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Abstract: We formulate the problem of renormalization of Feynman integrals and its
relation to periods of motives in configuration space instead of momentum space. The
algebro-geometric setting is provided by the wonderful compactifications Conf(X)
of arrangements of subvarieties associated to the subgraphs of a Feynman graph I", with
X a (quasi)projective variety. The motive and the class in the Grothendieck ring are
computed explicitly for these wonderful compactifications, in terms of the motive of X
and the combinatorics of the Feynman graph, using recent results of Li Li. The pullback
to the wonderful compactification of the form defined by the unrenormalized Feynman
amplitude has singularities along a hypersurface, whose real locus is contained in the
exceptional divisors of the iterated blowup that gives the wonderful compactification.
A regularization of the Feynman integrals can be obtained by modifying the cycle of
integration, by replacing the divergent locus with a Leray coboundary. The ambiguities
are then defined by Poincaré residues. While these residues give periods associated to the
cohomology of the exceptional divisors and their intersections, the regularized integrals
give rise to periods of the hypersurface complement in the wonderful compactification.

1. Introduction

In recent years a lot of attention has been devoted to motivic aspects of perturbative
quantum field theory, aimed at providing an interpretation of Feynman integrals of a
(massless, scalar) quantum field theory and their renormalization in terms of periods
of algebraic varieties. If one can control the nature of the motive of the algebraic vari-
ety, then one constrains the kind of numbers that can arise as periods. In particular, the
original evidence of [17] suggested that multiple zeta values, hence mixed Tate motives
would be the typical outcome of these Feynman integral calculations. When computing
Feynman integrals in momentum space, the parametric form of Feynman integrals (see
[11,39]) expresses the unrenormalized Feynman amplitude as an integral on the com-
plement of a hypersurface defined by the vanishing of the Kirchhoff polynomial of the
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graph. The motivic properties of these hypersurfaces have been widely studied. Contrary
to an earlier conjecture of Kontsevich (which was verified in [52] for graphs with up to
12 edges), these hypersurfaces are not always mixed Tate motives. More precisely, it was
shown by Belkale and Brosnan [6] that their classes span the (localized) Grothendieck
ring of varieties, hence they can be very far from mixed Tate as motives (see, however,
[2] for the case of the Grothendieck ring without localization). More recently, it was
proved rigorously by Francis Brown in [18] why all the original cases computed in [17]
gave rise to periods of mixed Tate motives, while the smallest explicit counterexample to
Kontsevich’s conjecture was identified by Doryn in [32], see also [19]. A reformulation
of the original question in terms of the mixed Tate nature of certain relative cohomology
groups for divisors in the complement of the determinant hypersurface and intersections
of unions of Schubert cells in flag varieties was given in [1]. For some related aspects
of the interaction between Feynman integrals and motives see also [49].

It is natural to consider, from a similar motivic perspective, also the dual picture,
where the Feynman integrals and the renormalization procedure take place in config-
uration space, instead of working in momentum space. That is the natural setting of
Epstein—Glaser renormalization [33]. As was shown in the seminal papers of Axelrod—
Singer [4,5] in the case of Chern—Simons theory, renormalization of Feynman integrals
in configuration space is closely related to the algebro-geometric construction of the
Fulton—-MacPherson (FM) compactifications of configuration spaces [34]. In fact, they
associate to a Feynman graph a differential geometric version of the FM compactif-
ication of the configuration space on the set of vertices of the graph. The result is a
real manifold with corners, which is obtained, like the FM compactification, from a
series of blowups, and on which the Feynman integrand extends smoothly. In fact, in the
FM compactifications of [34] and of [4,5], one considers the complement of all diag-
onals. Tt was then observed in [16,40,43], that one can consider configuration spaces
associated to graphs, where only the diagonals that correspond to edges in the graph
are removed. These also have compactifications, obtained in a similar way. In fact, the
resulting compactifications are a particular case of a wider class of generalizations of
the FM compactifications, namely the “wonderful models” in the sense of De Concini—
Procesi, [27]. More precisely, the recent paper of L. Li [45] describes a general procedure
to construct configuration spaces and wonderful compactifications associated to certain
arrangements of subvarieties. The graph configuration spaces and the compactifications
of Kuperberg—Thurston [43] are shown in [45] to be a special case of this general con-
struction. The FM case is also a special case that corresponds to the complete graph.
We show that the configuration spaces of graphs and their compactifications required
for the regularization of Feynman amplitudes are in fact combinatorially the same as
those of Kuperberg—Thurston [43], using the result of Li [45]. The use in Epstein—Glaser
renormalization of these graph configuration spaces and their compactifications in the
De Concini—Procesi sense was recently analyzed in the work of [9,8,51]. In particular,
the recent paper [9] gives a careful description of several geometric aspects of Epstein—
Glaser renormalization, formulated in terms of the wonderful compactifications of [27]
for graph configuration spaces. The role of the Connes—Kreimer Hopf algebra in the
Epstein—Glaser setting was also discussed in [9,51], while a version of the motivic
Galois group incarnation of the renormalization group of [25,26] was formulated in the
Epstein—Glaser setting in [20].

Here we give a reformulation of the motivic question in the configuration space set-
ting. We begin by describing briefly the geometry of our graph configuration spaces
Confr(X) and their compactifications Conf(X), and showing that they fit in the
general formalism of [45] and are in fact equivalent to the Kuperberg—Thurston [43]




Feynman Integrals and Motives of Configuration Spaces 37

compactifications. We then use another recent result of L. Li, [44], on the Chow motives
of wonderful compactifications for smooth projective X (as well as a similar result for
Voevodsky motives in the quasi-projective case) to obtain an explicit formula for the
class of Conf(X) in the Grothendieck ring of varieties. We obtain from that also an
explicit expression for the virtual Hodge polynomial that generalizes to the Conf - (X)
the known formula of [22,35] for the FM case.

We then concentrate on the residues of divergent Feynman integrals. We show that,
in the log divergent case, by pulling back the form to the wonderful compactification,
one has simple poles along the exceptional divisor of the deepest diagonal. Using a
regularization obtained by replacing the divergence locus with a Leray coboundary, we
show that the ambiguity in the renormalization is due to a single Poincaré residue. In the
case where there are worse than logarithmic divergences, the pullback to the wonderful
compactification has higher order poles along the exceptional divisors and the Poin-
caré residues in this case correspond to pieces of the Hodge filtration on the primitive
cohomology.

While regularized integrals give periods of the complement Conf(X) \ Zr, where
the hypersurface Zr is a quadric determined by the configuration space propagators of
the graph, the Poincaré residues, that measure the ambiguities of the regularization by
Leray coboundaries, determine periods associated to the cohomology of the exceptional
divisors of the iterated blowups and their intersections, in the complement of Zr. A
more detailed analysis of the nature of these periods will be given in [21].

2. Configuration Spaces and Their Combinatorial Compactifications

We describe here briefly the geometry of configuration spaces associated to Feynman
graphs and their wonderful compactifications. Some of what we discuss here can be
traced to the literature on the subject, especially [5,8,34,40,43,45]. See also the recent
extensive treatment in [9]. We focus here on those aspects that we directly need to obtain
the explicit formulae for the motive, the class in the Grothendieck ring, and the virtual
Hodge polynomial.

2.1. Configuration spaces of graphs. In the following, by a graph I we always mean
a finite graph. We use the notation V- for the set of vertices of I' and Er for the set
of edges, and we write dr : Er — S%(Vr) for the boundary map that assigns to an
edge its endpoints. (We consider here the graph as un-oriented, hence the endpoints are
defined up to ordering, in the symmetric product S*(Vr).) A looping edge is an edge
for which the two endpoints coincide and multiple edges are edges between the same
pair of endpoints. We assume that all our graphs have no multiple edges and no looping
edges, see Remark 2 below.

For a subgraph y € I' we write I'//y to indicate the graph obtained from I' by
shrinking each connected component of y to a single (different) vertex, and then replac-
ing each set of multiple edges with a new single edge. Similarly, we denote by I'/y the
quotient where all of y is identified to the same vertex and then each set of multiple
edges is identified to one single edge.

Notice that, even though we require the original graph to be free of multiple edges
and looping edges, the quotient graphs can in general have both, hence the reason why
we identify multiple edges in the quotients I'//y and I'/y . Replacing multiple edges by
simple edges does not affect anything in the construction, see Remark 2. The problem



38 0. Ceyhan, M. Marcolli

of looping edges in the quotients does not arise, as long as we consider only induced
subgraphs, in the sense of Definition 2.

Definition 1. Let X be a smooth quasi-projective variety and let T be a graph. The
configuration space Confr(X) of I' in X is the complement in the cartesian product
XV = {(x, | v € V1)) of the diagonals associated to the edges of T, namely

Confr(xX) = x¥'~ | J A 2.1)
ecEr
with
A ={(xy [ v € V) | xy, = xy, forar(e) = {vy, v12}}. (2.2)

Remark 1. By identifying the product X VT with the set of all maps f : VI — X, one
sees that the configuration space Con fr(X) consist of those maps that are “non-degen-
erate along the edges of I'”, that is, such that f(v) # f(v') whenever v and v’ are
connected by an edge in I'. Notice that one can also consider the configuration space
of all non-degenerate maps f : Vr — X, that is, all maps such that f(v) # f(v)
whenever v # v'. This would correspond to removing all the diagonals x, = x,/ from
XVr | regardless of whether the vertices v and v’ are connected by an edge in I" or not.
This would correspond to the configuration space of Definition 1 above, but for the
complete graph with the same set of vertices Vr as I'.

Remark 2. Note that the definition of configurations does not detect multiple edges in
the graph. In fact, in essence the notion of degeneration that defines the diagonals (2.2)
is based on collisions of points and not on contracting the edges connecting them. This
is why we can assume, to begin with, that the graphs we consider have no multiple
edges. On the other hand, the definition of configuration space is void in the presence of
looping edges. In fact, a looping edge only gives the trivial equivalence relation x,, = x,,
so that the diagonal A, associated to a looping edge is the whole space X VT, and the
complement X ¥ <. A, = . To avoid this degenerate case, we also assume that graphs
have no looping edges. As observed above, the quotients by induced subgraphs (in the
sense of Definition 2 below) will then also have no looping edges.

2.1.1. Subgraphs and corresponding diagonals. We now consider diagonals associated
not only to edges of a graph I', but to certain classes of subgraphs y C I'.

Definition 2. A subgraph y C T is called an induced subgraph if two vertices v, v’ €
V,, are connected by an edge e € E,, ifand only ifthey are connected by an edge e € Er.,
that is, y has all edges of I on the same set of vertices. Let SG(I') denote the set of all
connected induced subgraphs of T'. Let

SGi(I) = {y € SG(I') | [Vy| = k}, (2.3)

be the subset SGi(I') € SG(I") of all the connected induced subgraphs on k verti-
ces. Then SG(T') is a disjoint union SG(T") = Uy |SGi(T"), where SGyy,.(T') = (T'}.
Also let S/(\}(F) denote the set of all subgraphs y that are unions of disjoint connected
induced subgraphs. One similarly has subsets SG(I') € SG(I") of subgraphs with a
fixed number of vertices.
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We now consider diagonals associated to the induced subgraphs in the following way.
Definition 3. For each induced subgraph vy, the corresponding diagonal is
Ay = {(tys ... xy,) € XV | xy, = xy, forallvi,v; €V} (2.4)
while the (poly)diagonal is
Ay ={(tyy, s xp,) € XV | xy = xy for {v,v') = d(e), e € E,}. (2.5)
We then have the following simple property.

