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Columnar Structure

• another type of geometric structure present in visual cortex V1

• Hubel–Wiesel: columnar structures in V1: neurons sensitive to
orientation record data (z , `)

z = a position on the retina

` = a line in the plane

• local product structure

π : R× P1 � R
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Fiber bundles

• topological space (or smooth differentiable manifold) E with
base B and fiber F with

surjection π : E � B

fibers Ex = π−1(x) ' F for all x ∈ B

open covering U = {Uα} of B such that π−1(Uα) ' Uα × F
with π restricted to π−1(Uα) projection (x , s) 7→ x on Uα × F

• sections s : B → E with π ◦ s = id ; locally on Uα

s|Uα(x) = (x , sα(x)), with sα : Uα → F
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trivial and nontrivial R-bundles over S1

Matilde Marcolli and Doris Tsao Contact Geometry of the Visual Cortex



Tangent bundle TM of a smooth manifold M
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• model of V1: bundle E with base R the retinal surface, fiber P1

the set of lines in the plane

• topologically P1(R) = S1 (circle) so locally V1 product R2 × S1

• circle bundle over a 2-dimensional surface

• We will see this leads to a geometric models of V1 based on
Contact Geometry
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Contact Geometry on 3-dimensional manifolds

• plane field ξ on 3-manifold M: subbundle of tangent bundle TM
such that ξx = TxM ∩ ξ is 2-dimensional subspace for all x ∈ M

• Example: M = Σ× S1 product of a 2-dimensional surface Σ and
a circle S1, then ξ(x ,θ) = TxΣ ⊂ T(x ,θ)M is a plane field

• real 1-form α on M determines at each point x ∈ M a linear map

αx : TxM → R

Kernel ker(αx) is either a plane or all of TxM
if ker(αx) 6= TxM for all x ∈ M then ξ = ker(α) is a plane field

• all plane fields locally given by ξ = ker(α) for some 1-form α

• Example: M = Σ× S1 as above: ξ = ker(α) with α = dθ
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• plane field ξ = ker(α) on 3-manifold M is contact structure iff

α ∧ dα 6= 0

equivalent condition dα|ξ 6= 0

• Standard Example: M = R3 with

α = dz + xdy

so dα = dx ∧ dy and α ∧ dα = dz ∧ dx ∧ dy 6= 0

• at a point (x , y , z) contact plane ξ(x ,y ,z) spanned by basis

{ ∂
∂x
, x

∂

∂z
− ∂

∂y
}

• geometry of contact plane field ξ: when x = 0 (yz-plane) contact plane

horizontal; at (1, 0, 0) spanned by ∂
∂x ,

∂
∂z −

∂
∂y , tangent to x-axis, but

tilted 45% clockwise, etc. start at origin and move along x-axis, plane

keeps twisting clockwise
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the standard contact structure on R3
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Darboux’s Theorem

• locally all contact structures look like the standard one

• (M, ξ) and (N, η) contact 3-manifolds, contactomorphism is
diffeomorphism f : M → N such that f∗(ξ) = η; in terms of
1-forms f ∗(αη) = hαξ for some non-zero h : M → R
• (M, ξ) contact 3-manifold, point x ∈ M, there are neighborhoods
N of x and U of (0, 0, 0) in R3 and contactomorphism

f : (N , ξ|N )→ (U , ξ0|U )

with ξ0 the standard contact structure on R3
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Example: contact structure on sphere S3

• f (x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2 with S3 = f −1(1) ⊂ R4

• tangent spaces T(x1,y1,x2,y2)S
3 = kerdf(x1,y1,x2,y2) =

ker(2x1dx1 + 2y1dy1 + 2x2dx2 + 2y2dy2)

• identify R4 = C2 with complex structure Jxi = yi and Jyi = −xi

J
∂

∂xi
=

∂

∂yi
, J

∂

∂yi
= − ∂

∂xi

• contact structure on S3

α = (x1dy1 − y1dx1 + x2dy2 − y2dx2)|S3

α ∧ dα 6= 0

ξ = ker(α) contact planes

Matilde Marcolli and Doris Tsao Contact Geometry of the Visual Cortex



• contact planes ξ = ker(α) on S3 are set of complex tangencies

ξ = T(x1,y1,x2,y2)S
3 ∩ J(T(x1,y1,x2,y2)S

3)

• 1-form α and complex structure:

α = (df ◦ J)|S3

• plane field ξ = ker(α) orthogonal to the Hopf vector field

ẋ1 = −y1, ẏ1 = x1, ẋ2 = −y2, ẏ2 = x2

Matilde Marcolli and Doris Tsao Contact Geometry of the Visual Cortex



Hopf vector field and Hopf fibration of S3
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Contact Structures and Complex Manifolds

• X complex manifold dimC(X ) = 2 with boundary ∂X , with
dimR ∂X = 3, and complex structure J on TX ; function φ near
boundary with ∂X = φ−1(0) (collar neighborhood of boundary)

