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Abstract. We investigate the effect of varying boundary conditions on
the renormalization group flow in a recently developed noncommutative
geometry model of particle physics and cosmology. We first show that
there is a sensitive dependence on the initial conditions at unification,
so that, varying a parameter even slightly can be shown to have drastic
effects on the running of the model parameters. We compare the run-
ning in the case of the default and the maximal mixing conditions at
unification. We then exhibit explicitly a particular choice of initial con-
ditions at the unification scale, in the form of modified maximal mixing
conditions , which have the property that they satisfy all the geometric
constraints imposed by the noncommutative geometry of the model at
unification, and at the same time, after running them down to lower
energies with the renormalization group flow, they still agree in order of
magnitude with the predictions at the electroweak scale.
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1. Introduction

The recent work [26] developed cosmological models of the very early
universe based on the particle physics model of [13] derived from noncom-
mutative geometry, via the formalism of spectral triple and the spectral
action functional. Other results on cosmological aspects of noncommutative
geometry models of particle physics include [9], [23], [27], [28], [29], [30], [31].
In the particle physics model of [4], [15], [13], the Lagrangian is obtained by
computing the asymptotic expansion at high energy of the spectral action
functional [11] on a noncommutative space which is the product of an ordi-
nary (commutative) spacetime manifold and extra dimensions given in the
form of a noncommutative space which is metrically zero-dimensional, but
K-theoretically six dimensional. The choice of the noncommutative space
determines the particle physics content of the model and the gauge sym-
metries. The masses and mixing angles arise geometrically as coordinates
on the moduli space of Dirac operators of the spectral triple describing the
extra dimensions. In the case of the model developed in [13], the particle
physics content is the same as in the νMSM, namely, in addition to the par-
ticles of the Minimal Standard Model, one has right handed neutrinos with
Majorana mass terms. However, the model is significantly different from
νMSM when it comes to the properties of the action functional. In fact, as
proved in [13], the asymptotic expansion of the spectral action contains the
full Standard Model Lagrangian, with the additional Majorana terms for
the right handed neutrinos. One has unification of the coupling constants of
the three forces, hence the model has a preferred energy scale at unification.
The asymptotic expansion of the spectral action also contains gravitational
terms, which are the most interesting part from the point of view of applica-
tions to cosmological models. These terms contain an Einstein–Hilbert term,
a cosmological term, a conformal gravity term, a non-dynamical topological
term, and a conformal coupling of the Higgs field to gravity.

In the approach to cosmological models developed in [26], one uses the
fact that, at the unification scale, in the terms one obtains in the asymptotic
expansion of the spectral action, the usual gravitational and cosmological
constants are replaced by effective constants, whose expression at unification
depends upon the Yukawa parameters of the particle physics content of the
model. In [26], this is used to derive an early universe model in which one
allows these effective gravitational and cosmological constant determined
by the boundary conditions given by the asymptotic expansion of the spec-
tral action, to run with the RGE flow of the associated particle physics
model, according to the running of the Yukawa parameters and Majorana
mass terms. This allows for a much more serious variability of the effective
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gravitational and cosmological constant in between the unification and the
electroweak epochs of the very early universe (and in particular during the
inflationary epoch) than is usually considered in other gravity models. In
[26], this type of running leads to several consequences on early universe cos-
mology, from mechanisms for inflation to effects on the gravitational waves
and the evaporation law for primordial black holes.

For the purpose of the present paper, the specific issues of the running of
the gravitational parameters and of the resulting interpretations within the
model are not directly relevant, since the results we give here are specifically
about the running with the RGE flow of those expressions of Yukawa pa-
rameters and Majorana masses, which enter the value at unification of the
asymptotic expansion of the spectral action.

The analysis performed in [26] depends on the choice of initial boundary
conditions at unification for the renormalization group flow. The results of
[26] are obtained using the default boundary conditions of [1]. However, as
we show in the present paper, one obtains significantly different behaviors
of the coefficients of the asymptotic expansion of the spectral action by
changing boundary conditions. This implies that there will be the possibility
of drawing interesting exclusion curves in the space of all possible boundary
conditions, on the basis of comparing the model with cosmological data,
for example through the predictions for the tensor-to-scalar ratio and the
spectral index derived in [26].

