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ON THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AND STEVE SMALE

The problem of learning is arguably at the
very core of the problem of intelligence,
both biological and artificial.

T. Poggio and C.R. Shelton

Introduction

(1) A main theme of this report is the relationship of approximation to learning and
the primary role of sampling (inductive inference). We try to emphasize relations
of the theory of learning to the mainstream of mathematics. In particular, there
are large roles for probability theory, for algorithms such as least squares, and for
tools and ideas from linear algebra and linear analysis. An advantage of doing this
is that communication is facilitated and the power of core mathematics is more
easily brought to bear.

We illustrate what we mean by learning theory by giving some instances.
(a) The understanding of language acquisition by children or the emergence of

languages in early human cultures.
(b) In Manufacturing Engineering, the design of a new wave of machines is an-

ticipated which uses sensors to sample properties of objects before, during,
and after treatment. The information gathered from these samples is to be
analyzed by the machine to decide how to better deal with new input objects
(see [43]).

(c) Pattern recognition of objects ranging from handwritten letters of the alpha-
bet to pictures of animals, to the human voice.

Understanding the laws of learning plays a large role in disciplines such as (Cog-
nitive) Psychology, Animal Behavior, Economic Decision Making, all branches of
Engineering, Computer Science, and especially the study of human thought pro-
cesses (how the brain works).

Mathematics has already played a big role towards the goal of giving a univer-
sal foundation of studies in these disciplines. We mention as examples the theory
of Neural Networks going back to McCulloch and Pitts [25] and Minsky and Pa-
pert [27], the PAC learning of Valiant [40], Statistical Learning Theory as devel-
oped by Vapnik [42], and the use of reproducing kernels as in [17] among many
other mathematical developments. We are heavily indebted to these developments.
Recent discussions with a number of mathematicians have also been helpful. In
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particular this includes Gregorio Malajovich, Massimiliano Pontil, Yuan Yao, and
especially Ding-Xuan Zhou.

(2) We now describe some cases of learning where we have simplified to the extreme.

Case 1. A classical example of learning is that of learning a physical law by curve
fitting to data. Assume that the law at hand, an unknown function f : R→ R, has a
specific form and that the space of all functions having this form can be parameter-
ized by N real numbers. For instance, if f is assumed to be a polynomial of degree
d, then N = d+1 and the parameters are the unknown coefficients w0, . . . , wd of f .
In this case, finding the best fit by the least squares method estimates the unknown
f from a set of pairs (x1, y1), . . . , (xm, ym). If the measurements generating this set
were exact, then f(xi) would be equal to yi. But in general one expects the values
yi to be affected by noise. One computes the vector of coefficients w such that the
value

m∑
i=1

(fw(xi)− yi)2, with fw(x) =
d∑
j=0

wjx
j

is minimized where, typically, m > N . In general, the value above is not minimized
at 0. The least squares technique, going back to Gauss and Legendre, which is com-
putationally efficient and relies on numerical linear algebra, solves this minimization
problem.

In some contexts the xi, rather than being chosen, are also generated by a
probability measure. Thus, one might take as a starting point, instead of the
unknown f , a probability measure on R varying with x ∈ R. Then yi is a sample
for a given xi. The starting point could be even a single measure on R × R from
which the pairs (xi, yi) are randomly drawn. The latter is the point of view taken
here.

A more general form of the functions in our approximating class could be given
by

fw(x) =
N∑
i=1

wiφi(x)

where the φi are part of a “preconditioning step”. This is reminiscent of neural
nets where the wi are the weights to be adjusted by “training”.

Case 2. A standard example of pattern recognition is that of recognizing hand-
written characters. Consider the problem of classifying handwritten letters of the
English alphabet. Here, elements in our space X could be matrices with entries in
the interval [0, 1] —each entry representing a pixel in a certain grey scale of a photo
of the handwritten letter or some features extracted from the letters. We may take
Y to be

Y =

{
y ∈ R26 | y =

26∑
i=1

λiei s.t.
26∑
i=1

λi = 1

}
.

Here ei is the ith coordinate vector in R26 (each coordinate corresponding to a
letter). If ∆ ⊂ Y is the set of points y as above such that 0 ≤ λi ≤ 1, for
i = 1, . . . , 26, one can interpret a point in ∆ as a probability measure on the set
{A,B,C,. . .,X,Y,Z}. The problem is to learn the ideal function f : X → Y which
associates, to a given handwritten letter x, the point {Prob{x =A}, Prob{x =B},. . . ,
Prob{x =Z}}. Non-ambiguous letters are mapped into a coordinate vector, and in
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the (pure) classification problem f takes values on these ei. “Learning f” means
to find a sufficiently good approximation of f within a given prescribed class.

The approximation of f is constructed from a set of samples of handwritten
letters, each of them with a label in Y . The set {(x1, y1), . . . , (xm, ym)} of these
m samples is randomly drawn from X × Y according to a measure ρ on X × Y ,
and the function f to be learned is the regression function fρ of ρ. That is, fρ(x)
is the average of the y values of {x} × Y (we will be more precise about ρ and the
regression function in Section 1 in the next chapter).

Case 3 (Monte Carlo integration). An early instance of randomization used in al-
gorithms is for computing integrals. Let f : [0, 1]n → R. A way of approximat-
ing the integral

∫
x∈[0,1]n

f(x)dx consists of randomly drawing points x1, . . . , xm ∈
[0, 1]n and computing

Im(f) =
1
m

m∑
i=1

f(xi).

Under mild conditions on f , Im(f)→
∫
f with probability 1; i.e., for all ε > 0,

lim
m→∞

Prob
x1,... ,xm

{∣∣∣∣Im(f)−
∫
f

∣∣∣∣ > ε

}
→ 0.

We find again the theme of learning an object (here a single real number, al-
though defined in a non-trivial way through f) from a sample. In this case the
measure governing the sample is known (the measure in [0, 1]n inherited from the
standard Lebesgue measure on Rn), but the same idea can be used for an unknown
measure. If ρX is a probability measure on X ⊂ Rn, a domain or manifold, Im(f)
will approximate

∫
x∈X f(x)dρX , for large m with high probability, as long as the

points x1, . . . , xm are drawn from X according to the measure ρX .

Case 4. The approximation of characteristic (or indicator) functions of sets is
known as PAC learning (from Probably Approximately Correct). Let T (the target
concept) be a subset of Rn and ρX be a probability measure on Rn which we as-
sume is not known in advance. Intuitively, a set S ⊂ Rn approximates T when the
symmetric difference S∆T = (S − T ) ∪ (T − S) is small, i.e. has a small measure.
Note that if fS and fT denote the characteristic functions of S and T respectively,
this measure, called the error of S, is

∫
Rn(fS − fT )2dρX .

Let C be a class of subsets of Rn and assume that T ∈ C. A strategy to con-
struct an approximation of T is the following. First, draw points x1, . . . , xm ∈ Rn
according to ρX and label each of them with 1 or 0 according to whether or not
they belong to T . Secondly, compute any function fS : Rn → {0, 1}, fS ∈ C, which
coincides with the labeling above over {x1, . . . , xm}. Such a function will provide
a good approximation S of T as long as m is large enough and C is not too wild.
Thus the measure ρX is used in both capacities, governing the sample drawing and
measuring the error set S∆T .

A major goal in PAC learning is to estimate as a function of ε and δ how large
m needs to be to obtain an ε approximation of T with probability at least 1− δ.

A common characteristic of the cases above is the existence of both an “un-
known” function f : X → Y and a probability measure allowing one to randomly
draw points in X × Y . That measure can be on X (Cases 3 and 4), on Y varying
with x ∈ X (Case 1), or on the product X ×Y (Case 2). It can be known (Case 3)
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or unknown. The only requirement it satisfies is that, if for x ∈ X a point y ∈ Y
can be randomly drawn, then the expected value of y is f(x).

The development in this paper, for reasons of unity and generality, will be based
upon a single measure on X × Y . Yet, one should keep in mind the distinction
between “inputs” x ∈ X and “outputs” y ∈ Y .

In the sequel, we will try to give a rigorous development of what we have found
to be the central ideas of learning theory. However, learning theory in its various
forms is vast, and we don’t even touch on important parts such as “unsupervised
learning”, relations with dynamics, with neural nets, and so on. “Classification” is
not covered directly. However, this report could be of use in further foundational
studies in these areas.

Since the readers will have diverse mathematical backgrounds, we sketch the
proofs of some standard theorems, with references to the literature for fuller ac-
counts. When the result is new, we are more complete.

Practical results are not the goal of this paper. Understanding is. We try to write
in the spirit of H. Weyl and J. von Neumann’s contributions to the foundations of
quantum mechanics.

Chapter I: Sample Error

1. A formal setting: The probability measure on the product space

and the error

Since we want to study learning from random sampling, the primary object in
our development is a probability measure ρ governing the sampling and which is
not known in advance (however, the goal is not to reveal ρ).

Let X be a compact domain or a manifold in Euclidean space and Y = Rk. For
convenience we will take k = 1 for the time being. Let ρ be a Borel probability
measure on Z = X × Y whose regularity properties will be assumed as needed. In
the following we try to utilize concepts formed naturally and solely from X,Y and
ρ.

Throughout this paper, if ξ is a random variable, i.e. a real valued function on
a probability space Z, we will use E(ξ) to denote the expected value (or average,
or mean) of ξ and σ2(ξ) to denote its variance. Thus

E(ξ) =
∫
Z

ξ dρ and σ2(ξ) = E((ξ −E(ξ))2) = E(ξ2)− (E(ξ))2.

A main concept is the error (or least squares error) of f defined by

E(f) = Eρ(f) =
∫
Z

(f(x)− y)2 for f : X → Y .

For each input x ∈ X and output y ∈ Y , (f(x)− y)2 is the error suffered from the
use of f as a model for the process producing y from x. By integrating over X ×Y
(w.r.t. ρ, of course) we average out the error over all pairs (x, y). Hence the word
“error” for E(f).

The problem is posed: What is the f which minimizes the error E(f)?
The error E(f) naturally decomposes as a sum. Let us see how.
For every x ∈ X , let ρ(y|x) be the conditional (w.r.t. x) probability measure on

Y and ρX be the marginal probability measure on X , i.e. the measure on X defined
by ρX(S) = ρ(π−1(S)) where π : X × Y → X is the projection. Notice that ρ,
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ρ(y|x) and ρX are related as follows. For every integrable function ϕ : X × Y → R
a version of Fubini’s Theorem states that∫

X×Y
ϕ(x, y) dρ =

∫
X

(∫
Y

ϕ(x, y) dρ(y|x)
)
dρX .

This “breaking” of ρ into the measures ρ(y|x) and ρX corresponds to looking at Z
as a product of an input domain X and an output set Y . In what follows, unless
otherwise specified, integrals are to be understood over ρ, ρ(y|x) or ρX .

Define fρ : X → Y by

fρ(x) =
∫
Y

y dρ(y|x).

The function fρ is called the regression function of ρ. For each x ∈ X , fρ(x) is the
average of the y coordinate of {x} × Y (in topological terms, the average of y on
the fiber of x). Regularity hypotheses on ρ will induce regularity properties on fρ.

We will assume throughout this paper that fρ is bounded.
Fix x ∈ X and consider the function from Y to R mapping y into (y − fρ(x)).

Since the expected value of this function is 0, its variance is

σ2(x) =
∫
Y

(y − fρ(x))2dρ(y|x).

Averaging over X , define

σ2
ρ =

∫
X

σ2(x) dρX = E(fρ).

The number σ2
ρ is a measure of how well conditioned ρ is, analogous to the notion

of condition number in numerical linear algebra.

Remark 1. (a) It is important to note that, while ρ and fρ are mainly “unknown”,
ρX is known in some situations and can even be the Lebesgue measure on X
inherited from Euclidean space (as in Case 1 above).

(b) In the rest of this paper, if formulas do not make sense or ∞ appears, then
the assertions where these formulas occur should be considered vacuous.

Proposition 1. For every f : X → Y ,

E(f) =
∫
X

(f(x) − fρ(x))2 + σ2
ρ.

Proposition 1 has the following consequence:
The first term in the right-hand side of Proposition 1 provides an average (over

X) of the error suffered from the use of f as a model for fρ. In addition, since σ2
ρ

is independent of f , Proposition 1 implies that fρ has the smallest possible error
among all functions f : X → Y . Thus σ2

ρ represents a lower bound on the error E ,
and it is due solely to our primary object, the measure ρ.

Thus, Proposition 1 supports:

The goal is to “learn” (i.e. to find a good approximation of) fρ from
random samples on Z.
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Proof of Proposition 1. We have

E(f) =
∫
Z

(f(x) − fρ(x) + fρ(x)− y)2

=
∫
X

(f(x)− fρ(x))2 +
∫
X

∫
Y

(fρ(x)− y)2

+2
∫
X

∫
Y

(f(x) − fρ(x))(fρ(x)− y)

=
∫
X

(f(x)− fρ(x))2 + σ2
ρ.

We now consider the sampling. Let

z ∈ Zm, z = ((x1, y1), . . . , (xm, ym))

be a sample in Zm, i.e. m examples independently drawn according to ρ. Here
Zm denotes the m-fold Cartesian product of Z. We define the empirical error of f
(w.r.t. z) to be

Ez(f) =
1
m

m∑
i=1

(f(xi)− yi)2.

If ξ is a random variable on Z, we denote the empirical mean of ξ (w.r.t. z) by
Ez(ξ). Thus,

Ez(ξ) =
1
m

m∑
i=1

ξ(zi).

For any function f : X → Y we denote by fY the function

fY : X × Y → Y

(x, y) 7→ f(x)− y.

With these notations we may write E(f) = E(f2
Y ) and Ez(f) = Ez(f2

Y ). We already
remarked that the expected value of fρY is 0; we now remark that its variance is
σ2
ρ.

Remark 2. Consider the setting of PAC learning discussed in Case 4 whereX = Rn.
The measure ρX described there can be extended to a measure ρ on Z by defining,
for A ⊂ Z,

ρ(A) = ρX({x ∈ X | (x, fT (x)) ∈ A}).
The marginal measure on X of ρ is our original ρX . In addition, σ2

ρ = 0, the
error above specializes to the error mentioned in that discussion, and the regression
function fρ of ρ coincides with fT except for a set of measure zero in X .

2. Convergence in probability

Toward the proof of our main Theorems B and C we recall some basic inequalities
in probability theory. The first one, Chebyshev’s inequality, is classical. For a proof
of the second one, which is an exponential extension of Chebyshev’s inequality for
bounded random variables, see [32].
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Proposition 2. Let ξ be a random variable on a probability space Z with mean
E(ξ) = µ and variance σ2(ξ) = σ2.

[Chebyshev] For all ε > 0

Prob
z∈Zm

{∣∣∣∣∣ 1
m

m∑
i=1

ξ(zi)− µ
∣∣∣∣∣ ≥ ε

}
≤ σ2

mε2
.

