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Two topics of current interest to cosmologists:

e Modified Gravity models in cosmology:

Einstein-Hilbert action (+cosmological term) replaced or extended
with other gravity terms (conformal gravity, higher derivative
terms) = cosmological predictions

e The question of Cosmic Topology:

Nontrivial (non-simply-connected) spatial sections of spacetime,
homogeneous spherical or flat spaces: how can this be detected
from cosmological observations?
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The question of Cosmic Topology:

Nontrivial (non-simply-connected) spatial sections of spacetime,
homogeneous spherical or flat spaces: how can this be detected
from cosmological observations?
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Cosmic Microwave Background best source of cosmological data
on which to test theoretical models (modified gravity models,
cosmic topology hypothesis, particle physics models)

o COBE satellite (1989)
o WMAP satellite (2001)

@ Planck satellite (2009): new data available now!
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Cosmic topology and the CMB

e Einstein equations determine geometry not topology (don't
distinguish S from S3/I" with round metric)

e Cosmological data (BOOMERanG experiment 1998, WMAP
data 2003): spatial geometry of the universe is flat or slightly
positively curved

@ Homogeneous and isotropic compact case: spherical space
forms S3/T or Bieberbach manifolds T3/

Is cosmic topology detected by the Cosmic Microwave Background
(CMB)? Search for signatures of multiconnected topologies
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CMB sky and spherical harmonics temperature fluctuations

L

AiTT = Z Z arm Yem

(=0 m=—¢
Yym spherical harmonics

Methods to address cosmic topology problem
@ Statistical search for matching circles in the CMB sky:
identify a nontrivial fundamental domain
@ Anomalies of the CMB: quadrupole suppression, the small
value of the two- point temperature correlation function at
angles above 60 degrees, and the anomalous alignment of the
quadrupole and octupole
@ Residual gravity acceleration: gravitational effects from other
fundamental domains
@ Bayesian analysis of different models of CMB sky for different
candidate topologies
Results: no conclusive evidence of a non-simply, connected topology
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Our approach:
@ NCG provides a modified gravity model through the spectral
action

@ The nonperturbative form of the spectral action determines a
slow-roll inflation potential

@ The underlying geometry (spherical/flat) affects the shape of
the potential (possible models of inflation)

e Different inflation scenarios depending on geometry and
topology of the cosmos

@ More refined topological properties from coupling to matter
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The noncommutative space X x F extra dimensions
product of 4-dim spacetime and finite NC space
The spectral action functional

T(F(Da/N) + 5 (JE, Dad)

Dpy= D+ A+¢' JAJ™! Dirac operator with inner fluctuations
A=A = Zk ak[D, bk]

@ Action functional for gravity on X (modified gravity)
@ Gravity on X x F = gravity coupled to matter on X
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Spectral triples (A, H, D):

e involutive algebra A

e representation 7 : A — L(H)

e self adjoint operator D on H

e compact resolvent (1 + D?)"1/2 ¢ K

o [a, D] bounded Va € A

e even Z/2-grading [y,a] = 0 and Dy = —yD

e real structure: antilinear isom J : H — H with J2 = ¢, JD =¢'DJ, and

Jy=¢e"vJ
’ n ‘ 0o 1 2 3 4 5 6 7
11 -1 -1 -1 -1 1 1
g1 -1 1 1 1 -1 1 1
e” 11 -1 1 -1

e bimodule: [a, b°] = 0 for b° = Jb*J~1
e order one condition: [[D, a], b°] =0
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Asymptotic formula for the spectral action (Chamseddine—Connes)

LD/ ~ S0 ikt 1D+ + £(0)co(0) + o(1)

keDimSp

for large A with f, = fooo )vk~1dv and integration given by residues of
zeta function (p(s) = Tr(\D| ¢); DimSp poles of zeta functions

Asymptotic expansion = Effective Lagrangian
(modified gravity + matter)
At low energies: only nonperturbative form of the spectral action

Te(f(Da/N))

Need explicit information on the Dirac spectrum!
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Product geometry (C®(X), L2(X, S), Dx) U (Af, HF, Df)
e A=C®(X)® A = C=(X, AF)
o H=12(X,S)®Hr = 2(X,S @ HF)
o D=Dx®1+~s® DF

Inner fluctuations of the Dirac operator
D—Dya=D+A+e JAJ!
A self-adjoint operator
A=) "a[D,bj], a,bcA