For the purpose of the present paper, we first show how one obtains
significantly different curves for the running of the parameters in the action
functional with different choices of the boundary conditions. This shows, as
one would have expected, a sensitive dependence on the initial conditions at
unification, which means that a fine-tuning problem arises within the model,
in the choice of the data at unification.

The main result of the paper is then to exhibit a specific choice of bound-
ary conditions, which we denote modified maximal mixing conditions, which
differ from the default one of [1], and which have the desired properties.
Namely, we show that all the geometric constraints on the data at unifica-
tion derived in [13] are satisfied by our choice of boundary conditions. We
also show that, when running the RGE flow with those boundary condi-
tions, one obtains values in the low energy limit that are still compatible in
order of magnitude with the physical predictions and observed values at low
energy, as in the case of the default conditions of [1].

An important aspect of these models is understanding how much nonper-
turbative effects in the spectral action may affect the low energy behavior of
the model, since that is the main obstacle to extending to the more recent
universe the cosmological models of [26]. Our estimates of the low energy
behavior when matching geometric boundary conditions at unification may
also provide some indirect evidence for the magnitude of such effects.

Recent results of [27] show that, at least in the case of sufficiently symmet-
ric geometries, the spectral action can be fully computed non-perturbatively,
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using the technique of [12], and the non-perturbative effects are limited to
the shape of the inflation potential.

2. The spectral action and the renormalization group flow

In noncommutative geometry one models the analog of a Riemannian
manifold through the notion of a spectral triple, consisting of data (A,H,D)
of an involutive algebra, a Hilbert space representation, and a Dirac opera-
tor, which has the compatibility condition of having bounded commutators
with elements of the algebra. Additional structure, in the form of grading γ
and real involution J with compatibility conditions with the data (A,H,D)
are also introduced. In the particle physics context, γ corresponds to the
two chiralities of fermions and J to the involution that exchanges particles
and antiparticles. See [13] for a more detailed account of the underlying
mathematical structure, which we do not recall here. The action functional
considered in noncommutative geometry models for particle physics is based
on the spectral action [11] for the Dirac operator of a spectral triple, with
additional fermionic terms. In the model of [13] this takes the form

(2.1) Tr(f(DA/Λ)) +
1

2
〈Jξ̃,DAξ̃〉.

Here DA = D+A+ ε′ J AJ−1 is the Dirac operator with inner fluctuations
given by the gauge potentials of the form A = A† =

∑
k ak[D, bk], for ele-

ments ak, bk ∈ A. The ε′ is just a function of n mod 8 that gives -1 for n
congruent to 1 mod 4 and 1 for all other values of n. The fermionic term
〈Jξ̃,DAξ̃〉 should be seen as a pairing of classical fields ξ̃ ∈ H+ = {ξ ∈
H | γξ = ξ}, viewed as Grassman variables. For the purpose of cosmological
applications, the most important part of this action functional is the one
that comes from the asymptotc expansion at high energy Λ of the spectral
action Tr(f(DA/Λ)), since this contains the gravitational terms and their
coupling to matter.

2.1. The asymptotic form of the spectral action. The asymptotic ex-
pansion of the spectral action is obtained in the form (see [11], [13])

(2.2) Tr(f(D/Λ)) ∼
∑

k∈DimSp+

fkΛ
k

∫
−|D|−k + f(0)ζD(0) + o(1),

where fk =
∫∞

0 f(v)vk−1dv are the momenta of the function f and the
noncommutative integration is defined in terms of residues of zeta functions

(2.3) ζa,D(s) = Tr(a |D|−s).
The sum in (2.2) is over points in the dimension spectrum of the spectral
triple, which is a refined notion of dimension for noncommutative spaces,
consisting of the set of poles of the zeta functions (2.3). More explicitly,
as proved in [13], when applied to a noncommutative space of the form
X × F , with X an ordinary 4-dimensional (Euclidean) spacetime and F
the noncommutative space whose algebra of coordinates is C⊕H⊕M3(C),
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with H the algebra of quaternions, the expansion (2.2) of Tr(f(DA/Λ)) gives
terms of the form

(2.4)

S =
1

2κ2
0

∫
R
√
g d4x+ γ0

∫
√
g d4x

+ α0

∫
Cµνρσ C

µνρσ√g d4x+ τ0

∫
R∗R∗

√
g d4x

+
1

2

∫
|DH|2√g d4x− µ2

0

∫
|H|2√g d4x

− ξ0

∫
R |H|2√g d4x+ λ0

∫
|H|4√g d4x

+
1

4

∫
(Giµν G

µνi + Fαµν F
µνα + Bµν B

µν)
√
g d4x.

