
Conformal Geometry of the Visual Cortex

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017
Geometry of Neuroscience

Matilde Marcolli and Doris Tsao Conformal Geometry of the Visual Cortex



Functional Architecture of the V1 visual cortex

Filtering of optical signals by visual neurons and local differential
data; integration of local differential data and global geometry,
through global coherence of functional architecture of visual areas

This lecture is based on:
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Zhong-Lin Luc, Yalin Wang, Characterizing human retinotopic
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Areas of the visual cortex

• V1: the first of the primary visual areas (numerous feedbacks of
successive areas like V2 and V4: here focus only on the geometry
of V1)

• high-resolution buffer hypothesis of Lee–Mumford: V1 not just a
bottom-up early-module but participating in all visual processes
that require fine resolution

Lee, T.S., Mumford, D., Romero, R., Lamme, V.A.F., The
role of primary visual cortex in higher level vision, Vision
Research, 38 (1998) 2429–2454.
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Location of the Visual Areas
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Structures in V1

• neurophysiology identifies three types of structures in primate V1

1 laminar

2 retinotopic (retinal mapping)

3 (hyper)columnar
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Laminar Structure

• organized in 6 distinct horizontal layers (parallel to the surface of
the cortex)

• look in particular at layer 4 (and sublayer 4C ): main target of
thalamocortical afferents and intra-hemispheric corticocortical
afferents

• contains different types of stellate and pyramidal neurons
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laminar structure and the 4th layer
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Retinotopy

• adjacent neurons with receptive fields covering overlapping
portions of the visual field

• mapping of the visual input from the retina of the visual cortex
are conformal maps (preserving local shape and local angles, but
not distances and sizes)

• logarithmic conformal mapping from the retina to the sublayer
4C of layer 4 of the laminar structure

• Note: in cortical areas other than V1 adjacent points of the
visual field may be mapped to non-adjacent regions
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eccentricity and polar angle data (from [TSBBLW])
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Conformal maps

biholomorphic maps w = f (z) where f ′(z) 6= 0
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genus zero surface conformally mapped to S2 (from [WGCTY])
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the unfolded striate cortex with the mapping of the visual field
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Models of retinotopy conformal mapping

• the log(z + a) model (also referred to as “monopole model”)

• more general log(w(z)+a
w(z)+b ) model (also known as

“wedge-dipole model”)
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TSBBLW Duyan Taa, Jie Shia, Brian Bartonb, Alyssa Brewerb,
Zhong-Lin Luc, Yalin Wang, Characterizing human retinotopic
mapping with conformal geometry: A preliminary study, 2014

• two step procedure to modeling retinotopy by conformal mapping

1 conformal map from brain visual cortex to the unit disk

2 conformal map from visual field to the unit disk
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From the visual cortex to the unit disk: conformal flattening

(1) slice along plane to isolate visual cortex regions; (b) visual
regions after slicing; (c) double covering; (d) projection of double
covering to a sphere; (e) stereographic projection to the unit disk
(from [TSBBLW])
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Mesh and u, v -coordinates

Data collection provides:

simplicial complex (mesh triangulation) K of cortical area

color gradient data for eccentricity and polar angle:
parameterization of visual stimulus in the visual field as
u = r cos(θ) and v = r sin(θ)

general technique for constructing conformal mapping from

WGCTY Yalin Wang, Xianfeng Gu, Tony F. Chan, Paul M. Thompson,
Shing-Tung Yau, Intrinsic Brain Surface Conformal Mapping
using a Variational Method, Proceedings of SPIE Vol. 5370,
2004
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mesh K with color gradient data for eccentricity and polar angle
determining u, v -coordinates at each vertex of the mesh

(from [TSBBLW])
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Constructing the conformal maps: energy minimizing [WGCTY]

• piecewise linear functions CPL(K ), quadratic form

〈f1, f2〉 =
1

2

∑
e∈E(K)

ke (f1(s(e))− f1(t(e))) (f2(s(e))− f2(t(e)))

e ∈ E (K ) edges, s(e), t(e) ∈ V (K ) source and target vertices;
ke > 0 parameters