Lemma 1. For an arbitrary graph I' and an induced subgraph y, the diagonal A, is
isomorphic to XV/v, while the (poly)diagonal A,, is isomorphic to XV7//v. When the
graph y is connected, then A, = Ay.

Proof In the case where y is not necessarily connected, an element (x,) € Ay has
xy = xy for all v, v" € V,, that belong to the same connected component of y. Thus,
one can identify AV with XVr//v. The space A, sits as a diagonal in Ay where the
values x, assigned to vertices in the different connected components all agree. It can be
identified with X V/» where all of y is reduced to just one vertex.

When the graph y is connected, I'//y = I'/y is the graph where all of y is identified
to a single vertex. One then has an isomorphism between the subspace A, of X Vr and
the space xVriv. o

One can see easily show, in the case of subgraphs that are not connected, the inter-
section of the diagonals A, does not behave as nicely as the intersection of the Ay. For
example let Y < I" be an induced subgraph with two connected components y = y;Uys.
Then Ay = A,,] N An’ while A, € A, N A,,. This observation follows directly from
the previous lemma, using A = XV//r and A, = = XVr/v and the fact that, for the
connected graphs y;, one has AV[ = Ay,. These have dimensions

dim A, = dim XV = dim(X)([Vr| — [V, | + 1),

R 2.6)
dim A, = dim XV7//7 = dim(X)([Vr| — [V, | + bo(»)).

Lemma 2. Forany graph T, if y1 and y; are disjoint induced subgmphs withy = iUy

their disjoint union, then A)’l and Ayz intersect transversely with Ay = Ay1 N Ay2
For any graph T, if y1 and vy, are induced subgraphs which intersect at a single

vertex Vi N V2 = {v}, then the diagonals A)’l and Ayz also intersect transversely with

AV = A)’l N Ayz,fory =y Up.

Remark 3. The union of induced subgraphs is not in general an induced subgraph, as
one can see by taking two sides of a triangle, or, for disjoint unions, the opposite sides
of a square. However, one can still define A, as in (2.5).

Proof (Lemma 2). In the case of disjoint induced subgraphs, the inclusion Ay C A}’l N

Ayz is certainly satisfied. Since the two graphs are disjoint, I'//y = (I'//y1)//v2 =
(I'//v2)//y1, and the reverse inclusion also holds. The dimension counting (2.6) gives
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dim(XVr) = dim(X)|Vr| = dim(X)((|Vr|= |V, [+bo(y1))+ (Ve[ [V, [+bo(y2)) —
(IVr| = IV, |+ bo(y)) = dim(A,,) +dim(A,,) — dim(A,).

In the second case, let y1 ; and y;_; be the connected components of y; and y,, respec-
tively, numbered so that 1 o and y» ¢ are the components that contain the vertex v. Then a

point (x,) in the intersection Ayl ﬂ&n satisfies x, = x1; forallv € V,,, ,; andx, = x2
forall v € Vy, ; and with x1,0 = x2,0, so that set-theoretically A, = A,; N A,,. Since

y1 Ny, consists of a single vertex, A)/lml/z = XVr, while IV, =1V, | +1V,,| — 1 and
bo(y) = bo(y1) + bo(y2) — 1, so that the same dimension counting as above holds. 0O

Remark 4. The proof above essentially needs the condition

U/fy =X//vD)//va={T//v2)//n

to be satisfied. The cases, (1) y1 & y» are disjoint and (2) y; & y» intersect at a vertex,
examined in Lemma 2 are the only possible cases. In all other cases, y; ¢ (I'//y»2) and

v2a & (T'//vD).

‘We have also the following property of the diagonals associated to induced subgraphs.

Lemma 3. For arbitrary T, if y| C vy, are induced subgraphs, then Ayz C A)’l and
Ay C Ay

If y1 and y» are connected induced subgraphs with y1 N y» # @, such that neither
is a subgraph of the other, and with the property that their union y = y1 U y» is also
an induced connected subgraph, then the diagonals A, and A, intersect transversely
along the diagonal A, in Ay, and cleanly in the ambient space X Vr,

For (not necessarily connected) induced subgraphs y, and y», where neither is a
subgraph of the other and such that the number of connected components satisfies

bo(y) = bo(y1) +bo(y2) — bo(y1 N y2), 2.7)

with y = y1 U y», the diagonals Ayl and Ayz intersect transversely along the diagonal
Ay in Ay,ny, and cleanly in the ambient space X vr,

Proof. For y1 C y», we have xVrim ) XVt and XVrm D XVF/VZ, so the first
property clearly holds. For the second statement, by the first statement A,, C Ay ny,,
and A, € A, N A,,. Since the subgraphs have non-empty intersection, an element
(xy) € Ay, N Ay, has all coordinates x, with v € V,, with the same value, hence it is
in Ay, sothat A, = A, N A,,. By the counting of dimensions as in (2.6) we have
dim Ay,ryy = dim(X)([VE| = [Vyynp| + 1) = dim(X)((Vr| = [V, | + 1) + (Vr| -
IVy,|+1) — (Vr| = |V, |+1) =dim A, +dim A, — dim A, which imply the trans-
versality of the intersection Ay, N A,, in Ay, n,,. Since any transversal intersection in a
subvariety is a clean intersection in the ambient space, Ay, N A,, is aclean intersection

in XVr. The third case is similar. One always has A c A)’l N Am, and one sees in
the same way that the reverse inclusion also holds, by breaking the argument up into
connected components and applying the previous result. The dimension counting then

givesdim(A,n,,) = dim(X) (Ve[ =Vy, [+bo (1) + (Ve[ =V, [+bo(r2)) = (IVr| =
[V, +bo(y)) = dlm(Ayl) + dlm(An) — dlm(Ay) where we set Aymyz = XVrif
y1 N y2 = . These equalities of dimensions imply that the intersection AVI N Ayz is
transversal in Aylﬂ)/z and clean in X VT as in the previous case. O
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Remark 5. Notice that we need to restrict to induced subgraphs in order to have trans-
versal/clean intersections. In fact, consider the example of the triangle graph, with an
induced subgraph given by a single edge and the two adjacent vertices, and a (non-
induced) subgraph given by the remaining two edges and all three vertices. The diago-
nals associated to these subgraphs do not intersect transversely, since one is contained
in the other. This example clearly does not satisfy (2.7).

Remark 6. The second statement of Lemma 3 does not hold if the union y = y; U y» is
not connected. Take as y; and y» two opposite sides in a hexagon. Both are connected
induced subgraphs and their union is induced, but not connected. The intersection of the
diagonals A,, and A,, is larger than the diagonal A, . However, in this case, the third
statement of Lemma 2 ensures that the problem does not arise when working with the
(poly)diagonals Ay, since (2.7) is satisfied in this case.

Remark 7. The condition (2.7) is sufficient to guarantee transversal/clean intersections
of the (poly)diagonals A, but not necessary, as we see in Proposition 4 below.

The outcome of the discussion above is that the best behaved class of (poly)diagonals
to consider in our setting is the collection of subvarieties Ay, where y C I is a union
of disjoint (connected) induced subgraphs. We see next that, in fact, this class has the
right properties required to construct a wonderful compactification.

2.2. The wonderful compactifications of arrangements of subvarieties. The recent work
of L. Li [45] provides a general framework for constructing wonderful compactifications
for configuration spaces associated to arrangements of subvarieties, which generalize
the Fulton—MacPherson compactifications of [34], the wonderful compactifications of
De Concini—Procesi [27], the conical compactifications of MacPherson—Procesi [46],
and the compactifications of graph configuration spaces considered in Kontsevich [40]
and also in Kuperberg—Thurston [43]. We recall here briefly Li’s setting of [45] and we
describe how it can be used to construct a compactification of the configuration spaces
Confr(X), through a family of (poly)diagonals Ay as in (2.5).

In the setting of [45], a simple arrangement S of subvarieties of an ambient smooth
quasi-projective variety Y is a finite collection of nonsingular closed subvarieties S;
with the properties that all nonempty intersections of subvarieties in the collection are
also subvarieties in the collection and that any two S; and S; in the collection intersect
cleanly (along a nonsingular subvariety, with the tangent bundle of the intersection equal
to the intersection of the restrictions of the tangent bundles). A building set G for a sim-
ple arrangement S is a subset of S with the property that, for any S € &, the minimal
elements in the collection {G € G : G D S} intersect transversely with intersection S.
These minimal elements are called the G-factors of S.

The main result of [45] shows that, given a building set G for a simple arrangement,
one can construct a smooth wonderful compactification Yg of the configuration space,

Y N UgegG, (2.8)
which has an explicit description as a sequence of iterated blowups.

Remark 8. Notice that, in the case where Y is a smooth projective variety, these are
indeed compactifications, while when one still considers the same construction in the
smooth quasi-projective case, the resulting varieties Yg obtained by this method are still
referred to as “compactifications” though technically they no longer are.
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Consider now the (poly)diagonals Ay defined as in (2.5). First notice that the relation
between the case of induced subgraphs and the case of more general subgraphs is given
by the following simple observation.

Lemma 4. Let y be a connected subgraph of I" and let 1(y) be the smallest induced
subgraph of T that contains y. Then Ay = AL(V)

Let y be a (not necessarily connected and not necessartly induced) subgraph of '
and let y; be the connected components of y. Then Ay =Nj A[(y -

Proof. The graph ((y) is obtained by adding to y all edges of I" between vertices of y that
are not already edges of y. Then we can see as in Lemma 1 that, for a connected graph,
the condition defining Ay is the same as that defining A, in (2.4), namely x, = xy
for all vertices in y. When adding the remaining edges of I between the same set of
vertices, this does not add any new identification, hence one obtains the same diagonal.

In the case where y has several connected components, the condition defining A}, is
that x, = x,» = x; for all vertices in a given connected component y;. This condition
again remains unchanged if one replaces each y; by t(y;). In fact, the graphs ((y;) are
still mutually disjoint, as the additional edges only connect vertices within the same
component. O

We then see that the (poly)diagonals Ay of disjoint unions of connected induced
subgraphs form an arrangement of subvarieties.

Lemma 5. For a given graph T, let S/(\}(l") denote the set of all unions of pairwise
disjoint connected induced subgraphs as in Definition 2. Then the collection

St ={A, |y € SG() 2.9)
is a simple arrangement of (poly)diagonal subvarieties in XV".

Proof. Let y1 and y» be unions of disjoint connected induced subgraphs of I". If y;
and y» are themselves disjoint, then the union Y =rUn is also an element in
SG(F) and the intersection of the (poly)diagonal AV] N Ayz = A,, is still an element
of Sr. If y1 N »2 # (), then let y, be the connected components of . By Lemma 4,
Ay NA,, = A, =NyA,,) is also still an element in the class Sr. The intersections

are clean as all the A are smooth and the criterion of Lemma 5.1 of [45] characterizing
clean intersection as the scheme-theoretic intersection being nonsingular applies to the
case of the (poly)diagonals. O

We can then identify a G-building set for the arrangement St. We first recall some
further combinatorial properties of graphs that we need in the following.

A graph T is 2-vertex-connected (biconnected) if it cannot be disconnected by the
removal of a single vertex. Note that the removal of a vertex in a graph means removal
of the vertex along with the open star of edges around it. The graph consisting of a single
edge is assumed to be biconnected. (See [1] for a discussion of k-vertex-connectivity in
the context of graph hypersurfaces.)

Any connected graph I' admits a decomposition into biconnected components.
Namely, the graph I' is determined by a block tree, which is a finite tree whose ver-
tices are decorated by biconnected graphs and whose edges correspond to cut-vertices
(or articulation vertices) of I'. The graph I is obtained by joining the biconnected graphs
at the articulation vertices.