[Bernstein] If |ξ(z)−E(ξ)| ≤M for almost all z ∈ Z, then, for all ε > 0,

Prob
z∈Zm

{∣∣∣∣∣ 1
m

m∑
i=1

ξ(zi)− µ
∣∣∣∣∣ ≥ ε

}
≤ 2e

− mε2

2(σ2+ 1
3Mε) .

Remark 3. (i) The inequalities in Proposition 2 can be seen as quantitative ver-
sions of the law of large numbers.

(ii) Bernstein’s inequality without the absolute value provides a bound without

the first 2, i.e. e
− mε2

2(σ2+ 1
3Mε) (see [32]).

(iii) Another exponential version of Chebyshev’s inequality, due to Hoeffding, is
often used in the learning literature. With the notations used in the statement
of Proposition 2, Hoeffding’s inequality reads

Prob
z∈Zm

{∣∣∣∣∣ 1
m

m∑
i=1

ξ(zi)− µ
∣∣∣∣∣ ≥ ε

}
≤ 2e−

mε2

2M2 .

Notice that when we replace σ2 by its obvious bound M2, the exponent in
Bernstein’s inequality becomes

− mε2

2M2 + 2
3Mε

which is slightly worse than Hoeffding’s. Since we may assume ε ≤ M (oth-
erwise the probability in the statement is zero) we have 2M2 + 2

3Mε ≤
2M2(1 + 1/3). It follows that this exponent is multiplied by a factor of
at most 3/4. However, in the other extreme, when σ2 = 0, the exponent in
Bernstein’s inequality becomes

−3mε
2M

which is much better than the exponent in Hoeffding’s inequality.
We also note that Chebyshev’s inequality yields a better bound than both

Bernstein’s and Hoeffding’s for small m.

Let f : X → Y . The defect function of f is

Lz(f) = Lρ,z(f) = E(f)− Ez(f).

Notice that the theoretical error E(f) cannot be measured directly while Ez(f) can.
A bound on Lz(f) becomes useful since it allows one to bound the actual error
from an observed quantity.

Our first main result, Theorem A, states bounds for Prob{|Lz(f)| ≤ ε} for a
single function f : X → Y . This bound follows from Proposition 2 by taking
ξ = f2

Y .
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Theorem A. Let M > 0 and f : X → Y be such that |f(x) − y| ≤ M almost
everywhere. Then, for all ε > 0,

Prob
z∈Zm

{|Lz(f)| ≤ ε} ≥ 1− 2e
− mε2

2(σ2+ 1
3M

2ε)

where σ2 is the variance of f2
Y .

Remark 4. (1) Note that the confidence (i.e. the right hand side in the inequal-

ity above) is positive when m is larger than 2(σ2+ 1
3M

2ε)

ε2 and approaches 1
exponentially fast with m.

(2) A case implying the condition |f(x)− y| ≤M a.e. is the following. Define

Mρ = inf
{
M ≥ 0 | {(x, y) ∈ Z | |y − fρ(x)| ≥M} has measure zero

}
.

Then take M = P +Mρ where P ≥ ‖f − fρ‖∞ = sup
x∈X
|f(x)− fρ(x)|.

3. Hypothesis spaces and target functions

Learning processes do not take place in a vacuum. Some structure needs to be
present at the beginning of the process. The nature of this structure in the instance
of language acquisition mentioned in the introduction is a subject of debate among
linguists. In our formal development, we will assume that this structure takes the
form of a class of functions. The goal of the learning process will thus be to find
the best approximation of fρ within this class. Therefore, we now move the focus
from a function f : X → Y to a family H of such functions.

Let C(X) be the Banach space of continuous functions on X with the norm

‖f‖∞ = sup
x∈X
|f(x)|.

We consider a compact subset H of C(X) —in the sequel called hypothesis space—
where algorithms will work to find, as well as possible, the best approximation for
fρ. A main choice in our paper is a compact, infinite dimensional, subset of C(X),
but we will also consider closed balls in finite dimensional subspaces of C(X). It is
important for us to choose H in this way so that the existence of fH and fz (see
below) is guaranteed, Proposition 3 below can be proved, and covering numbers are
finite (see Section 4).

If fρ ∈ H, simplifications will occur. But in general, we will not even assume
that fρ ∈ C(X), and we will have to consider a target function fH in H.

Let fH be a function minimizing the error E(f) over f ∈ H, i.e. an optimizer of

min
f∈H

∫
Z

(f(x)− y)2.

Notice that, since E(f) =
∫
X(f − fρ)2 + σ2

ρ, fH is also an optimizer of

min
f∈H

∫
X

(f − fρ)2.

The existence of fH follows from the compactness of H and the continuity of
E : C(X)→ R (see Remark 7 below). It is not necessarily unique. However, we will
see a uniqueness result in Section 7 when H is convex.
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Let z ∈ Zm be a sample. We define the empirical target function fH,z = fz to
be a function minimizing the empirical error Ez(f) over f ∈ H, i.e. an optimizer of

min
f∈H

1
m

m∑
i=1

(f(xi)− yi)2.

Note that while fz is not produced by an algorithm, it is close to algorithmic. It is
“empirical” from its dependence on the sample z. The existence of fz follows from
the compactness of H and the continuity of Ez where the use of ‖ ‖∞ is now crucial
(again, see Remark 7 below). Observe that fz does not depend on ρ. Note also
that E(fz) and Ez(f) are different objects, as are E(fH) and EH(f) below.

For a given hypothesis space H, the error in H of a function f ∈ H is the
normalized error

EH(f) = E(f)− E(fH).

Note that EH(f) ≥ 0 for all f ∈ H and that EH(fH) = 0.
Continuing the discussion after Proposition 1, note that it follows from our def-

initions and that proposition that

E(fz) = EH(fz) + E(fH) =
∫
X

(fz − fρ)2 + σ2
ρ.(1)

Consider the sum EH(fz) + E(fH). The second term in this sum depends on the
choice of H but is independent of sampling. We will call it the approximation error.
The first term, EH(fz), is called the sample error.1

Equation (1) thus breaks our goal —to estimate
∫
X(fz − fρ)2 or, equivalently,

E(fz)— into two different problems corresponding to finding estimates for the sam-
ple and approximation errors. Note that the first problem is posed on the space
H and the second is independent of the sample z. For fixed H the sample error
decreases when the number m of examples increases (as we will see in Theorem C).
Fix m instead. Then, typically, the approximation error will decrease when en-
larging H, but the sample error will increase. This latter feature is sometimes
called the bias-variance trade-off (see e.g. [6] and page 41 in [28]). The “bias” is
the approximation error and the “variance” is the sample error. This suggests the
problem of how to choose dimH (or another measure of the size of H) when m is
fixed. We will examine this problem in the next chapter. The focus of this chapter
is on estimating the sample error. We want to estimate how close one may expect
fz and fH to be, depending on the size of the sample and with a given confidence.
Or, equivalently,

How many examples do we need to draw to assert, with a confidence
greater than 1− δ, that

∫
X

(fz − fH)2 is not more than ε?
There have been many results in recent years doing this (cf. [18], [42]). Our main

results in this chapter, Theorems C and C* below, give such estimates in a general
and sharp setting.

We now describe some examples of hypothesis spaces. Our development in this
and the next chapter will be accompanied by the development of these examples.

Example 1 (Homogeneous polynomials). Let Hd = Hd(Rn+1) be the linear space
of homogeneous polynomials of degree d in x0, x1, . . . , xn. Let X = S(Rn+1), the

1The sample error is often called estimation error in the literature.
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n-dimensional unit sphere. An element in Hd defines a function from X to R and
can be written as

f =
∑
|α|=d

wαx
α.

Here, α = (α0, . . . , αn) ∈ Nn is a “multi-index”, |α| = α0 + · · · + αn, and xα =
xα0

0 · · ·xαnn . Thus, Hd is a vector space of dimension

N =
(
n+ d
n

)
.

We may consider H = {f ∈ Hd | ‖f‖∞ ≤ 1} as a hypothesis space. Because of the
scaling f(λx) = λdf(x), taking the bound ‖f‖∞ ≤ 1 causes no loss. The number
N is exponential in n and d. We notice however that in some situations one may
consider a linear space of polynomials with a given monomial structure, i.e. in
which only a prespecified set of monomials may appear.

Example 2 (Finite dimensional function spaces). This generalizes the previous
example. Let φ1, . . . , φN ∈ C(X) and E be the linear subspace of C(X) spanned by
{φ1, . . . , φN}. Here we may take H = {f ∈ E | ‖f‖∞ ≤ R} for some R > 0.

The next two examples deal with infinite dimensional linear spaces. In both of
them, the space L2

ν(X) of square integrable functions is central.
Let ν be a Borel measure on X and L be the linear space of functions f : X → Y

such that the integral ∫
X

f2(x) dν

exists. The space L2
ν(X) is defined to be the quotient of L under the equivalence

relation ≡ given by

f ≡ g ⇐⇒
∫
X

(f(x) − g(x))2 dν = 0.

This is a Hilbert space with the scalar product

〈f, g〉ν =
∫
X

f(x)g(x) dν.

We will denote by ‖ ‖ν the norm induced by this inner product. In case ν = ρX we
will write ‖ ‖ρ instead of the more cumbersome ‖ ‖ρX .

A linear map J : E→ F between the Banach spaces E and F is called compact if
the closure J(B) of J(B) is compact for any bounded set B ⊂ E.

Example 3 (Sobolev spaces). Let X be a compact domain in Rn with smooth
boundary. Then, the space C∞(X) of infinitely differentiable functions on X is
well-defined. For every s ∈ N we can define an inner product in C∞(X) by

〈f, g〉s =
∫
X

∑
|α|≤s

DαfDαg.

Here, α ∈ Nn, Dαf is the partial derivative ∂αf
∂x
α1
1 ...∂xαnn

, and we are integrating
with respect to the Lebesgue measure µ on X inherited from Euclidean space. We
will denote by ‖ ‖s the norm induced by 〈 , 〉s. Notice that when s = 0, the inner
product above coincides with that of L2

µ(X). In particular, ‖ ‖0 = ‖ ‖µ. We define
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the Sobolev space Hs(X) to be the completion of C∞(X) with respect to the norm
‖ ‖s. The Sobolev Embedding Theorem asserts that, for s > n/2, the inclusion

Js : Hs(X) ↪→ C(X)

is well-defined and bounded. From Rellich’s Theorem it follows that this embedding
is actually compact. The definition of Hs(X) can be extended to s ∈ R, s ≥ 0,
by using a Fourier transform argument (see also [38]). A reference for the above
is [39].

Thus, if BR denotes the closed ball of radius R in Hs(X), we may take HR,s =
H = Js(BR).

Example 4 (Spaces associated to a kernel). Let K : X × X → R be continuous
and symmetric. Assume that, in addition, K is positive definite, i.e. that for all
finite sets {x1, . . . , xk} ⊂ X the k × k matrix K[x] whose (i, j) entry is K(xi, xj)
is positive definite. We will call such function a Mercer kernel. Let ν be any Borel
measure on X . Let LK : L2

ν(X)→ C(X) be the linear operator given by

(LKf)(x) =
∫
K(x, t)f(t)dt.

Then LK is well-defined, positive, and compact (cf. Section 1 of Chapter III).
In Section 3 of Chapter III it is proved that there exists a Hilbert space HK of
continuous functions on X (called reproducing kernel Hilbert space, RKHS for short)
associated to K and X and independent of ν such that the linear map L

1/2
K is a

Hilbert isomorphism between L2
ν(X) and HK . Here L1/2

K denotes the square root
of LK , i.e. the only linear operator satisfying L1/2

K ◦L1/2
K = LK . Thus, we have the

following diagram:

L2
µ(X)

L
1/2
K,C //

≈

L
1/2
K $$HHHHHHHHH

C(X)

HK

IK

OO

where we write LK,C to emphasize that the target is C(X) and IK denotes the
inclusion. In Section 5 of Chapter III we will prove that if K is C∞, then IK is
compact. For a C∞ Mercer kernel K we may thus consider IK(BR) as a hypothesis
space. This choice will occupy us in Chapter III, where, in particular, Mercer
kernels are shown to exist.

Remark 5. The examples above fit into a general setting which we will refer to in
the sequel. Let E be a Banach space of functions on X and JE : E → C(X) a
compact embedding. We then define, for R > 0,

H = HR = HE,R = JE(BR)

where BR denotes the closed ball of radius R in E. Of course our definition of
hypothesis space includes some which do not fit into the general setting.

4. Uniform estimates on the defect

Our second main result, Theorem B, extends Theorem A to families of functions.
While Theorem A is an immediate application of Bernstein’s inequality, Theorem B
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is a version of the main uniformity estimate in Statistical Learning Theory as de-
veloped by Vapnik (see e.g. [18], [42]). The topology on the family of functions
H, in particular via supposing that H ⊂ C(X) and that H is compact as in Sec-
tion 3, enables our statement and proof of the uniformity estimates to become quite
economical.

Let S be a metric space and s > 0. We define the covering number N (S, s) to
be the minimal ` ∈ N such that there exist ` disks in S with radius s covering S.
When S is compact, as in our case, this number is finite.

Theorem B. Let H be a compact subset of C(X). Assume that, for all f ∈ H,
|f(x)− y| ≤M almost everywhere. Then, for all ε > 0,

Prob
z∈Zm

{
sup
f∈H
|Lz(f)| ≤ ε

}
≥ 1−N

(
H, ε

8M

)
2e
− mε2

4(2σ2+ 1
3M

2ε) .

Here σ2 = σ2(H) = sup
f∈H

σ2(f2
Y ).

Notice the resemblance to Theorem A. The only essential difference is the inclu-
sion of the covering number, which takes into account the extension from a single
f to the family H. This has the effect of requiring the sample size m to increase
accordingly to achieve the confidence level of Theorem A.

Let f1, f2 ∈ C(X). We first estimate the quantity

|Lz(f1)− Lz(f2)|
linearly by ‖f1 − f2‖∞ for almost all z ∈ Zm (a Lipshitz estimate).

Proposition 3. If |fj(x) − y| ≤ M on a set U ⊂ Z of full measure for j = 1, 2,
then for z ∈ Um

|Lz(f1)− Lz(f2)| ≤ 4M‖f1 − f2‖∞.
Proof. First note that since

(f1(x)− y)2 − (f2(x) − y)2 = (f1(x)− f2(x))(f1(x) + f2(x) − 2y)

we have

|E(f1)− E(f2)| =
∣∣∣∣∫ (f1(x)− f2(x))(f1(x) + f2(x)− 2y)

∣∣∣∣
≤ ‖f1 − f2‖∞

∫
|(f1(x) − y) + (f2(x) − y)|

≤ ‖f1 − f2‖∞2M.

