces in P*~! and
P"~2, respectively, determined by 1) and F. We denote by Y the cone of Y in P"~1,
that is, the hypersurface defined in P*~! by the same polynomial F.

THEOREM 3.3. With notation as above, the projection from the point (0: --- :
0: 1) induces an isomorphism

(3.11) XN (XNY) S Pr2ayY.

In the case of interest here X will be the hypersurface corresponding to a graph
I', and Y will correspond to the deletion I' \ e of an edge in I" that is neither a
bridge nor a looping edge. In this case the isomorphism in Theorem 3.3 reproduces
the isomorphism noted in (8.2) of [9]. For the convenience of the reader we provide
the following proof (omitted in [9]).
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PROOF. The projection P*~1 --» P"=2 from p= (0:---:0: 1) acts as

(tl : tn)l—>(t1 : "':tn—l)-
If F is constant (that is, if degt = 1), then Y =Y = () and the statement is trivial.
Thus, assume deg F' > 0. In this case, ¥(p) = F(p) = 0, hence p € X NY, and
hence p ¢ X \ (X NY). Therefore, the projection restricts to a regular map

XN (XNY) =P

The image is clearly contained in P2 \ 'Y, and the statement is that this map
induces an isomorphism

XN (XNY) S P2y

To see this, it suffices to verify that the (scheme-theoretic) inverse image of any
q € P2 \Y is a (reduced) point in X \ (X NY). Equivalently, one shows that
the line through p and ¢ meets X \ (X NY) transversely at one point. Let then

qg=1(q1: " :qn-1). The line from p to ¢ is parametrized by
(qr: i quo1:t)
Intersecting with X gives the equation
tF(qi: i qno1) +G(@ oo i gno1) = 0.
Since F(q) # 0, this is a polynomial of degree exactly 1 in ¢, and determines a
reduced point, as needed. O

This simple observation has some useful consequences at the level of classes in
the Grothendieck ring Ko(V) and of Euler characteristics.

COROLLARY 3.4. In the Grothendieck ring of varieties,

(3.12) PN X] =P (XNY)] - [P 2\Y]
If deg X > 1, then
(3.13) PN X]=L-P" 2 (YNZ)]-[P"2\Y],

where IL = [A'] is the Lefschetz motive and Z denotes the hypersurface G = 0.

PRrOOF. The equality (3.12) is an immediate consequence of Theorem 3.3. For
the second, notice that the ideal of X NY is

(W, F)= (to, F'+G,F) = (F,G).

This means that

(3.14) XNY=YnZ.
If deg X > 1, then F is not constant, hence Y # (). It then follows that Y N Z
contains the point p = (0:---:0:1). The fibers of the projection

PPl (YNZ) =P 2 (YNZ)
with center p are then all isomorphic to A!, and it follows that
Pt (YNZ)=L -[P"2(YNZ).
This verifies the equality (3.13). O
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For a projective algebraic set S C PN~!, we denote by S the corresponding
affine cone S C AN that is, the (conical) subset defined in affine space by the ideal
of S. (Care must be taken if S = (), as the corresponding cone may be the empty
set or the ‘origin’, depending on how S is defined.)

We then have the following “affine version” of the statement of Corollary 3.4,
where we no longer need any restriction on deg X.

COROLLARY 3.5.
A"~ R] = [A" < X Y] - [A"1 < P
=L-[A" (Y NnZ)] - [A" Y]
PROOF. If § contains the origin, then it is immediately seen that
AN 8 =(L-1) [PV S

—

If deg X > 1, then deg F' > 0, hence X NY and Y N Z contain the origin. In this
case, both equalities in the statement follow from the corresponding equalities in
Corollary 3.4 by just multiplying through by L—1. If deg X = 1, then the equalities
are immediately checked by hand. (|

Corollary 3.4 also implies the following relation between the Euler characteris-
tics.

COROLLARY 3.6. Ifdeg X > 1, then x(X)=xY NZ)—x(Y) +n.

There are interesting alternative ways to state Corollary 3.6. For example, we
have the following.

COROLLARY 3.7. Ifdeg X > 1, the Euler characteristics satisfy

(3.15) X(XUY)=n,
or equivalently
(3.16) (PP (X UY)) =0.

PROOF. Since [X \ (X NY)] = [P"~2 \ Y] by Theorem 3.3, we have
X(X) =x(XNY)=n—1-x(¥)=n-x({).

The hypothesis deg X > 1 is used here, since we need Y # ). If deg X = 1 then
one just has x(X)=n—1. O

Written in the form (3.16), the statement can also be proved by showing that
there is a G,,-action on P"~1 \ (X UY). This is implicit in the argument used in
the proof of Theorem 3.3.

We now consider the case of the graph hypersurfaces.

Let T be a graph with n > 2 edges e1,...,e,-1,€ = €,, with (¢ : ... : t,) the
corresponding variables in P"~!. Consider the Kirchhoff polynomial U and the
graph hypersurface Xr C P"~! as above. We can assume deg Uy = ¢ > 0. The
case of forests can be handled separately. In fact, it will be occasionally convenient
to assume deg Wr > 1, that is, assuming that I" has at least two loops.

We assume that the edge e is not a bridge nor a looping edge. Here we work with
arbitrary finite graphs: we do not require that the graph is 1PI or even connected.
The Kirchhoff polynomial is still well defined.
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F1GURE 1. The 3-banana, and a 3-banana split.

We then consider the polynomials

Qv
(3.17) Fi= 0

These are, respectively, the polynomials corresponding to the deletion I' \ e and
the contraction I'/e of the edge e = e, in I'. Both are not identically zero in this
situation. R

As above, we use the notation Y for the projective cone over Y and Y for the
affine cone. Then Theorem 3.3 and Corollaries 3.4, 3.5, and 3.6 give in this case
the following deletion—contraction relations.

=V¥r.. and G:="¥rly,—0= V.

THEOREM 3.8. Let I' be a graph with n > 1 edges. Assume that e is an edge
of I' which is neither a bridge nor a looping edge. Let Xr and Xt be the projective
and affine graph hypersurfaces. Then the hypersurface complement classes in the
Grothendieck ring of varieties Ko(V) satisfy the deletion—contraction relation
(3.18) [A" N Xr] =L [A" N (Xree N Xpye)] — [AP 71N Xro]

If T contains at least two loops, then
(3.19) PP '\ Xp] =L [P"2 N (Xrwe N X1/e)] — [P"72 N\ Xpoel.
Under the same hypotheses, the FEuler characteristics satisfy

(3.20) X(X1) =1+ x(Xrwe N X1/e) — X(X1e)-

The class [A™ \. Xp] is the universal motivic Feynman rule of [3].

In the projective case, requiring that I' has at least two loops meets the con-
dition on the degree of the hypersurface we have in Corollary 3.4. In the one loop
case, Xr is a hyperplane, so one simply gets

Pt Xp]=L""' and x(Xt)=n-1.

REMARK 3.9. The relation given in (3.19) ought to match the corresponding
relation (8.8) obtained in [9] as a consequence of the same isomorphism considered
here (Theorem 3.3 in this paper, (8.2) in [9]). However, it appears that (8.8) is
incorrect as stated. For example, consider the graph hypersurface Xt corresponding
to the ‘3-banana graph’ (Figure 1). For this graph the corresponding intersection
Xre N Xp/ is empty, and formula (8.8) in [9] would give

[Xr] =[P +1

However, Xt is a nonsingular conic in P?, hence [Xt] = [P!]. As X1, is a point
in P!, (3.19) gives

P2\ Xr]=L-[P'\ 0] - [P P =L-(L+1)-L=12
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as it should.® The result of Theorem 3.8 is also closely related to Proposition 2.3
of [36].