Feynman Integrals and Motives of Configuration Spaces 43

Lemma 6. Let I" be a connected graph and y C T an induced connected subgraph.
If T'; are the biconnected components of I, then y N T'; is either empty or a union of
biconnected induced subgraphs y;; attached at cut-vertices, which are the biconnected
components of y.

If y € T is a biconnected subgraph and ((y) is the smallest induced subgraph
containing y, then ((y) is also biconnected.

Proof. The intersection y N I'; is clearly an induced subgraph of I';. In fact, each
biconnected component I'; is an induced subgraph of I', and intersections of induced sub-
graphs are induced subgraphs. Each y NT; in turn has a decomposition into biconnected
components y;;. Each component y;; is also an induced subgraph. In fact, removing a
cut-vertex from an induced subgraph leaves an induced subgraph.

The second statement follows simply by observing that a cut-vertex for ¢(y) would
necessarily also be a cut-vertex for y. In fact, after any additional edge of ¢(y’) which is
in the open star of the cut-vertex is removed, the further removal of all the other edges
in the open star of the cut-vertex disconnects y so that the vertex is also a cut-vertex for
y. Additional edges of ¢(y) not attached to the cut-vertex have endpoints in the same
biconnected component of ¢ (y) and removing them does not affect the cut vertex, which
remains a cut vertex for y, so that, in both cases, y would not be biconnected. O

We then have the following result. The argument is implicit in Proposition 4.1 of
[45], but we spell it out here for convenience.

Proposition 1. For a given graph T, the set
Or = {Ay |y € I'induced, biconnected) (2.10)

is a G-building set for the arrangement St of (2.9). The diagonals associated to the
biconnected components of an induced subgraph y are the Gr-factors of A,.

Proof. Let y be aunion of disjoint induced subgraphs. For each connected component y;
of y consider the decomposition into its biconnected components y;;. These are induced
subgraphs, whose diagonals A, = &,,l ; are the minimal elements in the collection
gr contalnmg the element A of Sp. We know by the first statement of Lemma 2 that
Ay =N; Ay is a transverse intersection. Each Ay =N;j Ay ,; 18 in turn a transverse
intersection by the second statement of Lemma 2. O

Remark 9. By the second observation in Lemma 6, for the elements of the building set
Gr we can equivalently drop the requirement that the subgraphs are induced and use all
biconnected graphs. That gives back the building set used in [45], as in [43].

We then check that the configuration space (2.8) associated to this G-set is the same
as the configuration space Confr(X) of Definition 1.

Lemma 7. For a graph T and a smooth quasi-projective variety X, the configuration
space Confr(X) of Definition 1 is

Confr(X) = X¥T \ U, A,y . (2.11)
Proof. The subgraphs of I" consisting of a single edge are induced biconnected sub-
graphs, so that the inclusion Uecg A, C U, g Ay, holds. Conversely, given an induced
biconnected subgraph y of I', A, = Ay is the set of (x,) with x, = x,s for {v, v’} = d(e)

fore € Ey. Thus, A, € A, fore € E, . Thus, each A, C U.cg A, and the reverse
inclusion also holds. 0O
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2.3. The iterated blowup description. Then the result of Theorem 1.2 of Li [45] shows
that there is a smooth wonderful compactification Conf(X) = X ;rr of the configura-

tion space Con fr(X). This is obtained as the closure of the image of Con fr (X) under
the inclusion

Confr(X) = [] Bia, X" (2.12)
Ayegr

Theorem 1.3 of [45] shows that this wonderful compactification also has a description
as an iterated sequence of blowups. We recall here briefly how that is obtained, as we
will need it later.

Recall first that, for a blowup 7 : Blz(Y) — Y of a smooth subvariety in a smooth
variety, the dominant transform of an irreducible subvariety V of Y is the proper trans-
form if V is not contained in Z and the (scheme-theoretic) inverse image 7~ N V) ifit
is (see Definition 2.7 of [45]).

Enumerate the set Gr = {yy, ..., yn} in such a way that, whenever there is an inclu-
sion y; 2 yj, the corresponding indices are ordered withi < j.Then,fork =0,..., N,
let YO = XVr and let Y © be the blowup of ¥ =1 along the (iterated) dominant trans-
form of A,,. Theorem 1.3 and Proposition 2.13 of [45] show that the variety Y ™)
obtained through this sequence of iterated blowups is isomorphic to the wonderful com-

pactification X \gfrr ,
YN = Confr(X). (2.13)

Remark 10. Proposition 1 and Lemma 7 above, together with Proposition 4.1 of [45],
show that the configurations spaces of graphs and their compactifications we are consid-
ering here are combinatorially the same as the Kuperberg—Thurston compactifications
of [43].

The result of [45] also shows to what extent the result of the iterated sequence of
blowups is dependent on the order in which the blowups are performed. In particular, this
means that, in our case, we can also describe the sequence of blowups in the following
way.Fork = 1,...,n = |Vr|,letGi r C Gr be the subcollection Gy, r = Gr NSGx(T"),
where SG (I"), as in (2.3), is the set of connected induced subgraphs with k vertices.

Proposition 2. Let Yo = YO = XV Inductively, let Yy denote the blowup of Yi_1
along the dominant transform of | J A, . Then Y,y is the wonderful compac-
tification

Y€Gn—k+1,1

Confr(X)="Y,_,. (2.14)

Proof. This is a special case of the procedure of Theorem 1.3 of [45] described above,
where we label the elements of Gr, by listing the subgraphs in G,_¢+1.1, for k =
1,...,n—1, by increasing k, with any arbitrary choice of ordering within each of these
sets. The last set, for k — 1, corresponds to the set Go r of subgraphs consisting of a
single edge. We have Y; = Yj_; if there are no biconnected induced subgraphs with
exactly n — k + 1 vertices. So, if I" is itself biconnected, then Y| is the blowup of Yy
along the deepest diagonal Ar, which parameterizes the points where the whole I" is
collapsed, and otherwise Y1 = Y. In the resulting sequence of blowups,

Ypoi = = Yr = ¥ —> X', (2.15)
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the order in which the blowups are performed along the (iterated) dominant transforms
of the diagonals A, for y € G, 41,1, for a fixed k, does not matter, for the general
reason described in §3 of [45]. Thus, the intermediate varieties Y in the sequence (2.15)
are all well defined. O

Remark 11. The notational difference above between the YY) and the Y reflects the
fact that each Y} corresponds to several blowups Y/, one for each diagonal Ay, with

Yj € Gn—k+1.T-

Remark 12. The Fulton—MacPherson compactifications [34] are obtained as the won-
derful compactification Conf (X), for 'y the complete graph on n vertices, where
each pair of distinct vertices is connected by an edge. In this case one needs to blow up
all the possible diagonals.

Remark 13. Notice that, in the case of the complete graph I'), on n vertices, besides the
usual Fulton—MacPherson compactification, one can also consider a different sequence
of blowups, where one obtains a more manifestly symmetric construction with actions of
the symmetric group at each stage. These “polydiagonal compactifications” were intro-
duced in [53]. The difference is that the blowup loci are in this case not just diagonals
but also their intersections. This introduces a number of additional blowups in the con-
struction and the resulting spaces map project down onto the Fulton—-MacPherson ones.
These compactifications are also special cases of the general construction of Li [45] for
a different choice of G-building set. One can consider analogs of the compactifications
of [53] also in the case of other graphs I". The difference with respect to the case we are
considering corresponds to the difference between the minimal and maximal wonderful
compactifications in the sense of [27]. This has been recently discussed in [9].

2.4. Stratification. Theorem 1.2 of [45] applied to our case also gives an explicit strati-
fication of Conf - (X) in terms of divisors. This will also be useful in the following and
we recall it briefly.

As above, we consider an arrangement S of subvarieties and a G-building set. Given

aflag F = {S1,..., S} of elements in S, with S € S, C --- C §,, one defines the
associated G-nest, as in [45,46], as the collection
Gr = U;_{R;j | G-factors of S;}, (2.16)

where, as above, the G-factors of an element S € S are the minimal elements in the
collection {R € G| R 2 S}.

We consider the arrangement St of (2.9) and the building set Gr of (2.10) associated
to a graph I' and a smooth quasi-projective variety X. The Gr-nests are then described
easily (see [45], §4.3) using the following simple observation.

Lemma 8. Let y1 and y> be biconnected subgraphs of U. If the intersection y1 N y»
contains at least two distinct vertices, then the union y = y1 U y» is biconnected.

Proof. 1If y were not biconnected, then there would be a vertex v in V,, such that y \ {v}
has more than one connected component. If the vertex v belongs to either y; or y», but
not to the intersection, then the removal of v would also disconnect either y; or y»,
contrary to the hypothesis that they are biconnected. Suppose that the vertex v belongs
to the intersection y; N y». The two graphs y; \ {v} are both connected since both y;
are biconnected. The graph y ~\ {v} = (y1 ~ {v}) U (32 \ {v}) can then be disconnected
only if (1 ~ {vh) N2~ {v) =0. O
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This, together with Proposition 1 gives the characterization of the Gr-nests.

Definition 4. A forest T of nested subgraphs of a given graph T is a finite collection of
rooted trees, where each component is a finite tree with vertices labelled by connected
induced subgraphs y; of I, with the property that there is an edge (oriented away from
the root vertex) from a vertex y; to a vertex y; whenever y; 2 y;. We also require that
graphs y and y’ associated to vertices that lie on different branches of a tree or on
different trees of the forest have y Ny’ = @.

Recall that Sr is the simple arrangement of all (poly)diagonals Ay ,with y in S’E(F )
and that Gr is the corresponding building set given by the diagonals A, with y induced
biconnected subgraphs of I".

The flags in St and the associated Gr-nests are then described as follows (see [45],
§4.3).

Proposition 3. Flags in St are in bijective correspondence with forests of nested sub-
graphs. The Gr-nests are in bijective correspondence with the sets of biconnected
induced subgraphs with the property that any two subgraphs y and y' in the set satisfy
one of the following:

) yny'=o;

(2) y Ny’ ={v}, asingle vertex;

3) y <y ory Cy.

Proof. Aflag F in St consists of a sequence A,,] - Ayz c...C Ayr of (poly)diagonals
associated to disjoint unions of induced subgraphs y;. By definition of the (poly)diago-
nals and the fact that the subgraphs are disjoint unions of induced subgraphs, we see that
the subgraphs satisfy - C - - - C y;. We then construct a forest of nested subgraphs 7
which has root vertices the connected components y;; of the graph y;, and so on, so that
the set of vertices at a distance  — i to the roots are the connected components y;; of the
graph y;. The tree has an edge from a connected component y;; to a connected compo-
nent y; j» whenever i’ = i+1and y; jy C y;;. The forest of nested subgraphs constructed
in this way is uniquely determined by the flag F. Conversely, glven a forest of nested
subgraphs 7', we associate to it a flag 77 in St by setting S; = ﬂyu Ay,j = Ay, , where
vij are all the connected induced subgraphs attached to the vertices of 7 at a distance
r — i to the root, and y; = U;;y;;. This gives a bijection between flags and forests of
nested subgraphs.

Asin (2. 16) a Ggr-nest is then given by the set of Gp-factors of the elements AVI -
Ayz c-.. C A . of a flag. By Lemma 4 and Proposition 1, the Gr-factors of each A

are the Ay,.j of i 1ts biconnected components y;;. These form a set of induced blconnected
subgraphs with the property that any two y;; and ;7 are either nested one inside the
other (when i # i’), or have intersection that is either empty or consisting of a single
point (when i =i’). 0O

We then obtain a stratification of the wonderful compactification Conf(X) as in
Theorem 1.2 of [45].