Also, for z ∈ Um, we have

|Ez(f1)− Ez(f2)| =
1
m

∣∣∣∣∣
m∑
i=1

(f1(xi)− f2(xi))(f1(xi) + f2(xi)− 2yi)

∣∣∣∣∣
≤ ‖f1 − f2‖∞

1
m

m∑
i=1

|(f1(xi)− y) + (f2(xi)− yi)|

≤ ‖f1 − f2‖∞2M.

Thus

|Lz(f1)− Lz(f2)| = |E(f1)− Ez(f1)− E(f2) + Ez(f2)| ≤ ‖f1 − f2‖∞4M.
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Remark 6. Notice that for bounding |Ez(f1)−Ez(f2)| in the proof above —in con-
trast with the bound for |E(f1)− E(f2)|— one crucially needs the use of the ‖ ‖∞
norm. Nothing less would do.

Remark 7. Let H ⊆ C(X) such that, for all f ∈ H, |f(x) − y| ≤ M almost every-
where. Then the bounds |E(f1)− E(f2)| ≤ 2M‖f1 − f2‖∞ and |Ez(f1)− Ez(f2)| ≤
2M‖f1 − f2‖∞ imply that E , Ez : H → R are continuous.

Lemma 1. Let H = S1 ∪ . . . ∪ S` and ε > 0. Then

Prob
z∈Zm

{
sup
f∈H
|Lz(f)| ≥ ε

}
≤
∑̀
j=1

Prob
z∈Zm

{
sup
f∈Sj

|Lz(f)| ≥ ε
}
.

Proof. It follows from the equivalence

sup
f∈H
|Lz(f)| ≥ ε ⇐⇒ ∃j ≤ ` s.t. sup

f∈Sj
|Lz(f)| ≥ ε

and the fact that the probability of a union of events is bounded by the sum of the
probabilities of these events.

Proof of Theorem B. Let ` = N
(
H, ε

4M

)
and consider f1, . . . , f` such that the

disks Dj centered at fj and with radius ε
4M cover H. Let U be a full measure set

on which |f(x) − y| ≤M . By Proposition 3, for all z ∈ Um and all f ∈ Dj,

|Lz(f)− Lz(fj)| ≤ 4M‖f − fj‖∞ ≤ 4M
ε

4M
= ε.

Since this holds for all z ∈ Um and all f ∈ Dj we get

sup
f∈Dj

|Lz(f)| ≥ 2ε⇒ |Lz(fj)| ≥ ε.

We conclude that, for j = 1, . . . , `,

Prob
z∈Zm

{
sup
f∈Dj

|Lz(f)| ≥ 2ε

}
≤ Prob

z∈Zm
{|Lz(fj)| ≥ ε} ≤ 2e

− mε2

2(σ2(f2
jY

)+ 1
3M

2ε)

with the last estimate using Theorem A. The statement now follows from Lemma 1
by replacing ε by ε/2.

Remark 8. We noted in Remark 3 that Bernstein’s inequality can be seen as a
quantitative instance of the law of large numbers. An “abstract” uniform version
of this law can be extracted from the proof of Theorem B.

Proposition 4. Let F be a family of functions from a probability space Z to R and
d a distance on F . Let U ⊂ Z be of full measure such that

(a) |ξ(z)| ≤ B for all ξ ∈ F and all z ∈ U , and
(b) |Lz(ξ1)− Lz(ξ2)| ≤ L d(ξ1, ξ2), for all ξ1, ξ2 ∈ F and all z ∈ Um

where Lz(f) =
∫
Z

ξ(f, z)− 1
m

m∑
i=1

ξ(f, zi). Then, for all ε > 0,

Prob
z∈Zm

{
sup
ξ∈F
|Lz(ξ)| ≤ ε

}
≥ 1−N

(
F , ε

2L

)
2e
− mε2

4(2σ2+ 1
3Bε) .

Here σ2 = σ2(F) = sup
ξ∈F

σ2(ξ).
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5. Estimating the sample error

How good can we expect fz to be as an approximation of fH? Or, in other
words, how small can we expect the sample error EH(fz) to be? The third main
result in this chapter, Theorem C below, gives an answer.

Lemma 2. Let H be a compact subset of C(X). Let ε > 0 and 0 < δ < 1 such that

Prob
z∈Zm

{
sup
f∈H
|Lz(f)| ≤ ε

}
≥ 1− δ.

Then
Prob
z∈Zm

{EH(fz) ≤ 2ε} ≥ 1− δ.

Proof. By hypothesis we have, with probability at least 1− δ,
E(fz) ≤ Ez(fz) + ε

and
Ez(fH) ≤ E(fH) + ε.

Moreover, since fz minimizes Ez on H we have

Ez(fz) ≤ Ez(fH).

Therefore, with probability at least 1− δ,
E(fz) ≤ Ez(fz) + ε ≤ Ez(fH) + ε ≤ E(fH) + 2ε

and thus, EH(fz) ≤ 2ε.

Replacing ε by ε/2 in Lemma 2 and using Theorem B, one obtains the following.

Theorem C. Let H be a compact subset of C(X). Assume that, for all f ∈ H,
|f(x)− y| ≤M almost everywhere. Let

σ2 = σ2(H) = sup
f∈H

σ2(f2
Y )

where σ2(f2
Y ) is the variance of f2

Y . Then, for all ε > 0,

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1−N
(
H, ε

16M

)
2e
− mε2

8(4σ2+ 1
3M

2ε) .

In case H is convex Theorem C* in Section 7 improves the dependence on ε. Its
Corollary 5 estimates directly ‖fz − fH‖ρ as well.

Remark 9. Theorem C helps to deal with the question posed in Section 3. Given
ε, δ > 0, to ensure that

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1− δ

it is sufficient that the number m of examples satisfies

m ≥
8
(
4σ2 + 1

3M
2ε
)

ε2

[
ln
(

2N
(
H, ε

16M

))
+ ln

(
1
δ

)]
.(2)

To prove this, take δ = N
(
H, ε

16M

)
2e
− mε2

8(4σ2+ 1
3M

2ε) and solve for m. But note
further that (2) gives a relation between the three basic variables ε, δ and m.
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6. Estimation of covering numbers

As we have seen, the estimates in Theorems B and C have as a factor the covering
numbers N (H, η). Here we give estimates for this factor in our series of examples.

Our first result estimates the covering number of balls in finite dimensional
Banach spaces. Let E be such a space and denote by BR the closed ball of radius
R centered at the origin, i.e.,

BR = {x ∈ E | ‖x‖ ≤ R}.

Proposition 5. Let N = dimE. Then lnN (BR, η) ≤ N ln
(

4R
η

)
.

Proposition 5 allows one to bound the covering numbers appearing in Example 2.
The proof we next give is essentially taken from [9]. We first introduce some
numbers occurring in functional analysis.

Let S be a metric space. For k ≥ 1 define

εk(S) = inf{ε > 0 | ∃ closed balls D1, . . . , Dk with radius ε covering S}.
Note that

εk(S) ≤ η ⇐⇒ N (S, η) ≤ k(3)

since both inequalities are equivalent to the existence of a covering of S by k
balls of radius η. Also, note that εk scales well in the sense that, for all R > 0,
εk(RS) = Rεk(S). Here RS = {Rx | x ∈ S}.

Also, for k ≥ 1, define

ϕk(S) = sup{δ > 0 | ∃x1, . . . , xk+1 ∈ S s.t. for i 6= j, d(xi, xj) > 2δ}.

Lemma 3. (i) For all k ≥ 1, ϕk(S) ≤ εk(S) ≤ 2ϕk(S).
(ii) Let E be a Banach space of dimension N and B1 the unit ball in E. For all

k ≥ 1, k−
1
N ≤ εk(B1) ≤ 4(k + 1)−

1
N .

Proof. Part (i) is easy to prove. For part (ii), first note that ϕk(B1) ≤ 1 for all
k ∈ N. Let ρ < ϕk(B1). Then there exist x1, . . . , xk+1 such that d(xi, xj) > 2ρ for
1 ≤ i 6= j ≤ k + 1. Let Dj = xj + ρB1, j = 1, . . . , k + 1. Clearly, Di ∩Dj = ∅ if
i 6= j. In addition, for all x ∈ Dj , ‖x‖ ≤ ‖x − xj‖ + ‖xj‖ ≤ ρ + 1 < 2. Therefore,
Dj ⊆ B2.

As a vector space, E is isomorphic to RN . Any such isomorphism induces on E
a measure ν which is invariant under translations and is homogeneous of degree N
with respect to homotheties (i.e. ν(λB) = λNν(B) for every measurable set B).
Using this measure we get

k+1∑
i=1

ν(Di) ≤ ν(B2)⇒
k+1∑
i=1

ρNν(B1) ≤ 2Nν(B1)

⇒ (k + 1)ρN ≤ 2N ⇒ ρ ≤ 2(k + 1)−
1
N .

From here it follows that εk(B1) ≤ 4(k + 1)−
1
N .

For the other inequality in (ii) consider any ε > εk(B1). Then there exist closed
balls D1, . . . , Dk of radius ε covering B1, and consequently ν(B1) ≤ kεNν(B1)
which implies k−

1
N ≤ ε.

Let x ∈ R. We denote by dxe the largest integer smaller than or equal to x.
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Proof of Proposition 5. Let k =

⌈(
4R
η

)N
− 1

⌉
. Then k + 1 ≥

(
4R
η

)N
and

4(k + 1)−
1
N ≤ η

R
⇒ εk(B1) ≤ η

R
⇐⇒ εk(BR) ≤ η ⇐⇒ N (BR, η) ≤ k.

From here the statement follows since k ≤ (4R
η )N .

To deal with Examples 3 and 4 we introduce a logarithmic version of εk(S). For
k ≥ 1 define the kth entropy number of a metric space S to be2

ek(S) = inf {ε > 0 | ∃ closed balls D1, . . . , D2k−1 with radius ε covering S} .
If E and F are Banach spaces and T : E→ F is a linear map, then we define

ek(T ) = ek(T (B1)).

Lemma 4. (a) ek(T ) ≤ η ⇐⇒ N (T (B1), η) ≤ 2k − 1, and
(b) ek(T (BR)) = Rek(T ).

Proof. For (a) note that, using (3),

ek(T ) ≤ η ⇐⇒ ε2k−1(T (B1)) ≤ η ⇐⇒ N (T (B1), η) ≤ 2k − 1.

Part (b) is clear.

Example 3 (continued). Recall that Hs(X) is a Sobolev space and we are as-
suming that s > n/2 from which it follows that the inclusion

Js : Hs(X) ↪→ C(X)

is a compact embedding. Let BR be the closed ball of radius R centered at the
origin in Hs(X) and H = Js(BR) be its image in C(X).

A main result —of a kind going back to the work of Birman and Solomyak [5]—
concerning entropy numbers of Sobolev spaces states that, if X ⊂ Rn is a compact
domain with smooth (C∞) boundary and s > n/2, then, for all k ≥ 1,

ek(Js) ≤ C
(

1
k

)s/n
.(4)

For a proof, take s1 = s, s2 = 0, p1 = 2, p2 = ∞ in a very general theorem of
Edmunds and Triebel ([16], page 105). Here C is a “constant” independent of
k (which depends though on X and s). It would be useful to see this constant
bounded explicitly.

Remark 10. In general in this paper, we have tried to estimate the value of the
constants occurring in our bounds. In some cases, however, as with the constant C
above, we have lost control.

Proposition 6. Let BR be the closed ball of radius R centered at the origin in
Hs(X) and H = Js(BR) be its image in C(X). Then, for all ε > 0,

lnN (H, ε) ≤
(
RC

ε

)n/s
+ 1.

2Sometimes in the literature (e.g. [9]) εk(S) and ϕk(S) are called inner and outer entropy
numbers respectively. Following [16] we reserve the expression entropy number for ek(S).
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Proof. Let η = Rε and k =

⌈(
C

η

)n/s⌉
. Then η ≥ C

(
1
k

)s/n
. By inequality (4)

we thus have ek(Js) ≤ η and therefore, N (Js(B1), η) ≤ 2k − 1. Hence,

lnN (Js(BR), Rη) = lnN (Js(B1), η) < k <

(
RC

ε

)n/s
+ 1.

In the use of Proposition 6 we may and will delete the constant 1 by supposing
C is slightly enlarged. Proposition 6 can be generalized to other function spaces
via the mentioned result in [16].

Example 4 (continued). Recall that K : X×X → R is a C∞ Mercer kernel and

IK : HK → C(X)

is the compact embedding defined by K. The following result will be proved in
Section 5 of Chapter III. Let BR be the ball of radius R in HK . Then, for all
h > n, η > 0, and R > 0,

lnN
(
IK(BR), η

)
≤
(
RCh
η

) 2n
h

where Ch is a constant independent of η and R.
As a consequence the sample error satisfies that given ε, δ > 0, in order to have

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1− δ

it is enough that the number m of examples satisfies

m ≥
8
(
4σ2 + 1

3M
2ε
)

ε2

[(
16MRCh

ε

) 2n
h

+ 1 + ln
(

1
δ

)]
.

Remark 11. In the examples above, seen as particular cases of the general setting,
with JE : E→ C(X), we obtain estimates of the entropy numbers for JE of the form
ek(JE) ≤ CE

(
1
k

)`E for some positive constants CE and `E. Actually this estimate
is always true if we allow `E to be zero, so, in what follows, we will assume the
estimate as a part of the general setting.

Note we thus have, for H = HE,R, that lnN (H, ε) ≤
(
RCE
ε

)1/`E .

We close this section by noting that the use of entropy numbers in learning theory
has been discussed in [46]. On the other hand, entropy numbers have a strong
history in related contexts (see [21], [44], [24], [41]). See also [45] for contributions
to these matters coming from statistics.

7. Convex hypothesis spaces

A simple computation shows that in the noise-free case, i.e. when σ2
ρ = 0, one

has that, for all f ∈ L2
ρ(X), σ2(f2

Y ) = 0. It follows that σ2
H = 0 and the exponent in

the bound in Theorem C becomes 3mε
8M2 . Thus the dependency on ε of this exponent

passes from quadratic to linear. In several situations, notably in those covered in
the general setting described in Remark 5, the hypothesis space H is convex. In
this case, in Theorem C* below, at the cost of worsening the constant 3/8 above,
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we are able to obtain such a linear dependency on ε without assuming σ2
ρ = 0. In

a related context, [3], [22] have shown a similar passage from ε2 to ε.

Theorem C*. Let H be a compact and convex subset of C(X). Assume that, for
all f ∈ H, |f(x)− y| ≤M almost everywhere. Then, for all ε > 0,

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1−N
(
H, ε

24M

)
e−

mε
288M2 .

Theorem C* applies to Examples 1 to 4. Before proceeding with the proof of
Theorem C* we revisit these examples.

Example 2 (continued). Let φ1, . . . , φN ∈ C(X), E be the subspace of C(X)
spanned by {φ1, . . . , φN} and H = {f ∈ E | ‖f‖∞ ≤ R} for some R > 0. As in
Remark 9, given ε, δ > 0, to have

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1− δ,

it is sufficient that the number m of examples satisfies

m ≥ 288M2

ε

[
N ln

(
96RM
ε

)
+ ln

(
1
δ

)]
.