The coefficients of these terms are functions

(2.5)

1
2κ20

=
96f2Λ2 − f0c

24π2

γ0 =
1

π2
(48f4Λ4 − f2Λ2c +

f0

4
d)

α0 = − 3f0

10π2

τ0 =
11f0

60π2

µ2
0 = 2

f2Λ2

f0
− e

a

ξ0 = 1
12

λ0 =
π2b

2f0a2
.

These depend upon the three parameters f0, f2, f4, where f0 = f(0) and
for k > 0

fk =

∫ ∞
0

f(v)vk−1dv,

where f0 depends upon the common value of the coupling constants at uni-
fication energy and f2 and f4 are free parameters of the model. The expres-
sions (2.5) also depend upon the energy scale Λ and the running of these
parameters is the main topic of our present investigation. In addition to the
explicit dependence on Λ of the coefficients (2.5) there is also an additional
and very interesting dependence on Λ through the coefficients a, b, c, d and
e. These are functions of the Yukawa parameters and Majorana masses of
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the particle physics content of the model, in the form

(2.6)

a = Tr(Y †ν Yν + Y †e Ye + 3(Y †uYu + Y †d Yd))

b = Tr((Y †ν Yν)2 + (Y †e Ye)
2 + 3(Y †uYu)2 + 3(Y †d Yd)

2)

c = Tr(MM †)

d = Tr((MM †)2)

e = Tr(MM †Y †ν Yν).

2.2. Renormalization group flow. The particle physics models based on
the spectral action functional of noncommutative geometry as in [11], [13]
are (at present) entirely a classical theory. In particular, this means that
whenever physical predictions are derived in these models using renormal-
ization group techniques to lower the energy scale from unification, where
the model naturally lives, to ordinary energies, one uses beta functions and
renormalization group equations that are imported from the ordinary QFT
of the specific particle physics Lagrangian that is obtained from the as-
ymptotic expansion of the spectral action. This is a delicate issue, since in
fact the asymptotic expansion includes both matter and gravitational terms.
The beta functions and RGE flow adopted here (as in [26]) is the one for
the extension of the Minimal Standard Model that includes right handed
neutrinos with Majorana mass terms, while the gravitational effects are not
taken into account in the form of RGE. This is an approximation, since the
non-minimal coupling of the Higgs to gravity in the model means that one no
longer has a clear separation between the particle and gravitational sectors.
Consequences of modified RGE flows coming from non-minimal couplings
to the Higgs can be found for instance in [7], [8], and in [32], while effects
from gravity terms are considered in [18]. For the Minimal Standard Model,
there is an extensive literature on the form of the beta functions and the
RGE flow, see for instance [24] and references therein. In the case of the
noncommutative geometry model of particle physics of [14], which did not
yet include right handed neutrinos and Majorana mass terms, predictions
of the Higgs mass were obtained based on using the RGE of the Minimal
Standard Model.

The RGE analysis of the model of [13] considered in [26], which we also
work with in this paper, differs from the usual RGE analysis of the Standard
Model in the following ways:

• Instead of the RGE of the Minimal Standard Model, one considers
the equations for the extension with right handed neutrinos and
Majorana masses, as in [1]. As in [1] these are treated by considering
different effective field theories in between the different see-saw scales
(see also [2], [3]).
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• We vary the initial conditions at unification, by imposing the geo-
metric constraints derived in [13] and at the same time requiring that
the low energy values remain close to the expected physical values.

The specific information on the NCG model of [13] enters here in two ways:
first in selecting the appropriate matter content of the model (the presence
of the extra right handed neutrinos with Majorana mass terms in addition
to the usual Standard Model), hence the use of the RGE flow of [1], and
also in the geometric constraints imposed on the boundary conditions at
unification.

We use, as in [26] the renormalization group equations for the Standard
Model with right handed neutrinos and Majorana mass terms of [1]. The nu-
merical results described here are obtained with a Mathematica code based
on the REAP program of [1] adapted to our model by the first author.