The formulae for the hypersurface complement classes in the cases where e is
either a bridge or a looping edge were already covered in the results of Proposition
2.5 and §2.2 of [3]. We recall them here.

e If the edge e is a bridge in I, then
(3.21) [A" N Xr] =L-[A" '\ Xro ] =L-[A"1 N Xp/.

In fact, if e is a bridge, then ¥ does not depend on the variable ¢, and
F = 0. The equation for Xr. is ¥ = 0 again, but viewed in one fewer
variables. The equation for X/, is the same.

e If e is a looping edge in I', then

(3.22) A" N Xp] = (L—1)-[A" '\ Xpo ] = (L—1) - [A" 1 < Xyl

In fact, if e is a looping edge, then ¥r is divisible by ¢., so that G = 0.
The equation for Xt /. is obtained by dividing Ur through by t., and one
has XF\e = XF/e-

The formulae (3.18), (3.21), and (3.22) give us the closest analog to the re-
cursion satisfied by the Tutte-Grothendieck invariants. Notice that, by (3.14), the
intersection of Xt.. and X/, can in fact be expressed in terms of Xp.. and Xt
alone, so that the result of Theorem 3.8 can be expressed in terms that do not
involve the contraction T'/e.

One knows from the general result of [5] that the classes [Xr] of the graph
hypersurfaces span the (localized) Grothendieck ring Ky(V) of varieties. Thus, mo-
tivically, they can become arbitrarily complex. The question remains of identifying
more precisely, in terms of inductive procedures related to the combinatorics of
the graph, how the varieties X will start to acquire non-mixed Tate strata as
the complexity of the graph grows. Recent results of [21] have made substantial
progress towards producing explicit cohomological computations that can identify
non-mixed Tate contributions. In the setting of deletion—contraction relations de-
scribed above, one sees from Theorem 3.8 that, in an inductive procedure that
assembles the class of X1 from data coming from the smaller graphs I'\ e and I'/e,
where one expects non-mixed Tate contributions to first manifest themselves is in
the intersection Xp. . N Xp/e.

Notice, however, that it is not always the case that the motive of Xt is neces-
sarily more complicated than that of either Xr. . or Xt /.. For instance, one knows
from [8] that the motive [XY] of the dual (under Cremona transformation) of the
hypersurface of the complete graph I' is mixed Tate. This can be used to construct
examples where the motive of X is simpler than those of some of its deletions and
contractions.

The reader may consult §8 in [9] for a more detailed description of this situation.
However, the problem we raise in Remark 3.9 suggests that the stratification of a
graph hypersurface may in general be more complicated than indicated in [9].

IFormula (8.8) in [9] is only stated for graphs for which the number of edges equals twice the
number of loops, but its derivation through (8.2) does not use this hypothesis. For an example
satisfying this hypothesis, one can consider the second graph shown in Figure 1: the right-hand-
side of (8.8) evaluates the class of the corresponding hypersurface to be [P2] + L, while this
hypersurface is a cone over a nonsingular conic, so it has class [P2].
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4. Linear systems and Milnor fibers

We give a different geometric interpretation of the deletion—contraction relation
proved in the previous section, which views the graph hypersurface of I' as a Milnor
fiber for hypersurfaces related to I'\.e and I'/e. An advantage of this point of view is
that it may be better suited for extending the deletion—contraction relation for the
invariants like Cp(T') defined in terms of characteristic classes of singular varieties.

The main observation is that the deletion—contraction setting determines a
rather special linear system. With notation as above, we have

U=t F(ty, ... ty1) 4+ Gt1,. .. tn1).
This says that 1 is in the linear system
)\tnF(th R ,tnfl) + /LG(tl, e tnfl).

This system specializes to t, F(t1,...,t,—1) for 4 = 0 and to G(t1,...,tn—1) for
A = 0. What is special is that, for every other choice of (A : u), the corresponding
hypersurface is isomorphic to ¥ = 0. Indeed, replacing ¢,, by %tn gives a coordi-
nate change in P"~! taking the hypersurface corresponding to (\ : ) to the one
corresponding to (1 : 1).

We consider the same general setting as in the previous section, with F' and G
nonzero homogeneous polynomials of degree £ — 1 and ¢, respectively (with ¢ > 0),
in coordinates t1,...,t,—1. We want to study the general fiber ¢ of the linear
system

Ao+ G,
where we note, as above, that its isomorphism class is independent of the point
(A:p) # (1:0),(0:1). We denote, as above, by X C P*~! and Y, Z C P"2 the
hypersurfaces determined by v, F, G, respectively. We also denote by X c A™
377 Z c A" the corresponding affine cones.

We can then give, using this setting, a different proof of the statement of
Corollary 3.5.

PROPOSITION 4.1. With the notation as above, the classes of the affine hyper-
surface complements in the Grothendieck ring Ko(V) satisfy the deletion—contraction
relation

A" X]=L-[A"' (Y Nn2Z) - [A" 1\ Y]

Proor. If deg X = 1, then Y =Y NZ =0. The formula then reduces to
[A" N A"l = L - [A"71] — [A"71], which is trivially satisfied. The formula is
also easily checked in the case n = 2. In fact, if n = 2, then up to constants we
may assume F = t{~! and G = t{. We can also assume ¢ > 1. We then have
Y =t (t) + ty), so that [X] = 2L — 1. We also have [Y] = [Y N Z] = 1. The
formula then reads

L2 —(2L—1)=L(L—-1)—(L-1).

We then consider the case with deg X > 1 and n > 2, where we have Y # ()
and Y NZ # (. As observed above, the key to the statement is that all but two
of the fibers of the linear system At, F'+ uG are isomorphic to X. The two special
fibers may be written as

HUY and Z,
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where H is the hyperplane t,, = 0, and Y and Z are the projective cones in P™ over
Y and Z, respectively. Letting W denote the common intersection of all elements
of the system, we therefore have

Pt W= (L-DX\W]+[(HUY)NW]+[Z W],
or equivalently
P =L-1) [X]-L-[W]+[HUY]+[Z].
Recalling that [A™ \ )?} =(L—-1) [P - X], we get
A" X]=L-[P" '\ W] - [P ' (HUY)] - [P '\ Z].

Next, notice that removing the hyperplane H amounts precisely to restricting to
affine space. Thus, we obtain

P! (HUY)] = [A" ' Y]

Asfor W = (HUY)NZ C P" ! one can break up P"~! as the disjoint union of
H =Ppn—2 andA A”:l. Then W intersects the first piece along H N Z = Z and the
second along Y N Z. Therefore, we obtain

PP W] =[P 2\ Z]+ A" ' (Y N Z)].
Notice that L[P"2 \ Z] = [P"~! \ Z]. This shows that
L-[P" W] [P '\Z]=L-[A" ' < (Y n2Z).

This completes the proof. O
In this geometric formulation one can observe also that the projection X --+
P"~2 is resolved by blowing up the point p = (0:---:0: 1),
(4.1) Xr
Xr——-—---= > pn—2

The exceptional divisor in )’G is a copy of Y = X1, mapping isomorphically to its
image in P"~2. The fibers of 7 are single points away from YNZ = XreNXr/e, and

are copies of P! over Xp., N Xt/ In fact, va may be identified with the blowup
of P*~2 along the subscheme YN Z = Xt N Xr/e- This geometric setting may
be useful in trying to obtain deletion—contraction relations for invariants defined by
Chern—-Schwartz—MacPherson classes, though at present the existing results on the
behavior of these classes under blowup [1] do not seem to suffice to yield directly
the desired result.

5. Operations on graphs

Applying the deletion—contraction formulas (3.18), (3.19) for motivic Feyn-
man rules obtained in Theorem 3.8 as a tool for computing the classes in the
Grothendieck ring of the graph hypersurfaces runs into a clear difficulty: determin-
ing the intersection Xr. N Xr/.. This can be challenging, even for small graphs.
In general it is bound to be, since this is where non-Mixed-Tate phenomena must
first occur. Also, this is a seemingly ‘non-combinatorial’ term, in the sense that it
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cannot be read off immediately from the graph, unlike the ingredients in the simpler
deletion—contraction relations satisfied by the Tutte-Grothendieck invariants.

