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The NCG standard model and cosmology

CCM A. Chamseddine, A. Connes, M. Marcolli, Gravity and the
standard model with neutrino mixing, Adv. Theor. Math.
Phys. 11 (2007), no. 6, 991-1089.
MP M. Marcolli, E. Pierpaoli, Early universe models from
noncommutative geometry, arXiv:0908.3633
MPT M. Marcolli, E. Pierpaoli, K. Teh, The spectral action and
cosmic topology, coming soon to an eprint archive near you.
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The noncommutative space X x F extra dimensions
product of 4-dim spacetime and finite NC space
The spectral action functional

T(F(Da/N) + 5 (JE, Dad)

Dsy= D + A+¢' JAJ™! Dirac operator with inner fluctuations
A=A = Zk ak[D, bk]

e Action functional for gravity (modified gravity)

e Gravity on X x F = gravity coupled to matter on X
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Spectral triples (A, H, D):

e involutive algebra A

e representation 7 : A — L(H)

e self adjoint operator D on H

e compact resolvent (1 + D?)"1/2 ¢ K

o [a, D] bounded Va € A

e even Z/2-grading [y,a] = 0 and Dy = —yD

e real structure: antilinear isom J : H — H with J2 =¢, JD =¢'DJ, and

Jy=¢e"vJ
’ n ‘ o 1 2 3 4 5 6 7
11 -1 -1 -1 -1 1 1
g1 -1 1 1 1 -1 1 1
e” 11 -1 1 -1

e bimodule: [a, b°] = 0 for b° = Jb*J~1
e order one condition: [[D, a], b°] =0
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Ansatz for the NC space F
Air=CaoH; @ Hg & M3(C)

(or more general) = everything else follows by computation

@ Representation: Mg sum of all inequiv irred odd
Ay r-bimodules (fix N generations) Hr = &N MF fermions

Algebra Ar = C ® H® M3(C): order one condition
F zero dimensional but KO-dim 6
Jr = matter/antimatter, v¢ = L/R chirality

Classification of Dirac operators (moduli spaces)
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Dirac operators and Majorana mass terms
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Yukawa matrices: Dirac masses and mixing angles in GLy—3(C)

Ye = Y{j1) (charged leptons)
Y, = Y(31) (neutrinos)

Ya = Y{3) (d/s/b quarks)
Yy = Y(33) (u/c/t quarks)

M = Y{ Majorana mass terms symm matrix
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Moduli space of Dirac operators on finite NC space F
C3 x Cy
® C3 = pairs (Y(3), Y(13)) modulo W; unitary matrices:
Vi) = Wa Y)W, Y(is) = Wa Y3 W5

G =GL3(C)and K =U3): C3=(Kx K)\(G x G)/K
dimg C3 = 10 = 34 3 + 4 (eigenval, coset 3 angles 1 phase)
e C; = triplets (Y{ 1), Y{11), Yr) with Yg symmetric modulo

Y(/ll) =W Y(ll)v3*v Y(/11) = Vo Y Vi,
Y= Vo YR Vs

7 : C; — Cs surjection forgets Yg fiber symm matrices mod Yg — A2 Yg
dimg(C3 x C1) = 31 (dim fiber 12-1=11)
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Parameters of vMSM

- three coupling constants

- 6 quark masses, 3 mixing angles, 1 complex phase

- 3 charged lepton masses, 3 lepton mixing angles, 1 complex phase
- 3 neutrino masses

- 11 Majorana mass matrix parameters

- QCD vacuum angle

Moduli space of Dirac operators on F = geometric form of all the
Yukawa and Majorana parameters
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Product geometry (C>(X), L2(X,S), Dx) U (Afr, Hf, DF)
0 A=C®(X)® A = C=(X, AF)
o H=1L%(X,S)®Hr=L*X,S®HE)
e D=Dx®1++5® DF

Inner fluctuations of the Dirac operator

D—Da=D+A+JAJ
A self-adjoint operator
A= Z aj[D, bj], aj,bj eA

Fields content of the model

e Bosons: inner fluctuations A =73 a;[D, bj]