Proposition 4. For y C I' a biconnected induced subgraph, let E,, be the divisor ob-
tained as the iterated dominant transform of A, in the iterated blowup construction

(2.15) of Conf(X). Then

Confr(X)~ Confr(X)= | J E,. 2.17)
Ayegr
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The divisors E,, have the property that
E,N---NE, #0 & {y1,...,ye} isaGr-nest. (2.18)

Proof. The statement is a special case of Theorem 1.2 of [45], so we do not reproduce
the proof here in detail. For later use, we just comment briefly on the second statement.
Notice that, if {y, ..., y¢} is a Gr-nest, then the divisors E,,; intersect transversely.
In fact, they are the Gr-factors of elements Ay of a flag, and by construction Gr-fac-
tors intersect transversely, with intersection the given elements of the flag, so that after
passing to the (iterated) dominant transforms (see Proposition 2.8 of [45]), one finds a
nonempty transverse intersection.

If {y1,..., ve} is not a Gr-nest, then there are two subgraphs y; and y; in this col-
lection, whose intersection y; N y; contains at least two distinct vertices. In this case,
by Lemma 8, their union y;; = y; U y; is also a biconnected subgraph with a number
of vertices larger than that of both y; and y;. Thus, the (iterated) dominant transform of
the diagonal A, was blown up at an earlier step in the construction of Conf-(X) as an
iterated blowup. The diagonals A, and A, intersect along Ay, . Even though the graphs
yi and y; are not part of a Gr-nest, their intersection is still transversal in Ay, To see
this, notice that the graphs y; and y; are connected, and so is y;;. However, the graph
vij = ¥i N y;j needs not be connected. Thus, the number of connected components can
violate the relation (2.7), and we cannot deduce transversality directly by the argument
of Lemma 3. However, notice that Ay; = A, and A},j = Ay, are both contained not

only in A)?,-; as used in Lemma 3 but also in the possibly smaller Ay, < A};l.j. This has
dimension "

dim(Ay,) = dimX)(|Vr| = [Vynp| + 1D,

while dim(AJ;i,. ) = dim(X)(|Vr|—|Vy,ny, [+bo(¥i;))- Then one has the correct counting
of dimensions

dim(Ay,) = dim(Ay,) +dim(Ay,) — dim(A,,).

Since Ay, and A,; intersect cleanly along A,,;, whose dominant transform was already
blown up at an earlier stage in the iterated blowup construction, the (iterated) dominant
transforms £, and Ey,. no longer intersect, £y, N E},/ =¢. O

Let N = {y;;, } be the Gr-nest of a flag F1r = {Ayl C A,,z c...C Ayr} associated
to a forest of nested subgraphs 7. Let X nr be the subvariety of Conf(X) defined by
the intersection

XN = mijE)/ij (2.19)

of the divisors associated to the graphs in the Gr-nest V. We know by Proposition 4
that these intersections are nonempty. The forest 7 provides a stratification of the
varieties X A

Lemma 9. Given two varieties X \,, and X pj, asin (2.19), the intersection X \r, N X pr, #
@ if and only if N' = N1 U N is still a Gr-nest. In this case, let F1, and Fr; be flags
with N1 = N(T1) and Ny = N (T3) the Gr-nests associated to these flags. In terms
of forests of nested subgraphs, N' = N (T) corresponds to the flag Fr of the forest T
given by the union of T; and 7.
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Proof. Given two flags F7; and F7; associated to forests of nested subgraphs 77 = {y;}
and 7o = {y/}, let N1 = {y;;} and V> = {y},} be the associated Gr-nests. Then, by
construction, the intersection X n;, N X5, is nonempty if and only if the union N =
{yij} U {ykr} is still a Gr-nest. Arguing as in Lemma 3, we can construct from A" a forest
7T of nested subgraphs, so that A is the Gr-nest of the flag F7. The forest 7 is the union
of the forests 77 and 75. The intersection 77 N 7, which is the largest subforest with
common vertices (labelled by the same graphs) is counted only once in 7. 0O

We then have the following description of the open stratum:

Proposition 5. The open stratum X §, is given by

X=Xy~ U Xva (2.20)
T T=T/e

where the union is over all the forests of nested subgraphs T' such that T is obtained
from T’ by contracting a single edge e, whose vertices are decorated by graphs in the
following way. The graph y' decorating the vertex of e that is farther away from the
root of the tree containing it is the graph decorating the corresponding vertex in T and
the graph y decorating the end of e closer to the root is the union of y' and a single
additional Gr-factor. The Gr-nest N'(T") is the one associated to the flag Fr.

Proof. Let T’ be a forest as above. Assume that the edge e of 7" is attached to a root
vertex and let y be the graph decorating the other end of the edge e, and let y, 1 be
the component of y, decorating the vertex of 7" that is connected in 7" to the vertex
decorated by y . Then, if the flag F7 is given by AV} - Ayz c...C Ay,, the flag F7 is
simply given by AVI - Ayz c...C Ayr - Aym , where the graph y,41 has connected
components given by y and all the other components y;; of y;, for j > 2. The Gr-nest
N (T") is then given by the same Gr-factors for the graphs y; already in the original flag
F together with the Gr-factors y,, of the graph y . If the graph y has a single additional
Gr-factor y, in addition to the Gr-factors of y;, then the variety X nr(77) is given by the
intersection

XNy = Nijii=1,..r—1Ey; NNy jj=2 By, N Ey, (2.21)
where E; C E,,,. By Proposition 4 we then see that the top stratum of X s is obtained
by subtracting the intersections with the other X o~ and, by Lemma 9, we see that the
largest such intersections are in fact given by the X nr(77) described above. O

This gives a decomposition of Conf-(X) as a disjoint union of open strata.

Corollary 1. The variety Conf(X) is stratified by the pairwise disjoint subvarieties
XO
Ny

Confr(X) = Confr(X)U U X})\/. (2.22)
Ne G—nests

Proof. The statement is a direct consequence of Proposition 4 and Proposition 5. O
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2.5. Strata and fiber bundles. The open strata X3, also have a description as fiber bun-
dles. To see that, we introduce some preliminary notation and terminology.

Let A? be the affine space in d-dimensions. The group G4 of translations and
homotheties acts on A? by & +— A& + 1, for n € A? and A € G,, a nonzero scalar.
For a given graph ', then, we define the configuration space of A? up to translations
and homotheties to be the quotient

Cr(A?) := Confr(AY)/Gy. (2.23)

Let vy and vy be two vertices of I" such that there is an edge e € Er with d(e) =
{v1, v2}. The configuration space Cr (A9) of (2.23) can then be identified (non-canoni-
cally) with

Cr(A%) = {(xp)vevy € Confr(AY) |xy, = (0,...,0), x, = (1,0,...,0)},
(2.24)

since fixing these coordinates suffices to determine a section of the G4 action.

Lemma 10. The configuration space Cr (A?) has a nonsingular wonderful “compac-
tification” Cr (A?) obtained as in Proposition 2.

Proof. One can construct, as in Proposition 2, the space Conf (Ad), as an iterated
blowup of £ A4IVrl(Notice that, technically, this is not a compactification in this case.)
To obtain C(A?) we need to check the compatibility of the construction with the action
of the group G4 of translations and homotheties. One can do this by choosing a section as
in (2.24) and realize in this way the configuration space Cr (Ad) (non-canonically) as a
subspace of Con fr (A%). Then the space Cr (A?) is the restriction to this subspace of the
“compactification” Conf(A?). This can be seen also by considering the original defi-
nition of Conf (Ad), not in terms of iterated blowups but as the closure of Con fr (Ad)
inside the space [ | Bl A, €Gr (A9IVr1) Then when we look only at those configurations as
in (2.24), we allow only those degenerations that do not collapse x,, and x,, together and
we obtain the closure of the subspace identified by this choice of section with Cr(A9)
inside the same product space. Another way to see this, which does not require choosing
a section of the G4-action as in (2.24), is by considering the configuration space Cr (A%)
as a subspace of the quotient XV /G, by the action of translations and homotheties.
One then applies the same iterated blowup construction described before, but with the
Gr building set given by the images of the diagonals A, in the quotient X Vr/Gy. o

Now consider again the description of the wonderful compactifications Conf(X)
as the closure (2.12) of Confr(X) in the space

[T Bla,x'r. (2.25)
Ay eGr

By Lemma 7 we know that we can write Con fr(X) as the complement (7) of the diag-
onals A, with y € Gr. Then, in order to describe the strata of the closure of Confr(X)
in (2.25), we need to describe the datum over a point where different coordinates x, and
xy, withv, v" € V,, for some graph y € Gr, collide to the same value x € X. Arguing as
in §1 of [34], we see that this datum consists of a collection (&,) of vectors in the tangent
space T, = T, (X), parameterized by the vertices v € V,,, such that not all coordinates
&, are equal. These data maintain the infinitesimal information on the tangent directions
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to the points x,, when they collide. These data are defined only up to translation and
homotheties, so that, in fact, they define a point § = (Sv)vevy in the projective space

£ € P(TY" /Ty). (2.26)

Such a point £ is called a screen for y, in the terminology of [34].
We introduce the following notation that will be useful later.

Definition 5. Given a graph T and a forest T of nested subgraphs as in Definition 4,
with G-nest N' = N (T). We denote by T /Sxr (') the graph obtained as the quotient

L/ (@) :=T//(riU---Uyp), (2.27)

for N = {y1, ..., y,}. Similarly, for y an induced biconnected subgraph, y € Gr, we
set

YISnN() =v//(y1U---Un), (2.28)

where {y1, ..., vk} is the set of yi € N such that y; C y.

We then have the following description of the open strata X} . This is analogous to
what discussed in §2 of [34].

Theorem 1. The open strata X3, are fiber bundles over configuration spaces
Confrsy ) (X), where the fiber Fn is obtained as a succession of fiber bundles,
one for each graph y decorating the vertices of the forest of nested subgraphs T, with
N = N(T), where at each stage the fiber F, is the open subvariety of the space

\%
P(T, 7N ) /Ty) of screen configurations for the graph y /Sar(y), which consist of the
distinct labeled |V /s ;) |-tuples of points in T, up to translations and homothety.

Proof. The stratum X ar associated to the G-nest N' = N (7)) of a forest 7 of nested
subgraphs is given by the intersection E,, N---N E,, of the exceptional divisors associ-
ated to the graphs in the G-nest. Moreover, we have seen in Proposition 5 that the open
stratum X 3 is obtained by subtracting from X xr all the X r(7) for all the forests 7T’ with
T = T'/e, with the additional vertex of 7” decorated by a graph with a single additional
G-factor with respect to the one in the corresponding vertex of 7. Under the projection
map 7 : Confr(X) — XVT of the iterated blowup construction, this corresponds to
subtracting from the intersection

Ay, N--NA, (2.29)
all the further intersections

Ap NNy g na,, (2.30)

where yjf is an additional G-factor and, by Lemma 3, A Ay; N A, Upon iden-
' J

VjU)/} =
tifying the diagonal A, of a biconnected graph y with the space X Vr/y | we can also
identify the intersection (2.29) with the space X Vrisonu-um = xVrisn®™  Now we need
to check that subtracting the intersections (2.30) amounts to considering the subspace
Confr /s, )(X) inside the product X Vrsspm, By arguing as in Lemma 7, we see that
the complement of the union of the diagonals AV; as above is the same as the complement
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of the union of the diagonals A., with e ranging over the edges of the graph I'/§ar(I").
This proves that, under the map 7 : Conf(X) - X Vr of the iterated blowup construc-
tion, the image of an open stratum X3, can be identified with the configuration spaces
Confr/gN(r) (X), for N' = N'(T). We then check that 7 : Xj\f(T) — Confrs,a)(X)

is a fiber bundle. In the iterated blowup construction of Conf(X), we have seen that
one progressively blows up diagonals A, in Gr by decreasing number of vertices. At
each stage, when one of the A, is blown up, the exceptional divisor is the projectivized
normal bundle

P(NA, cnyrepryrcy 8,005 (2.31)

or the projectivized normal bundle IP’(NAnyvr) when the set {y' e N : ' C y} = 0.