This follows from Theorem C* together with Proposition 5.

Example 3 (continued). Recall that Hs(X) is a Sobolev space and that we are
assuming that s > n/2, from which it follows that the inclusion

Js : Hs(X) ↪→ C(X)

is a compact embedding. Let BR be the closed ball of radius R centered at the
origin in Hs(X) and H = Js(BR) be its image in C(X).

As above, using Proposition 6, given ε, δ > 0, to have

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1− δ

it is sufficient that the number m of examples satisfies

m ≥ 288M2

ε

[(
24CRM

ε

)n/s
+ ln

(
1
δ

)]
.(5)

Here C is the constant of (4).

Example 4 (continued). Recall that IK : HK → C(X) is a compact embedding
defined by a C∞ Mercer kernel K : X ×X → R, BR is the ball of radius R in HK
and H = IK(BR). As above, given ε, δ > 0, to have

Prob
z∈Zm

{EH(fz) ≤ ε} ≥ 1− δ

it is enough that the number m of examples satisfies

m ≥ 288M2

ε

[(
24MRCh

ε

) 2n
h

+ ln
(

1
δ

)]
.

Here h > n and Ch are as in Section 6.

Remark 12. Note that in the bounds in Examples 3 and 4 there is no dependency
on the dimension of H (which is now infinite), in contrast with the bound shown
in Example 2. These results may be said to be “dimension-free”. The parameter
R in Examples 3 and 4 determines the size of the hypothesis space and is our
replacement for the VC dimension (which is infinite in these examples).
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Toward the proof of Theorem C* we show an additional property of convex
hypothesis spaces.

From the discussion in Section 3 it follows that fH is a function in H whose
distance in L2

ρ(X) to fρ is minimal. We next prove that, if H is convex, it is
unique.

Lemma 5. Let H be a convex subset of C(X) such that fH exists. Then fH is
unique as an element in L2

ρ(X) and, for all f ∈ H,∫
X

(fH − f)2 ≤ EH(f).

Proof. Let s = fHf be the line segment with extremities fH and f .

Since H is convex, s ⊂ H. And, since fH minimizes the distance in L2
ρ(X) to fρ

over H, we have that, for all g ∈ s, ‖fH− fρ)‖ρ ≤ ‖g − fρ‖ρ. This implies that the
angle f̂ρfHf is obtuse, and that implies (note that the squares are crucial)

‖fH − f‖2ρ ≤ ‖f − fρ‖2ρ − ‖fH − fρ‖2ρ,
i.e. ∫

X

(fH − f)2 ≤ E(f)− E(fH).

This proves the desired inequality. The uniqueness of fH follows by considering the
line segment joining two minimizers f ′H and f ′′H. Reasoning as above, one shows that
both angles ̂fρf ′Hf ′′H and ̂fρf ′′Hf ′H are obtuse. This is only possible if f ′′H = f ′H.

Corollary 1. With the hypotheses of Theorem C*, for all ε > 0,

Prob
z∈Zm

{∫
(fz − fH)2 ≤ ε

}
≥ 1−N

(
H, ε

24M

)
e−

mε
288M2 .

Now, in addition to convexity, assume thatH is a compact subset of C(X) so that
the covering numbers N (H, η) make sense and are finite. Also, assume that there
exists M > 0 such that, for all f ∈ H, |f(x) − y| ≤M a.e. The following analogue
of Theorem B is the main steppingstone towards the proof of Theorem C*.3

For a sample z ∈ Zm, the empirical error in H of f ∈ H is EH,z(f) = Ez(f) −
Ez(fH). Note that EH,z(fz) ≤ 0.

3The writing of the rest of this section benefitted greatly from discussions with Partha Niyogi
and a remark by Peter Bartlett.
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Proposition 7. For all ε > 0 and 0 < α < 1,

Prob
z∈Zm

{
sup
f∈H

EH(f)− EH,z(f)
EH(f) + ε

≥ 3α

}
≤ N

(
H, αε

4M

)
e−

α2mε
8M2 .

Before proving Proposition 7 we show how Theorem C* follows from it.

Proof of Theorem C*. Put α = 1/6 in Proposition 7. By this proposition, with
probability at least

1−N
(
H, ε

24M

)
e−

mε
288M2

we have

sup
f∈H

EH(f)− EH,z(f)
EH(f) + ε

<
1
2
,

and therefore, for all f ∈ H, 1
2EH(f) < EH,z(f) + 1

2ε. Take f = fz. Then,
multiplying by 2,

EH(fz) < 2EH,z(fz) + ε,

but EH,z(fz) ≤ 0 by definition of fz from which EH(fz) < ε and the theorem
follows.

We now proceed with the proof of Proposition 7. Let `(f) : Z → Y be defined
by f2

Y − f2
H,Y . Thus, E`(f) = E(f) − E(fH) = EH(f) and, for z ∈ Zm, Ez`(f) =

Ez(f)−Ez(fH) = EH,z(f). In addition, we note that for all f ∈ H, |`(f)(x, y)| ≤M2

a.e.
Convexity plays a major role in the following result. Let σ2 = σ2(`(f)) denote

the variance of `(f).

Lemma 6. For all f ∈ H, σ2 ≤ 4M2EH(f).

Proof. Because

σ2 ≤ E`(f)2 = E[(fH − f)2(y − f + y − fH)2] ≤ 4M2E[(fH − f)2],

it is enough to prove that E[(fH − f)2] ≤ EH(f). This is exactly Lemma 5.

Our next result is a form of Theorem A for the random variable `(f).

Lemma 7. Let f ∈ H. For all ε, α > 0, α ≤ 1,

Prob
z∈Zm

{
EH(f)− EH,z(f)
EH(f) + ε

≥ α
}
≤ e−α

2mε
8M2 .

Proof. Let µ = EH(f). Using the one-sided Bernstein’s inequality (see Remark 3)
applied to `(f) and the fact that |`(f)(z)| ≤M2 a.e., we get

Prob
z∈Zm

{
EH(f)− EH,z(f)

µ+ ε
≥ α

}
≤ e
− (α(µ+ε))2m

2(σ2+ 1
3M

2α(µ+ε)) .

We only need to show that

ε

8M2
≤ (µ+ ε)2

2
(
σ2 + 1

3M
2α(µ+ ε)

)
⇐⇒ ε

4M2

(
σ2 +

1
3
M2α(µ + ε)

)
≤ (µ+ ε)2

⇐⇒ εσ2

4M2
+
εαµ

12
+
ε2α

12
≤ (µ+ ε)2.
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The second and third terms on the left are respectively bounded by µε and ε2 since
α ≤ 1. The first one is smaller than εµ since, by Lemma 6, σ2 is bounded by 4M2µ.
The result follows since 2µε+ ε2 ≤ (µ+ ε)2.

Lemma 8. Let 0 < α < 1, ε > 0, and f ∈ H such that

EH(f)− EH,z(f)
EH(f) + ε

< α.

For all g ∈ H such that ‖f − g‖∞ ≤ αε
4M we have

EH(g)− EH,z(g)
EH(g) + ε

< 3α.

Proof.

EH(g)− EH,z(g)
EH(g) + ε

=
E(g)− E(fH)− Ez(g) + Ez(fH)

EH(g) + ε
=
Lz(g)− Lz(fH)
EH(g) + ε

=
Lz(g)− Lz(f) + Lz(f)− Lz(fH)

EH(g) + ε

=
Lz(g)− Lz(f)
EH(g) + ε

+
Lz(f)− Lz(fH)
EH(g) + ε

.

If the first term above is negative, then it is certainly smaller than α. Otherwise
we have

Lz(g)− Lz(f)
EH(g) + ε

≤ Lz(g)− Lz(f)
ε

≤ 4Mαε

4Mε
= α,

where the last inequality follows from using ‖f − g‖∞ ≤ αε
4M in Proposition 3. For

the second term, note that, using the first part in the proof of Proposition 3,

E(f)− E(g) ≤ 2M‖f − g‖∞ ≤ 2M
αε

4M
< ε

since α < 1. This implies that

EH(f)− EH(g) = E(f)− E(g) ≤ ε ≤ EH(g) + ε

or, equivalently, that EH(f)+ε
EH(g)+ε ≤ 2. But then

Lz(f)− Lz(fH)
EH(g) + ε

=
EH(f)− EH,z(f)
EH(g) + ε

≤ αEH(f) + ε

EH(g) + ε
≤ 2α.

Proposition 7 follows from Lemma 8 by applying the same argument used to
prove Theorem B from Proposition 3.

Remark 13. Note that, to obtain Theorem C*, we only used convexity to prove
Lemma 5. But the inequality proved in this lemma may hold true in other situations
as well. A case which stands out is when fρ ∈ H. In this case fH = fρ and the
inequality in Lemma 5 is trivial.
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8. Final remarks

Remark 14. In this chapter we have assumed that Y = R. They can, however, be
extended to Y , a finite dimensional inner product space.

Remark 15. The least squares error function E(f) above is only one of the many
used in the learning theory literature. Our view is that it is the central notion
because of mathematical tradition and algorithmic simplicity. However, the least
squares error has its limitations and problems. It would be interesting to analyze
some other error functions in the framework of our paper. See e.g. [11].

Remark 16. Let us compare what we have done with the more traditional approach
in learning theory, especially inspired by Vapnik, with the use of VC (Vapnik-
Chervonenkis) dimension and its variants (see e.g. [18], [42]). As we have remarked,
the hypothesis space H plays a central role in the learning process. The earlier
choice of hypothesis space is a space of functions on X which carries no topology.
The development proceeds with a more combinatorial flavor to achieve results which
cannot be compared directly with our Theorems B, C, and C*. In that setting,
covering numbers usually depend on the sample, and the sample error estimate will
depend on the VC dimension.

Our approach, with its function space H ⊂ C(X), leads quickly to classical
functional analysis. The VC dimension is replaced by the radius R of a ball which
defines the hypothesis space in a Sobolev space or in a reproducing kernel Hilbert
space.

Moreover we emphasize the continuous (regression) perspective and are led to
the approximation questions of the next chapter.

Chapter II: Approximation Error

For a given hypothesis space H, the error E(fz) of the empirical target fz decom-
poses as

E(fz) = EH(fz) + E(fH).
The first term in this sum, the sample error, has been the focus of Chapter I.
The second term, the approximation error, will be the focus of this chapter. The
approximation error depends only on H and ρ and, by Proposition 1, is equal to∫
X

(fH − fρ)2 + σ2
ρ. Note that σ2

ρ does not depend on the choice of H. Therefore,
when studying the approximation error we will examine the integral

∫
X(fH− fρ)2.

Since fρ is not known and we have made no assumptions on it besides being
bounded, there are limits on how much one can say about the approximation error.
We note that if fρ ∈ H, then fH = fρ and the integral above is zero. This chapter
is devoted to estimates of the integral for various H and to the implications for the
bias-variance problem.

1. Fourier series and the approximation error

In this section we give an example of a finite dimensional hypothesis space (Ex-
ample 5 below) and an estimate for the corresponding approximation error. To
get this estimate, we will need to estimate the growth of the eigenvalues of a given
operator. Growth of eigenvalues, or the highly related growth of entropy numbers,
is a recurring theme in our report.

On one hand, Fourier series give a link from our problem in learning theory to the
mathematical analysis known to many scientists. On the other hand, the interested
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Figure 1. Shape of φα for α large, n = 1.

reader will be able to discover the relations (via Greens’ functions) to our integral
operators and to entropy numbers (see Appendix A of Chapter III) as well as our
use of Sobolev spaces, which were originally developed to better understand elliptic
operators.

Let S1 be the circle, say, described by a real number t mod 2π, and X = (S1)n

the n-dimensional torus. For each α = (α1, . . . , αn) ∈ Zn consider the complex
valued function on X , φα, given by φα(x) = (2π)−n/2ei(α·x). Here i =

√
−1. By

taking the real part from de Moivre’s formula one can obtain a real valued function
on X . Thus we may deal with complex valued functions on X .

Let L2
µ(X) be the space of square integrable functions on X with respect to the

Lebesgue measure induced on X as a quotient of Rn. Recall that a sequence {φk}
in a Hilbert space H is said to be a complete orthonormal system (or a Hilbert basis)
if the following conditions hold:

1. for all k, q ≥ 1, 〈φk, φq〉 = 0;
2. for all k ≥ 1, ‖φk‖ = 1; and

3. for all f ∈ H , f =
∞∑
k=1

〈f, φk〉φk.

The set {φα}α∈Zn forms a Hilbert basis of L2
µ(X) with respect to the inner product

〈f, g〉 =
∫
fg, g the complex conjugate of g. Thus, every function f ∈ L2

µ(X) can
be written as

f =
∑
α∈Zn

cαφα.

But if ‖α‖ is large, the function φa oscillates with high frequency, and thus each of
these terms gives a fine structure, beyond sensitivity of measurement devices. See
Figure 1.

This heuristic indicates how, for purposes of the hypothesis space of Section 3
in Chapter I, it makes sense to consider the subspace HN ⊂ L2

µ(X) spanned by
the set {φα}‖α‖2≤B for some B with the induced structure of Hilbert space. The
dimension N = N(B) of this space is the number of integer lattice points in the
ball of radius B of Rn. Thus, a crude bound is N(B) ≤ (2B)n/2. The ball HN,R of
radius R with respect to the norm ‖ ‖∞ inHN is a candidate for the H of Chapter I.
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Remark 1. Let ∆ : C∞(X)→ C∞(X) be the Laplace operator,

∆(f) =
n∑
i=1

∂2f

∂x2
i

.

It is immediate to check that, for all α ∈ Zn, ∆(φα) = −‖α‖2φα. Therefore, φα is
an eigenvector of −∆ with eigenvalue ‖α‖2.

Since the n-dimensional torus is not a very suitable space for most examples of
learning theory, we extend the setting as suggested by Remark 1.

Example 5. Consider now a bounded domain X in Rn with smooth boundary
∂X , and a Hilbert basis {φk}k≥1 of C∞ functions in L2

µ(X) satisfying{
−∆φk = ζkφk in X , for all k ≥ 1
φk = 0 on ∂X , for all k ≥ 1

with
0 < ζ1 ≤ ζ2 ≤ ζ3 . . . ↑ ∞.

Here µ is the Lebesgue measure on X inherited from Rn. The existence of
{φk}k≥1, {ζk}k≥1 as above uses a main theorem in the theory of elliptic differential
equations.

For N ∈ N considerHN , the subspace of L2
µ(X) generated by {φ1, . . . , φN}. The

higher frequency justification for the cutoff in the case of Fourier series still applies.
This comes from the Courant Nodal Theorem or the many variables Morse Index
Theorem (see [36] for a formal account). Also, as above, let H = HN,R be the ball
of radius R with respect to the norm ‖ ‖∞ in HN and let fH be the corresponding
target function.