- In M direction: U(1), SU(2), and SU(3) gauge bosons
- In F direction: Higgs field H = 1 + o)
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Fields content of the model
e Fermions: basis of Hfr

H®3% | o3’ [Hel? |[)e1l°

Gauge group SU(AF) = U(1) x SU(2) x SU(3)
(up to fin abelian group)
e Hypercharges: adjoint action of U(1) (in powers of X € U(1))
Te1% | ®1° T1e3° | @30
2, -1 -1 i i

2z 0 -2

[CSIE
WIN

= Correct hypercharges to the fermions
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Action functional
Tr(f(Da/A)) + % (JE,Daf)

Fermion part: antisymmetric bilinear form 2(¢) on
H ={{eH|v¢=¢}

= nonzero on Grassmann variables
Euclidean functional integral = Pfaffian

pr() = [ 10Dl

(avoids Fermion doubling problem of previous models based on
symmetric (£, Da&) for NC space with KO-dim=0)

Explicit computation gives part of SM Larangian with

e Lnr = coupling of Higgs to fermions

o L+ = coupling of gauge bosons to fermions

o L; = fermion terms
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Asymptotic formula for the spectral action (Chamseddine—Connes)

T(F(D/A) ~ 3 kak][|D|’<+f )¢5(0) + o(1)

keDimSp

for large A with f = [;° f(v)v¥~ldv and integration given by residues of
zeta function (p(s) = (\D| ¢); DimSp poles of zeta functions

At low energies: only nonperturbative form of the spectral action

Tr(f(Da/N))
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The asymptotic expansion of the spectral action from [CCM]

1
S= —2(48&/\477‘2/\2c+—0)/\fd4
96HLA° —fhc 4

fo 11 * D% WV po 4
+ W/(KRR*:)’CWPUC )\/ng

—2ah N + ef;
v E20BE 200 e gt

2

fa
P LS /ID;API VE d'x

foa

- W/RM Ve d*x

fob 4 4
+ ﬁ/|<ﬂ| Ve dix

f
+ 70/(g32 GI G;,Ll/l+ Fa Frva

5 v
5.3 =~ gt B B") /g d*x,

3
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Parameters:

e fy, fr, fa free parameters, fy = f(0) and, for k > 0,

o0
fx = / f(v)vk—Ldv.
0
@ a,b,c,0,e functions of Yukawa parameters of SM-+r.h.v

YIY, + YIYe 4 3(YiYL + YIYY)
(YIYL)? + (YEYe)? +3(YEYa)2 +3(Y] Ya)?)

a= Tr

—_ o~
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Normalization and coefficients
S= 2ig/R\/gc/“ervo/\/gd“x
+ g / Covpo CHP7 /g d*x + 19 / R*R*\/g d*x
+ %/|DH|2\/§d4x—ug/\H|2\/§d4x
= go/ R|H\2\/§d4x+)\o/|H|4\/§d4x
1

+ 7 / (G, G"'+ F{, F*™™ + By, B") /g d*x,

Energy scale: Unification (10 — 1017 GeV)

gy 1

272 4

Preferred energy scale, unification of coupling constants
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But warning of new physics: coupling constants

Couplings

do not really meet

7.5 10

log;, (14/GevV)

RGE running (minimal SM) for coupling constants at 1-loop
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Coefficients

2
2%3 = % Yo = %(48:‘4/\4 — HN%c+ %a)
3f 11f
0= T 10m2 0= 6or2
2
=2 L ed
w2b
0= 2fya?
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Renormalization group equations
e In [CCM] RGE of minimal SM: predictions
- Higgs mass ~ 170 GeV
- mass relation at unification (top quark mass via RGE)
D ()% + (m)? +3(m])? +3(m3)* = 8 My

14
g

e In [MP] RGE for SM with right handed neutrinos + Majorana
(from unification energy 2 x 10'® GeV to electroweak scale 10? GeV)

AKLRS S. Antusch, J. Kersten, M. Lindner, M. Ratz, M.A. Schmidt
Running neutrino mass parameters in see-saw scenarios, JHEP

03 (2005) 024.