• complex tangencies
ker(dφ ◦ J)

contact structure iff d(dφ ◦ J) non-degenerate 2-form on planes ξ

• contact structure is fillable if obtained in this way

• Lutz–Martinet theorem: all 3-manifolds admit a contact
structure (not always fillable)
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Contact Geometry and Symplectic Geometry

• X real 4-dimensional manifold (or more generally even
dimensional); symplectic structure on X : closed 2-form ω such
that ω ∧ ω 6= 0 (or in dimension 2n form ∧nω 6= 0)

• Darboux’s Theorem for symplectic forms: locally ω = dp ∧ dq
(like a cotangent bundle)

• (X , ω) symplectic filling of contact 3-manifold (M, ξ) if ∂X = M
and ω|ξ 6= 0 area form on contact planes

• fillability by complex manifold special case: ω = d(dφ ◦ J) is
symplectic

• not all contact structures are fillable by symplectic structures: if
a contact structure is symplectically fillable then it is tight

[Note: can always extend to symplectic on cylinder X = M × R
with ω = dα + α ∧ dt but not M = ∂X ]
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Tight and Overtwisted Contact Structures

• characteristic foliation: embedded oriented surface Σ in contact
3-manifold (M, ξ), lines `x = ξx ∩ TxΣ except at singular points
where intersection is all TxΣ; obtain foliation Fξ,Σ of Σ with
singular points

• overtwisted contact structure if ∃ embedded disk D with
characteristic foliation Fξ,D homeomorphic to either

• tight contact structure: contains no overtwisted disk
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Examples

• tight: standard polar coordinates (r , θ, z) contact structure
ξ = ker(dz + r2dθ)

• overtwisted: ξ = ker(cos(r) dz + r sin(r)dθ), the overtwisted
property sees the fact that contact planes dz/dθ = −r tan(r)
become vertical and twist over periodically (fig on the right)

• overtwisted disk {z = r2 : 0 ≤ r ≤ π/2}
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Generic singularities of the characteristic foliation
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Some facts about contact structures and 3-manifolds
(Eliashberg, Gromov, Entyre, Honda, Bennequin, etc.)

All 3-manifolds admit contact structures

Some 3-manifolds do not admit any tight contact structure
(though most of them do)

If a contact structure is symplectically fillable then it is tight

contact plane field ξ has an Euler class e(ξ) ∈ H2(M,Z): if
tight then genus bound

|e(ξ)[Σ]| ≤ −χ(Σ)

if Σ 6= S2 and zero otherwise (key idea: express in terms of
singular points of the characteristic foliation, Poincaré–Hopf)
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Legendrian knots

• knots S1 ↪→ M in contact 3-manifold (M, ξ) such that curve
always tangent to contact planes ξ

• every knot in a contact manifold can be continuously
approximated by a Legendrian knot

• in standard contact structure in R3 with ξ = ker(dz + xdy) front
projection (in yz-plane) looks like these

• invariants of Legendrian knots used to study contact manifolds
(see Bennequin invariants, etc.)
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Transverse knots

• knots S1 ↪→ M in contact 3-manifold (M, ξ) such that curve
always transverse to the contact planes ξ

• for standard contact structure projections of transverse knots in
the xz-planes cannot have segments like

because z ′(t)− y(t)x ′(t) > 0 along a tranverse knot and vertical
tangency would have x ′ = 0 and z ′ < 0, while second case y(t)
bounded by slope z ′(t)/x ′(t) in xz-plane

• any transverse knot in the standard contact structure is
transversely isotopic to a closed braid
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Braids: braid group

Bn = 〈σ1, . . . , σn |σiσi+1σi = σi+1σiσi+1, σiσj = σjσi , |i − j | ≥ 2〉

braid group relations
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Visual Cortex as Contact Bundle

• W.C. Hoffman, The visual cortex is a contact bundle, Applied
Mathematics and Computation, 32 (1989) 137–167

• Hubel–Wiesel microcolumns in columnar structure of V1 cortex
exhibit both directional and areal response: model directional-areal
response fields as contact planes directions

• “orientation response” refers to directionally sensitive response
field of a single cortical neuron

• microelectrodes penetration measurements of directional and
area response of neurons in the cat visual cortex show contact
planes (Hubel, Wiesel)
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Visual Pathways

visual pathways from the retina to the visual cortex
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Visual pathways and Connections on Fiber Bundles
• paths (visual contours) are lifted along visual pathways from the
retina to the visual cortex

• patterns of “constancies” are detected (shape, size, motion,
color, etc.), then higher forms (areas 18 and 19 of the human
visual cortex)

• path lifting property (from retina to cortex); geometrically path
lifting from base R to total space of fibration F with fiber P1(R)