This projectivized normal bundle indeed carries the infinitesimal information about the
degeneration, when points collide along the diagonal A, and can be described, as in
§1 of [34] in terms of screen configurations. In fact, first observe that we can identify
Ay, =X Vr/v and similarly we can identify

NyeNy/Cy By 22 XV TH10n0,
with {y1, ..., %} ={y’ € N : ' C y}. Thus, we have
P(NA, COyenyrcy by) = PT(XVTH00-00) T (X VE17)).
Then observe that the dimension of this projectivized normal bundle is given by
d(IVrl = [Vy oyl +bo(y1 U---Uy)) —d(IVr| = [Vy [+ 1),
where d = dim X. This is equal to
d(IVyl = [Vy ooy +bo(y1 U -+ - U yi)) — 1.
In fact, we can identify
T (X V010050 T (X VPl ) ~ TZV//(VIUH.UW{)/TX’

so that we obtain
Vylsn )
IP(NAVCHJ//EN:;/’QJ/AV/) jad IP)(’]I‘)C TN /Tx)a

v
with the notation y /8or(y) as in (2.28). The space P(T, "N /T, ) is exactly the space
parameterizing the screen configurations of y /§as(y) described earlier (see [34], §1).
Similarly, in the case of the projectivized normal bundle P(N A,CXVr ), the identifi-

cation A, =~ xVrr, together with the fact that [Vr| — |V, |+ 1 = |Vr, | gives at the
level of tangent spaces

TV /Ty ~ TV /TY " ~ T (XV')/To(A,)) ~ N(A, € XVT),  (2.32)

where T, = Ty (X). Thus, we can identify the projectivization P(N (A, C X Vry) with
the projectivization

P(N(A, € XVT)) ~ P(Ty" /T). (2.33)

This again is the space parameterizing the screen configurations of y.
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One can argue as in the proof of Proposition 2.1 of [34] and identify F,, with the

\%
subspace of this space of screen configurations P(T, VN D) /Ty) (or IP’(T;]V /T,)) that
corresponds to the distinct labeled tuples of points in T up to translations and homothety.
O

Corollary 2. In the fiber F s of the bundle 7t : X\, — Confrysy ) (X), each Fy as in

Theorem 1 is isomorphic to the configuration space Cy/(;N(,,)(Ad), with d = dim(X),
defined as in (2.23).

Proof. One can identify the tangent space T, with a copy of the affine space A?. Then
the action on A? of the group Gy of translations and homothety corresponds to the
identifications on T that describe screen configurations. Thus, for a given graph y, the

projective space P(TZW N /T ) can be identified with the quotient AYV7/inv 0/ Gy,
which contains the configuration space Cy /s N(J,)(Ad). Moreover, the latter describes
precisely those screen configurations that consist of distinct labeled |V, /s, (,)|-tuples
of points in T, up to translations and homothety. O

Corollary 3. In the case where the variety X is a projective space P4, the stratum Xy
contains a subspace (non-canonically) isomorphic to Cr /5 N(r)(Ad ).

Proof. When X = P? inside Confrssym(X) = m(X3,) we have a copy of
Confrys N(r)(Ad) C Confr/sym) (P4). Moreover, by the (non-canonical) choice of
a section as in (2.24), we can identify inside this Con frs N(r)(Ad) a subspace isomor-
phic to Cr/s (1) (A?). Then the fiber of the map 7 above this space is still given by the
screen configurations of the graphs y in the forest 7 of the Gr-nest \V, as in Theorem 1,
which, by Lemma 10, give the “compactification” Cr /877 (D) AY). o

3. Motives of Configuration Spaces

In the momentum space description, one considers the complement of a graph hypersur-
face in a projective space or in a toric variety obtained as an iterated blowup of projective
space [13,14]. In an equivalent reformulation of the momentum space integrals given
in [1], one considers a divisor in the complement of a determinant hypersurface. In all
of these cases, one has an ambient space whose motive can be explicitly described as a
mixed Tate motive, while the hypersurface complement in [13,14], or the intersection
of the divisor with the hypersurface complement in [1], become the loci about which
one wants to understand whether they are motivically mixed Tate or not.

We consider here first the motive of the ambient space, which in the configuration
treatment is given by the iterated blowup Conf(X) we described in the previous sec-
tion. We give an explicit description of the associated motive, based on the results of
L. Li [44] on motives of wonderful compactifications.

3.1. Chow motives of configuration spaces. We state here a first result assuming that
X is a smooth projective variety. In this case, we can work in the category of Chow
motives, and rely directly on the result of [44].

The main ingredient that is used in [44] to compute the Chow motive of the wonder-
ful compactifications is a blowup formula for motives, which follows from §9 of [48],
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and is also proved in Theorem A.2 of [44]. Namely, if f : Y — Y is the blow-up of a
smooth projective variety Y along a non-singular closed subvariety V C Y, then h(Y)
is canonically isomorphic to

codimy (V)—1

H=me @ rV® (3.1

k=1

in the category of Chow motives.

Here one uses the standard notation for Chow motives, written as triples (X, p, m)
of a variety X, a projector p, and an integer m, where for smooth projective varieties
X one writes the corresponding motive as 7(X) = (X, idyx, 0), and its Tate twists by
h(X)(®) = (X, idx, ?).

We can then obtain the explicit formula for the Chow motive of the compactifica-
tions Conf(X) directly from the main formula of [44] for the Chow motive of all the
wonderful compactifications. We first introduce the following notation. Given a Gr-nest
N, and a biconnected induced subgraph y such that N/ = A U {y} is still a Gr-nest,
we set

ry =ry N =dim(Nyrenycy Ay) —dim Ay, (3.2)
My = {(MV)Ayegr l=spuy <r,—1, n, €}, (3.3)
il == D" my (3.4)

Ay eGr

These agree with the notation used in [44]. We then have the following result.

Proposition 6. Let X be a smooth projective variety of dimension d. Then the Chow
motive of Conf(X) is given by

WConfr(Xn=nx"e P O rxNOuD. G

NeGr-nests pneMys

Proof. The result is a direct consequence of Theorem 3.1 of [44], which is proved as a
downward induction on the tower of iterated blowups describing Conf(X), where at
each stage one applies the blowup formula (3.1). The only thing we need to check to
match (3.5) to the formula of [44] is that the motives involved in the second summation
areindeed the 7 (X Vr/spr @ ). InLi’s formulation, if wedenoteby 7 : Confr(X) - X vr
the map of the iterated blowup, we have in the formula for the Chow motive of a won-
derful compactification Yg a sum over G-nests and, for each G-nest N a sum over
w of | u]|-twisted copies of the motive h(w (X Ar)), where, with our notation, Xy =
Nyen Ey. To see that (X nr) is indeed isomorphic to X Vr/sn ™ | then notice that the
(poly)diagonal (N, cnrEy) = Nyen A, corresponds to identifying the coordinates
x, of all vertices in each connected component of the graph y; U --- U yy, where
N = {y1,..., yn}. Thus, we can identify 77 (N, ¢ \r E, ) with the space XVr/isn® | where
I/sp(T) =T//(nU---Uyy). O
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3.2. Voevodsky motives and the quasi-projective case. We now extend the result of Prop-
osition 6 to the case of smooth quasi-projective varieties. In this case we can no longer
work with Chow motives, but we need mixed motives in the sense of Voevodsky [54].
The argument, however, is entirely similar, after one replaces the blowup formula (3.1)
for Chow motives with the analogous blow-up formula for motives in the Voevodsky cat-
egory. We write here m (X) for the motive in the Voevodsky category. This corresponds
to the notation Mg, of [54].

Then the blowup formula we need is the one proved in Proposition 3.5.3 of [54]. If
f Y — Y is the blow-up of a smooth scheme Y along a smooth closed subscheme
V C Y, then m(Y) is canonically isomorphic to

codimy (V)—1

nH=mme P mH®K (3.6)

k=1

in the category of Voevodsky’s motives. Here [—] denotes the shift in the triangulated
category of mixed motives, while (—) is, as before, the Tate twist.

As before, we let Y® denote the iterated blowups of X Vr as in [45], with the won-
derful “compactification” Conf(X) =Y ) where or = {y1,..., yn}, ordered, as
before, in such a way that whenever y; 2 y; the corresponding indices are ordered by
i<j.

We first introduce the following notation. For a given Gr-nest N, let XX([) denote
the intersection Xj\kf) = Nye J\/E)(,k), where we denote by Ef,k) the iterated dominant

transform in Y ® of Ay

Proposition 7. Let X be a quasi-projective smooth variety of dimension d. If N is a
Gr-nest with N' C {yxs2, . .., Yn}, with the property that N = N U {yx41} is also a

Gr-nest, then the Voevodsky motives of the subvarieties X %) in the iterated blowup Y©
N
of XV satisfy the recursion formula

re N —1
mx & =mxH e @ nxOona. 3.7)
=1

where the codimension ri nr is given by ri nr = dim(Nyeprycyyy Ay) — dim Ay,
when{y e N 1y C yre1} # W and by ry o = d|Vr| — dim A, otherwise.

Proof. The proof is entirely similar to the proof of the analogous statement for Chow
motives in the smooth projective case, proved in Lemma 3.3 of [44], where at each step
one replaces the use of the blowup formula (3.1) with the formula (3.6). O

We then have the analog of Proposition 6.

Proposition 8. Let X be a smooth quasi-projective variety. The Voevodsky motive
m(Confr (X)) of the wonderful “compactification” is given by

mConfr(X)=mx'Ne G @ mx v O)(uhi2iull.  (338)

NeGr-nests WEMAr
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Proof. This also follows immediately by the same argument used in the smooth projec-
tive case for Chow motives in the proof of Theorem 3.1 of [44], where, in the downward
induction on the levels k of the iterated blowup describing Conf(X), one replaces at
each step with the formula (3.7) the analogous formula used in [44] for Chow motives.

O

We obtain then from Propositions 6 and 8 the following simple corollary.

Corollary 4. If the motive of the smooth (quasi)projective variety X is mixed Tate, then
the motive of Conf(X) is also mixed Tate, for all graphs U. In particular, for example,
the motives of Conf (P, Confr (A and Cr (A?Y) are mixed Tate.

Proof. This is an immediate consequence of (3.5) and (3.8), since the motive of
Conf(X) depends upon the motive of X only through products, Tate twists, sums,
and shifts. All these operations preserve the subcategory of mixed Tate motives. O

3.3. Classes in the Grothendieck ring. The formula for the motive of Conf(X) has a
corresponding formula for a simpler invariant that captures some of the motivic proper-
ties, the class in the Grothendieck ring of varieties K(()). This is generated by isomor-
phism classes [ X] of quasi-projective varieties, with the relations [X] = [Y]+ [X \ Y]
for closed embeddings ¥ C X and with product [X x Y] = [X]-[Y].