We recall here that the RGE for this particle physics model is given (at
one loop) by the beta functions [1]

16π2 βgi = bi g
3
i with (bSU(3), bSU(2), bU(1)) = (−7,−19

6
,
41

10
)

16π2 βYu = Yu(
3

2
Y †uYu −

3

2
Y †d Yd + a− 17

20
g2

1 −
9

4
g2

2 − 8g2
3)

16π2 βYd = Yd(
3

2
Y †d Yd −

3

2
Y †uYu + a− 1

4
g2

1 −
9

4
g2

2 − 8g2
3)

16π2 βYν = Yν(
3

2
Y †ν Yν −

3

2
Y †e Ye + a− 9

20
g2

1 −
9

4
g2

2)

16π2 βYe = Ye(
3

2
Y †e Ye −

3

2
Y †ν Yν + a− 9

4
g2

1 −
9

4
g2

2)

16π2 βM = YνY
†
νM +M(YνY

†
ν )T

16π2 βλ = 6λ2 − 3λ(3g2
2 +

3

5
g2

1) + 3g4
2 +

3

2
(
3

5
g2

1 + g2
2)2 + 4λa− 8b.

Notice that we use here the normalization of the coupling constants used in
[1], which is different from the one of [13].

In particular, as in [1], we solve numerically these equations using different
effective field theories in the intervals of energies between the three see-saw
scales, with matching boundary conditions. Namely, starting from assigned
boundary conditions at unification, one runs the RGE flow down until the
first see-saw scale (the top eigenvalue of the Majorana mass matrix M . Then
one integrates out the higher modes by introducing a first effective theory

with Yukawa parameters Y
(3)
ν obtained by removing the last row of Yν in the

basis where M is diagonal and with Majorana mass matrix M (3) obtained
by removing tha last row and column. One then restarts the RGE flow for
these new variables with matching boundary conditions at the top see-saw
scale, until the second see-saw scale, and so on. One has in this way effective

field theories (Y
(k)
ν ,M (k)), k = 3, 2, 1.

We study the effect on this RGE flow of changing boundary conditions
at unification scale, and we then derive consequences for the running of the
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coefficients a, b, c, d, e of (2.6). In the next section we show, as could have
been expected, that the running is highly sensitive to the choice of the intial
conditions at unification. This shows that there is an important fine-tuning
issue in the model related to the assigned values at unification. We then
present in the following section a specific choice of boundary conditions that
meets all the geometric constraints on the model and that produces realistic
values at low energies.

2.3. A remark on gravitational and Yukawa parameters in the
NCG models. This subsection is not directly relevant to the main result
of the paper, which is simply a statement about the running of the parame-
ters a, b, c, d, e of (2.6), subject to different choices of boundary conditions
at unification, with particular attention to those dictated by the geometric
constraints imposed by the model of [13] at unification. However, we include
it here to discuss briefly and compare different existing points of view on the
role of the parameters (2.6) in the coefficients (2.5) of the spectral action
expansion.

In the NCG model of [13], the relation (2.5) between the coefficients of the
asymptotic expansion of the spectral action and the Yukawa coupling and
Majorana mass terms of the particle physics sector holds only at unification
energy. In particular, the dependence of the effective gravitational and ef-
fective cosmological constants upon the parameters a, b, c, d, e of (2.6) only
sets the boundary conditions at unification. In [13] (see also the exposition
in Chapter 1 of [16]), consequently, the running of the gravitational terms
of the model is deduced from the usual approach as in [18], see also [19],
by which one obtains only a very moderate (or essential lack of) running of
the gravitational parameters. The running of the particle physics sector is
then ruled, in the NCG models, only by the RGE flow of the matter La-
grangian, neglecting gravitational effects (with the caveat mentioned above
on the non-minimal coupling with the Higgs).

However, there are cosmological models that include the possibility of a
much more drastic variability of the gravitational parameters in the very
early universe, including in particular the inflationary epoch. Scenarios
with variable gravitational constant had been considered early on in Jordan–
Brans–Dicke gravity, where the variability happens through the non-minimal
coupling of gravity to a scalar field, and more recently within other modified
gravity models, and in terms of RGE running [21], as well as in the context
of primordial black holes with gravitational memory (see for instance [5],
or the recent [10] and references therein). Similarly, a variable cosmological
constant plays a role in various models (see for example [6], [20], [25], [33]).