We analyze in this section some operations on graphs, which have the property
that the problem of describing the intersection Xt.. N Xr/. can be bypassed and
the class of more complicated graphs can be computed inductively only in terms of
combinatorial data. The first such operation replaces a chosen edge e in a graph I'
with m parallel edges connecting the same two vertices d(e).

We first describe how this operation of replacing an edge in a graph by m
parallel copies affects combinatorial Feynman rules such as the Tutte polynomial.
We then compare it with the behavior of the motivic Feynman rules under the same
operation.

5.1. Multiplying edges: the Tutte case. Assume that e is an edge of T,
and denote by I',,. the graph obtained from I' by replacing e by m parallel edges.
(Thus, T'pe =T N e,and T, =T.)

Let Tr = T(T, x,y) be the Tutte polynomial of the graph. We derive a for-
mula for Tr, _(z,y) in terms of the polynomials for I' and other easily identifiable
variations.

PROPOSITION 5.1. Assume e is neither a bridge nor a looping edge of I'. Then

Fug s e(y—l)s —1
6 X T oy = (Teoea) + S i)
=0 m)! Yy —
1 s
5.2 Ir,,.(z,y sm:—(T\e T,y) + T em,y)
(5.2) mzzjor( ) T | Toel )1_y$r/( )
Ezxplicitly, we have
y" -
(53) TFmC (.’L’, y) = TF\€($> y) + Y — 1 TF/e(xa y)

PRrROOF. If e is neither a bridge nor a looping edge of I', then
Ir,,. =Tr, .. + Y e

me

This follows from the basic recursion (2.17) ruling the Tutte polynomial, observing
that contracting the m-th copy of e transforms the first m — 1 copies into looping
edges attached to I'/e. Doing this recursively shows that

Tr,. =Trwe+ (1 +y+-+y™ Ty,

which is the expression given above.

To convert this into generating functions is straightforward. The coefficient of
Tr. is immediately seen to be as stated, in both cases. As for the coeflicient of
Tt /. in the first generating function, just note that

m
S
§ m _ L ys
Yy —' = €7 .
m!
m>0

me

Similarly, one has

YA ) T Sy S, A—

S0 l—-ys 1-—s

and this gives the second generating function. O
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In the case where e is a bridge, one has
Tr =z 1. and Tl"/e =TT e

Thus, everything can be written in terms of 7. .. Running through the recursion
gives

Tr,, = Tre

Tr,, =Tr = 2Tr.

Tr,, = Tr,, +yIr/e = (v +y) Trc

Try, = Tr,, +4°Trje = (z+y +y%) Tre

This gives the generating functions

(y—1)s _ 1
(es<€7+x_1>+2_x)n\e,
y—1
1
S s —1)42—2)Tr..
1—s\1—-ys

The case where e is a looping edge simply gives the generating functions

1
ev? TF\e(x,y) and 1—8 TF\e(x,y)'

5.2. Multiplying edges: motivic Feynman rules. We now compare the
behavior analyzed in the previous section in the combinatorial setting with the
case of the motivic Feynman rules. We use the notation as in [3] for the motivic
Feynman rule

U(T) .= [A" N\ T,
for I' a graph with n edges, with [A™ \ T'] the class of the affine hypersurface
complement in the Grothendieck ring of varieties Ky(V). For later use, we also
introduce the notation

(5.4) xr = x(P""' \ Xr),

for the Euler characteristic of the projective hypersurface complement.
The formula in Theorem 3.8 reads then

(5.5) UM) =L [A" P\ (Xpee N Xpje)] = U N e),

under the assumption that e is not a bridge or a looping edge of I". We derive from
this formula a multiple edge formula in the style of those written above for the Tutte
polynomial. The nice feature these formulae exhibit is the fact that the complicated
term Xp\e N Xp/e does not appear and the class U(T',,.) can be described in terms
involving only the classes U(T"), U(T" \ e) and U(I'/e).

By the nature of the problem, the key case is that of doubling an edge. One
obtains the following.

PROPOSITION 5.2. Let e be an edge of a graph T.
o If e is a looping edge, then
(5.6) U(Ty.) = T2U(T \ e).
e Ife is a bridge, then
(5.7) U(l'ge) = T(T + 1) U(T" \ e).
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e Ife is not a bridge or a looping edge, then
(5.8) U(Tge) = (T = 1)U(T) + TU(T \ &) + (T + 1) U(T'/e),
where T = [Gy,] € Ko(V) is the class of the multiplicative group.

PROOF. The formulae for the cases of a bridge or a looping edges follow imme-
diately from elementary considerations, as shown in §5 of [2]. Thus, we concentrate
on the remaining case of (5.8), where we use the deletion—contraction rule (5.5).

Let WU, Ur,, be the Kirchhoff polynomials corresponding to the graphs I' and
I'5e, respectively. We can write, as in the previous sections,

Ur=t.F+G ,
where F is the polynomial for I'\ e and G is the polynomial for I'/e. If e is replaced
by the parallel edges e, €’ in I'y., then
Up,, =teter F+ (te +ter) G =te(teF + G) +t.G =t Vr + . G.

Indeed, the term ¢, F' in ¥ collects the monomials corresponding to spanning forests
that do not include e. The edge variable t. is replaced by t.t., in those monomials.
The term G collects monomials corresponding to spanning forests that do include
e. Each such monomial will appeare twice, multiplied by ¢., when the spanning
forest is taken to include e, and again multiplied by t. when the forest is taken to
include €.

We then apply the deletion—contraction rule to ¥r,_, by focusing on e’. Since
deleting €’ gives us back the graph T, the formula (5.5) gives

(5.9) U(Tge) =L-[A" < (Xr N Xp,)] — UT),
where n is the number of edges of I and I', denotes the graph obtained by attaching
a looping edge named e to I'/e. The equation for T', is t, G. The ideal for this
intersection is
(\Ijl—‘v te G) )
so the intersection is the union of the loci defined by
(\I/F,te) and (\I/F,G)
Simple ideal manipulations give
(Ur,te) = (tF + G te) = (G, te),
(\Ijl—‘a G) = (teF + G7 G) = (teFa G)

The latter ideal is supported on the union of the loci corresponding to (G,t.) and
(F,G). The conclusion is that
(5.10) Xr N Xr, = (HN Xp0) U(Xp N Xy,
where H denotes the hyperplane ¢, = 0 in A™, and the primAed notation place the
hypersurfaces in A”. With this notation, if X C P"~2, then X stands for the affine
cone over X, in A" ! and X’ is the ‘cylinder’ over X, obtained by taking the same
equation in the larger affine space A™. We have HN X' = X, and [X'] =L - [X].

By inclusion—exclusion in the Grothendieck ring, applied to the case of cones
and cylinders as in §5 of [2], we obtain

P?F N XFO] = [H N Xl/"/e] + [Xll“\e N Xll“/e] - [H N )?1/—‘\6 N Xl{‘/e]
= [Xrye) + (L —1) - [Xree N Xp/e)-

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



44 PAOLO ALUFFI AND MATILDE MARCOLLI

Notice that the hats on the left-hand side place the hypersurfaces in A™, while on
the right-hand side we view then in A”~!. This is as it should: an affine graph
hypersurface lives in a space of dimension equal to the number of edges of the
corresponding graph.
It follows then that

[A" (X N Xr,)]
= L™+ ([A" = Xpye] = L") + (L= 1) - (A" = (Xpee N Xpye)] - L")
Carrying out the obvious cancellations, we get

[A" . (Xp N Xr,)] = UT/e) + (L —1) - [A" " = (Xpe N Xrye)]-

Notice that the intersection on the right-hand side is precisely the one that appears
in the deletion—contraction rule for e on I'. (We are using essentially here the
hypothesis that e not be a bridge or a looping edge.)