= boson fields from inner fluctuations, fermions from Hpg
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Get realistic particle physics models [CCM]
Need Ansatz for the NC space F

Air = CoH, @ Hg & M3(C)

= everything else follows by computation

@ Representation: Mg sum of all inequiv irred odd
Ay r-bimodules (fix N generations) Hr = &N MF fermions

Algebra Ar = C ® H @ M3(C): order one condition
F zero dimensional but KO-dim 6
Jr = matter/antimatter, v¢ = L/R chirality

Classification of Dirac operators (moduli spaces)
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Parameters of vMSM
Get an extension of minimal Standard Model with right handed
neutrinos, Majorana mass terms, and lepton mixing

- three coupling constants

- 6 quark masses, 3 mixing angles, 1 complex phase

- 3 charged lepton masses, 3 lepton mixing angles, 1 complex phase
- 3 neutrino masses

- 11 Majorana mass matrix parameters

e Bosons from inner fluctuations of D (gauge: manifold direction,
Higgs: NC direction)

e Fermions from basis of representation space Hr

e Correct gauge group and hypercharges of particles

e Action functional: spectral action on X x F, asymptotic
expansion gives full Lagrangian of ¥MSM with non-minimal
coupling to (modified) gravity.
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The asymptotic expansion of the spectral action from [CCM]

1
S= —2(48&/\477‘2/\2c+—0)/\fd4
96HLA° —fhc 4

fo 11 * D% Ly po 4
+ W/(?RR*SC;U’VPUC )\/gdx

—2ah N+ ef
v E20BE 200 e g

2

fa
P LS /ID;API VE d'x

foa

- W/RM Ve d*x

fob 4 4
+ ﬁ/|<ﬂ| Ve dix

f
+ 70/(g32 GI Guyl+g2 Fa Frve

5 v
5.7 =~ g B B") /g d*x,

3
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Parameters:

e fy, fr, fa free parameters, fy = f(0) and, for k > 0,

o0
fx = / f(v)vk—Ldv.
0
@ a,b,c,0,e functions of Yukawa parameters of SM-+r.h.v

a= Tr(YJY, + YdYe +3(YiY, + YIV)))

(YIY0)? + (YEYe)? + 3(YEYa)? +3(Y] Ya)?)

—_ o~
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Normalization and coefficients
S= 2ig/R\/gc/“ervo/\/gd“x
+ g / Cyvpo CHP7 /g d*x + 19 / R*R*\/g d*x
+ %/|DH|2\/§d4x—ug/\H|2\/§d4x
= go/ R|H\2\/§d4x+)\o/|H|4\/§d4x
1

+ 7 / (G, G"'+ F, F'™™ + By, B") /g d*x,

Energy scale: Unification (10 — 1017 GeV)

gy 1

272 4

Preferred energy scale, unification of coupling constants
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Coefficients

2
2%3 = % Yo = %(48:‘4/\4 — HN%c+ %a)
3f 11f
0= T 10m2 = 6or2
2
=2 L ed
2b
0= 2fya?
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Renormalization group running of parameters

Used to obtain physical predictions from the particle physics sector
of the model:

- [CCM] RGE for particle sector to estimate Higgs mass: 170
GeV... too large!

- Recent methods for correcting to realistic Higgs mass ~125 GeV:
e A. Chamseddine, A. Connes, arXiv:1208.1030 (additional scalar
field coupled to Higgs)

e C. Estrada, M. Marcolli, arXiv:1208.5023 (gravity correction
terms, asymptotic safety, anomalous dimensions)

- In [MP] [KM]: running coefficients with RGE flow of particle
physics content from unification energy down to electroweak.

= Very early universe models! (10730s < t < 1071%s)
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Effective gravitational constant

Ii% 37
Go = 70 =
8r 1926NA2 — 2fpe(N)

Effective cosmological constant
1
Y = m(192f4/\4 — 46A%c¢(N) + fHd(A))

Conformal non-minimal coupling of Higgs and gravity

1 1
R./gd*x — — [ R|H[*\/gd*
e | RVEdx— 15 [ RIHZEd'

Conformal gravity

_37% vpo

CHP7 = Weyl curvature tensor (trace free part of Riemann tensor)
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Cosmological implications of the NCG SM [MP]

e Linde's hypothesis (antigravity in the early universe)
Primordial black holes and gravitational memory
Gravitational waves in modified gravity
Gravity balls
Varying effective cosmological constant

Higgs based slow-roll inflation
@ Spontaneously arising Hoyle-Narlikar in EH backgrounds

Effects in the very early universe: inflation mechanisms

- Remark: Cannot extrapolate to modern universe, nonperturbative
effects in the spectral action: requires nonperturbative spectral
action
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Cosmological models for the not-so-early-universe?