In [26], therefore, a different viewpoint on the effective gravitational and
cosmological constant in the asymptotic expansion of the spectral action
in the NCG models is proposed, and a possible early universe model is
investigated, which only covers the epochs in between the unification and
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the electroweak eras, a period which is expected to include the inflation-
ary epoch. It is shown that, if one considers an effective action where the
gravitational and cosmological constant are allowed to run according to the
RGE flow of the coefficients (2.6) through the expressions (2.5) and with
the assigned boundary conditions at unification, then one recovers many
of the scenarios predicted by other models with variable gravitational and
cosmological constant, as [10], [17], [22], and several different mechanism for
inflation, with predictions about parameters such as the spectral index and
tensor-to-scalar ratio.

Other recent cosmological applications of [13], such as those in [9], [27],
[28], [29], [30], [31], follow the more conventional point of view on the as-
ymptotic expansion of the spectral action and the form of the coefficients
(2.5). These different viewpoints do not directly affect in any way the re-
sults of the present paper, and we only mention them here for the reader’s
information.

3. Effects of changing boundary conditions

The REAP program from [1] allows the user to adjust the boundary
conditions. These changes are generally made at Λunif , taken here to be
2 × 1016 GeV. As we understand that only fine tuned initial conditions for
the universe allowed its current form, we expect the boundary conditions at
unification energy to drastically effect the development of our model param-
eters. We show here, as an example, the different running of the coefficients
a, b, c, d, e of (2.6) for the default boundary conditions and for the maximal
mixing case. We also show explicitly the changing behavior of the running
of one of these coefficients when one of the parameters varies at unification,
in order to illustrate the significant dependence on the initial conditions.

3.1. The default boundary conditions. The boundary conditions at uni-
fication used in [26] are the default boundary conditions of [1]. These have
the following values.

λ(Λunif ) =
1

2

Yu(Λunif ) =

 5.40391× 10−6 0 0
0 0.00156368 0
0 0 0.482902


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For Yd(Λunif ) = (yij) they have

y11 = 0.0000482105− 3.382× 10−15i
y12 = 0.000104035 + 2.55017× 10−7i
y13 = 0.0000556766 + 6.72508× 10−6i
y21 = 0.000104035− 2.55017× 10−7i
y22 = 0.000509279 + 3.38205× 10−15i
y23 = 0.00066992− 4.91159× 10−8i
y31 = 0.000048644− 5.87562× 10−6i
y32 = 0.000585302 + 4.29122× 10−8i
y33 = 0.0159991− 4.21364× 10−20i

Ye(Λunif ) =

 2.83697× 10−6 0 0
0 0.000598755 0
0 0 0.0101789



Ynu(Λunif ) =

 1 0 0
0 0.5 0
0 0 0.1



M(Λunif ) =

 −6.01345× 1014 3.17771× 1012 −6.35541× 1011

3.17771× 1012 −1.16045× 1014 5.99027× 1012

−6.35541× 1011 5.99027× 1012 −4.6418× 1012



Figure 1. The running coefficients with default boundary conditions near
top see-saw scale
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3.2. Maximal mixing example. To look at the maximal mixing case,
we simply change Ynu at unification energy. With maximal mixing, our
parameters will take these values.

ζ = exp(2πi/3)

UPMNS(Λunif ) =
1

3

 1 ζ ζ2

ζ 1 ζ
ζ2 ζ 1


From the available estimates of the neutrino masses, we get the diagonal
mass matrix

δ(↑1) =
1

246

 12.2× 10−9 0 0
0 170× 10−6 0
0 0 15.5× 10−3


Finally,

Yν = U †PMNSδ(↑1)UPMNS

Using this form for Yν and the default boundary conditions on all the other
parameters, we can look at the running coefficients. From the figures below,
we see that there are vast differences in the development of the parameters
with this boundary condition change.

Figure 2. The running coefficients with maximal mixing boundary
conditions near top see-saw scale
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3.3. Running coefficients with changing boundary conditions. It is
possible to get even more interesting behavior by using less standard bound-
ary conditions. By changing just one parameter we can examine how it
affects the flow of our running parameters. A specific example is the Yν
matrix. Using our standard boundary conditions, this matrix is diagonal at
unification energy. We can adjust each of these elements on the diagonal,
which correspond to our neutrino masses, to affect our flow. Using anima-
tion functions in Mathematica, it is possible to get a nearly continuous idea
of how the flow of our parameters develops with our boundary conditions.
The figures below illustrate such a development discretely.