Recall we have assumed that fρ is bounded on X . Then, fρ ∈ L2
ρ(X) and

fρ ∈ L2
µ(X). Suppose in addition that R ≥ ‖fρ‖∞. Then R ≥ ‖fρ‖ρ and fH is the

orthogonal projection of fρ on HN w.r.t. the inner product in L2
ρ(X). The main

result of this section bounds the approximation error E(fH).
Let Dµρ denote the operator norm ‖J‖ where J is the identity function

L2
µ(X) J→ L2

ρ(X).

We will call Dµρ the distortion of ρ (with respect to µ). It measures how much ρ
distorts the ambient measure µ. It is often reasonable to suppose that the distortion
Dµρ is finite.

Since ρ is not known, then Dµρ is not known in general as well. But our estimate
in Theorem 1 below gives a relation between the approximation error and Dµρ.
Moreover, the context could lead to some information about Dµρ. An important
case is the one in which, in spite of ρ not being known, we do know ρX . In this
case Dµρ may be derived.

For f =
∑∞

k=1 ckφk, let ‖f‖K denote( ∞∑
k=1

c2kζk

)1/2

.

The set of f such that this series is convergent is a linear subspace of L2
µ(X) on

which ‖ ‖K is a norm. Motivation for this norm is given in the next section, in
which a similar construction is described for an integral operator given by a Mercer
kernel K (hence the notation).
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Theorem 1. Let H and fH be as above. The approximation error satisfies

E(fH) ≤ D2
µρ

(
Vol(X)
N + 1

)2/n

‖fρ‖2K + σ2
ρ.

Towards the proof of Theorem 1 first note that

‖fρ − fH‖ρ = dρ(fρ,HN ) ≤ ‖J‖dµ(fρ,HN ).

Recall that `2 is the linear space of all square summable sequences (ak)k≥1. It
is a Hilbert space with the inner product

〈(ak), (bk)〉 =
∑
k≥1

akbk.

Since fρ ∈ L2
µ(X), there exists a sequence {ak}k≥1 ∈ `2 such that fρ =

∑
akφk.

Then

dµ(fρ,HN )2 =

∥∥∥∥∥
∞∑

k=N+1

akφk

∥∥∥∥∥
2

µ

=
∞∑

k=N+1

a2
k =

∞∑
k=N+1

a2
kζk

1
ζk

≤ 1
ζN+1

‖fρ‖2K .

The next lemma deals with the growth of the eigenvalues ζk.

Lemma 1. For k ≥ 1, ζk ≥
(

k

Vol(X)

)2/n

.

Proof. Under the hypothesis described at the beginning of this example, a version
of a result of H. Weyl by Li and Yau [23] (pointed out to us by Roderick Wong)
states that, for all k ≥ 1,

ζk ≥
n

n+ 2
4π2

(
k

Bn Vol(X)

)2/n

(6)

where Bn is the volume of the unit ball in Rn and Vol(X) the volume of X .
Stirling’s inequality,

√
2πuu−

1
2 e−u ≤ Γ(u) (see [1], Chapter 5, Section 2.5, Exer-

cise 2), implies that

Γ(n/2) ≥
√

2π
(n

2

)n−1
2
e−

n
2

and, consequently, since Bn = 1
n

(2π)n/2

Γ(n/2) , that

Bn ≤
1
n

(2π)
n
2 e

n
2

√
2π
(
n
2

)n−1
2

=
(4π)

n−1
2 e

n
2

n
n+1

2

.
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Placing this bound in inequality (6) we obtain, for all k ∈ N,

ζk ≥ n

n+ 2
4π2

(
kn

n+1
2

Vol(X)(4π)
n−1

2 e
n
2

)2/n

=
n

n+ 2
π

(
k

Vol(X)

)2/n (4π)
1
nn

n+1
n

e

=
n2+ 1

n

n+ 2
π

e

(
k

Vol(X)

)2/n

(4π)
1
n ≥

(
k

Vol(X)

)2/n

since n2+ 1
n

n+2
π
e (4π)

1
n ≥ 1 for all n ∈ N.

Proof of Theorem 1. Using Lemma 1 we obtain

dρ(fρ,HN )2 ≤ D2
µρdµ(fρ,HN )2

≤ D2
µρ

1
ζN+1

‖fρ‖2K

≤ D2
µρ

(
Vol(X)
N + 1

)2/n

‖fρ‖2K .

We already remarked that our goal is to minimize E(fz) which equals the sum

EH(fz) +
∫

(fH − fρ)2 + σ2
ρ.

A form of the bias-variance problem is to minimize this sum over N ∈ N assuming
R,m and δ are fixed. So, fix m, R = ‖fρ‖∞, and δ > 0. From Section 7 in Chapter I
it follows that, if

m ≥ 288M2

ε

[
N ln

(
96RM
ε

)
+ 1 + ln

(
1
δ

)]
,

then, with probability at least 1− δ, the sample error is bounded by ε. From this
equation it follows that, for given m, δ,R,M and N , with probability at least 1− δ,
the sample error is bounded by any quantity ε satisfying

ε− 288M2

m

(
N ln

(
96RM
ε

)
+ 1 + ln

(
1
δ

))
≥ 0.

The equation obtained by taking the equality in this inequality has exactly one
positive solution. This is due to the form f(t) = 0 for this equation with f(t) =
t+ c ln(t)− d, c, d > 0. Thus f(0) = −∞, f(+∞) = +∞, and f ′(t) = 1 + c

t , which
is always positive, showing that f monotonically increases in (0,+∞). We denote
this solution by ε(N), thus emphasizing the functional dependency of ε(N) with
respect to N .

From Theorem 1, we know that the approximation error is bounded by

A(N) = D2
µρ

(
Vol(X)
N + 1

)2/n

‖fρ‖2K + σ2
ρ.

The integer N minimizing A(N) + ε(N) will thus be a solution of the bias-variance
problem above. While we have no explicit form for the solution of this minimization
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problem, it is easy to numerically deal with it. One may also derive some qualitative
information about N .

This development is valid for the case of any compact submanifoldX of Euclidean
space. A general reference for the material in this section is [33].

2. Abstract approximation error

A linear operator L : H → H on a Hilbert space H is said to be self-adjoint if,
for all f, g ∈ H , 〈Lf, g〉 = 〈f, Lg〉. It is said to be positive (resp. strictly positive) if
it is self-adjoint and, for all non-trivial f ∈ H , 〈Lf, f〉 ≥ 0 (resp. 〈Lf, f〉 > 0).

The next result, the Spectral Theorem for compact operators (see Section 4.10
of [12] for a proof), will be useful in this and the next chapter.

Theorem 2. Let L be a compact linear operator on an infinite dimensional Hilbert
space H. Then there exists in H a complete orthonormal system {φ1, φ2, . . . } con-
sisting of the eigenvectors of L. If λk is the eigenvalue corresponding to φk, then the
set {λk} is either finite or λk → 0 when k → ∞. In addition, maxk≥1 |λk| = ‖L‖.
The eigenvalues are real if L is self-adjoint. If, in addition, L is positive, then
λk ≥ 0 for all k ≥ 1, and if L is strictly positive, then λk > 0 for all k ≥ 1.

If L is a strictly positive operator, then Lτ is defined, for all τ ≥ 0, by

Lτ
(∑

akφk

)
=
∑

λτkakφk.

If τ < 0, Lτ is defined by the same formula on the subspace

Sτ =
{∑

akφk |
∑

(akλτk)2 is convergent
}
.

For τ < 0, the expression ‖Lτa‖ must be understood as ∞ if a 6∈ Sτ .
Theorems 3 and 5 in this and the next section are taken from [38], where one

can find a more substantial development of the approximation error.

Theorem 3. Let H be a Hilbert space and A a self-adjoint, strictly positive compact
operator on H. Let s, r ∈ R such that s > r > 0.

(1) Let γ > 0. Then, for all a ∈ H
min
b∈H

(
‖b− a‖2 + γ‖A−sb‖2

)
≤ γr‖A−sra‖2.

(2) Let R > 0. Then, for all a ∈ H

min
b s.t. ‖A−sb‖≤R

‖b− a‖ ≤
(

1
R

) r
s−r

‖A−ra‖ s
s−r .

In both cases the minimizer b̂ exists and is unique. In addition, in part (1), b̂ =
(Id +γA−2s)−1a.

Proof. First note that by replacing A by As we can reduce the problem in both
parts (1) and (2) to the case s = 1.

Now, for part (1), consider

ϕ(b) = ‖b− a‖2 + γ‖A−1b‖2.
If a point b̂ minimizes ϕ, then it must be a zero of the derivative Dϕ. That is,
b̂ satisfies (Id +γA−2)b̂ = a, which implies b̂ = (Id +γA−2)−1a. Note that the
operator Id +γA−2 is invertible since it is the sum of the identity and a positive
operator.
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If λ1 ≥ λ2 ≥ . . . > 0 denotes the eigenvalues of A,

ϕ(b̂) = ‖((Id +γA−2)−1 − Id)a‖2 + γ‖A−1(Id +γA−2)−1a‖2

=
∞∑
k=1

{(
1

1 + γλ−2
k

− 1
)2

+ γ

∞∑
k=1

(
1

λk(1 + γλ−2
k )

)2
}
a2
k

=
∞∑
k=1

(
γ2λ−4

k + γλ−2
k

(λ−2
k (λ2

k + γ))2

)
a2
k = γ

∞∑
k=1

(
1

λ2
k + γ

)
a2
k

= γ

∞∑
k=1

(
λ2r
k

λ2
k + γ

)
λ−2r
k a2

k ≤ γ
(

sup
t∈R+

tr

t+ γ

)
‖A−ra‖2.

Let ψ(t) = tr

t+γ . Then

ψ′(t) =
rtr−1

t+ γ
− tr

(t+ γ)2
= 0 iff t = t̂ =

√
γr

1− r .

Thus
ψ(t̂) = γr−1rr(1− r)1−r ≤ γr−1.

We conclude that

ϕ(b̂) = min
b∈H
‖b− a‖2 + γ‖A−1b‖2 ≤ γr‖A−ra‖2

and hence (1).
For part (2) first note that if ‖A−1a‖ ≤ R, then the minimum in the statement

is zero and the theorem is obviously true. Assume from now on that this is not the
case. Then we notice that the point b̂ minimizing ‖a− b‖ in the subset of H given
by ‖A−1b‖ ≤ R is in the boundary of this subset, i.e. ‖A−1b̂‖ = R.

Now, a well known result in constrained optimization states that there exists
γ ≥ 0 (the Lagrange multiplier) such that the point b̂ is a zero of the Lagrangian

D(‖b− a‖2) + γD(‖A−1b‖2).

But this Lagrangian coincides with Dϕ of part (1), and we proved in this part that
ϕ(b̂) ≤ γr‖A−ra‖2. From this inequality we deduce firstly that

γR2 ≤ γr‖A−ra‖2

and secondly, since γ ≥ 0, that

‖b̂− a‖2 ≤ γr‖A−ra‖2.

From the first of these two inequalities it follows that

γ ≤
(

1
R

) 2
1−r

‖A−ra‖ 2
1−r .

Replacing this bound for γ in the second inequality, one gets the statement in part
(2).

Remark 2. In Example 3, A = (−∆+Id)−1/2 and s = τ as in the proof of Theorem 5
below. In Example 4, A = L

1/2
K , s = 1.
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Remark 3. The quantity

K(a, γ) = min
b∈H

(
‖b− a‖2 + γ‖A−sb‖2

)
is a modification of the K-functional of interpolation theory [4]. Moreover,

I(a,R) = min
b s.t. ‖A−sb‖≤R

‖b− a‖

is an object of study also in [4]). The proof of Theorem 3 shows that K(a, γ) =
γ‖(A2s + γ Id)−1/2a‖2, and, for γ > 0 and R = R(γ) = ‖A−sb̂γ‖, I(a,R) =
K(a, γ)− γR2.

Remark 4. We now introduce a general setting in Hilbert space. Let ν be a Borel
measure on X and A : L2

ν(X) → L2
ν(X) a compact strictly positive operator. Fix

s > 0 and define E = {g ∈ L2
ν(X) | ‖A−sg‖ν < ∞}. We can make E a Hilbert

space with the inner product

〈g, h〉E = 〈A−sg,A−sh〉ν .

Thus, A−s : L2
ν(X) → E is a Hilbert isomorphism. The general setting in Hilbert

space is the setting above together with the assumption that the inclusion E ↪→
L2
ν(X) factors

E

JE !!DDDDDDDDD
// L2
ν(X)

C(X)

OO

with JE compact. Therefore the hypothesis space H = HE,R is JE(BR) where BR
is the ball of radius R in E. Note that the target fH is the b̂ of Theorem 3 (2), for
H = L2

ν(X), and we may consider the corresponding approximation error.
As in Section 1 we consider Dνρ, the distortion of ρ with respect to ν, i.e. the

operator norm of

L2
ν(X) J→ L2

ρ(X).

Theorem 4. In the general setting in Hilbert space, for 0 < r < s, the approxima-
tion error satisfies

E(fH) = ‖fH − fρ‖2ρ + σ2
ρ ≤ D2

νρ

(
1
R

) 2r
s−r

‖A−rfρ‖
2s
s−r
ν + σ2

ρ.

Proof.

‖fρ − fH‖ρ = min
g∈BR

‖fρ − g‖ρ ≤ Dνρ min
g∈BR

‖fρ − g‖µ ≤ Dνρ
(

1
R

) r
s−r

‖A−rfρ‖
s
s−r
ν

with the last inequality from Theorem 3 (2) with H = L2
ν(X) and a = fρ.

While in Example 3 we always take ν = µ, the Lebesgue measure, in our most
interesting example (Example 4) we will usually suppose ν = ρ so Dνρ = 1.
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3. Approximation error in Sobolev spaces and RKHS

We continue our discussion of Example 3 in the context of the approximation
error. In this section X ⊂ Rn is a compact domain with smooth boundary.

Theorem 5. Let s > n/2 and r such that 0 < r < s. Consider R > 0, BR the ball
of radius R in Hs(X) and H = Js(BR). Then the approximation error satisfies

E(fH) ≤ D2
µρC

(
1
R

) 2r
s−r

(‖fρ‖r)
2s
s−r + σ2

ρ

where C is a constant which depends only on s, r and X.

Proof. Let ∆ : H2(X)→ L2
µ(X) denote the Laplacian and A = (−∆+Id)−1/2. For

all τ ≥ 0, Aτ : L2
µ(X) → Hτ (X) is a compact linear map with bounded inverse.

There exist C0, C1 > 0 such that, for all g ∈ Hτ (X),

C0‖g‖τ ≤ ‖A−τg‖µ ≤ C1‖g‖τ .(7)

By composing with the inclusion H1(X) ↪→ L2
µ(X) and slightly abusing notation

we may assume A : L2
µ(X) → L2

µ(X) and consider the general setting in Hilbert
space.