Recall that an invariant x ([X]) of isomorphism classes of algebraic varieties with
values in a commutative ring R is motivic if it factors through the Grothendieck ring
of varieties, that is if it satisfies the inclusion—exclusion (or scissor congruence) and
product relations

x(XD=xYD+xAX YD and x([X x YD) = x([XD-x([{¥D, 3.9

that is, if it defines a ring homomorphism x : Ko()) — R. The topological Euler
characteristic is a prototype example of such an invariant, and for that reason the class
[X] in the Grothendieck ring can be regarded as a universal Euler characteristic, [10].

The class in the Grothendieck ring and the motive of a variety are related through
the motivic Euler characteristic. For Chow motives, this was constructed in [36], as
an invariant )0 ((X, p, m)), satisfying the inclusion—exclusion and product relation,
which associates to an element (X, p, m) a class in the Grothendieck ring Ko(Mchow)
of the pseudoabelian category M cjoy of Chow motives. The motivic Euler character-
istic of the Chow motive h(X) = (X, idx, 0) of a smooth projective variety X fac-
tors through the class [X] in the Grothendieck ring of varieties Ko(V)[IL"!], with the
Lefschetz motive inverted, via a ring homomorphism x : Ko(W)[L™!] = Ko(Mchow).
so that x,0r (h(X)) = x([X]) in Ko(Mchow)- This motivic Euler characteristic was
generalized to the Voevodsky category of mixed motives in [15]. We denote it by
Xmor (M(X)).

In the Grothendieck ring, the Lefschetz motive corresponds to I = [A!], the class of
the affine line. The subring Z[L, L—!] of the Grothedieck ring Ko(V) [L~1]is the image
of the mixed Tate motives.

The blowup formulae (3.1) and (3.6) for motives have an analog for the classes in
the Grothendieck ring Ko (V) of varieties, namely the Bittner relation [10].

These are based on the fact that, for f : X — Y alocally trivial fibration with fiber
F, the class in the Grothendieck ring of varieties K(())) satisfies

[X]=I[Y]-[F] (3.10)
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This follows directly from the scissor relations defining the Grothendieck ring and
Noetherian induction. This then shows ([10]) that, in the case of ablowup f : ¥ — Y of
a smooth scheme Y along a smooth closed subscheme V C Y, with exceptional divisor
E, the class [Y] in Ko(V) satisfies the Bittner relation

[Y]=[Y]—[V]+[E] = [Y]+[V](Peimr =1 ), (3.11)

In fact, it is shown in [10] that this relation can be used as a replacement for the inclu-
sion-exclusion relation [X] = [Y] + [X \ Y] for closed embedding, in the construction
of the Grothendieck ring of varieties.

We write this equivalently in the following form, which is more similar to the form
of (3.1) and (3.6).

Lemma 11. The class [Y] ofablowup f : Y > Y of a smooth scheme Y along a smooth
closed subscheme V C Y is

codimy (V)—1

[Y]=[Y]+ Z [V] LK. (3.12)

k=1

Proof. We can write the class of the exceptional divisoras [E]=[V] ([peodimy (V)—=11_ 1),
Using > mrW=lpk — [peodimy()=1] _ 1 one obtains [Y] = [Y] + [V]
Zzozdlim)/(v)—l Lk o

In particular, through the motivic Euler characteristic, the image in Ko(M) of the
class in Ko(V) is equal to X([?]) = Xmot(m(?)), so that the formula (3.12) matches
exactly the form of the corresponding (3.1) and (3.6).

We then obtain the following explicit formula for the class in the Grothendieck ring
of the wonderful compactifications Conf - (X).

Proposition 9. Let X be a quasi-projective variety and let [X] denote its class in the
Grothendieck ring of varieties Ko(V). Then, for a given graph T, the class [Conf(X)]
in Ko(V) is given by

[Confr01=1x1V1+ > x)Vrowvol Hphd3.13)
N eGr-nests WEMNs

Proof. One can once again argue as in Lemma 3.1 of [44], using (3.12) instead of (3.1)
of (3.6), and obtain the analog of (3.7), with the same notation as in Proposition 7,
namely

re N1
X=X+ D XL = X1+ (XQ1 AT - 1), (3.14)
=1

One then uses the same downward induction argument of Theorem 3.1 of [44], applying
(3.14) at each step and one obtains (3.13). O

Thus, for example, in the case of X = P we have the following formula for the class
in the Grothendieck ring:
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Corollary 5. For X = P4, the class [Conf (P?)] in Ko(V) is

d d
[Confr®Hl = LYY+ > S LHVeavwl 3 el 315
=0 NeGr-nests £=0 WEM N
The class in the Grothendieck ring can be written also in terms of the stratification.

This leads to interesting identities for the spaces Conf - (X), similar to the combinatorial
identities proved in [22] in the Fulton—MacPherson case.

Lemma 12. The expression (3.13) for the class [Conf(X)] in Ko(V) can be equiva-
lently written as

[Confr(X)] = [Confr(X)]+ D [Xi. (3.16)
N G—nests

where the X3, are the open strata of (2.22). This can then be written equivalently as

[Confr(O)] =[Confr()I+ D [ConfrisymyX)] ] [CympnonAD].
N G—nests veVr )
(3.17)

Proof. The stratification (2.22) of Conf(X) described in § 2.4 also gives us a way to
compute the class in the Grothedieck ring. In fact, by the inclusion-exclusion relation in
the Grothedieck ring, the disjoint union

Confr(X) = Confr(X)U U X5
N G—nests

of the open strata corresponds to a sum of classes (3.16). We check the compatibility of
(3.17) with the formula (3.16).

Recall that the open stratum X, is a fiber bundle over a base given by the con-
figuration space Confr/s, r)(X), with fiber Fs that is obtained as an iteration of
bundles, each with fiber 7, the space of translations and homothety classes of distinct
labeled |V /5. (y)|-tuples of points in Ty. Thus, each F, is identified with an open

subvariety of the space P(TZ” N /Ty) of screen configurations, isomorphic to the
configuration space Cy/(;N(y)(Ad). Thus, by (3.10), we can write each class in (3.16)
as [Xj\/—] = [Confr /s, @) (X[ Fprl, where the class of the fiber [Fs] in turn can be
written as a product Hy [F, 1 over the graphs y in the forest 7 of nested subgraphs with

N = N(T), as in Theorem 1, with each [F,] = [Cy s, () (AD)]. O

By comparing the two formulae (3.16) and (3.13), we obtain some explicit combi-
natorial identities involving the classes of the configuration spaces Cy /5 N(y)(Ad), with
y ranging over the graphs decorating the vertices of the forest 7 of nested subgraphs
for a given Gr-nest N = N(7), and the classes of the projective spaces P"*~ ~!, with
ry N asin (3.2).

Lemma 13. For a given graph T, consider a Gr-nest N. For y in Gr let ry, v and
m = (y)yegr € M be as in (3.2) and (3.3). Then we have in Ko(V) the identity

Z Ll — H (PN~ -1 = H % (3.18)

WEM Nr yegr yeGr

Proof. Each class [P'»N 1 — 1 = 37 L = @ — 1)L — 1)~ Thus, their
product is simply
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Z LXy by — Z Lied

m=(y):1<py <ry r—1 HEM N

where 3, 1y = |lull asin (3.4). O

Moreover, we can express the classes of XVT and X Vr/sn ™ in the formula (3.13)in
terms of the classes of Confr(X) and Confr /s, r)(X) of (3.16) in the following way:

Lemma 14. For a given graph I and a given Gr-nest N, we have the following identities

in Ko(V):
[XVT] = [Confr(X)1+ D [Confrssya)(X)], (3.19)
N eGr-nests
[XVTAN O] = [Confrysyay(X)] + > [Confr/s,m)(X)]. (3.20)

N'eGr-nests: NcN’

Proof. The first identity is an immediate consequence of the stratification of Conf (X)
by open strata X { and the fact that, under the projection 7 : Confr(X) — X Vr the
X} map to the Confrsy r)(X), together with the additivity of Grothendieck classes
over disjoint unions. The second statement follows in the same way, with I" replaced by
its quotient I' /8 ("), with the observation that the Gr-nests A/’ for I' that contain the
nest A can be identified with the Gr /8, ()-Nests, after identifying

/a0 () = (T/SAr(T)) /Sar (T /S pr ().

We then obtain the following identity:
Proposition 10. The following identity holds between the classes of the configuration
spaces Cy s () (A9):

Z [Confrsna)(X)] H [Cyssp ) (AD]

N eGr-nests veVrw)

= D> [ConfrisymOIf 1+ > [T ae»="1-1
N eGr-nests N'eGr-nests: N'cN yeGr
(3.21)

Proof. Using Lemmata 12, 13, and 14, we obtain an identity

[Confr(X)1+ D [Confrisnamy] ] [CyraponAD]

N eGr-nests veVrw)
= [Confr(X)1+ D [Confr/sym)(X)]
N eGr-nests

+ > [Confr/sy ) (X)]+ > [Confr/sy, ) (X)]
N eGr-nests N’eGr-nests: N'CN’

x H (PN~ —1).

yelr



Feynman Integrals and Motives of Configuration Spaces 59

We subtract the [Con fr(X)] on both sides and rearrange and reindex the terms in the
second summation on the right hand side in such a way that each Gr-nest N appears
once in the summation, with the corresponding class [Confr/s,, @ (X)] multiplied by
the sum of the classes Hyegr ([IP”%N”I] — 1), one for each N7 C N. There is then
an additional +1 term coming from the single contribution of a class [Confr s ) (X)]
from the first summation on the right hand side of the formula above. This gives the
formula on the right hand side of (3.21). O

3.4. Mixed Hodge structures and virtual Hodge polynomials. The discussion of the
motives in the previous section can also be adapted to working with Hodge polynomials
and mixed Hodge structures, instead of classes in the Grothendieck ring.

In the case of the Fulton—-MacPherson compactification, the mixed Hodge structures
and Hodge polynomials were computed explicitly in [22,35,47]. In particular, in that
case, one knows that there is a nice way to write a generating function for the Hodge
polynomials. In our case we do not get as explicit an answer, but we can see that the
relation of Proposition 10 provides a partial analog in our setting.

We recall that the virtual Hodge polynomial of an algebraic variety is defined as

d 2d
e(X)x,y) = D ePUX)Pyl with ePI(X) = D (=D hPIHL (X)),
p,q=0 k=0
(3.22)

where for each pair of integers (p, ¢) the h?4 (HL’F(X )) are the Hodge numbers of the
mixed Hodge structure on the cohomology with compact support of X. If X is smooth
projective, then the virtual Hodge polynomial reduces to the Poincaré polynomial, with
eP4(X) = (—1)P*pP4(X) the classical pure Hodge structure. It is well known that the
virtual Hodge polynomial is, like the Euler characteristic, a motivic invariant in the sense
recalled at the beginning of § 3.3 above, namely it factors through the Grothendieck ring
Ko(V).

This means that, having an explicit formula for the class of a variety in the
Grothendieck ring, one can use it to compute the virtual Hodge polynomial. The com-
putation of the classes in the Grothendieck ring of varieties we obtained in the previous
section then gives us a formula for the Hodge polynomials of the graph configuration
spaces we are considering here.