Matilde Marcolli Noncommutative Geometry Models for Particle Physics and Cc




1-loop RGE equations: /\% = G¢(N)

. 19 41
167T2 /8gi = b; g,?) with (bSU(3)7 bSU(Q)v bU(l)) = (777 7€a E)
3 3 17 9

1672 By, = Yu(ivj Y, — EYJ Yy+a 20g1 " g2 —8g?)

3 3

1672 Py, = Ya(5 > g —8g3)
9 9

t 2 7 2

~“YlYe+a- 20 4g2)

1672 By, = Ye(ﬁyeT Y, — §YJ Y, +a— %gf — %gg)

1672 By = Y, YIM + M(Y, Y])T

1 9
Yiv, - Yqu+a—Zg12—f

4

3

1672 By, = V(S V) Yo~

3
ggf)+3g£‘+ 2(5g1 +85)°+4\a—8b

Note: different normalization from [CCM] and 5/3 factor included in g2

1672 By = 6A% — 3\(3g2 +
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Method of AKLRS: non-degenerate spectrum of Majorana masses,
different effective field theories in between the three see-saw scales:

RGE from unification A,p;r down to first see-saw scale (largest
eigenvalue of M)

Introduce YIS3) removing last row of Y}, in basis where M
diagonal and M®) removing last row and column.

Induced RGE down to second see-saw scale
Introduce Y,,(2) and M), matching boundary conditions
Induced RGE down to first see-saw scale

Introduce Yy(l) and M), matching boundary conditions

Induced RGE down to electoweak energy Agy,

Use effective field theories Y,,(N) and M(N) between see-saw scales
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Running of coefficients a, b with RGE

\
\
\ 107}
190F | \
\ |
\\ |
\ 106[|
189 \
\
105F \
soaf \
/ 1041 \\
//
L h L i I S~
2x10% 4x10M S 6x10%7  8x10M 1x10%® - ey : -
~~ 2104 4x10% TBX10% 8x 104 1x10%

Coefficients a and b near the top see-saw scale
Similar runnings for coefficients ¢, 0, ¢
Strong dependence on initial conditions at unification!
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Cosmology timeline
@ Planck epoch: t < 107% s after the Big Bang (unification of
forces with gravity, quantum gravity)
@ Grand Unification epoch: 1073 s <t < 10735 (electroweak
and strong forces unified; Higgs)
o Electroweak epoch: 10736 s < t < 107125 (strong and
electroweak forces separated)
@ Inflationary epoch: possibly 10730 s <t <1032
- NCG SM preferred scale at unification; RGE running between
unification and electroweak Very Early Universe = info on
inflationary epoch.
- Remark: Cannot extrapolate to modern universe, nonperturbative
effects in the spectral action: requires nonperturbative spectral
action
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Cosmological implications of the NCG SM

Linde's hypothesis (antigravity in the early universe)
Primordial black holes and gravitational memory
Gravitational waves in modified gravity

Gravity balls

Varying effective cosmological constant

Higgs based slow-roll inflation
@ Spontaneously arising Hoyle-Narlikar in EH backgrounds

Effects in the very early universe: inflation mechanisms
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Effective gravitational constant

/i% 3
Gef'f =5 —
8 192HA2 — 2foc(/\)

Effective cosmological constant

1
No = m(192f4/\4 — 46N2¢(A) + fO(A))
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Conformal non-minimal coupling of Higgs and gravity

1 1
R d4 = R 2 4
e | RVEdx— 15 [ RIHZEd'

Conformal gravity

_37% vpo

CHP7 = Weyl curvature tensor (trace free part of Riemann tensor)

Matilde Marcolli Noncommutative Geometry Models for Particle Physics and Cc



Effective gravitational constant and gravitational waves:
Einstein equations R* — %gWR = m% T+

gu = a(t)? < _01 5ij +37ij(x) )

trace and traceless part of hjj = Friedmann equation

A2 3 (o) -
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A(t) = 1/a(t) (£ large) Inflationary epoch: a(t) ~ et
NCG model solutions:
37T2 Too 2at 3

A 2
—t 7 2at B
1006a2¢ Tttt T

h(t) =
Ordinary cosmology:

4nGT, A
4nGloo  Bay, | A 2ar g

( « 2) 2x

Radiation dominated epoch: a(t) ~ t'/2
NCG model solutions:
472 Too

3
h(t) = — 23+ B+ Al + Zlog(t)?
(t) = 2885, + B+ Alog(t) + 5 og(t)

Ordinary cosmology:

3
h(t) = 2rGToot? + B + Alog(t) + g log(t)?
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Find choices of f» parameter, for constant curvature spaces R ~ 1
Dominant terms in the spectral action:

1 .
N (5= [ Rved'x—fig [ |HI>Vgd*x
2kg

2f2/\2

Ro = Nko and fig = po/N, where Mo
But near see-saw scale emergent conformally coupled matter and
gravity

Se= ao / Cuvpe CH777 /8 d*x + = / IDH|? \/g d*x

—EO/R|H| \/§d4x+)\0/|H\4\/§d4x

1 i vi (e vo v
+Z/(GW G"' + F, F*™* + B, B*) /g d*x.
A Hoyle-Narlikar type cosmology, normally suppressed by
dominant Einstein—Hilbert term
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Cosmological term controlled by additional parameter f4, vanishing

condition:
(4HNc — f5d)

192A%
Example: vanishing at unification yo(Aunir) = 0

f, =

. . . |
5.0x10% 1.0x10% 15x10% 2v0>’k 10

-50x10% | /

/

/
~10x10% |

/
~15x10% | /
/
~20x10%f /
/

~25x10% | /

Running of «(A): possible inflationary mechanism
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The Ag-ansatz

Wzb(/\unif)
AoA=A e = M Aunif) 77—
0|/\7Aunlf ( f) fba2(/\unlf)

@ Run like A(A) but change boundary condition to Ag|a=n,,;

@ Run like 7r2b(/\)
Ao(N) = A( )foT(/\)

For most of our cosmological estimates no serious difference, but
can lower Higgs mass estimate to ~ 158 GeV
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Linde's hypothesis antigravity in the early universe

o A.D. Linde, Gauge theories, time-dependence of the
gravitational constant and antigravity in the early universe,
Phys. Letters B, Vol.93 (1980) N.4, 394-396

Based on a conformal coupling

1 4 1 2 4
167TG/R\/§dX 12/R¢ ved'x

giving an effective
4
3™

In the NCG SM model two sources of negative gravity
@ Running of Geg(A)
@ Conformal coupling to the Higgs field

G =G =
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Gravity balls (or “Space Balls") Gegr,H = Ger(1 —

— G Gegt|H]?) !

combines running of Geg with Linde mechanism

Suppose f, such that G.g(A) > 0

Gcﬁ‘yH <0 for |H|2 >

Geﬂ‘J-/ >0 for |H|2 <

Near equilibrium for H:

2 A

3

47 Geﬂ‘(/\) ’
3

47 Gegr (N)

_ (26N %a(A) — foe(A))a(A)

Mg =(A) =

(h(N B) = &

(with Ap-ansatz)
Negative gravity regime where

EH(/\7 fz) >

Matilde Marcolli

AN)B(A)

3

A1 Gegr (N, 1)
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An example of transition to a negative gravity phase

2.0x10% 1
15x10%

1.0x10% -

5.0x10%°

E—IXT0% 2x104 3x104 4x104 5x10 etm“ 7x 10"

Gravity balls: regions where |H|? ~ 0 unstable equilibrium (positive
gravity) surrounded by region with |H|2 ~ £(A, f;) stable
(negative gravity): possible model of dark energy
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Primordial black holes (Zeldovich—Novikov, 1967)

@ |.D. Novikov, A.G. Polnarev, A.A. Starobinsky,
Ya.B. Zeldovich, Primordial black holes, Astron. Astrophys.
80 (1979) 104-109

e J.D. Barrow, Gravitational memory? Phys. Rev. D Vol.46
(1992) N.8 R3227, 4pp.