• Energy functional

E (f ) = 〈f , f 〉 =
∑
e

ke ‖f (s(e))− f (t(e))‖2

when all ke = 1: Tutte energy

Matilde Marcolli and Doris Tsao Conformal Geometry of the Visual Cortex



• discrete Laplacian

∆(f ) =
∑
e

ke(f (t(e))− f (s(e))

energy minimizing f satisfies ∆(f ) = 0

• for vector valued functions: apply ∆ componentwise

• f : K1 → K2 map between two meshes (embedded in Euclidean
spaces E3)

(∆f (v))⊥ = 〈∆f (v), ~n(f (v))〉 ~n(f (v))

normal component, with ~n(f (v)) normal vector to K2 at f (v)

• harmonic map f : K1 → K2 iff ∆f (v) = (∆f (v))⊥ (only normal
no tangential component)

• vanishing of absolute derivative

Df (v) = ∆f (v)− (∆f (v))⊥
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conformal maps to S2 by steepest descent [WGCTY]

• non-uniqueness of solutions: action of Möbius transformations
on S2 = P1(C)

GL2(C) 3 γ =

(
a b
c d

)
: z 7→ az + b

cz + d

• constraints to obtain a unique solutions:

zero-mass constraint: f : K1 → K2∫
f dσK1 = 0

landmark constraints: manually labelled set of curves or point
sets, optimal Möbius transformation that reduces distance
between images of landmarks in the sphere S2
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Algorithm 1 [WGCTY] (steepest descent with Tutte energy)

1 start with mesh K and Gauss map τ : K → S2 with
N(v) = n(v) normal to K ⊂ E3

2 compute Tutte energy E0 = E (τ)

3 compute absolute derivative Dτ(v)

4 update τ by δτ = −Dτ(v) · δt (fixed increment length δt)

5 compute Tutte energy: if Enew < E0 + δE (fixed threshold
δE ) output, else update E0 to E and repeat

Unique minimum, convergence to Tutte embedding of graph
(1-skeleton of K ) in the sphere S2
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Algorithm 2 [WGCTY] (from Tutte embedding to conformal map)

1 compute Tutte embedding τ as before and its Tutte energy E0

2 compute absolute derivative Dτ(v) and update
δτ(v) = −Dτ(v)δt

3 compute Möbius transformation γ0 : S2 → S2 that minimizes
norm of the mass center

γ0 = argminγ

∥∥∥∥∫ γ ◦ τ dσK
∥∥∥∥2

4 compute harmonic energy: where coefficients ke = aαe + aβe
(for edge e in boundary of faces Fα and Fβ)

aαe =
1

2

(s(e)− v) · (t(e)− v)

|(s(e)− v)× (t(e)− v)|

where v third vertex in triangle face Fα
5 if E < E0 + δE output current function; otherwise update E0

to E and repeat
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• used minimization of mass center norm by Möbius
transformations, but also want to evaluate how good conformal
parameterization is, with respect to some given landmarks

• suppose obtained two parameterizations fi : S2 → S , compare
them in terms of given landmarks

• formulate again in terms of an energy functional

E (f1, f2) =

∫
S2

‖f1(u, v)− f2(u, v)‖2 du dv

look for Möbius transformation γ? that minimizes this energy

γ? = argminγ E (f1, f2 ◦ γ)
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• using landmarks to only compare over a finite set of points (or
over some assigned curves)

• say landmarks are finite sets of points P ⊂ S1 and Q ⊂ S2 with
bijection pi ↔ qi , i = 1, . . . , n between their preimages on S2

• look for Möbius transformation γ that minimizes

E (γ) =
n∑

i=1

‖pi − γ(qi )‖2

non-linear problem, but assuming γ(∞) =∞ by stereographic
projection transform into a least square problem
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landmark constraints: matching along preassigned curves, minimize
landmark mismatch for representations from different subjects

(from [WGCTY])
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Spherical harmonics orthonormal basis for L2(S2)

• ` ∈ N and m ∈ Z with |m| ≤ ` (degree and order)