Thus, we obtain

U) =L - A"\ (Rree N Xpye)] - UT N o),
So that we have
L-[A"~ (XpNnXp,)] =L-U(/e)+ (L—1)- (UT) +UT ~ e)).
Then plugging this into (5.9) we can finally conclude
U(Ts.) = (L U(T/e) + (L 1) - (U(T) + U(T ~ ¢))) — U(T)
=L-2)-UT)+(L-1)-UT~e)+L -UT/e), |,
which is the statement, with T =L — 1 = [G,,] € Ko(V). O

A more general formula for the class of ', can now be obtained using the
result of Proposition 5.2. As in the case of the Tutte polynomial, this is best
expressed in terms of generating functions.

THEOREM 5.3. Let e be an edge of a graph I.
(1) If e is a looping edge, then

(5.11) > U(Tme) ‘% = U N e).

m>0

(2) If e is a bridge, then

m Ts _ _—s
612) Y 0T = (T o sy 1) U0~ o).
m>0 ’

(3) If e is not a bridge nor a looping edge, then

sm eTs — e 8
Z U(Fme) — = U(F)
|
S0 m! T’JI‘ +1
54 Te™*
5.13 € T ur
(5.13) LN

+ (s eTs — %) UL /e).
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PRrROOF. (1) If e is a looping edge, then
Ul e) = T"U(T \ €),

as shown in [3], §2.2.
(2) For the case of a bridge, by the multiplicative properties of abstract Feyn-
man rules, we can write

U(Tme) = em (T)U(T ~ e),

for m > 0 and for some function €, of T, see Proposition 2.5 of [3]. Indeed, the
function €, (T) is the class of the m-th banana graph, which we computed explicitly
in [2]. In fact, we do not need to use the explicit computation of €,,(T) given in
[2], since we are going to obtain the expression for €,,(T) again here in a different
way. We have

UToe) =UT ~e)
UT1)=(T+1)-UT \e)
UT2)=T(T+1)-UT \e)
by Proposition 5.2. For m > 2 we then have
U n1ye) = (T = DUTme) + TUT n—1)e) + (T + DT UT/e),

according again to Proposition 5.2, used to double one of the m parallel edges,
which is not a bridge for m > 2. For the third term on the right-hand side, notice
that contracting one of the m parallel edges produces m — 1 looping edges attached
to I'/e. We then apply [3], §2.2 to deal with looping edges. Since, in the case where
e is a bridge, one has I'/e =T \ e, this says that

U 1)) = (T = Ve (T) + T (T) + (T + DT HUT N ¢)

for m > 2. Thus, we obtain the family of functions €,, as needed by solving the
recurrence relation

e(T)=1
e(T)=T+1
e(T)=T(T+1)

em11(T) = (T = Dep(T) + Tepy_1 (T) + (T 4+ 1)T™  for m > 2.

Consider then the series
m

(5.14) E(s):= Y en(T) %

m>0

so that E(s) - U(T" \ e) is the generating function in the statement (5.12). The
recursion deals with the coefficients ¢; for ¢ > 1. It can be expressed as a relation
involving the function F, taking care to truncate the first couple of terms which are
not covered by the recursion. The recursion can then be expressed as the differential
equation

E"(s) =T(T+1)=(T—1)(E'(s) = (T+1))+T(E(s) = 1) + (T + 1)e™ — (T + 1),
that is,
(5.15) E"(s) — (T —1)E'(s) = TE(s) = (T4 1)e™ - T
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It is immediately checked that
set™ 41

is one solution of the differential equation (5.15), and standard techniques show
that the general solution is then of the form

Ae™ + Be ® +s5e™ + 1.

Matching the initial conditions for ¢y and €; determines

T T
A= — B———
Tr1 ™4 T+1

This yields the formula (5.12).
(3) The situation where e is not a bridge nor a looping edge is very similar. Let

U(Thme) = frn(T)UT) + gm(T) U(T N €) + by (T) U /e).

These coefficients satisfy

fo(M)=0 , f(T)=1
(5.16) @M =1, g(T)=0
ho(T) =0, hy(T) =0,

while for m > 1 the expression
UT (mt1)e) = (T = 1)U(me) + TUT (—1)e) + (T + 1)T™'UT /e)
gives
U@ (mt1)e) =(T = 1)(fm(T)UI) 4 gm(T) U(T' N €) + hm (T) U(T'/€))
+ T (fm—-1(T)UL) + gm—1(T) UL N €) + hp—1(T) U(I'/€))
+ (T + 1)T™1U(T /e)
=((T = 1)fm(T) + T fr-1(T)) UT)
+ ((T = 1)gm(T) + Tgm—1(T)) UL N €)
+ (T = D) (T) + Thy— 1 (T) + (T + DHT™H U \ e).
This says that the functions f,,, gm, hy, satisfy the recurrence
fma1 = (T =1) fm + Tfr—r

Im+1 = (T - ]-)gm + Tgmfl
Bmt1 = (T = DA + Thy—1 + (T + 1)Tm 1

for m > 1. Now define the series

)= Y

m>0
Gls)i= Y gm(D) =
m>0
H(s):= > ha(T) .
m>0 :
so that
(5.17) S UTme) 2 = Fs)U) + G)U(T N €) + His)U(T/e).

m>0
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The recursions translate into the differential equations
F'(s)— (T—1)F'(s) = TF(s) =0
G"(s) = (T—-1)G'(s) — TG(s) =0
H"(s) — (T —1)H'(s) — TH(s) = (T + 1)e"*.
Notice that in these cases the recursion covers the initial indices as well, so it is not
necessary to ‘truncate off’ the initial terms of the series.
The homogeneous part of these equations agrees with the homogeneous part

of the equation (5.15) for E(s) solved above. Moreover, s e’ is one solution of the
third equation. Therefore, the solutions are of the form

F(S) = AleTs + Ble_s
G(s) = Ase™ + Bye™®
H(s) = Asze™ 4 Bse ™ + se'®

for suitable functions A;, B; of T. The conditions listed in (5.16) determine these
functions, and yield the formula (5.13) given in the statement. (]

REMARK 5.4. An interesting property of the coefficients of the various classes
in the formula (5.13) of Theorem 5.3 is that the quotient of the coefficients of U(T")
and U(" \ e) is the function used in defining Hirzebruch’s T, genus, in §11 of
Chapter IIT of [24]. This is more evident upon rewriting the formula (5.13) in the
form

els — s e(T+)s 1T (T+1)s
and then comparing this expression with the formula (2) on p.94 of [24].

We state a few direct consequences of Theorem 5.3.

COROLLARY 5.5. If e is not a bridge or a looping edge of ', and I" \ e is not
a forest, then with notation as in (5.4),

s™ _ _
Z erc_' = (1 —-e€ S)XF + Xrwe T+ (S —1+e S)XF/e
= m!
PROOF. This is obtained from (5.13) by dividing through by T and then setting
T = 1, since if I" has n edges and is not a forest, then U(T') = T - [P"~! \ X1] ([3],
Lemma 2.6). O

COROLLARY 5.6. Starting with the graph T that consists of a single edge (hence
a bridge), the formula (5.12) recovers the class of the hypersurface complements of
the banana graphs

(5.18) T

+me,1’
form>1, and 1 for m =0.

ProoF. Using the formula (5.12) applied to the graph consisting of a single
edge one finds that m! times the coefficient of s in
Ts —s
e’ —e
T—— Ts 11
Tr1 +se” +
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is precisely (5.18). O

It is easy to obtain similar expressions for the coefficients U(T") and the other
terms in U(T',,,e) when e is not a bridge nor a looping edge.