Caused by: collapse of overdense regions, phase transitions in the
early universe, cosmic loops and strings, inflationary reheating, etc
Gravitational memory: if gravity balls with different Geg y
primordial black holes can evolve with different Geg 1 from
surrounding space
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Evaporation of PBHs by Hawking radiation

dM(t)

e~ —(Ga(M(0)

with Hawking temperature T = (87 G (t)M(t))™L.
In terms of energy:

1
2 _
MdM = A2 Ggf_f(/\, fz)d/\

With gravitational memory:

YIS OO
A

M(/\; f2) - \3/,/\/13(/\:77) - ﬁ X3G ff(X)2

Evaporation of PBHs linked to ~y-ray bursts
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Higgs based slow-roll inflation

dSHW A. De Simone, M.P. Hertzberg, F. Wilczek, Running inflation
in the Standard Model, hep-ph/0812.4946v2

Minimal SM and non-minimal coupling of Higgs and gravity.
Non-conformal coupling & # 1/12, running of &
Effective Higgs potential: inflation parameter ¢ = \/Eoko|H|

101 )
06 /
04 /

0.2 /

L L L L L
2 4 6 8 10

inflationary period 1) >> 1, end of inflation ¢ ~ 1, low energy
regime ¢ << 1
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In the NCG SM have & = 1/12 but same Higgs based slow-roll
inflation due to kg running

Slow roll parameters for a slow roll potential

Aox?

Ve(x) = (1+ 50&(2)x2)2

Spectral index and tensor to scalar ratio

32(216 + k3(6x2 — K3(432 + 12k3(2 + 3(K2)?)x% + (1 + (k3)%)x*)))
k3(12x + K3(1 + (K3)?)x3)?

ns =1+

2562
Hz
X+ L+ ()2t

r =
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Cosmological models for the not-so-early-universe?
Need to work with non-perturbative form of the spectral action
Can to for specially symmetric geometries!

The spectral action and the question of cosmic topology

(with E. Pierpaoli and K. Teh)

Spatial sections of spacetime closed 3-manifolds # S37?

- Cosmologists search for signatures of topology in the CMB

- Model based on NCG distinguishes cosmic topologies?

Yes! the non-perturbative spectral action predicts different models
of slow-roll inflation
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Poisson summation formula

S+ an = 3 e (0 )

nez neZ

A € R% and x € R with

h(x) = /Rh(u) e~ 2miux gy

|dea: write Tr(f(D/NA)) as sums over lattices

- Need explicit spectrum of D with multiplicities

- Need to write as a union of arithmetic progressions A\, ;, n € Z
- Multiplicities polynomial functions my . = Pi(As )

F(D/N) = Pi(Ani)f(Ani/N)

i neZ
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The standard topology S3 (Chamseddine-Connes)
Dirac spectrum +a~*(3 + n) for n € Z, with multiplicity n(n+ 1)

Tr(f(D/N)) = (Aa)*F (0)—*(/\8)?(0)+0((/\a)*k)

with 7 Fourier transform of v2f(v) 4-dimensional Euclidean S3 x S1
Tr(h(D?/A?)) = 7A*a®3 / du——7r/\aﬂ / u) du+O(AK)

g(u,v) = 2P(u) h(u*(Aa) =% + v*(AB) %)

g(n,m) = / g(u, v)e 2mxut) dy dy
R2
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A slow roll potential from non-perturbative effects
perturbation D? — D? + ¢ gives potential V/(¢) scalar field
coupled to gravity

Tr(h((D*+¢°)/N?))) = nA\*Ba° /OO uh(u)du—g/\zﬁa /OOO h(u)du

0
7RG V(G N) + LW Ba W/ A2)

V(x):/ooo (b +x) = b()ds. WE) = [ h(ud
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Slow roll parameters Minkowskian Friedmann metricon S x R
ds? = a(t)?ds? — dt?

accelerated expansion g = H?(1 — €) Hubble parameter

H2(0) (1= 340)) = 5 V(0)

3mp,

o= (75)

mp; Planck mass

inflation phase €(¢) < 1

o) = T2 (Y/((f))> - (W? )

second slow-roll parameter = measurable quantities

ns =1—-6e+2n r=16¢

spectral index and tensor-to-scalar ratio
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Slow-roll parameters from spectral action S = S3

o(x) = B ( h(x) — 2n(Aa)? [ h(u)du )
167 \ o h(u)du + 2m(Aa)? [ u(h(u + x) — h(u))du