Let E be the space defined in this setting with A = A and s = τ . Then the
ball BRC0(E) of radius RC0 in E is included in the ball BR(Hs(X)) in Hs(X) and
consequently

E(fH) = min
g∈BR(Hs(X))

‖fρ − g‖2ρ + σ2
ρ ≤ min

g∈BRC0 (E)
‖fρ − g‖2ρ + σ2

ρ.

Now, apply Theorem 4 to obtain

min
g∈BRC0 (E)

‖fρ − g‖2ρ + σ2
ρ ≤ D2

νρ

(
1

RC0

) 2r
s−r

‖A−rfρ‖
2s
s−r
µ + σ2

ρ.

Apply finally (7) with τ = r to get

‖A−rfρ‖µ ≤ C1‖fρ‖r.

The result follows by taking C = C
−2r
s−r
0 C

2s
s−r
1 .

For the facts about Sobolev spaces mentioned in this proof see [39].

Remark 5. (i) In Theorem 5 we have some freedom to choose r. For example if
fρ is a characteristic function and 0 < r < 1/2, then ‖fρ‖r < ∞ (see [38])
and we obtain information in the classification problem of learning theory.

(ii) The essence of Theorem 5, for the case n = 1, appears in [14].

It is also possible to use Theorem 4 to derive bounds for the approximation error
in Example 4.

Theorem 6. Let K be a Mercer kernel, ν a Borel measure on X, R > 0, and
H = IK(BR). The approximation error satisfies, for 0 < r < 1,

E(fH) ≤ D2
νρ

(
1
R

) 2r
1−r

‖L−r/2K fρ‖
2

1−r
ν + σ2

ρ.

Proof. Take A = L
1/2
K and s = 1 in Theorem 4. Then, we will see in Section 3 in

Chapter III that for all f ∈ L2
ν(X), ‖f‖K = ‖A−1f‖ν, which implies that E is the

reproducing kernel Hilbert space of Example 4. Now apply Theorem 4.
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4. The bias-variance problem

Consider the general setting in Hilbert space described in Remark 4. Fix a
sample size m and a confidence 1− δ with 0 < δ < 1. For each R > 0 a hypothesis
space H = HE,R is determined, and we can consider fH and, for z ∈ Zm, fz.
The bias-variance problem in the general setting consists of finding the value of R
which minimizes a natural bound for the error E(fz) (with confidence 1− δ). This
value of R determines a particular hypothesis space in the family of such spaces
parametrized by R, or, using a terminology common in the learning literature, it
selects a model.

Theorem 7. For all m ∈ N and δ ∈ R, 0 < δ < 1, and all r with 0 < r < s, there
exists a unique solution R∗ of the bias-variance problem in the general setting.

Proof. We first describe the natural bound we are going to minimize. Recall that
E(fz) equals the sum EH(fz) + E(fH) of the sample and approximation error. The-
orem 4 bounds the approximation error, for 0 < r < s, by an expression

α(R) = D2
νρ

(
1
R

) 2r
s−r

‖A−rfρ‖
2s
s−r
ν + σ2

ρ.

We now want to bound the sample error. To do so let

M = M(R) = ‖JE‖R+Mρ + ‖fρ‖∞.
Then, almost everywhere, |f(x)− y| ≤M since

|f(x)− y| ≤ |f(x)|+ |y| ≤ |f(x)|+ |y − fρ(x)|+ |fρ(x)| ≤ ‖JE‖R+Mρ + ‖fρ‖∞.
By Theorem C*, the sample error ε with confidence 1− δ satisfies

N
(
H, ε

24M

)
e−

mε
288M2 ≥ δ;

i.e.
mε

288M2
− ln

(
1
δ

)
− ln

(
N
(
H, ε

24M

))
≤ 0.

Then, as in Remark 11 of Chapter I,

mε

288M2
− ln

(
1
δ

)
−
(

24M2CE
‖JE‖ε

)1/`E

≤ 0

where we have also used that R‖JE‖ ≤ M . Write v = ε
M2 . Then the inequality

above takes the form

c0v − c1 − c2v−d ≤ 0(8)

where c0 = m
288 , c1 = ln

(
1
δ

)
, c2 =

(
24CE
‖JE‖

)1/`E
, and d = 1/`E.

If we take the equality in (8) we obtain an equation which, it is easy to see, has
exactly one positive solution for v. Let v∗(m, δ) be this solution. Then, ε(R) =
M2v∗(m, δ) is the best bound we can obtain from Theorem C* for the sample error.

We will therefore minimize α(R) + ε(R).
For a point R > 0 to be a minimum of α(R) + ε(R) it is necessary that ε′(R) =

−α′(R). Taking derivatives, we get

α′(R) = −CA
−2r
s− rR

−(s+r)
s−r and α′′(R) = CA

2r(s+ r)
(s− r)2

R
−2s
s−r
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where CA = D2
νρ‖A−rfρ‖

2s
s−r
ν , and

ε′(R) = 2Mv∗(m, δ) and ε′′(R) = 2v∗(m, δ).

Since CA ≥ 0 we deduce that −α′(R) is a positive function monotonically decreasing
on (0,+∞). On the other hand, since v∗(m, δ) > 0, it follows that ε′(R) is a positive
function strictly increasing on (0,+∞). Since ε′(+∞) = +∞, −α′(+∞) = 0,
ε′(0) < +∞ and −α′(0) = +∞, we deduce the existence of a unique R∗ such that
ε′(R∗) = −α′(R∗).

For different instances of the general setting the value of R∗ may be numerically
computed.

Remark 6. In this section we considered a form of the bias-variance problem which
optimized the parameter R fixing all the others. One may consider other forms
of the bias-variance problem by optimizing other parameters. For instance, in
Example 4, one may consider the degree of smoothness of the kernel K. The
smoother K is, the smaller HK is. Therefore, the sample error decreases and the
approximation error increases with a parameter reflecting this smoothness.

Chapter III: Algorithms

1. Operators defined by a kernel

Recall that X is a compact domain or manifold in Euclidean space with dimX =
n. However, for much of this chapter it is sufficient to takeX to be a compact metric
space. Let ν be a Borel measure on X and L2

ν(X) be the Hilbert space of square
integrable functions on X . Note that ν can be any Borel measure. Significant
particular cases are Lebesgue measure or the marginal measure ρX of Chapter I.

Let K : X ×X → R be a continuous function. Then the linear map

LK : L2
ν(X)→ C(X)

given by the following integral transform

(LKf)(x) =
∫
K(x, t)f(t)dν(t)
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is well-defined. Composition with the inclusion C(X) ↪→ L2
ν(X) yields a linear

operator LK : L2
ν(X) → L2

ν(X) which, abusing notation, we will also denote by
LK .

The function K is said to be the kernel of LK and several properties of LK follow
from properties of K. Let

CK = sup
x,t∈X

|K(x, t)|.

Also, for x ∈ X , let Kx : X → R be given by Kx(t) = K(x, t).

Proposition 1. If K is continuous, then LK is well-defined and compact. In ad-
dition, ‖LK‖ ≤

√
ν(X)CK . Here ν(X) denotes the measure of X.

Proof. To see that LK is well defined we need to show that LKf is continuous for
every f ∈ L2

ν(X). To do so, consider f ∈ L2
ν(X) and x1, x2 ∈ X . Then

|(LKf)(x1)− (LKf)(x2)| =
∣∣∣∣∫ (K(x1, t)−K(x2, t))f(t)

∣∣∣∣
≤ ‖Kx1 −Kx2‖‖f‖ by Cauchy-Schwartz

≤
√
ν(X) max

t∈X
|K(x1, t)−K(x2, t)|‖f‖.

Since K is continuous and X is compact, K is uniformly continuous. This implies
the continuity of LKf .

The assertion ‖LK‖ ≤
√
ν(X)CK follows from the inequality

|(LKf)(x)| ≤
√
ν(X) sup

t∈X
|K(x, t)|‖f‖

which is proved as above.
Finally, to see that LK is compact, let (fn) be a bounded sequence in L2

ν(X).
Since ‖LKf‖∞ ≤ CK‖f‖ we have that (LKfn) is uniformly bounded. And, since
|(LKfn)(x1)−(LKfn)(x2)| ≤

√
ν(X) maxt∈X |K(x1, t)−K(x2, t)|‖fn‖ for all n ≥ 1,

we have that the sequence (LKfn) is equicontinuous. By Arzela’s Theorem (see e.g.
§11.4 of [20]), (LKfn) contains a uniformly convergent subsequence.

Two more important properties of LK follow from properties of K. Recall that
we say that K is positive definite if for all finite sets {x1, . . . , xk} ⊂ X the k × k
matrix K[x] whose (i, j) entry is K(xi, xj) is positive definite.

Proposition 2. (a) If K is symmetric, then LK : L2
ν(X) → L2

ν(X) is self-
adjoint.

(b) If, in addition, K is positive definite, then LK is positive.

Proof. Part (a) follows easily from Fubini’s Theorem and the symmetry of K. For
(b), just note that∫ ∫

K(x, t)f(x)f(t) = lim
k→∞

ν(X)
k2

k∑
i,j=1

K(xi, xj)f(xi)f(xj)

= lim
k→∞

ν(X)
k2

fT
x K[x]fx

where, for all k ≥ 1, x1, . . . , xk ∈ X is a set of points conveniently chosen, fx =
(f(x1), . . . , f(xk)) and K[x] is the k × k matrix whose (i, j) entry is K(xi, xj).
Since this matrix is positive definite the result follows.
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In the sequel we will consider a Mercer kernel K (i.e. a function K : X×X → R
which is continuous, symmetric and positive definite). Then LK : L2

ν(X)→ L2
ν(X)

is a self-adjoint, positive, compact operator and the Spectral Theorem (Theorem 2
of Chapter II) applies. Let λk, k ≥ 1, denote the eigenvalues of LK and φk the
corresponding eigenfunctions.

Corollary 2. For k ≥ 1, if λk 6= 0, then φk is continuous on X.

Proof. Use that φk = 1
λk
LK(φk).

In the sequel we will assume, without loss of generality, that λk ≥ λk+1 for all
k ≥ 1.

2. Mercer’s Theorem

If f ∈ L2
ν(X) and {φ1, φ2, . . . } is a Hilbert basis of L2

ν(X), f can be uniquely
written as f =

∑∞
k=1 akφk and the partial sums

∑N
k=1 akφk converge to f in L2

ν(X).
If this convergence also holds in C(X), we say that the series uniformly converges
to f . Also, we say that a series

∑
ak converges absolutely if the series

∑
|ak| is

convergent.

Theorem 1. Let X be a compact domain or a manifold, ν a Borel measure on
X, and K : X × X → R a Mercer kernel. Let λk be the kth eigenvalue of
LK and {φk}k≥1 the corresponding eigenvectors. For all x, t ∈ X, K(x, t) =
∞∑
k=1

λkφk(x)φk(t) where the convergence is absolute (for each x, y ∈ X × X) and

uniform (on X ×X).

The proof of Theorem 1 is given in [19] for X = [0, 1] and ν the measure inherited
by the Lebesgue measure on R, but the proof there is valid in the generality of our
statement.

Corollary 3. The sum
∑
λk is convergent and

∞∑
k=1

λk =
∫
X

K(x, x) ≤ ν(X)CK .

Therefore, for all k ≥ 1, λk ≤
(
ν(X)CK

k

)
.

Proof. By taking x = t in Theorem 1 we get K(x, x) =
∞∑
k=1

λkφk(x)2. Integrating

on both sides of this equality, we get

∞∑
k=1

λk

∫
X

φk(x)2 =
∫
X

K(x, x) ≤ ν(X)CK .

But since {φ1, φ2, . . . } is a Hilbert basis,
∫
φ2
k = 1 for all k ≥ 1 and the first

statement follows. The second statement follows from the assumption λk ≥ λj for
j > k.
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3. Reproducing kernel Hilbert spaces

In this section we fix a compact domain or a manifold X , a Borel measure ν on
X , and a Mercer kernel K : X ×X → R. The two main results of this section are
the following.

Theorem 2. There exists a unique Hilbert space HK of functions on X satisfying
the following conditions:

(i) for all x ∈ X, Kx ∈ HK ;
(ii) the span of the set {Kx | x ∈ X} is dense in HK ; and
(iii) for all f ∈ HK , f(x) = 〈Kx, f〉K .

Moreover, HK consists of continuous functions, and the inclusion IK : HK → C(X)
is bounded with ‖IK‖ ≤ C1/2

K .

Theorem 3. The map

Φ : X → `2

x 7→ (
√
λkφk(x))k∈N

is well-defined, continuous, and satisfies

K(x, t) = 〈Φ(x),Φ(t)〉.

Corollary 4. For all x, t ∈ X, |K(x, t)| ≤ K(x, x)1/2K(t, t)1/2.

Proof. This is a consequence of the Cauchy-Schwartz inequality and the last state-
ment in Theorem 3.

Remark 1. (i) Note that the space HK of Theorem 2 depends only on X and K.
It is independent of any measure considered on X .

(ii) In the learning context, the space `2 in Theorem 3 is often called the feature
space and the function Φ the feature map.

(iii) The Hilbert space HK in Theorem 2 is said to be a reproducing kernel Hilbert
space (or, for short, a RKHS). This terminology is of common use in the
learning literature.

(iv) A substantial amount of the theory of reproducing kernel Hilbert spaces was
developed by N. Aronszajn [2]. On page 344 of this reference, Theorem 2, in
essence, is attributed to E.H. Moore.

Proof of Theorem 2. Let H0 be the span of the set {Kx | x ∈ X}. We define an
inner product in H0 as follows. If f =

∑s
i=1 αiKxi and g =

∑r
j=1 βiKtj , then

〈f, g〉 =
∑

1≤i≤s
1≤j≤r

αiβjK(xi, tj).

Let HK be the completion of H0 with the associated norm. It is easy to check that
HK satisfies the three conditions in the statement. We only need to prove that it
is unique. So, assume H is another Hilbert space of functions on X satisfying the
noted conditions. We want to show that

H = HK and 〈 , 〉H = 〈 , 〉HK .(9)

We first observe that H0 ⊂ H . Also, for any x, t ∈ X , 〈Kx,Kt〉H = K(x, t) =
〈Kx,Kt〉HK . By linearity, for every f, g ∈ H0, 〈f, g〉H = 〈f, g〉HK . Since both H
and HK are completions of H0, (9) follows from the uniqueness of the completion.
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To see the remaining assertion consider f ∈ HK and x ∈ X . Then

|f(x)| = |〈Kx, f〉| ≤ ‖f‖‖Kx‖ = ‖f‖
√
K(x, x).

This implies ‖f‖∞ ≤
√

CK‖f‖HK and thus ‖IK‖ ≤
√

CK . Therefore, convergence
in ‖ ‖HK implies convergence in ‖ ‖∞, and this shows that f is continuous since f
is the limit of elements in H0 which are continuous.