Ym
` (θ, φ) = k`,m Pm

` (cos(θ)) e imφ

Pm
` associated Legendre polynomials

d

dx
((1− x2)

d

dx
Pm
` (x)) + (`(`+ 1)− m2

1− x2
)Pm

` = 0
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Real spherical harmonics ` = 0, . . . , 3, yellow=negative,
blue=positive, distance from origin=value in angular direction
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• Expansion in spherical harmonics f ∈ L2(S2)

f =
∑
`≥0

∑
m: |m|≤`

〈f ,Ym
` 〉Ym

`

• suppose constructed conformal mapping of visual cortex to S2,
have coordinates on the cortex surface (embedded in E3)

x0(θ, φ), x1(θ, φ), x2(θ, φ)

with (θ, φ) angle coordinates on S2

x i (θ, φ) ∈ L2(S2), with x̂ i (`,m) = 〈x i ,Ym
` 〉

coefficients of expansion in harmonic forms

• Fast Spherical Harmonic Transform to compute x̂ i (`,m)

• compression, denoising, feature detection, shape analysis: more
efficiently performed on the Fourier modes x̂ i (`,m)
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a conformal map from S2 to the brain surface (from [WGCTY])
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geometric compression using low spherical harmonics and rescaling
to smaller low frequencies coefficients (from [WGCTY])
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How good is modeling by conformal maps?

measuring deviation from conformality by deviation from right
angle through inverse mapping from S2 to cortex surface

(from [WGCTY])
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Beltrami equation and Beltrami coefficient

• a conformal structure at a point z ∈ C is determined by a
complex dilatation µ(z) with |µ(z)| < 1

• intuitively, a conformal structure picks an ellipse centered at the
origin as the new circle

• notation: for z = x + iy

∂

∂z̄
=

1

2

(
∂h

∂x
+ i

∂h

∂y

)
and

∂

∂z
=

1

2

(
∂h

∂x
− i

∂h

∂y

)
• if µ(z) = µ constant, the function h(z) = z + µz̄ satisfies
Beltrami equation

∂h

∂z̄
= µ(z)

∂h

∂z

• for constant µ(z) = µ round circle in h-plane corresponds to
ellipse with constant |z + µz̄ | in z-plane: direction of axes from
argument of µ eccentricity from |µ|
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• for µ(z) real analytic: Gauss isothermal coordinates ∃ local
solution h(z) to Beltrami equation; Morrey for measurable µ(z)

• a solution h(z) on a local open set U is a quasi-conformal
mapping with complex dilatation µ(z)

• conformal structure on a Riemann surface S : section of a disk D
bundle over S

µβ(zβ) = µα(zα)
∂zβ/∂zα
∂z̄β/∂z̄α

gluing of local µα : Uα → D on overlaps

• Beltrami differential on a Riemann surface S is antilinear
homomorphism of tangent spaces TzS

• local solutions hα of Beltrami equation determine conformal
coordinates for a Riemann surface Sµ topologically equivalent to S
but with a new conformal structure.
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• in genus zero case: by Uniformization Theorem Sµ is conformally
equivalent to S = P1(C) with unique conformal isomorphism h
that fixes {0, 1,∞}
• view h as quasiconformal isomorphism with dilatation µ(z)

h : P1(C)→ P1(C)

• conclusion from [TSBBLW]: compute Beltrami coefficient µ for
regions of V1 and V2 where reasonably smooth eccentricity and
polar angle data: conformal map is very good approximation

• from the neuroscience point of view: why conformal maps?
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Columnar Structure

• another type of geometric structure present in visual cortex V1

• Hubel–Wiesel: columnar structures in V1: neurons sensitive to
orientation record data (z , `)

z = a position on the retina

` = a line in the plane

• local product structure

π : R× P1 � R

Matilde Marcolli and Doris Tsao Conformal Geometry of the Visual Cortex



Fiber bundles

• topological space (or smooth differentiable manifold) E with
base B and fiber F with

surjection π : E � B

fibers Ex = π−1(x) ' F for all x ∈ B

open covering U = {Uα} of B such that π−1(Uα) ' Uα × F
with π restricted to π−1(Uα) projection (x , s) 7→ x on Uα × F

• sections s : B → E with π ◦ s = id ; locally on Uα

s|Uα(x) = (x , sα(x)), with sα : Uα → F

• model of V1: bundle E with base R the retinal surface, fiber P1

the set of lines in the plane

• topologically P1(R) = S1 (circle) so locally V1 product R2 × S1

• We will see this leads to a geometric models of V1 based on
Contact Geometry
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