L%/ K (x) + 27 (Aa)?h(x)
81 [ h(u)du + 2m(Aa)? [~ u(h(u + x) — h(u))du

m, ( h(x) — 2r(Aa)? [ h(u)du )2
167 \ [o h(u)du + 2m(Aa)? [ u(h(u + x) — h(u))d

In Minkowskian Friedmann metric A(t) ~ 1/a(t)
Also independent of (3 (artificial Euclidean compactification)

n(x) =
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The quaternionic space SU(2)/ Q8 (quaternion units £1, £oy)
Dirac spectrum

g + 4k with multiplicity 2(k 4+ 1)(2k + 1)

g + 4k 42 with multiplicity 4k(k + 1)
Polynomial interpolation of multiplicities
1 3 5
P S Sut
1(v) 2! + 4u—l— 16
1, 3 7
PZ(U) ZU — ZU — R

Spectral action
TH(F(D/N)) = 5(Aa)FO(0) — = (Aa)7(0) + O(AH)
(1/8 of action for S3) with gi(u) = P;(u)f(u/N):
TH(F(D/A) = ; (&(0) +2:(0)) + O(A )

from Poisson summation = Same slow-roll parameters
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The dodecahedral space Poincaré homology sphere S3/T
binary icosahedral group 120 elements

Dirac spectrum: eigenvalues of S3 different multiplicities =
generating function

Fo(z) = m(g—i—kD F(z)=>_ m(—( +k)D)
k=0 k=0
16(710647 + 3178111/5)G*(z)
Fi(z)=—

(7 + 31/5)3(2207 + 987/5)H*(2)

G (z) = 621 +1823 42425112217 271624 — 22234225 1472743220 73

HY(z) = —1-322—42*—22°4+ 228+ 62'0+ 922+ 92 + 4210 — 4718 —9z%°
L0222 _ 2% 0y 1 0,28 4 4,30 | 3,32 3

Flo)=— 1024(5374978561 + 2403763488v/5) G~ (z2)
(7 + 31/5)8(2207 + 987/5)H(2)
G (2) = 14322442 +22°-27° 6202712 +1221 + 24210 4187181627
H™(z) = —1-322—42* —22° 4228+ 62040212 1 9714 + 4710 4718 90
—9722 — 62 — 2220 4 277 4 4730 £ 3732 4 A
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Polynomial interpolation of multiplicities: 60 polynomials P;(u)

/ZP f(u/N)du + O(N5)

by Poisson summation = 1/120 of action for S3
Same slow-roll parameters
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The lens spaces Ly = SU(2)/Zn, N > 3

<Cg w(ll)v with VN =1

Positive spectrum, part of arithmetic progressions with
multiplicities interpolation
2 1

2
PS—(U):NU2+NU+W

2 1
P (u) = —u? — —
2 2-2j+N 1-2j+N
PH(u) = =2 2 LN-—1
J(U) Nu+ N u oN ’ 73a ’

Negative spectrum
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Spectral action for Ly
Tx(f(ID|/A)) = Te(£: (|DI/)) + Te(£(|DI/N))
T(r(1DI/A) = - (A°FD(0) + 20770(0)) + O(A )
Tr(h(D?/A?)) = 2nN*a*3 /0 u h(u) du+20N32%3 /0 u2h(u) du+O(A=*)

Tr(h((D*4¢%)/A?)) = Tr(h(D?/N?))4+-2xN* 3> BV($? /N?)+20N3a* BZ (4 /N?)

V(X)—/Ooou(h(u—l—x)—h(u))du Z(X)—/OOO 02 (h(utx)— (1)) du
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Different slow-roll potential and parameters
V(x) = 2rA*3*B V(% /N?) 4 203323 Z(?/\?)

A modified gravity model based on the spectral action cannot rule
out most likely cosmic topology candidates (dodecahedral,
quaternionic) but can rule out less symmetric ones like lens spaces:
predicts different behavior of cosmological inflation!
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