Proof of Theorem 3. For every x ∈ X , by Mercer’s Theorem,
∑
λkφ

2
k(x) converges

to K(x, x). This shows that Φ(x) ∈ `2.
Also by Mercer’s Theorem, for every x, t ∈ X ,

K(x, t) =
∞∑
k=1

λkφk(x)φk(t) = 〈Φ(x),Φ(t)〉.

It only remains to prove that Φ : X → `2 is continuous. But for any x, t ∈ X ,

‖Φ(x)− Φ(t)‖ = 〈Φ(x),Φ(x)〉 + 〈Φ(t),Φ(t)〉 − 2〈Φ(x),Φ(t)〉
= K(x, x) +K(t, t)− 2K(x, t)

which by the continuity of K tends to zero when x tends to t.

We next characterize HK through the eigenvalues λk of LK . Theorem 2 of
Chapter II guarantees that λk ≥ 0 for all k ≥ 1. In the rest of this section we
assume that, in addition, λk > 0 for all k ≥ 1. There is no loss of generality in
doing so (see Remark 3 below).

Let

HK =

{
f ∈ L2

ν(X) | f =
∞∑
k=1

akφk with
(
ak√
λk

)
∈ `2

}
.

We can make HK a Hilbert space with the inner product

〈f, g〉K =
∞∑
k=1

akbk
λk

for f =
∑
akφk and g =

∑
bkφk. Note that the map

L
1/2
K : L2

ν(X) → HK∑
akφk 7→

∑
ak
√
λkφk

defines an isomorphism of Hilbert spaces. In addition, considered as an operator
on L2

ν(X), it is the square root of Lk in the sense that LK = L
1/2
K ◦ L1/2

K .

Proposition 3. The elements of HK are continuous functions on X. In addition,
for f ∈ HK , if f =

∑
akφk, then this series converges absolutely and uniformly to

f .

Proof. Let g ∈ HK , g =
∑
gkφk, and x ∈ X . Then

|g(x)| =
∣∣∣∣∣
∞∑
k=1

gkφk(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=1

gk√
λk

√
λkφk(x)

∣∣∣∣∣ ≤ ‖g‖K‖Φ(x)‖ = ‖g‖KK(x, x)1/2,

the inequality by Cauchy-Schwartz and the last equality by Theorem 1. Thus,
‖g‖∞ ≤

√
CK‖g‖K. Therefore, convergence in ‖ ‖K implies convergence in ‖ ‖∞
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which, applied to the series gN = f −
∑N
k=1 akφk, proves the statement about uni-

form convergence. The continuity of f now follows from that of the φk (Corol-
lary 2). The absolute convergence follows from the inequality

∑
|gkφk(x)| ≤

‖g‖K‖Φ(x)‖.

Lemma 1. Let x ∈ X. The function ϕx : X → R defined by ϕx(t) = 〈Φ(x),Φ(t)〉
belongs to HK .

Proof. Use Theorem 3.

Proposition 4. For all f ∈ HK and all x ∈ X, f(x) = 〈f,Kx〉K .

Proof. For f ∈ HK , f =
∑
wkφk,

〈f,Kx〉K =
∞∑
k=1

wk〈φk,Kx〉K =
∞∑
k=1

wk
λk
〈φk,Kx〉

=
∞∑
k=1

wk
λk

∫
φk(t)K(x, t) =

∞∑
k=1

wk
λk

(LKφk)(x) =
∞∑
k=1

wk
λk
λkφk(x)

= f(x).

Theorem 4. The Hilbert spaces HK and HK are the same space of functions on
X with the same inner product.

Proof. For any x ∈ X , the function Kx coincides, by Theorem 3, with the function
ϕx in the statement of Lemma 1. And this result shows precisely that ϕx ∈ HK . In
addition, Proposition 4 shows that for all f ∈ HK and all x ∈ X , f(x) = 〈f,Kx〉K.
We now show that the span of {Kx | x ∈ X} is dense in HK .

To do so, assume that for f ∈ HK , 〈f,Kt〉K = 0 for all t ∈ X . Then, since
〈f,Kt〉K = f(t), we have f = 0 on X . This implies the desired density.

The statement now follows from Theorem 2.

Remark 2. A consequence of Theorem 4 is the fact that the Hilbert space HK ,
although being defined through the integral operator LK and its associated spectra
which depend on the measure ν, is actually independent of ν. This follows from
Remark 1.

Remark 3. The properties of HK and Φ have been exposed under the assumption
that all eigenvalues of LK are strictly positive. If the eigenvalues might be zero
as well, let H be the linear subspace of L2

ν(X) spanned by the eigenvectors corre-
sponding to non-zero eigenvalues. If H is infinite dimensional, all the results in this
section remain true if one replaces L2

ν(X) by H. If H is finite dimensional, this is
so if, in addition, we replace `2 by RN where N = dimH.

4. Mercer kernels exist

Given a kernel K, it is in general straightforward to check its symmetry and
continuity. It is more involved to check that it is positive definite. The next result,
Proposition 5 below, will be helpful to prove positivity of several kernels. It was
originally proved for Rn by Schoenberg [34] (together with a more difficult converse),
but it follows for subsets of Rn by restricting to such a subset a kernel defined on
Rn.
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A function f : (0,∞)→ R is completely monotonic if it is C∞ and, for all r > 0
and k ≥ 0, (−1)kf (k)(r) ≥ 0. Here f (k) denotes the kth derivative of f .

Proposition 5. Let X ⊂ Rn, f : (0,∞) → R and K : X ×X → R be defined by
K(x, t) = f(‖x−t‖2). If f is completely monotonic, then K is positive definite.

Corollary 5. Let c 6= 0. The following kernels, defined on a compact domain
X ⊂ Rn, are Mercer kernels.

(a) [Gaussian] K(x, t) = e−
‖x−t‖2
c2 .

(b) K(x, t) = (c2 + ‖x− t‖2)−α with α > 0.

Proof. Clearly, both kernels are continuous and symmetric. In (a) K is positive
definite by Proposition 5 with f(r) = e−

r
c2 . The same for (b) taking f(r) =

(c2 + r)−α.

Remark 4. The kernels of (a) and (b) in Corollary 5 satisfy CK = 1 and CK = c−2α

respectively.

The following is a key example of finite dimensional RKHS induced by a Mercer
kernel. In contrast with the Mercer kernels of Corollary 5 we will not use Proposi-
tion 5 to show positivity.

Example 1 (continued). Let Hd = Hd(Rn+1) be the linear space of homoge-
neous polynomials of degree d in x0, x1, . . . , xn. Thus, we recall, elements f ∈ Hd
have the form f =

∑
|α|=d

wαx
α with α = (α0, α1, . . . , αn) ∈ Nn+1. It follows that

the dimension of Hd is

N =
(
n+ d
n

)
.

We can make Hd an inner product space by taking

〈f, g〉 =
∑
|α|=d

wαvα(Cdα)−1

for f, g ∈ Hd, f =
∑
wαx

α, g =
∑
vαx

α. Here

Cdα =
d!

α0! · · ·αn!
is the multinomial coefficient associated to the pair (d, α). This inner product,
which we call the Weyl inner product, is natural and has important properties such
as group invariance. If ‖f‖ denotes the norm induced by this inner product, then
one has

|f(x)| ≤ ‖f‖‖x‖d

where ‖x‖ is the standard norm of x ∈ Rn+1 (cf. Lemma 7 of Chapter 14 of [8];
this reference gives more background to this discussion).

Let X = S(Rn+1) and

K : X ×X → R
(x, t) 7→ 〈x, t〉d

where 〈 , 〉 denotes the Euclidean inner product in Rn+1. Let also

Φ : X → RN

x 7→
(
xα(Cdα)1/2

)
.
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Then, for x, t ∈ X , we have

〈Φ(x),Φ(t)〉 =
∑
|α|=d

xαtαCdα = 〈x, t〉d = K(x, t).

This equality enables us to prove that K is positive definite since it implies that, for
t1, . . . , tk ∈ X , the entry in row i and column j of K[t] is 〈Φ(ti),Φ(tj)〉. Therefore,
if M denotes the matrix whose jth column is Φ(tj), we have thatK[t] = MTM from
which the positivity of K[t] follows. Since K is clearly continuous and symmetric,
we conclude that K is a Mercer kernel.

Which is the RKHS associated to K?

Proposition 6. Hd = HK as function spaces and inner product spaces.

Proof. We know from the proof of Theorem 2 that HK is the completion of H0,
the span of {Kx | x ∈ X}. Since H0 ⊆ Hd and Hd has finite dimension, the same
holds for H0. But then H0 is complete and we deduce

HK = H0 ⊆ Hd.

The map V : Rn+1 → RN defined by V(x) = (xα)|α|=d is a well-known object
in algebraic geometry, where it receives the name of Veronese embedding. We note
here that the feature map Φ defined above is related to V since for every x ∈ X ,
Φ(x) = DV(x) where D is the diagonal matrix with entries (Cdα)1/2. The image of
Rn+1 by the Veronese embedding is an algebraic variety called the Veronese variety,
which is known (cf. §4.4 of [35]) to be non-degenerate, i.e. to span all of RN . This
implies that HK = Hd as vector spaces. We will now see that they are actually the
same inner product space.

By definition of the inner product in H0, for all x, t ∈ X ,

〈Kx,Kt〉H0 = K(x, t) =
∑
|α|=d

Cdαx
αtα.

On the other hand, since Kx(w) =
∑
|α|=dC

d
αx

αwα, we have that the Weyl inner
product of Kx and Kt satisfies

〈Kx,Kt〉Hd =
∑
|α|=d

(Cdα)−1Cdαx
αCdαt

α =
∑
|α|=d

Cdαx
αtα.

We conclude that, since the polynomials Kx span all of H0, the inner product in
HK = H0 is the Weyl inner product.

The discussion above extends to arbitrary, i.e. not necessarily homogeneous,
polynomials. Let Pd = Pd(Rn) be the linear space of polynomials of degree d in
x1, . . . , xn. A natural isomorphism between Pd and Hd is the “homogenization”

Pd → Hd∑
|α|≤d

wαx
α 7→

∑
|α|≤d

wαx
d−|α|
0 xα.

Here, α = (α1, . . . , αn) ∈ Nn is a “multi-index” and xα = xα1
1 · · ·xαnn . The inverse

of the homogenization is obtained by setting x0 = 1. Through this isomorphism we
can endow Pd as well with the Weyl inner product.
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Let

K : Rn × Rn → R
(x, t) 7→ (1 + 〈x, t〉)d

and Φ : Rn → RN given by Φ(x) =
(
1, xα(Cdα)1/2

)
. Then, one has 〈Φ(x),Φ(t)〉 =

K(x, t).

Remark 5. Note again that the reproducing kernel Hilbert structure on Hd for
K(x, t) = 〈x, t〉d is precisely the Weyl one.

5. Covering numbers on reproducing kernel Hilbert spaces

The goal of this section is to estimate the covering number N (IK(BR), η) for
R, η > 0 as promised.

Theorem D. Let K : X × X → R be a C∞ Mercer kernel and HK its corre-
sponding RKHS. Then the inclusion IK : HK ↪→ C(X) is compact and its entropy
numbers satisfy ek(IK) ≤ C′hk

−h/2n, for all h > n, where C′h is independent of k.
Consequently, for h > n, η > 0, and R > 0,

lnN
(
IK(BR), η

)
≤
(
RCh
η

) 2n
h

where Ch is a constant slightly larger than C′h.

Lemma 2. Let 0 < r < s and a ∈ L2
µ(X). Suppose there exists C > 0 such that,

for all R > 0,

min
b s.t.‖b‖s≤R

‖b− a‖ ≤ C
(

1
R

) r
s−r

.

Then, for all δ > 0, ‖a‖r−δ ≤ cδC
s−r
s .

Proof. See e.g. Theorem 2 in [38] (take E = L2
µ(X), H = Hs(X) and θ = r/s). If

for all R > 0

min
b s.t. ‖b‖s≤R

‖b− a‖ ≤ C
(

1
R

) r
s−r

,

then ‖a‖r/s,∞ ≤ 2C
s−r
s where ‖ ‖r/s,∞ denotes a norm in an interpolation space

whose precise definition will not be needed here. Actually, in [4], pages 46 and 55,
equation (1x), it is proved that, for all δ > 0, there exists a constant Cδ such that,
for all a in this interpolation space,

‖a‖r−δ ≤ Cδ‖a‖r/s,∞.

The proof now follows by taking cδ = 2Cδ.

Lemma 3. Let K be a C∞ Mercer kernel. Then, the image of LK is included in
Hτ (X) for all τ ≥ 0. Considered as a linear map from L2

µ(X) to Hτ (X), LK is
bounded.
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Proof. For f ∈ L2
µ(X),

‖LKf‖2τ =
∫
x∈X

∑
|α|≤τ

(Dα(LKf)(x))2 =
∫
x∈X

∑
|α|≤τ

(∫
t∈X

Dα
xKt(x)f(t)

)2

≤
∫
x∈X

∑
|α|≤τ

∫
t∈X

(Dα
xKt(x))2

∫
t∈X

f(t)2

≤ ‖f‖20µ(X)
∑
|α|≤τ

sup
x,t∈X

(Dα
xKt(x))2

where the first inequality follows from the Cauchy-Schwartz inequality.

Proof of Theorem D. Let f ∈ HK and R > 0. By Theorem 3 (2) in Chapter II
with A = LK , s = 1, r = 1/2 and a = f , we have

min
g s.t. ‖L−1

K g‖≤R
‖g − f‖ ≤ 1

R
‖L−1/2

K f‖2 =
1
R
‖f‖2K .

Let τ > 0 and cτ = ‖LK‖ for LK : L2
µ(X)→ Hτ (X). By Lemma 3 above,

min
g s.t. ‖g‖τ≤ R

cτ

‖g − f‖ ≤ 1
R
‖f‖2K

or replacing R/cτ by R,

min
g s.t. ‖g‖τ≤R

‖g − f‖ ≤ cτ
R
‖f‖2K.

Since this inequality holds for all R > 0 we can apply Lemma 2. We do so with
s = τ = 3h/2, r = 3h/4, δ = h/4, and C = cτ‖f‖2K to obtain

‖f‖h/2 ≤ C′‖f‖K(10)

where C′ = cδ
√c3h/2.