Figure 2. Coefficient c at the upper see-saw scale with the first term of Yν
as 0.5, 1.0, and 1.5 respectively

In these diagrams, we notice the transition changing as the upper neutrino
mass varies. The sharp transition at the upper see-saw scale comes from the
program integrating out the heavy neutrino at this scale. The second plot
shows the behavior we expect from the standard conditions. In the first
plot we can see the upper and middle transitions are much closer together
than in our second plot.The final plot shows the transition at a much higher
energy, corresponding to the higher neutrino mass. From these and other
such plots, we learn how the running develops independently by changing
different parameters. Of course, changing multiple parameters complicates
this development and is dealt with in more detail when matching specific
boundary conditions.

4. Geometric constraints at unification

There are some constraints on the boundary conditions at unification that
are imposed by the underlying geometry of the model. These are derived in
[13], see also the discussion in §1 of [16]. We recall them here. Not all of
these constraints are satisfied by the default boundary conditions of [1], so
a first improvement on the model of [26] is to identify choices of boundary
conditions that satisfy these constraints, and then, among them, eliminate
those that produce non-physical predictions.
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We show here how to obtain a choice of boundary conditions that satisfy
all the constraints by modifying the maximal mixing conditions.

4.1. Constraint on λ. A first constraint imposed by the geometry is on
the value of the Higgs self-coupling λ at unification. This satisfies

(4.1) λ(Λunif ) =
π2

2f0

b(Λunif )

a(Λunif )2
.

Looking at our maximal mixing boundary conditions we can calculate
that λ(Λunif ) = 2.989. By setting it to this value at unification energy in
our flow we can ensure that this requirement is met.

4.2. The a parameter and the Higgs vacuum. The model of [13] also
relates the parameter a to the Higgs vacuum through the relation

(4.2)

√
af0

π
=

2MW

g
,

where g is the common value of the coupling constants at unification and
MW is the W -boson mass. As MW is directly proportional to

√
a, this

condition is a statement of the equality of f0 and the coupling constants at
unification energy.

4.3. Constraint on c. The see-saw mechanism is implemented in [13] geo-
metrically, through the fact that the restriction of the Dirac operator D(Y )
to the subspace of HF spanned by νR, νL, ν̄R, ν̄L is of the form

(4.3)


0 M †ν M̄ †R 0
Mν 0 0 0

M̄R 0 0 M̄ †ν
0 0 M̄ν 0

 ,

where Mν is the neutrino mass matrix, see Lemma 1.225 of [16]. This
imposes a constraint at unification on the coefficient c, of the form

(4.4)
2f2Λ2

unif

f0
≤ c(Λunif ) ≤

6f2Λ2
unif

f0
.

By setting our Majorana mass matrix to 10 times its default value, the
inequality can be matched. In this particular case, the f2 that is used is
in the range given in [26]. f0 is calculated from the coupling constants at
unification energy.

4.4. The mass relation at unification. Another prediction which is spe-
cific to the model of [13] is a quadratic relation between the masses at
unification scale, of the form

(4.5)
∑

generations

(m2
ν +m2

e + 3m2
u + 3m2

d)|Λ=Λunif = 8M2
W |Λ=Λunif ,

where mν , me, mu, and md are the masses of the leptons and quarks, that
is, the eigenvectors of the matrices δ↑1, δ↓1, δ↑3 and δ↓3, respectively, and
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MW is the W-boson mass. We use the fact that MW is given as a function
of the model parameters by

(4.6)

√
a

2
√

2
= MW .

So, our equation becomes

(4.7)
∑

generations

(m2
ν +m2

e + 3m2
u + 3m2

d)|Λ=Λunif = a|Λ=Λunif .

In our maximal mixing boundary conditions, we get

(4.8)
∑

generations

(m2
ν +m2

e + 3m2
u + 3m2

d)|Λ=Λunif = 0.6698 = a|Λ=Λunif .

This value of a, when converted to conventional units, gives a value of MW

of 72 GeV. The expected value on MW is around 80 GeV so these boundary
conditions are believable.

4.5. Modified maximal mixing. Thus, the conclusion of this analysis is
that we obtain a choice of boundary conditions that satisfies all the geomet-
ric constraints of the geometric model at unification by using our maximal
mixing boundary conditions as described in the previous section, but with a
modified Majorana mass matrix and Higgs parameter, as explained here. We
refer to the resulting boundary conditions as the modified maximal mixing
conditions.