COROLLARY b5.7. If e is not a bridge nor a looping edge of I', then

U(The) = u(r
T + (-1)™T
L S? At § 14
+ T+1 UT \e)
o T ==
Tl 7 T'/e).
+ <m T11 > U(T/e)
PROOF. The result follows, as in the case of Corollary 5.6, by reading the
coefficients off the formula (5.13) of Theorem 5.3. O

The first and second coefficients in are of course just alternating sums of powers
of T. One gets the second from the first by dropping the constant term. It is perhaps
less evident that the third coefficient has the factorization

(T+1) ((m—DT™? = (m—=2)T" >+ (m—3)T" * -+ (-1)™).

The interesting factor is the derivative of the second coefficient. Calling f,,(T),
9m(T), him(T) the three coefficients, as in the proof of Theorem 5.3, the statement
is that
fm:gm_(_l)m 3 hm:(T"'l)g;n
Also notice that the formula (5.18) for the banana graph obtained in [2] and
in Corollary 5.6 above, can also be described (for m > 1) in the form
™ — (=)™ d T"™+ (-1)™T
(5.19) ('JI‘+1)( T T T .

One can also formulate the result of Theorem 5.3 in terms of algebraic gener-
ating functions in the following form.

COROLLARY 5.8. Let e be an edge of a graph T'.
e If e is a looping edge, then

1
m o __
D U(Te) s™ = — U~ o).
m>0
e Ife is a bridge, then
1 s(1+s)

Ul e)s"=————|1 1-T —— | U(T .
D UTne) 8™ = s ( (1 —Ts) + 1—119) (T e)
m>0

e If e is not a bridge nor a looping edge, then
> U(Cme) s™ =
m>0

1

(T+1)s?
m (sU(F) +(1+s—Ts)U( \e)+ WU(F/@)) )
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FIGURE 2. A graph given by a chain of polygons.

F1cURE 3. A move on graphs which does not change the graph hypersurface.

PrOOF. These formulae are obtained by solving algebraic equations obtained
from the same recursions derived in the course of proving Theorem 5.3, or else
directly from the explicit expressions of Corollary 5.7 and the discussion leading to
them. (]

5.3. Chains of polygons in graphs. As an application of the formulae ob-
tained in Theorem 5.3 for parallel edges in a graph, we can provide formulae for
graphs obtained as chains of polygons. For instance, in the example given in Figure
2 one obtains that the corresponding class U(T") is

T*(T + 1)'7(T? 4 6T + 9T + 1).

These graphs are inductively obtained by attaching a new polygon to one free side
of the last polygon included in the graph. It would be possible to give similar but
more involved formulae for the more general case of ‘outerplanar’ graphs, in which
polygons may be attached to any available free side so long as no chain closes onto
itself, but we only consider the simpler class of examples here as they suffice to
illustrate the general principle.

It is readily understood that, in fact, one only needs to deal with the case in

which all polygons are triangles. Indeed, up to isomorphism, the graph hypersurface
is independent of the side chosen to attach the last (and hence every) polygon: the
two choices of Figure 3 have isomorphic hypersurfaces.
This is because of an evident bijection between the spanning trees of the two graphs,
induced by the switch of the two variables corresponding to the attaching edges in
the old polygon. So, for instance, the graph of Figure 4 has graph hypersurface
isomorphic to that of the one of Figure 2.
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FIGURE 4. Applying the move of Figure 3 to the graph of Figure
2 does not change the graph hypersurface.

FIGURE 5. Removing free vertices in the graph of Figure 4.

Thus, we may assume that the free sides of each polygon are all in a row. In
the example of Figure 4, the free vertices (marked by circles) may be obtained by
multiple splittings of a free edge of a triangle, an operation that is controlled at
the level of motivic invariants simply by multiplication by a power of T + 1, since
it corresponds to taking a cone (see §5 of [2]). Thus, all polygons in the graph
of Figure 4 may be reduced to triangles, by eliminating seven free vertices, at the
price of dividing the motivic class by a factor of (T + 1)”. The resulting graph is
illustrated in Figure 5. This graph has class

o (O (- 0 () ()

= T*(T + 1)'°(T? 4 6T + 9T + 1).

Since the attaching side is irrelevant, this reduces the problem of computing
the classes U(T') of graphs obtained as chains of polygons to that of computing the
classes U(A,,,), where A,, denotes the lemon graph with m sections. For example,
the lemon graph Ag of Figure 6 has the same graph hypersurface as the graph in
Figure 5.

The argument we described above in the example of Figure 2 holds in general
for such chains of polygons and it gives the following statement.

LEMMA 5.9. Let T be the graph obtained as a chain of m polygons withry, ..., Tm
stdes, with r; > 3. Then

U(T) = (T + 1) tm=3m(A,,).

PRrROOF. The indicated power simply counts the number of free vertices lost in
converting the polygons to triangles. (]
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FIGURE 6. The 8th lemon graph Ag.

Note that these examples of graphs like polygon chains for which we can ex-
plicitly compute the class via a cancellation of terms in the deletion—contraction
formula, do not have convergent periods or reduce in Dim Reg to a trivial expansion
of the I'-function, so they do not cover the physically interesting cases. A physically
more interesting class of graphs, closely related to the chains of polygons considered
here, and their graph hypersurfaces, were recently studied from the cohomological
point of view in [21]. More precisely, the type of graphs considered in [21], called
generalized zig-zag graphs are obtained by adding an edge connecting the two free
vertices at the ends of a chain of triangles, in the same way in which the wheel with
n spokes W,, can be obtained by adding one edge connecting the two free vertices of
the lemon graph A,,. All these generalized zig-zag graphs are log divergent, like the
wheels W,,, which makes them especially nice from the point of view of divergences
of the corresponding Feynman integrals (see [12], [9]). However, as one can readily
see in the case of the wheels W,,, our deletion—contraction relation does not give
easily a recursive formula for the class in the Grothendieck ring, since, unlike the
case of lemon graphs, one has the explicit term with the intersection of the dele-
tion and contraction hypersurfaces, which is difficult to control explicitly. This in
fact is the case also for the more general class of zig-zag graphs, where much more
sophisticated tools like those employed in [21] are needed to compute the cohomol-
ogy. It is proved in [21] that for all these generalized zig-zag graphs, as in the case
of the wheels, the minimal non-trivial weight piece of the Hodge structure of the
corresponding projective graph hypersurface complements is of Tate type Q(—2).
The techniques adopted in [21] also involve an analysis of the effect of removal of
edges, and appear to be possibly related to a refined version of deletion—contraction
arguments.

5.4. Lemon graphs. One reason why it is interesting to obtain an explicit
formula for the classes U(A,,,) of the lemon graphs, besides computing examples like
the chain of polygons described above, is that the A,, are an important building
block for a more complicated and more interesting class of examples, the wheel
graphs with n spokes W,, considered at length in [9].

Applying the deletion—contraction relation of Theorem 3.8 to one spoke in the
wheel W, produces the two graphs shown on the right of Figure 7. The class of
the first would be known by induction, as (T + 1)U(W,,_1), since the extra vertex
has the effect of taking a cone on the hypersurface hence multiplying the class by
(T + 1), as shown in [2]. The class of the second equals U(A,)/(T + 1)2, since
splitting the curvy edges produces the n-th lemon graph A,,. Notice that here the
class is a priori a multiple of (T+1)?, so it makes sense to write U(A,,)/(T+1)?. The
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aVa
R

FIGURE 7. Deletion-contraction on the wheel Wg.

Am AIm Am+1
@ @
FIGURE 8. Lemon building from edge doubling.
A, A,—e

A, le

FI1GURE 9. Edge doubling in terms of deletion and contraction.

problem with this approach is of course that Theorem 3.8 requires the knowledge of
the class of the intersection of the hypersurfaces corresponding to the two graphs
on the right in Figure 7, and this does not seem to be readily available.