Proposition 11. The virtual Hodge polynomial e(Conf (X))(x, y) is given, as a func-
tion of e(X)(x, y), by the formula

e(Confr (X)) = e(X)V1+ > e(X)Vin®l TT (e@»~ =1 — 1), (323)
N yelr

Moreover, the Hodge polynomials e(Confrs ) (X)) (x, y) ande(Cy /s (y) (AD))(x, y)
satisfy the relation

Z e(Confrsya) (X)) H e(CV/BN(V)(Ad))

N eGr-nests veVr\)

= D e(Confrssym)(X)) |1+ > [T @~ -1
N eGr-nests N’eGr-nests: N'cN yeGr
(3.24)
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Proof. The result follows directly from the Grothendieck ring calculations in (3.13) and
(3.21), using the fact that the virtual Hodge polynomial defines a ring homomorphism
e: Ko(V) —> Z[x,y]. O

Other aspects of complements of arrangements of subvarieties associated to graphs
and their compactification, which it may be interesting to investigate, include funda-
mental group questions, from a point of view similar to [30]. This is outside the purpose
of the present paper.

4. Residues of Feynman Integrals

We now consider the Feynman integrals in configuration space and discuss the rele-
vance of the motivic point of view discussed in the previous sections. The regularization
and renormalization of Feynman amplitudes in configuration space, using the worn-
derful compactifications of [27,45], was recently analyzed in the paper of Bergbauer—
Brunetti—-Kreimer [9]. Here we concentrate on the residues of the Feynman amplitudes,
rather than on their renormalized values as in [9]. We then find a setting that parallels
to some extent the analysis in terms of Hodge structures for the Feynman amplitudes in
momentum space given in [14].

Definition 6. Suppose given an underlying variety X of dimension d = dim X. A con-
nected graph U is logarithmically divergent (log divergent) if it satisfies the condition

db(I') =2|Er|, (4.1)
or equivalently (for connected graphs)
(d—=2)|Er|=d(Vr| =1, 4.2)
and all subgraphs y C T satisfy
dbi(y) =2|E,|, (4.3)

which for a connected subgraph means (d —2)|E, | < d|V, | —d. A subgraphy C I' is
divergent if it satisfies d b1 (y) > 2 |E, |. A primitive graph is a log divergent graph that
contains no divergent subgraphs. A graph with d b1(I") > 2 |Er| is said to have worse
than logarithmic divergences. For connected graphs this corresponds to (d —2)|Er| >
d|Vr| —d.

In the four-dimensional case d = 4 the log divergent condition recovers the usual
condition that the graph has n loops and 2n edges. Renormalization in momentum space
for graphs with worse than logarithmic divergences was considered from a Hodge the-
oretic point of view in [14].

In [9], the regularization and renormalization of Feynman integrals in configuration
spaces is obtained in the primitive case by a simple subtraction, whereby the Feynman
density is pulled back to the wonderful compactification Conf(X) and regularized
there to a meromorphic function of a complex parameter s with a pole at s = 1, whose
residue is supported on the exceptional divisor of the blowup. This is then subtracted
(local minimal subtraction) and the resulting density is pushed forward to a regular
density on X VT whose value at s = 1 is the renormalized density (see Theorem 3.1 of
[9]). The case of log-divergent, non-primitive graphs is more complicated because the
stratification of the exceptional divisor of the blowup plays an important role and the
regularization and renormalization procedure is given by a local minimal subtraction in
every factor of a product indexed over G-nests, see Theorem 5.3 of [9].
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4.1. Weights of Feynman graphs. We consider as above a (quasi)projective variety X
of dimension d = dim X. We write X (C) for its complex points and M = X (R) for its
real part. In particular, one can consider the case where X = P4(C) and M = P4(R),
as a compactification of the d-dimensional spacetime R?.

We also consider a scalar quantum field theory where the Lagrangian has a potential
U given by a polynomial in field ¢,

N
U=> U"
k=1

Let then I" be a connected Feynman diagram of the quantum field theory having
no multiple edges or tadpoles (looping edges). Let Confr(X) and Conf(X) be the
configuration space and its wonderful compactification, as in the previous sections. We
also consider Confr(M) and Conf (M), which are the real loci of Confr(X) and

Confr(X), respectively.

Remark 14. Notice that the real locus we consider here is not the “real blowup” of MVT
in the sense of [5] and [9], but the real locus of the complex blowup Conf(X) of
the complex manifold XVr. The real blowup, as shown in [5], is a real manifold with
corners, hence it defines a chain with boundary. The real locus of the complex blowup
is a real algebraic variety. Thus, it defines a middle dimensional cycle in the complex
variety. However, the real variety Conf (M) may be non-orientable.

Feynman rules assign a weight to a graph I' as follows:

e The vertices are labelled by the coordinates x, . .., x, of Confr(M).
e To each edge with dr(e) = {x, y}, one assigns a massless Euclidean propagator

d—2
) 1 T
Gx—y) =i (—(x — y)z) . 4.4)

These are rational functions when the dimension d is even.
e The (unregularized) weight of the graph I' is defined as

‘Wr = / or, 4.5)

where MVT = XV (R) is the real locus, and

or:=[]Uux ] G —xe) [] dxo. (4.6)

veVr 3r<f)=E(ve-v") veVp
ecEp

where U}y is the coefficient of the monomial ¢* in the potential U with k = |v| the
valence of the vertex v.



62 0. Ceyhan, M. Marcolli

4.2. Graph hypersurfaces and divergences. Letmr : Conf(X) — X VT be the rational
map inductively constructed in § 2.3 as iterated blowups, and let 71113 :Confr(M) —
MVT be its restriction to the real locus.

Lemma 15. The divergent locus of the density wr of (4.6) in MVT is given by the union
of diagonals | J Ae.

EEE[‘

Proof. For massless Euclidean field theories, the graph hypersurface of I' (that is, the
pole locus {wr = oo} in X ¥T) is simply the union of quadrics

Zr = [T o-—x?=0¢. (4.7)
o (e)={ve.v¢}
ecEp
The defining Eq. (4.7) of Zr is a real polynomial with non-negative values on real
points, hence the intersection Zr(C) (| M[I'] is given by x,, = xe i.e., it is the union
of diagonals (J,cg. Ac € MIVTL O

In the Lorentzian case, where the quadric is not positive semi-definite, the real locus
of integration meets the polar locus of wr in a more complicated way, but for the purpose
of this paper we only consider the Euclidean case.

4.3. Order of poles in the blowups. In the following, assuming d even, we use the
notation

Je(x) = (xy; —xy,) for {vr, v2} =3(e), (4.8)

so that the propagator G of (4.4) is given by G (x; — Xy,) = fez_d (x), as in (4.6). The
function f, is also the defining function of the diagonal A, = {f. = 0}, which is a
codimension d subvariety in X V.

Proposition 12. Let T" be a primitive (hence log divergent), biconnected graph. Then
the proper transform wr = mf(wr) of the form wr of (4.6) to the blowup of X Vr along
the deepest diagonal Ar has a pole of order one along the exceptional divisor, while
the pullback to the blowups along (the dominant transforms of) the (poly)diagonals A,
with y C I' have no other poles along the exceptional divisors E,, .

Proof. Inthe model case of a coordinate linear space L defined by equations {z| = - - - =
zp =0} C C4¥rl one can choose coordinate charts in the blowup with coordinates
w;, so that w; = z; fori = p,...,d|Vr| and w;w, = z; fori < p, so that, in these
coordinates, the exceptional divisor is defined by w, = 0. Thus, the orientation form
satisfies

a*dzi A A dzqvr) = dwpwi) A Adwpwp—1) Adwp A -+ Adwg vy
p—1
=wp dwi A --- /\du)p_l /\dwp ARRR /\dwler|~

This has a zero of order codim(L) — 1 along the exceptional divisor of the blowup.
Let A, be the diagonal associated to a connected subgraph y C I'. One obtains a
minimal set of equations defining A, by choosing a spanning tree t for y. Then

Ay ={fe=0]ee€E}, 4.9)
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with f, as in (4.8). This gives codim(A,) = d |E;|. For a spanning tree we have
|E;| = |V, | — 1, since y is connected, so this gives dim(A, ) = d (|Vr| — |V, [+1), as
we saw in the previous sections.

The form wr of (4.6) has order of pole along A, given by

ordes(wr, Ay) = (d = 2)|E, |, (4.10)

coming from the factors fez’d withe e E,.

When we consider the blowup 7y, : Bla, (X Vry — XV and we pull back the singu-
lar differential form wr along 7, , we obtain a form 7 (wr) that has order of pole along
the exceptional divisor E,, of the blowup given by

ordog (¥ (@r), Ey) = (d = 2)|Ey| — d|Ec| + 1 = (d = 2)[E,| — d(|Vy| — 1) + 1.
@.11)

If the graph I is a primitive, biconnected graph, then (d — 2)|Er| = d|Vr| — d and
I" contains no divergent subgraphs, so that (d — 2)|E, | < d|V,,| — d, for all subgraphs
y C I'. Thus, in this case, the pullback 7' (wr) along the map that corresponds to the
blowup along the deepest diagonal Ar has a pole of order one along the exceptional
divisor, while all the further blowups along the dominant transforms of the A,, do not
contribute any poles. O

This corresponds to the case analyzed in Theorem 3.1 of [9], where one needs just
one pole subtraction in order to renormalize the Feynman amplitude. Here it comes from
the subtraction of the simple pole along the exceptional divisor Et of the blowup along
the deepest diagonal Ar.

In the case where I' is log divergent but no longer primitive, the pullback of wr to the
blowups along (the dominant transforms of) the A,, with (d —2)|E, | = d(]V, | —1) has
a pole of order one along the exceptional divisor E,,. This is the more general situation
analyzed in §5 of [9].

In the even more general case of graphs I" that have worse than logarithmic singular-
ities, one finds that the order of pole along the exceptional divisors of the iterated chain
of blowups that define the wonderful model Conf-(X) is given by the following.

Corollary 6. Let ' be a connected graph which has worse than logarithmic divergences.
Then for every connected induced subgraph y C T that has (d —2)|Er| > d |Vr| —d,
the pullback n)’,“ (wr) of the form wr of (4.6) to the blowup along the (dominant transform
of) Ay has poles of higher order

ordog (¥ (@r), Ey) = (d = 2)[Ey| —d([Vy| = D+ 1> 1 4.12)

along the exceptional divisors E, in the blowup.

4.4. The Poincaré residue. We discuss briefly the residues of Feynman amplitudes, first
in the primitive and the log divergent case and then in the more general case of graphs
with worse than logarithmic divergences. We want to remain within the setting of alge-
braic varieties and periods, hence we describe the residues of Feynman amplitudes in
terms of Poincaré residues and Hodge structures.

We recall the basic definition of the Poincaré residue of a differential form with sim-
ple poles along a hypersurface (see [38], p.147). Given a hypersurface Y in a smooth
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n-dimensional projective variety X, locally defined by an equation {f(z) = 0}, an
n-form

_gl@dz A Ndzy

e Q"(X) (4.13)
@)
can always be written as
w= g/\w’, 4.14)

where @’ can be taken of the form

)i—lg(z) dzjiy

o 7
d9z;

o = (-1

for any i such that % # 0, with
dzjn=dzy AN ANdzi—y Ndziggn Ao ANdzy.