We then need to check that, when we run the RGE flow with these initial
conditions at unification, we obtain values at low energies that are compati-
ble, within order of magnitude, with the required physical values. We discus
this in the next section.

5. Low energy physical constraints

At the electroweak scale, physical data impose other boundary conditions
on some of the Yukawa matrices. Finding the unification scale conditions
that can also match these lower energy requirements is crucial to the theory.
. We look at the conditions that are expected from physical data and com-
pare to the results from the running of the model parameters. We show that
our modified maximal mixing boundary conditions also satisfy the required
constraints at low energy.

5.1. Boundary conditions at the electroweak scale. Current predic-
tions at the electroweak scale tell us that the CKM matrix at Λ0 can be
taken to be of the form

UCKM (Λ0) =

 0.97419 0.2257 0.00359
0.2256 0.97334 0.0415
0.00874 0.0407 0.999133


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Combined with

δ(↓3)(Λ0) =
1

246

 0.00475 0 0
0 1 0
0 0 4.25


we get that the Yukawa parameters for the quarks are given by

Yd = UCKM (Λ0)δ(↓3)(Λ0)UCKM (Λ0)†

and

Yu(Λ0) =
1

246

 0.0024 0 0
0 1.25 0
0 0 173


Similarly, for the matrix of charged leptons, the known values and low

energy are

Ye(Λ0) =
1

246

 0.000511 0 0
0 0.1056 0
0 0 1.777


The conditions for the other parameters are all given at the unification

scale.

5.2. Comparison of expected and measured values. We use the mod-
ified maximal mixing boundary conditions to run the parameters and com-
pare to the physical boundary conditions at low energy. From this analysis,
we get that the measured Yukawa parameters for quarks are

Yd,measured(Λ0) =
1

246

 0.0121 0 0
0 0.128 0
0 0 4.032


and

Yu,measured(Λ0) =
1

246

 0.0032 0 0
0 0.9223 0
0 0 248


For the charged leptons, we get the mass matrix

Ye,measured(Λ0) =
1

246

 0.000699 0 0
0 0.147 0
0 0 2.51


Comparing these to the expected values at low energies, we see that the

order of magnitude and form of the matrices agree. While the agreement is
not exact, it seems that this is the closest we can get while maintaining the
geometric constraints of the model. In order to make the agreement more
exact, further fine tuning is required.
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6. Conclusions

In this paper we investigate the RGE running of the coefficients a, b, c, d,
e of (2.6), which appear in the asymptotic expansion of the spectral action
functional of the noncommutative geometry model of particle physics of [13].
The equations used in the renormalization group analysis are based on the
beta function calculation of [1], for the extension of the Standard Model
that includes right handed neutrinos with Majorana mass terms.

We showed that the running is very sensitive to the fine tuning of the
initial conditions at unification energy. We exhibited, as significant exam-
ples, the different running for the default boundary conditions of [1] and the
maximal mixing conditions, and we also showed the effect on the running
of the coefficients of changing a single parameter in the initial conditions at
unification.

We then showed that a choice of boundary conditions based on the maxi-
mal mixing, with a modified Majorana mass matrix and Higgs parameter at
unification, satisfies all the geometric constraints on the model described in
[13], while at the same time gives rise to low energy values that are, within
order of magnitude, in agreement with the expected physical values.

We consider here the asymptotic expansion of the spectral action in the
range of energies from the unification scale down to the electroweak scale.
Within this range of energies, replacing the non-perturbative form of the
spectral action with its asymptotic expansion is justified, since the error
term is at worse of the order of Λ−2. However, it is known that interesting
nonperturbative effects do arise in the spectral action, as shown in the re-
cent results of [12], for example in the form of a slow-roll inflation potential.
Cosmological implications of these effects are discussed in [27]. In terms of
the RGE analysis considered here, we find that with our choice of modified
maximal mixing conditions at unification, one obtains low energy values that
are in agreement with the physical data within order of magnitude, which is
not yet as good an agreement as one could hope for. This may be an indica-
tion that further fine tuning of the initial conditions may achieve a better fit
of the low energy data, or else that nonperturbative effects may play a role.
This is not completely unlikely, considering that the nonperturbative effects
identified in [12] essentially appear in the coupling of Higgs and gravity and
this in turn can affect the form of the RGE running, as observed in [7], [8],
[32]. These questions will require further investigation.
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