The classes of the lemon graphs are given by the following result, which we
formulate in terms of an algebraic generating function.

THEOREM 5.10. The classes U(A,,) are determined by

. T+1
(5.20) > Ulm)s™ = 1= T(T + 1)s — T(T + 1)2s?”

m>0

PROOF. The theorem is proved by setting up a recursion, based on the fact
that the (m 4 1)-st lemon graph may be obtained from the m-th one by doubling
one edge and splitting the newly created edge, as shown in Figure 8.

Doubling the edge requires handling the graphs obtained by deleting and con-
tracting that edge as shown in Figure 9. These are inductively known:

UAm ~€) = (T+1D)UAm_1) and U(Am/e) = U(An)/(T + 1),

since adding a tail and splitting edges both have the effect of multiplying the motivic
class by (T + 1), as shown in [3], §2.2.
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Applying Lemma 5.2, with A/, denoting the second graph of Figure 8, we obtain
U(Amt1) = (T + 1)U(A7,)
=(T+1)(T-1DUA) +TUA,, ~e)+ (T+ 1DHU(A,,/e))
=(T+1)({(T-1UA) +T(T+ 1)UA,-1) +UAL))
=T(T + 1)U(A) + T(T + 1)°U(Ap—1).

This recursive relation holds as soon as the edge e is not a bridge, that is, for m > 1.
The seeds are Ag (a single edge) and A; (a triangle), for which we have

U(Ag) =T+1 and U(A;) =T(T+1)2

Let

L, (T) =U(An),
viewed as a polynomial in T, and

L(s) = Z L,s™.

m>0
The recursion translates into the relation
L(s) = T(T +1)%*s — (T + 1)

=T(T + 1)s(L(s) — (T + 1) + T(T + 1)?L(s).
Solving for L(s) yields the formula (5.20) in the statement. O
Equivalently, one can write the reciprocal of the generating function of (5.20)
of Theorem 5.10, which has the simpler form
T+1
Ym0 UAm)s™

We then obtain from Theorem 5.10 an explicit formula for the classes U(A,,)
in the following way.

=1-T(T+ 1)s — T(T + 1)%s%.

PROPOSITION 5.11. The classes U(Ay,) are of the form
(5.21) U(A,,) = (T + )™ K(T),
where K(T) is of the form

mY\, m m—1\, .1 m—2\, 2 m—3\, m_3
(0)T+<1>T +<2>T +<3>T n

where (i) is taken to be equal to 0 if i > j.
PRrROOF. Consider the recurrence relation
Am = Qm—1 + X Am—o , MmMm>2
with ag = a; = 1. This is a simple generalization of the Fibonacci sequence, which
one recovers for x = 1. Letting A(t) := ZmZO amt™, the recurrence gives
Alt) =1 —t=t(A(t) — 1) + xt>A(t),

hence
1

A=y
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This yields an explicit expression for a,,: since

Ay = 31+ et ZZ()“*’“—Z > (")

k>0 k>0 i=0 m>0 i>0,i<m—i

we get the expression

i=0
adopting the convention that (z) =0 if ¢ > j. For the classes U(A,,) of the lemon
graphs we have from Theorem 5.10 the generating function
T+1 1
55 = (T+1) i .
—T(T+1)s—T(T+1)%s 1 —(T(T+1)s) — 5(T(T + 1)s)?

Thus, upon setting t = T(T + 1)s and « = 1/T, the previous considerations give

U(An) = (T + 1) Z(m;’)% (T + 1)

i>0
— T 1m+1 m—1 Tm—i
memy (M)

which gives (5.21). O

As we have seen in the proof of Proposition 5.11 above, the classes U(A,,)
are closely related to a Fibonacci-like recursion. In fact, they satsify the following
property, which is the analog of the well known property of Fibonacci numbers.

COROLLARY 5.12. The sequence a,, = U(Ap—1) is a divisibility sequence.

PROOF. A sequence a,, is a divisibility sequence if a,,|a, whenever m|n. We
show that the expression for U(A,,—1) divides the expression for U(A,_1) if m
divides n. Using the recursion relation, this follows by showing that if

1—t—xt2 Zb

then, if m divides n, then the polynomial bm(x) divides the polynomial b, (x). The
t in the numerator produces the shift of one in the indices.
The polynomials

b () = s _Z<n—1—z> .

can also be written in the form

AT\
5.22 by (z) = 2 2
(5.22) @ =55
where
14144z 1—+1+4x
)\1 = # and )\2 = #
Then

bem(z) A =X 1ym (k—1)m
p— pu— A RS A
bala) A —Ap ot T
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r

FIGURE 10. Adding a lemon to a graph.

is clearly a polynomial. One can explicitly provide a recurrence relation satisfied
by the function of k given by b,(cm) = bgm () /bm(x). First note that A", AJ* are
roots of a quadratic polynomial

(Y= A"y —A) =y* —TY + N =0,
where T'= AT + AJ* and N = (A A2)™ = (—x)™. Notice then that

1 1
ngo(lJr 2) Tt 1t
2t .

m>0

This shows that T' = 2b,,11(x) — by, (z). Therefore

(Y= A"y = A3") = ¥ = (b (2) = b (@))y + (—2)™

km _ ykm
It follows that b,gm) (x) := bé"m((;)) = Aj\m_iil are solutions of the recurrence relation
Y

BT = (2o () = by ()BT — ()b
with seeds b™ =0, b\™ = 1. O

In terms of understanding explicitly the motivic nature of the graph hypersur-
faces for certain infinite families of graphs, the result of Theorem 5.10, together
with Lemma 5.9, has the following direct consequence.

COROLLARY 5.13. All graphs T' that are polygon chains have graph hypersur-
faces Xr whose classes [Xr| in the Grothendieck ring are contained in the Tate
subring Z[L] C Ko(V).

5.5. Graph lemonade. As a variation on the same theme explored here, one
can compute the class of the graph obtained from any graph I' by ‘building a lemon’
on a given edge e, as in Figure 10.

The question makes no sense if e is a looping edge, and is covered by multi-
plicativity if e is a bridge, so we can assume that e is not either. One obtains then
a formula expressing the class of the “lemonade” of the graph I' at the edge e in
terms of U(T"), U(T \ e), U(T/e).
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PROPOSITION 5.14. Let e be an edge of a graph ', and assume that e is neither
a bridge nor a looping edge. Let T'A be the “lemonade graph” obtained by building
an m-lemon fanning out from e. Then

. 1
D Dn)s™ = 1= T(T + 1)s — T(T + 1)252

m>0

(A= (T+1)s)UT) +(T+1)TsUT ~e) + (T +1)*sU(L/e)).
PRrROOF. Let f1., gm, hm be functions of T such that
U(T),) = fun(TYUT) + g (T)U(T N €) + ho (T)U(T /e).

The basic recursion is precisely the one worked out in the proof of Theorem 5.10.
Namely,

U(Apy1) = T(T + D)U(Ap) + T(T + 1)*U(Asp_1)-

This makes sense for m > 1. The individual functions fi,, gm, hm satisfy this same
recursion, but with different seeds:

fo(M =1, A(MT)=T>-1

9o(T)=0 , gi(T)=T(T+1)

ho(T) =0 , hy(T)=(T+1)2
The values in the second column implement the doubling formula of Lemma 5.2,
and then split the new edge by introducing a factor of T + 1. Letting F'(s), G(s),

H(s) be the three corresponding generating functions F(s) = >, <, fms™, etc.,
the recursions imply

F(s) = (T? = 1)s — 1 = T(T + 1)s(F(s) — 1) + T(T + 1)?s*F(s)
G(s) = T(T + 1)s = T(T + 1)sG(s) + T(T + 1)%s*°G(5s)
H(s) — (T +1)%s = T(T + 1)sH(s) + T(T + 1)*s*H(s)

from which

B 1-(T+1)s
FO) = @ s 1T )2
B (T+1)Ts
C) = T @ T 1)s - T(T 3 122
B (T+1)%s
HS) = =@ s~ 1 )2
as stated. |

The three functions F'(s), G(s), H(s) are all easily recoverable from the lemon
formula of Theorem 5.10.