Need to work with non-perturbative form of the spectral action
Can to for specially symmetric geometries!

Concentrate on pure gravity part: X instead of X x F

The spectral action and the question of cosmic topology
(with E. Pierpaoli and K. Teh)

Spatial sections of spacetime closed 3-manifolds # S3?
- Cosmologists search for signatures of topology in the CMB
- Model based on NCG distinguishes cosmic topologies?

Yes! the non-perturbative spectral action predicts different models
of slow-roll inflation
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Cosmic topology

(Luminet, Lehoucq, Riazuelo, Weeks, et al.: simulated CMB sky)

Best candidates: Poincaré homology 3-sphere and other spherical
forms (quaternionic space), flat tori

Testable Cosmological predictions? (in various gravity models)
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What to look for? (in the background radiation)
Friedmann metric (expanding universe)

ds? = —dt? + a(t)?dsy,

Separate tensor and scalar perturbation h;; of metric = Fourier
modes: power spectra for scalar and tensor fluctuations, Ps(k) and
P(k) satisfy power law

Kk ) 1-ns+5 log(k/ ko)

Pu(k) ~ Px(ko) (ko

ko

Amplitudes and exponents: constrained by observational
parameters and predicted by models of slow roll inflation

(slow roll potential)

Main Question: Can get predictions of power spectra from slow
roll inflation via NCG model, so that distinguish topologies?

k nH—% log(k/ko)
Pt(k) ~ Pt(ko) <>



Slow-roll models of inflation in the early universe
Minkowskian Friedmann metricon Y x R

ds? = —dt? + a(t)?dsy,

accelerated expansion 2 = H?(1 — ¢) Hubble parameter

1 8m
H?(9) (1 - 3e(¢)) = 3z V09)

mp; Planck mass, inflation phase €(¢) < 1

A potential V(¢) for a scalar field ¢ that runs the inflation

&)
Intlate whils

rolling slowly
here Slow-roll ends

and reheating
occurs

</,
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Slow roll parameters Minkowskian Friedmann metricon Y x R

ds? = —dt? + a(t)?dsy

accelerated expansion 2 = H?(1 — €) Hubble parameter

1 8
H(9) (1 - 3e(¢>)> =55 V()
Pl
mp; Planck mass, inflation phase €(¢) < 1
_ ’”P/ V'(¢)
0= ()
m; V()

n(¢) =45 V(0)
B m4 V/(¢)V/’/(¢)

=> measurable quantities
ns~1—06e+2n, ni~—2¢ r=16¢€,
s ~ 16en — 24€2 — 26, o ~ den — 8€?



Spectral action and Poisson summation formula

S h(x +an) = Zex <27””X> E(%)

nez neZ

A € R% and x € R with

h(x) = /R h(u) e 2™ dy

Idea: write Tr(f(D/N)) as sums over lattices

- Need explicit spectrum of D with multiplicities

- Need to write as a union of arithmetic progressions A\, ;, n € Z
- Multiplicities polynomial functions m) . = Pi(An,i)

F(D/N) = Pi(Ani)f(Ani/N)

i neZ
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The standard topology S3 (Chamseddine-Connes)
Dirac spectrum +a~*(3 + n) for n € Z, with multiplicity n(n+ 1)

Tr(f(D/N)) = (Aa)*F (0)—*(/\8)?(0)+0((/\a)*k)

with 7 Fourier transform of v2f(v) 4-dimensional Euclidean S3 x S1
Tr(h(D?/A?)) = nA\*a®B / du——7r/\aﬁ / u) du+O(AK)

g(u,v) = 2P(u) h(u*(Aa) =% + v*(AB) %)

g(n,m) = / g(u, v)e 2mxut) dy dy
R2
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A slow roll potential from non-perturbative effects
perturbation D? — D? + ¢ gives potential V/(¢) scalar field
coupled to gravity

Tr(h((D*+¢°)/N?))) = nA*Ba° /oo uh(u)du—g/\zﬂa /OOO h(u)du

0
+rA* Bad V(p? /N?) + %/\%a W(¢?/N\?)