P1(R) ↪→ F
π
� R

• lifting a path along projection of a fibration: need to choose a
horizontal direction at each point in the total space of the fibration
(there is always a well defined vertical direction): a connection
determines the choice of a horizontal direction
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horizontal and vertical subspaces in the tangent space of a fibration
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trivialization defined by local sections
(from Nakahara, Geometry, Topology, and Physics, CRC Press, 2003)
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path lifting to the visual cortex (Hoffman)
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Connection 1-form and Contact Planes

• connections and 1-forms: view a connection as a splitting of
exact sequence

TP1 → TF π∗−→ TR

of tangent spaces of fibration: choice of horizontal direction at
each point; achieved by a 1-form α (scalar valued because circle
bundle P1(R) ' S1) while vertical direction is V = ker(π∗)

• Geometric Model: orientation response fields (ORFs) are contact
planes ξ = ker(α) determined by the connection 1-form α that
performs the path lifting from the retina to the visual cortex
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Question

• when lifting a path from retina to visual cortex get a path
everywhere transversal to contact planes

• lift of a closed path in general not a closed path: endpoints lie on
the same fiber of the fibration, but not necessarily the same point

• if obtain closed path, this can be knotted in the contact
3-manifold (transverse knot)

• when does this happen? what is the significance of knottedness?
role of transverse and Legendrian knots in the visual cortex contact
bundle?
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Horizontal Connectivity in the Primary Visual Cortex

• Alessandro Sarti, Giovanna Citti, Jean Petitot, Functional geometry of

the horizontal connectivity in the primary visual cortex, Journal of

Physiology - Paris 103 (2009) 3–45

• on product F = R× P1(R) where R ' R2 coordinates (x , y)
and P1(R) ' S1 coordinate θ

α = − sin(θ)dx + cos(θ)dy

is a contact form

dα = (cos(θ)dx + sin(θ)dy) ∧ dθ, α ∧ dα = −dx ∧ dy ∧ dθ 6= 0

• contact planes spanned by (cos(θ), sin(θ), 0) and (0, 0, 1)
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• the 1-form α relates local tangent vectors (in lift of retinal
image) and forms integral curves, either along contact planes
(Legendrian) or transverse: mechanism responsible for creating
regular and illusory contours

integral curves along the contact planes
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Scale Variable

• an additional scale variable σ ∈ R+: think of the visual field
information recorded in the lift to the visual cortex not as a delta
function but as a smeared distribution with Gaussian parameter σ
(Gabor frames)

• when σ → 0 recover geometric picture described above with
integral curves

• geometric space X = R2 × S1 × R+, coordinates (x , y , θ, σ)

• 2-form on X : scale α 7→ σ−1α

ω = d(σ−1α) = σ−1dα + σ−2α ∧ dσ

symplectic ω ∧ ω = 2σ−3dα ∧ α ∧ dσ = 2σ−3dx ∧ dy ∧ dθ ∧ dσ

• not symplectically filling: blowing up at σ → 0, don’t have ω|ξ at
boundary, but dα + α ∧ dσ would be

Matilde Marcolli and Doris Tsao Contact Geometry of the Visual Cortex



• ω = σ−1ω1 ∧ ω2 + σ−2ω3 ∧ ω4 with ωi 1-form dual to vector
field Xi , corresponding vector fields

X1 = cos(θ)∂x + sin(θ)∂y , X2 = ∂θ,
X3 = − sin(θ)∂x + cos(θ)∂y , X4 = ∂σ

• for small σ predominant X1X2 contact planes; for large σ
predominant X3X4-planes

integral curves in the X1X2-planes and in the X3X4-planes
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Pinwheel Structure in the Visual Cortex

V1 cortex of tupaya tree shrew: different orientations coded by colors

zoom in on regular and singular points (Petitot)
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isoorientation (isochromatic) lines in the V1 cortex (Petitot)
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• given a section σ : R → F of the fibration

P1(R) ↪→ F
π
� R

determines a surface Σ = σ(R) ⊂ F
• isoorientation curves are canonical foliation `x = ξx ∩ TxΣ for
this surface

• pinwheels in Σ are overtwisted disks on the canonical foliation
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networks of pinwheels (Petitot)
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• projected down to R with π : F → R have network of pinwheels
on R via π ◦ σ = 1 identification of Σ and R
• fiber over each pinwheel point is P1(R)

• can view these fibers as (real) blowup of R at pinwheel points

real blowup of R2 at a point (Petitot)
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BlpA2 = {(x , y), [z : w ] | xz + yw = 0} ⊂ A2 × P1

BlpA2 = {(q, `) | p, q ∈ `}
for p 6= q projection π1 : BlpA2 → A2, (q, `) 7→ q isomorphism,
because unique line ` through p and q, but over p = q fiber is P1

set of all lines `

real blowup of R2 at a point (image by Charles Staats)
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pinwheels in the base R and fibers (Petitot)
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Observed relation between pinwheel structure and ocular
dominance domains

pinwheels cut boundaries of ocular dominance domains transversely
and nearly orthogonally (Petitot)
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