The Poincaré residue of w is then the (n — 1)-form on V defined by

_ i—1 8(2) dzji
Res[a)] = (—1)[ T
az; f=0

e Q" L(y). (4.15)

Proposition 13. Let I" be a primitive (log divergent), biconnected graph. Then the pull-
back of the differential form wr of (4.6) to the wonderful model Conf(X) has a unique
residue, whichis a (d|Vr|— 1)-formon Er = Er \ (Er N Zr), with Er the exceptional
divisor of the blowup of the deepest diagonal, and Zr the graph hypersurface:

Res[7*(or)] € Q4VTI=1(Ep). (4.16)

Proof. We have seen in Proposition 12 that, in the case of a primitive graph I', the pull-
back or = mf:(wr) to the blowup of XV along the deepest diagonal Ar ~ X, is a
differential form as in (4.13), with a simple pole along the exceptional divisor ET, with
f = 0 the defining equation of Er. Therefore @r can be rewritten in the form (4.14)
and it has a well defined Poincaré residue Res[wr], which is a (d|Vr| — 1)-form on
Er. The successive blowups along the dominant transforms of the A,, for y ranging
over gr, do not contribute any further poles, since the graph has no subdivergences.
Moreover, because the order of the sequence of blowup is determined by ordering Gr
in such a way thati < jif y; 2 y;, sothat Ay, © A, any two diagonals A; and A
that intersect along Ay, uy,; have dominant transforms that no longer intersect, once the
blowup along Ay, uy, has been performed already, and intersect transversely the excep-
tional divisor of this blowup. Thus, after the first blowup along the deepest diagonal Ar,
one obtains a residue Res[r[:(wr)] € QAIVrI=L(EL). The pullback of this form along
the successive blowups gives a (d|Vr| — 1)-form supported on the dominant transform
Er in Conf(X), which has zeros at the intersections of Er with the other exceptional
divisors E,,. O
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Consider next the case where the graph I is logarithmically divergent, but not prim-
itive. Let Gr be ordered in such a way that i < j if ; 2 y;, as before, with 7 :
Confr(X) — XV the iterated blowups along the A,, with y € Gr in the assigned
ordering.

This means that there are connected induced subgraphs  C I for which the pullback
to the blowup along (the dominant transform of) A, of the form wr has poles of order
one along the exceptional divisor E),. They are precisely those satisfying the divergence
condition.

Let us denote by g}f’ € the subset Q%—Og C Gr of subgraphs y, satistying the logarithmic
divergence condition

1
Grei={y €Grld—2)E,| =d(V,| - 1)}. (4.17)
We then have the following result on the residues of the Feynman amplitude.

Proposition 14. Let I" be a logarithmically divergent, non-primitive graph. Then the
pullback w*(wr) of the form (4.6) has Poincaré residues along each E,, = E,, \ (E, N

Zr), fory € Q;Og. Then the residue is given by a form
Res‘[7*(wr)] € Q"9E,, N---NE,,). (4.18)
This is trivial unless the set gi? £ is a Gr-nest.

Proof. First notice that the form 7*(wr) has poles of order one along Ey, for each
y € Gr satistying (d —2)|E, | = d(|V, | —1). Thus, 7 *(wr) is defined on Conf (M)~

Uye Gl E, . By iterating the procedure used to rewrite a form (4.13) as (4.14), one can
r

define iterated residues (see for instance Theorem 1.1 of [3]). For an n-form w with a
pole of order one along each component Y; of a hypersurface Y = Y; U - .- U Yy, where
the Y; intersect transversely, the iterated residue gives an (n — £)-form

Res‘[w] € Q" “(Y1N---NYy). (4.19)

We know that the intersection ﬂye gl E, is non-empty if and only if the set g‘r" ®isa
r

Gr-nest. Thus, one obtains the residue (4.18). O

In the more general case, where the graph has more than logarithmically divergent
subgraphs, one has to deal with a form 7 * (wr) that has poles of higher order along some
of the exceptional divisors E,, .

In affine space A" a differential form
_ P@dun---ANdzy
07 @) O (2)

with poles of higher order r; along the hypersurfaces Y; defined by Q; = 0 is cohomol-
ogous to a form with only poles of order one,

,_Z Pr()dzy A+ Ndzn
B 0,20

)

J

with J = {ji, ..., ji}, Kk < N. (See for instance Theorem 1.8 of [3].)
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This is not true in general for the complement of a hypersurface in a smooth projective
variety, by using rational forms. However, in the case of a smooth hypersurface Y in P",
it was shown by Griffiths in [37] that there are Poincaré residues for forms with higher
order poles. The n-forms

_ P(z)dzi N--- Ndzy
Qr+1(Z)

with poles of order  + 1 along the smooth hypersurface ¥ = {Q = 0} generate a
subspace F"~"H"(P" \ Y) of the cohomology H"(P" \ Y) whose image under the
Poincaré residue gives the pieces of the Hodge filtration on the primitive cohomology
of the hypersurface,

Res(F" "H"(P" \ Y)) = F<”*‘*’)H;§;,§1(Y).

This result relating the pole filtration to the Hodge filtration was further generalized to
the complement of normal crossings divisors in smooth projective varieties by Deligne
in [28] II §3.13, and the comparison between pole and Hodge filtration for singular
hypersurfaces was further analyzed by Deligne and Dimca in [29] and Dimca and Saito
in [31].

Thus, if we momentarily ignored the other divergences coming from the rest of Zp
in Conf(X), we would conclude that for a subgraph y C I' that has worse than log-
arithmic divergences, the pullback n;‘ (wr) of the Feynman density (4.6) determines
an element in the polar filtration of the complement of the exceptional divisor E, in
Conf(X). Through Poincaré residues, this would then determine an element in the
Hodge filtration of the primitive cohomology of E,, . The situation is in fact made more
complicated by the presence of the additional singularities coming from the hypersurface
Zr of (4.7).

4.5. Regularization of contours by Leray coboundaries. We propose here a regulariza-
tion procedure for the divergent Feynman amplitudes (4.5), where instead of regularizing
the form as in [9] we regularize the domain of integration using Leray coboundaries, see
[50].

Let E,, be one of the exceptional divisors in Conf-(X) along which the pullback
7*(wr) of the Feynman amplitude (4.6) has poles (possibly of higher order).

The unregularized Feynman weight (4.5) is given by the integral over the middle
dimensional cycle in X VT given by the real locus 0 = X V' (R) = M YT, see Remark 14.

Remark 15. In the case of even dimensional spacetime, the real locus Conf (Rd) of
the configuration space Conf(A?) is non-orientable. Thus, the configuration spaces
Conf (M) that contain Conf I-(Rd) are non-orientable. However, in such cases, one
can define the regularized weights in the same way that is described here below, after
passing to a double cover of Conf(X), branched along Uyegr E, . The real locus of
this branched cover is orientable. With a slight abuse of notation, in the following we do
not distinguish explicitly between Conf (M) and its orientable double cover.

In particular, as we have seen in Lemma 15, the divergences along the domain of
integration come from the real locus of U, A, and in particular, within this locus, from
the intersection 0 N A, = A, (R), for y C I'" a divergent subgraph.
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Leto, = 7o N A,) C E,.Thisisad|Vr| — 1-cycle in E,,. The Leray coboun-
dary L.(6,) of 6, is a d|Vr|-cycle in Conf(X) obtained as follows. Let 0D (E))
be the boundary of a tubular neighborhood of radius € around E,. This is a circle bun-
dle me : 0D.(E,) — E, over E,, and one sets L(G)) = 716_1(6,,). The preimage
WF(M) =n"Y0o) C WF(X) of the real locus o = M VT intersects 0D (Ey)
in its real points. L

Let then ¥, C L¢(6r) be a deformation to d D (E,) of Conf (M) N Dc(E, ), with
fixed Conf (M) N dD(E,). If =, does not intersect the locus Zr N L (51), where
Zr = T Y(Zr) is the preimage of the graph hypersurface of (4.7) along which the form
or is singular, one can regularize the integral

/ * (r)
Confr-(M)

by replacing the part

/ n*(wr)
Confr(M)NDc(Ey)

of the integral with an integration along the Leray coboundary

/ T (wp). (4.20)
Ze

There is an ambiguity involved in the choice of this regularization of the domain of
integration, as in the choice of contours that avoid poles in the one dimensional setting,
which is measured in terms of residues.

Proposition 15. Let " be a logarithmically divergent graph with y < I' a divergent
subgraph. Then the regularization (4.20) is defined up to an ambiguity measured by the
integral

27i / Res[77; (r)] 421

Y

of the Poincaré residue Res[r[;f (wr)] € Q4IVri=1 (Ey) along the cycle 6, = 7 Yo N
A,) C E,. These ambiguities are given by periods of Ey.

In the more general case, if y C I is a subgraph with worse than logarithmic diver-
gences, so that the pullback n; (wr) has a pole of order k along E,, then the ambiguities
in the contour regularization of the Feynman amplitude are given by periods of the Hodge
filtration of the primitive part of the cohomology, F@Vri=1=k) H;lrlyns =1 (Ey).

Proof. The Poincaré residue is dual to the Leray coboundary, in the sense that, if w is an
n-form with logarithmic poles along a hypersurface Y C X, and o is an (n — 1)-chain
in Y, then

1
— w:/Res[w].
2mi L(o) o

Thus, the ambiguity in the choice of a domain of integration X, as in (4.20), which is
up to the value of the integral
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/ * (or)
Ee(a'l")

is measured by (integral multiples of) (4.21).

In general, the form 7*(wr) has further singularities on L (61). These come from
the intersections of £, (6) with the preimage Zr of the graph hypersurface of (4.7).

For sufficiently small € > 0, up to a locus of codimension at least two, the intersec-
tions ZrNLe (61) are coming from the components of Z associated to those exceptional
divisors E,, that have non-empty intersection E;, N E,/ # @, and such that y’ is also a
divergent subgraph of I".

In the model case where there would be only one divergent graph y, which is a loga-
rithmic divergence, the form 7 * (wr) would have no further singularities on L, (61) and
the values of the integral (4.21) would then be periods

HVTI=Y(E,) x Hyyp-1(E,) — C

Res[n;‘(a)r)] ® Gy > [ Res[n)’f(a)r)].

In the more general case of a higher order pole, the resulting period pairing would be
with the part of the cohomology that comes from Res(F4IVri=kgn (Confr(X)\ Zr))
which gives the piece of the primitive cohomology F(@/Vri=1-k) H;lrlynglfl (Ey), as in
[28,37].

However, in general, there will be other divergent subgraphs y’ with E,,; N E,, % §.In
this case, assuming only log divergences are present, one ends up with an iterated residue
as in (4.19), with values in the cohomology of the intersection of all the corresponding
exceptional divisors. O

The integrals along the Leray coboundaries measure residues around the exceptional
divisors E,, of the blowups, in a way similar to what happens with the toric blowups
of [14] for the Feynman integrals in momentum space. The formulae described in the
previous sections for the motive of the wonderful compactification of the configuration
spaces show that, if the underlying smooth (quasi)projective variety X is mixed Tate as
a motive, then the E,, their intersections, and the complements Conf-(X) \ E, that
appear in the above are also mixed Tate, so those ambiguities (residues) in the Leray
regularization of the Feynman amplitudes that are supported on these loci will give peri-
ods of mixed Tate motives. A more detailed analysis of the nature of these periods and
the conditions under which they are mixed Tate will be given in the forthcoming paper
[21].

More generally, one considers the full integral

/ 7* (or)
Confr(M)

and its regularization

/ 7 or) = > / n*(w)—/ 7*(or) ).
Conf (M) Je Confr(M)NDe(Ey) (o))

log
gr

In order to view these integrations as period computations, one needs to work with the
complement Conf(X)\ Zr, for which we do not have a comparably simple description
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of the motive. In particular, the components of the graph hypersurface Zr are cones,
which are simple to understand when one restricts them to a tubular neighborhood of one
of the divisors E,,, as we have seen above. However, these cones intersect in complicated
ways outside of these tubular neighborhoods, so that one does not have a good control
over the motivic nature of these intersections.
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