V(x):/ooo o) = H)da, WG = [ ha)de
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Slow-roll parameters from spectral action S = 3

e(x) = m%,( h(x) — 2n(Aa)? [ h(u )2
16m \ o h(u)du + 2m(Na)? [;° u h(u+x)—h( ))du
2 H(x )—I—27r(/\a)2h( )

n(x) = 52
81 [ h(u)du + 2m(Aa)? [° u(h(u+ x) — h(u))du

In Minkowskian Friedmann metric A(t) ~ 1/a(t)
Also independent of g (artificial Euclidean compactification)
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The quaternionic space SU(2)/@8 (quaternion units £1, £oy)
Dirac spectrum (Ginoux)

3
5 T4k with multiplicity  2(k + 1)(2k + 1)

3
5 + 4k +2 with multiplicity 4k(k + 1)
Polynomial interpolation of multiplicities
1 3 5
Pl(u) = Zuz + ZU + R
1 3 7
P, =" -u——
2(0) = 30"~ 4V~ 1

Spectral action
TH(A(D/N) = 5(Aa)FO(0) — = (Aa)7(0) + O(A )
(1/8 of action for S3) with gi(u) = P;(u)f(u/N):
T(F(D/A) =  (&(0) + &2(0)) + O(A )

from Poisson summation = Same slow-roll parameters
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The dodecahedral space Poincaré homology sphere S3/T
binary icosahedral group 120 elements

Dirac spectrum: eigenvalues of S3 different multiplicities =
generating function (Bar)

Fi(z)= m(g + k,D)z Z m , D)z
k=0 =0
16(710647 + 3178111/5)G*(z)
Fi(z) = -

(7 + 31/5)3(2207 + 987+/5)H*(2)

G+(Z) = 62114+18213424215 412217 2719 6221 —2223 4272544227 4 37294 231

Ht(z) = —1-32%2—47*—22° 4272+ 621010212 4-0714 + 471 478 920
—9722 — 62 — 2220 4 277 4 4730 £ 3,32 4 S

1024(5374978561 + 2403763488v/5)G ~(z)

(7 +3v/5)8(2207 + 9875)H~(2)
G (z) = 14322442 422° 228 6210222+ 12714424710 +-182'8 1+ 62%°
H™(z) = —1-32°—4z*—22°4 228+ 620+ 9212+ 9214 + 4710 — 4718 —9z%°

_9222 _ 6224 _ 2226 + 2228 + 4230 + 3232 s Z34

F_(z)=—




Polynomial interpolation of multiplicities: 60 polynomials P;(u)

/ZP f(u/N)du + O(N5)

by Poisson summation = 1/120 of action for S3
Same slow-roll parameters
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But ... different amplitudes of power spectra:
multiplicative factor of potential V/(¢)

08
06
04r

021

V3
Ps(k) ~ vy’ Pe(k) ~ V
V= AV = Ps(ko) — A\Ps(ko), Pi(ko) — A\Pt(ko)
= distinguish different spherical topologies
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Topological factors (spherical cases)

Theorem (K.Teh): spherical forms Y = S3/I spectral action

7¢2r (/\3?(2)(0) - 1/\?(0))

up to order O(A™°°) with

Tr(f(Dy/N)) = gTY( (Ds3/N))

Y spherical Ay
sphere 1
lens N 1/N
binary dihedral 4N | 1/(4N)
binary tetrahedral 1/24
binary octahedral 1/48
binary icosahedral | 1/120

Note: Ay does not distinguish all of them
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The flat tori
Dirac spectrum (Bar)

+ 27 H (m? n, p)+(m01n0>p0) ||7 (]-)

(m, n, p) € Z3 multiplicity 1 and constant vector (mg, no, po)
depending on spin structure

R S e R )

/\2

(m,n,p)€Z3

Poisson summation

Zg(m, n,p) = Zg(m, n,p)
73 73

g(m,n,p)= / g(u, v, w)e™2mimutnvow) gy oy
R3

g(m,n,p)=f<

4m2((m+ mo)? + (n+ no)® + (p + p0)2))
N2
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Spectral action for the flat tori

Tr(f(D3/A?)) = 4/:3/ f(u? + v? 4+ w?)du dv dw + O(AF)

_ T3 1.
X=T ><56.