Notice, moreover, that the result of Proposition 5.14 yields immediately the
following generating series for the Euler characteristic of the complement of Xra ,
valid under the same hypotheses of the proposition. If I" \{ e is not a forest, then

Z xra 8™ = (1= 5) Xr + Xr/e-
m>0

That is, Xra = Xr/e = XT and xra =0 for m > 1.
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6. Universal recursion relation

The very structure of the problems analyzed in the previous section is recursive,
and this fact alone is responsible for some of the features of the solutions found in §5.
We emphasize these general features in this section, and apply them to formulate
a precise conjecture for the effect of the operation of multiplying edges on the
polynomial invariant Cp(T") of graphs obtained in [3] in terms of CSM classes;
recall that we have shown in §3.3 that this is not a specialization of the Tutte
polynomial.

6.1. Recursions from multiplying edges. Let I' be a graph with two (pos-
sibly coincident) marked vertices v, w in the same connected component. Typically,
the vertices will be the boundary of an edge e of I We consider the operation
I' ~ T'(™) which has the effect of inserting m parallel edges joining v and w. Note
that obviously T'(+7) = (T(™)(") A feature of invariants U such as the Tutte
polynomial and the motivic Feynman rule U is that if e is an edge joining v and w
in T, so that T'(™) = [ (+1)e With the notation of §5.1 and §5.2, then the effect of
this operation on U can be expressed consistently as

UT™) = frn1UT) + g1 UL N €) + b1 U(T /)

The consistency requirement may be formulated as follows. Let R be the target of
the invariant U, and consider the evaluation map R®3 — R given by

g
fl—=gUT~Ne)+fUT)+hUT/e) ;
h

then the main requirement is that the effect of I' ~» T'™) can be lifted to a rep-
resentation of the additive monoid ZZ° on R¥3. In other words, these operations
may be represented by 3 x 3 matrices A,,, such that

O gm+1
A (1) = [ fnr | = FnirU@) + g U N €) + iy 1 U(T /) = UT™)
0 herl

and Ag =1, Api4n = Ay - Ay Tt is also natural to assume that

1
A1)l =10o] ,
0 0

reflecting the fact that T' = (T'\ )" (assuming I" \ e is marked by 9e), and

0 0
A -0 ={0
1 Z

where Z is the value of U on the graph consisting of a single looping edge. This last
requirement is motivated by the fact that the endpoints v, w of e coincide in the
contraction T'/e, therefore (I'/e)(!) consists of I'/e with a looping edge attached to
v = w; since U is a Feynman rule, the effect must amount to simple multiplication
by Z.
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The datum of the representation is captured by the generating function
s A
S
A(S) = ZAmﬁze 1
m>0
Our task is to determine this function, or equivalently the generating functions
s™ s™ s™
f(s) = mew ) g(S)Zngm ) h(s):thm
m>0 m>0 m>0

Here, it is natural to set

(6.1) fo=0 , go=1 , ho =0
fi=1 g1=0 hi=0

LEMMA 6.1. Let U be a Feynman rule, and assume that Z is the value of U on
the graph consisting of a single looping edge. Then for m >0

Im  Gm+1 0
Ap = fm fm+1 0
B i1 2™

and the coefficients fu,, gm, hm satisfy the following recursion
fmt2 = fofmi1 + 92fm

(6.2) Im+1 = 92fm
hmt1 = haofmm + Zhm,

form > 0.

Proor. By assumption,

0 Im+1 0 g2 0
Ap- [ 1] = | frte and A;=1[1 fo 0
0 herl 0 hy Z

Im—-1 Im 0
Assuming inductively that A,,—1 = | fine1 fm 0 |, the fact that A, =
hm-1 hm Z™
A,,—1A; shows that A, has the stated shape. The recursion is forced by the
fact that A,,+1 = A1 A, which gives

Im+1 Gm+2 0 0 g2 O 9m  9ms+1 O
Jm+1  fma2 0 =11 f2 O fm fmyr O
i1 hmis  ZMH1 0 hy Z) \hm hmer 2™
g2 fm 92 fm+1 0

=\ gmn+ fofm  Gmi1+ fofmir 0
hofm + Zhm  hofmi1 + Zhpmyr 2™

and shows that
fmt2 = fofme1 + Gmyr

Im+1 = g2fm
hm+1 = h2fm + th
Then (6.2) follows immediately. O

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



FEYNMAN MOTIVES AND DELETION-CONTRACTION RELATIONS 59
In specific cases, the recursion can often be solved by computing explicitly e41#,
which is straightforward if A; is diagonalizable. This can be carried out easily for
the the motivic Feynman rule, for which

0 T—1 0
Ar=(1 T o |,
0 T+1 T

recovering formula (5.13) in Theorem 5.3. It can also be worked out for the Tutte
polynomial, for which we can choose

0 1 0
(6.3) Ar=1|1 0 0
0 1+y vy

Since the Tutte polynomial satisfies the relation T+ = Tr. . + T/, there are in
fact many possible choices for the corresponding representation. The one chosen in
(6.3) gives

0 = 1 eys 0 1 v g
s™ Ity Y= y—1
A) =3 An—=(0 12 —1) [0 e 0 || 4EL JEE o
m>0 ’ 1 1 1 0 0 e° % _% 0
and correspondingly
f(s)= S5 =sinhs
2
g(s) = £re —’_26 = coshs
ys __ S
h(s) = ¢ ¢ _sinhs.
y—

Since the deletion—contraction relation (2.17) holds, this is equivalent to the result
of Proposition 5.1.

The recursion (6.2) can be solved directly in general by the same method for
the specific cases analyzed in §5. The conditions translate into differential equations
satisfied by the functions f, g, h, and specifically

f(s) = fa f'(s) + g2 (5)
(6.4) 9'(s) = gs f(s)
W(s)=Zh(s) + ha f(s)

With the initial conditions specified in (6.1), and assuming f3 + 4g2 # 0, the first
equation has the solution

Aps _ pA_s + 249
f(s):76A+_i7 , where )\i:—fQ §2+ 92 :
equivalently,
A \™
fn = T2 = AT NPT AT

A=A
The second and third equations then determine g and h:

)ure)‘*s — A_er+s
g(S) - >\+ _ )\_
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and

h(s) _ hg 6)\+s _ 6Zs B 6)\_5 _ 6Zs
Mo\ A —Z N —Z

if Ay # 7 and A_ # Z, while

h s eZs_eks
h(S):—Z_z/\ (sez T )

if {Ay,A\_} ={Z, A\}. This last eventuality occurs for the motivic Feynman rule.

The equations (6.4) highlight interesting features of the coeflicients of any so-
lution to the multiplying edge problem, independent of the specific context. From
the general solution, we also see that

f(S) e)urs _e)\,s

g(s) TNper s —A_ers
generalizing Remark 5.4. For the Tutte polynomial (with the choice of (6.3)) this
function is the hyperbolic tangent.
As a last general remark, we note that the coefficients f,, form a divisibility

sequence. This is clear from the expression for f,, given above: frm) = j;m’((ss)) =
% Alternatively, it can be proved as in Corollary 5.12: one finds that the
AT

quotients fT(m) satisfy the recursion

1753 = (Fafm 4 202fm ) I = (o)™ 1
for all » > 0, and in particular it follows that fy,(s) divides fn,(s) for all » > 0.