Inequality (10) proves the existence of a bounded embedding HK ↪→ Hh/2.
Also, since h > n, the Sobolev Embedding Theorem and Rellich’s Theorem apply
to yield a compact embedding Hh/2 ↪→ C(X). From this we deduce the following
factorization

HK

J ""EEEEEEEEE
IK // C(X)

Hh/2

Jh/2

OO

which shows that IK is compact.
In addition, by Edmunds and Triebel’s bound (inequality (4) in Chapter I), we

have ek(Jh/2) ≤ C
(

1
k

)h/2n for a constant C independent of k. Therefore

ek(IK) = ek(Jh/2J ) ≤ ek(Jh/2)‖J ‖ ≤ C′C
(

1
k

)h/2n
,

which proves the first statement in the theorem by taking C′h = C′C.
The second statement follows by using that N (IK(BR), η) ≤ 2k − 1 if and only

if ek(IK) ≤ η/R and solving for k.
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6. On the minimizer of Ez(f) + γ‖f‖2K
Let X,L2

ν(X),K, ‖ ‖K and HK be as in Section 1. We now abandon the setting
of a compact hypothesis space adopted in Chapter I and slightly change the per-
spective. In what follows, we take H = HK , i.e. H is a whole linear space, and we
consider the regularized error Eγ defined by

Eγ(f) =
∫
Z

(f(x) − y)2 + γ‖f‖2K

for a fixed γ ≥ 0. For a sample z, the regularized empirical error Eγ,z is defined in
Proposition 8 below. One may consider a target function fγ minimizing Eγ(f) over
H. But since H is no longer compact, the existence of such a target function is not
immediate. Our next result proves that fγ exists and is unique.

Proposition 7. For all γ > 0 the function fγ = (Id +γL−1
K )−1fρ is the unique

minimizer of Eγ over H.

Proof. Apply Theorem 3 (1) of Chapter II with H = L2
ν(X), s = 1, A = L

1/2
K ,

and a = fρ. Since for all f ∈ HK , ‖f‖K = ‖L−1/2
K f‖ν, the expression ‖b − a‖2 +

γ‖A−sb‖2 is in our case Eγ(b). Thus, fγ is the b̂ in Theorem 3 and the proposition
follows.

For the following result we have followed [17] and its references. See also the
earlier paper [10].

Proposition 8. Let z ∈ Zm and γ ∈ R, γ > 0. The empirical target, i.e. the
function fγ,z = fz minimizing the regularized empirical error

1
m

m∑
i=1

(yi − f(xi))2 + γ‖f‖2K

over f ∈ HK , may be expressed as

fz(x) =
m∑
i=1

aiK(x, xi)

where a = (a1, . . . , am) is the unique solution of the well-posed linear system in Rm

(γm Id +K[x])a = y.

Here, we recall, K[x] is the m × m matrix whose (i, j) entry is K(xi, xj), x =
(x1, . . . , xm) ∈ Xm, and y = (y1, . . . , ym) ∈ Y m such that z = ((x1, y1), . . . ,
(xm, ym)).

Proof. Let H(f) =
1
m

m∑
i=1

(yi − f(xi))2 + γ‖f‖2K and write, for any f ∈ HK , f =

∞∑
k=1

ckφk. Recall that ‖f‖2K =
∞∑
k=1

c2k
λk

.

For every k ≥ 1,
∂H

∂ck
=

1
m

m∑
i=1

−2(yi − f(xi))φk(xi) + 2γ
ck
λk

. If f is a minimum

of H , then, for each k, we must have ∂H
∂ck

= 0 or, solving for ck,

ck = λk

m∑
i=1

aiφk(xi)
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where ai = yi−f(xi)
γm . Thus,

f(x) =
∞∑
k=1

ckφk(x) =
∞∑
k=1

λk

m∑
i=1

aiφk(xi)φk(x)

=
m∑
i=1

ai

∞∑
k=1

λkφk(xi)φk(x) =
m∑
i=1

aiK(xi, x).

Replacing f(x) in the definition of ai above, we obtain

ai =
yi −

∑m
i=1 aiK(xi, x)
γm

.

Multiplying both sides by γm and writing the result in matrix form, we obtain
(γm Id +K[x])a = y. And this system is well-posed since K[x] is positive and the
addition of a positive matrix and the identity is strictly positive.

Proposition 8 yields an algorithm which outputs an approximation of the target
function, working in the infinite dimensional function space HK . We won’t pur-
sue the implications of that result here, but see [17] and its references for some
indications. Moreover, we have not given a bias-variance estimate based on the pa-
rameter γ. That would be useful since a good choice of γ is important in choosing
an algorithm. The framework developed here suggests approaches to this problem.
But it is time for us to end this modest contribution to the foundations.

Appendix A: Entropy numbers and eigenvalues

The entropy numbers of a compact operator T : E→ E are closely related to the
eigenvalues of T . If |λ1| ≥ |λ2| ≥ . . . are these eigenvalues, then |λk| ≤

√
2ek(T ).

This inequality is due to B. Carl and is proved, for instance, on page 512 of [24].
An inequality in the opposite direction is proved in Proposition 9 below. Related
material can be found in [29].4

Proposition 9. Let λ1 ≥ λ2 ≥ . . . ≥ λn ≥ . . . ≥ 0 be a sequence of real numbers.
Consider the diagonal linear operator defined by

L : `2 → `2

(wn) 7→ (λnwn).

If λk ≤ Ck−` for some C, ` and all k ≥ 1, then

εk(L) ≤ CL(ln k)−`, and, if k ≥ 2, ek(L) ≤ 2CLk−`.

Here CL = 6C``.

4Many of the analysis references used for our paper deal with the case dimX = 1 and that case
is not useful in learning theory. Thus some care must be taken in depending on the literature. It
is useful to quote Pietsch ([29], page 252) in this respect:

[ . . . ] Moreover the situation is even worse, since these authors have very often
omitted proofs claiming that they can be adapted step by step from the scalar-
valued setting. Thus [ . . . ] we are not in a position to recommend any rigorous
reference. On the other hand, it would be beyond the scope of this book to provide
all necessary details. This section is therefore in striking contrast to the rest of the
book. It presents the most beautiful applications of the abstract theory of eigenvalue
distributions to integral operators, but requires a lot of blind confidence on the part
of the reader. Nevertheless, I bet my mathematical reputation (but not my car!)
that all the statements are correct.
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Proof. By Lemma 4 below,

εk(L) ≤ 6 sup
n∈N

k−
1
n (λ1λ2 . . . λn)

1
n

≤ 6C sup
n∈N

k1/n

(
1
n!

)`/n
≤ 6C sup

n∈N
k1/n

( e
n

)`
= 6Ce` sup

n∈N
k1/n

(
1
n

)`
,

the last by Stirling’s inequality. Letting x = n−` and looking at the zero of the
derivative of f(x) = xk−x

1/`
, we see that the maximum of f is reached when

x = (`/ lnk)`. Therefore, the supremum of the expression above is bounded by its
value at n = ln k/`, i.e.,

εk(L) ≤ 6Ce`k−
`

ln k

(
`

ln k

)`
= 6C

(
`

ln k

)`
.

Moreover

ek(L) = ε2k−1(L) ≤ 6C
(

`

ln(2k − 1)

)`
≤ (12C``)k−`.

The following result is taken from [9] (see Proposition 1.3.2 there).

Lemma 4. In hypothsesis of Proposition 9, for every k ≥ 1,

sup
n∈N

k−
1
n (λ1λ2 . . . λn)

1
n ≤ εk(L) ≤ 6 sup

n∈N
k−

1
n (λ1λ2 . . . λn)

1
n .

Appendix B: The least squares algorithm

Recall that fz is the function minimizing inH the empirical error Ez. In Chapter I
we focused on the confidence of having a small sample error EH(fz). The problem
of actually computing fz was however ignored. We now shift our attention to that,
for the case of H a finite dimensional full linear space.

Let φ1, . . . , φN be a basis of H. Then, each function f ∈ H can be written in a
unique way as

f =
N∑
i=1

wiφi

with wi ∈ R for i = 1, . . . , N .
For a sample z ∈ Zm, z = ((x1, y1), . . . , (xm, ym)), to minimize the empirical

error Ez means to find f ∈ H minimizing
m∑
j=1

(f(xj)− yj)2

where we suppose m > N . Thus one finds w ∈ RN minimizing

m∑
j=1

(
N∑
i=1

(wiφi(xj)) − yj

)2

.
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Let aij = φi(xj) and A be the m×N matrix with entries aij . Our problem —in the
sequel the least squares problem—now becomes that of, given A and y, minimizing
over w ∈ W = RN :

m∑
j=1

(
N∑
i=1

aijwi − yj

)2

=
m∑
j=1

((Aw)j − yj)2 = ‖Aw − y‖2.

Note that in our situation, since m > N , the system Aw = y is likely to have no
solutions. A point w minimizing ‖Aw − y‖2 is called a least squares solution.

The idea to “solve” an overdetermined system of equations Aw = y by finding
a point minimizing ‖Aw− y‖2 goes back to Gauss and Legendre.5 The motivation
was to find a function fitting a certain amount of astronomical data. The y values
of these data were obtained by measurements and thus contaminated with small
errors. Laplace had suggested minimizing

∑m
j=1 |(Aw)j − yj | with the additional

restriction
∑m

j=1((Aw)j − yj) = 0, and he had proved that the solution w thus
found satisfied n of the m equalities in Aw = y. But Gauss argued that such a
solution was not consistent with the laws of probability since greater or smaller
errors are equally probable in all of the m equations. Additionally, Gauss proved
that, contrary to Laplace’s suggestion, the least squares solution enjoys remarkable
statistical properties (cf. Theorem 6 below).

Let’s now discuss how to find a w minimizing ‖Aw − y‖2. By abuse of notation
let’s denote also by A the linear map from RN to Rm whose matrix is A. Let
Im(A) ⊂ Rm be the image of A, and c ∈ Im(A) be the point whose distance to y is
minimal. Then

S = {w ∈ RN | Aw = c}
is an affine subspace of RN of dimension N − dim(ker(A)). In particular, the least
squares problem has a unique solution w ∈ RN if and only if A is injective. The
next result is immediate.

Proposition 10. Let A : RN → Rm be injective and y ∈ Rm. Then the solution
of the least squares problem is given by w = A†y where A† = (A| Im(A))−1π. Here
π : Rm → Im(A) is the orthogonal projection onto Im(A).

Recall that the orthogonal complement to Im(A) in Rm is ker(A∗) where A∗

denotes the adjoint of A. Thus, for every w ∈ RN ,

w = A†y ⇐⇒ Aw = πy ⇐⇒ Aw − πy ∈ Im(A)⊥

⇐⇒ A∗(Aw − y) = 0 ⇐⇒ w = (A∗A)−1A∗y.

The map A† = (A∗A)−1A∗ is called the Moore-Penrose inverse of the injective
map A. So, we have shown that w = A†y. In particular, w is a linear function of
y. For the rest of this section, assume A is injective.

To compute w the main algorithmic step is to solve the linear system Sw = b
with S = A∗A and b = A∗y. The field of Numerical Linear Algebra provides us
with an important collection of algorithms for doing so as well as results about their
complexity and stability properties.

5In Nouvelle méthodes pour la determination des orbites des comètes, published in 1805,
Legendre writes “Of all the principles that can be proposed [ . . . ], I think that there is none more
general, more exact, and more easy to apply, than that consisting of minimizing the sum of the
squares of the errors.”
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Perturbation results for least squares follow from perturbation theory for linear
equation solving. Recall that the condition number of A is defined to be κ(A) =
‖A‖‖A†‖. A proof of the following can be found in [7].

Theorem 5. Let A be an injective m ×N matrix, y ∈ Rm and w = A†y. Let δA
be an m×N matrix such that rank(A+ δA) = rank(A) and let δy ∈ Rm. Suppose
εA, εy ≥ 0 such that

‖δA‖
‖A‖ ≤ εA and

‖δy‖
‖y‖ ≤ εy.(11)

Define δw = (A+ δA)†(y + δy)− w.
If κ(A)εA < 1, then

‖δw‖ ≤ κ(A)
1− κ(A)εA

(
εA‖w‖ + εy

‖y‖
‖A‖ + εAκ(A)

‖y −Aw‖
‖A‖

)
+ εAκ(A)‖w‖.

(12)

Thus, Theorem 5 says that if A and y have relative errors bounded as in (11),
then the error in the solution of the least squares problem is given by (12). We
note the role of the condition number of A in this estimate.

If A is not injective, one can find a solution w ∈ S by considering a maximal
rank restriction of A and solving the problem for this restriction.

Before finishing this section we state Gauss’ result on a statistical property of
least squares. First some definitions.

Definition 1. Let Y be a probability space and y = (y1, . . . , ym) : Y → Rm be
a random vector. A function g : Rm → RN is an unbiased estimate of a vector
v ∈ RN if E(g(y)) = v.

We say that g∗ is a minimum variance estimate (in a class C of functions from Rm

to RN ) of v if E(g(y)) = v and
∑N

i=1 σ
2(gi(y)) is minimized over all the functions

g ∈ C.

Theorem 6 (Gauss). Let A ∈ Rm×N be injective, y∗ ∈ Rm, and w∗ ∈ RN such
that Aw∗ = y∗. Consider the random vector y such that, for j = 1, . . . ,m, yj =
y∗j + ε where ε is a random variable with mean 0 and variance σ2. The minimum
variance estimate of w∗ in the class of all unbiased linear estimators is w = A†y,
i.e. the least squares solution of Aw = y.

In our case, Gauss’ Theorem would say that if for every x ∈ X the probability
measures ρ(y|x) are identical, then the following holds. Let w∗ ∈ RN such that

fH =
N∑
i=1

w∗i φi.

For all samples z ∈ Zm, the least squares solution w of
m∑
j=1

(fw(xj)− yj)2

is the one minimizing the variance (in the sense of Definition 1) among all linear
maps g : Rm → RN such that, for i = 1, . . . , N ,∫

y∈Ym
gi(y) = w∗i .
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Generalizations of Gauss’ Theorem (among many other results on least squares)
can be found in [7]. See also [13].

Remark 6. This paper can be thought of as a contribution to the solution of Prob-
lem 18 in [37].

Index

d e, 15 covering number, 12
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E , 4 empirical in H, 19
Eγ , 42 in H, 9
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EH,z, 19 sample, 9
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ek, 16 map, 35
Ez, 6 space, 35
fγ , 42 general setting, 11
fH, 8 and approximation error, 29
fρ, 3, 5 and bias-variance problem, 31
fY , 6 in Hilbert space, 29
fz, 9 Hoeffding’s inequality, 7
HK , 35 homogeneous polynomials, 9, 38
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`2, 25 convex, 17
LK , 11, 32 kernel, 33
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ν(X), 10, 11 least squares, 2, 45

Lz, 7 Mercer kernel, 11, 17, 18
N , 12 model selection, 31
ρ, 4 noise-free, 17
ρX , 4 regression function, 3, 5
ρ(y|x), 4 reproducing kernel Hilbert space, 11, 35
σ2
ρ, 5 sample, 6
X , 4 Sobolev
Y , 4 Embedding Theorem, 11
Z, 4 space, 11, 16, 18, 30
Zm, 6 Stirling’s inequality, 25
Bernstein’s inequality, 7 target function, 8
best fit, 2 empirical, 9
bias-variance trade-off, 9 Veronese
Chebyshev’s inequality, 7 embedding, 39
compact operator, 10 variety, 39
confidence, 8 Weyl inner product, 38
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