/\4B£3

(D% /N)) = Z [ ub(u)da-+ O(A)

47 . .
(mm%;)ez‘tz h <(A€)2 ((m + mO) + (n + no) + (P+ P0)2) + W(r " 2)2)

2 ) y2
uviwy) =20 (G @2 42wt 4 )

1 —~
Z g(m+m07n+n05p+p0,r+§): Z (—l)rg(m,n,p,r)
(m,n,p,r)€Z* (m,n,p,r)€Z*
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Different slow-roll potential and parameters Introducing the
perturbation D? — D? + ¢

V(4% /A?)

Tr(h((Dx + ¢*)/A\%)) = Tr(h(Dx /%)) + /\4:;@3

slow-roll potential
N33
V() = =, —V(®*/N\?)
V0 = [ ulh(u+x) - ha) do
0
Slow-roll parameters (different from spherical cases)

B mP, < foo h(u)du )2
- 167 Jo T u(h(u + x) — h(u))du

_ Mh h(x)
87 \ [y~ u(h(u+ x) — h(u))du




Bieberbach manifolds
Quotients of T3 by group actions: G2, G3, G4, G5, G6
spin structures

01 | 2| &3
@ [£1| 1] 1
(b) [£1 | 1] 1
(O [£1] 1] -1
(d) [ £1 ] -1 -1

G2(a), G2(b), G2(c), G2(d), etc.

Dirac spectra known (Pfaffle):

spectra often different for different spin structures
but spectral action same!
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Bieberbach cosmic topologies (t; = translations by a;)

e G2 = half turn space

lattice a1 = (0,0, H), a» = (L,0,0), and a3 = (T, S,0), with
H,L,ScR} and T € R

a? = t1, atzoz_l = tz_l, at3a_1 =tz

1
e G3 = third turn space
lattice a; = (0,0, H), a = (L,0,0) and a3 = (—1L,%2L,0), for H
and L in RY

P =t, abal=t;, atgal=t1t!
e G4 = quarter turn space
lattice a; = (0,0, H), a2 = (L,0,0), and a3 = (0, L, 0), with
H,L>0

4 1

o = t, atgofl =1t3, atza = = t2_1
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e G5 = sixth turn space
lattice a3 = (0,0, H), a2 = (L,0,0) and a3z = (%L, ?L, 0),

H,L>0
®=1t, abal=t;, atal=t't3

e G6 = Hantzsche-Wendt space (7-twist along each coordinate

axis)

lattice a; = (0,0, H), a2 = (L, 0,0), and a3 = (0, S, 0), with

H,L,S>0
a’ = t1, atya ™l = t2_1, atza~ ! = t;l,
BP=t, fuf =1t pupl=t,
V=1, vy =0t gyt =t

YBa = tits.
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Simulated CMB sky for a Bieberbach G6-cosmology

(from Riazuelo, Weeks, Uzan, Lehoucq, Luminet, 2003)

Matilde Marcolli Noncommutative geometry and cosmology



Topological factors (flat cases):
Theorem [MPT2]: Bieberbach manifolds spectral action

3
Tr(f(D%/N?)) = AvA / f(u? + v? + w?)dudvdw
R3

473

up to oder O(A~*°) with factors

HSL
(5 G2
HL2
a3 @3
Ay = HL?
HLS
LS G6

Note lattice summation technique not immediately suitable for G5,
but expect like G3 up to factor of 2
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Topological factors and inflation slow-roll potential

= Multiplicative factor in amplitude of power spectra
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Adding the coupling to matter Y x F

Not only product but nontrivial fibration

Vector bundle V over 3-manifold Y, fiber H g (fermion content)
Dirac operator Dy twisted with connection on V (bosons)

Spectra of twisted Dirac operators on spherical manifolds
(Cisneros—Molina)

Similar computation with Poisson summation formula [CMT]

Te(f(D§ /%)) =

#'Evr </\3f< )(0) — i/\?(O))

up to order O(A=>°)
representation V' dimension N; spherical form Y = S3/T
= topological factor Ay — Ny
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Conclusion (for now)

A modified gravity model based on the spectral action can
distinguish between the different cosmic topology in terms of the
slow-roll parameters (distinguish spherical and flat cases) and the
amplitudes of the power spectral (distinguish different spherical
space forms and different Bieberbach manifolds).

Different inflation scenarios in different topologies
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