6.2. Conjectural behavior of Cr under multiplication of edges. A dele-
tion/contraction rule for the invariant Cr is not yet available; however, if such a
rule exists then a doubling-edge formula for this invariant should exist, of the type
considered above: if e is an edge of I' joining the marked vertices, then one would
expect

?
CF(M) - fm+1 : CF + Im+1 CF\e + herl : Cl"/e

for suitable coefficients satisfying the stringent requirements examined in §6.1. The
fact that Cr is known for banana graphs (Example 3.8 in [3]) provides then a
testing ground for this phenomenon, as well as a precise indication for what the
needed representation should be in this case. The following statement fits most of
the evidence we have.

CONJECTURE 6.1. The polynomial Feynman rule Cr obeys the general recursion
formulas obtained in §6.1 with respect to the operation of multiplying edges. The
corresponding representation is determined by

fo=2T -1, g2 =—-T(T - 1), ho =1
The generating functions for the operation are

f(S) = ¢Ts _ e(T—l)s
g(s) = Te(T-1s _ (T —1)els

h(s)= eT=Ds 4 (s—1)e>.
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Since the Euler characteristic xr of the complement of Xt in its ambient pro-
jective space can be recovered from Cr (cf. Proposition 3.1 in [3]), these formulae
imply generating functions for xpm). These coincide with the formulae obtained in
Corollary 5.5, providing some evidence for Conjecture 6.1.

Conjecture 6.1 is verified for many cases known to us: the family of banana
graphs, as well as several examples for small graphs computed by J. Stryker ([37]).
In fact, the smallest graph for which the invariant Cpr(T) is not completely known
is the triangle with doubled edges; according to Conjecture 6.1, the polynomial
invariant for this graph would be

TS +27° + 8T* + 273 + T2 - T

and it follows that the CSM class of the corresponding graph hypersurface would
be
4[P*] + 7[P?] + 18[P?] + 14[P] + 7[P’]

On the other hand, further work indicates that the coefficient of [P?] in this class
is 8, rather than 7 as shown here, and this would give a counterexample to Conjec-
ture 6.1. Establishing precise conditions guaranteeing the validity of the formulas
given in Conjecture 6.1 is an interesting project. The conjecture appears to hold as
stated if the graph hypersurfaces satisfy suitable transversality hypotheses, as we
will discuss elsewhere.

7. Categorification

Various examples of categorifications of graph and link invariants have been re-
cently developed. These are categorical constructions with associated (co)homology
theories, from which the (polynomial) invariant is recontructed as Euler character-
istic. The most famous examples of categorification are Khovanov homology [28],
which is a categorification of the Jones polynomial, and graph homology, which
gives a categorification of the chromatic polynomial [23]. More recently, a cat-
egorification of the Tutte polynomial was also introduced in [27]. In the known
categorifications of invariants obtained from specializations of the Tutte polyno-
mial, the deletion—contraction relations manifest themselves in the form of long
exact (co)homology sequences. Another way in which the notion of categorification
found applications to algebraic structures associated to graphs is in the context
of Hall algebras. In this context, one looks for a categorification of a Hopf alge-
bra, that is, an abelian category such that the given Hopf algebra is the associated
Hall-Ringel algebra. In the case of the Connes—Kreimer Hopf algebra of Feynman
graphs, a suitable categorification, which realizes it (or rather its dual Hopf algebra)
as a Ringel-Hall algebra, was recently obtained in [30].

In view of all these results on categorification, it seems natural to try to in-
terpret the deletion—contraction relation described in this paper for the motivic
Feynman rules in terms of a suitable categorification. As remarked in §8 of [7], one
can think of the motive associated to the graph I' and the maps induced by edge
contractions as a motivic version of graph cohomology. We see a similar setting
here in terms of the deletion—contraction relations we obtained in §3 and §4.

We denote by m(X) the motive of a variety X, seen as an object in the tri-
angulated category DMg of mixed motives of [39]. A closed embedding ¥ C X
determines a distinguished triangle in this category

(7.1) m(Y) = m(X) - m(X < Y) — m(Y)][1].
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Since one thinks of motives as a universal cohomology theory for algebraic varieties,
and of classes in the Grothendieck ring as a universal Euler characteristic, it is
natural to view the motive m(Xr) € DMy as the “categorification” of the “Euler
characteristic” [Xr] € Ko(Vg)-

The analog of the fact that the categorification of deletion—contraction relations
takes the form of long exact cohomology sequences is then expressed in this context
in the following way.

PROPOSITION 7.1. For a graph T with n edges, let mp := m(P"~! \ X7) as
an object in DMg. The deletion contraction relation of Theorem 3.8 determines a
distinguished triangle in DMg of the form

(72) mr.e — M — m(IP’"fl AN (Xr\e N Xp/e)) — mr\e[l],
where, as above X denotes the cone on X.

PRrROOF. This follows from the proof of Theorem 3.8. In fact, for the inclusion
Xt~ (Xr N Xr_.) in PP~ < X7, we have a distinguished triangle of the form

m(Xr ~ (Xr N Xpe)) = m(P" 1\ X7)
—m(P" (Xt N X1.)) = m(Xt ~ (X N Xroe)[1].
We then use the isomorphisms
Xr~ (Xr N Xpree) P2\ Xree

and

XF n XF\e =~ XF/e n XF\e
proved in Theorem 3.8 to get the triangle (7.2). d

This means that we can upgrade at the level of the category DMg of mixed
motives some of the arguments that we formulated in the previous sections at the
level of classes in the Grothendieck ring of varieties.

COROLLARY 7.2. Let T'y,. denote the graph obtained from a given graph I' by
replacing an edge e by m parallel edges, as in §5.2. If mp, mp . and mp,. belong
to the sub-triangulated category DMTg C DMg of mized Tate motives, then the
motive mr,__ also belongs to DMTg.

PRrOOF. It suffices to show that the result holds for I's.. We look at the case
where e is neither a bridge nor a looping edge. The other cases can be handled
similarly. One follows the same argument of Proposition 5.2, written in terms of
the distinguished triangle (7.2), which is here of the form

mp — mr,, — m(P"' < (XrNXr,)) = mp[1],

where I', is the graph obtained by attaching a looping edge at the vertex e is
contracted to in the graph I'/e. Since DMT7Tg is a sub-triangulated category of
DMy, to know that mr,_ is (isomorphic to) an object in DM Ty it suffices to know
that the remaining two terms of the distinguished triangle belong to DM7g. This
requires expressing m(P"~! \ (Xt N Xt,)) in terms of mixed Tate motives. This
can be done again as in Proposition 5.2, using again (5.10) to control the term
m(P"~! \ (Xr N X1,)) in terms of another distinguished triangle involving mr..
and mr/e. O
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Similarly, we can lift at this motivic level the statement of Corollary 5.13 and
the construction of the “lemonade graphs” of §5.5.

COROLLARY 7.3. The motives mp of graphs I' that are polygon chains belong to
the subcategory DMTg of mized Tate motives. Moreover, if I is a graph such that
mr, mre, and mp,. are onjects in the subcategory DMTq of mized Tate motives,
all the graphs of the form T'A | obtained as in Proposition 5.1/ by attaching a lemon

graph to the edge e also have mpa in DMTg.

Another possible way of formulating the deletion—contraction relations of The-
orem 3.8 at the level of the triangulated category of mixed motives, in the form of
distinguished triangles, would be to use the geometric description of the deletion—
contraction relations given in §4 in terms of the blowup diagram (4.1) and used
distinguished triangles in D Mg associated to blowups.

A related question is then to provide a categorification for the polynomial
invariant Cr(7T'). This ties up with the question of what type of deletion—contraction
relation this invariant satisfies by reformulating the question in terms of a possible
long exact cohomology sequence.
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