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Abstract: We formulate the problem of renormalization of Feynman integrals and its
relation to periods of motives in configuration space instead of momentum space. The
algebro-geometric setting is provided by the wonderful compactifications Con f �(X)

of arrangements of subvarieties associated to the subgraphs of a Feynman graph �, with
X a (quasi)projective variety. The motive and the class in the Grothendieck ring are
computed explicitly for these wonderful compactifications, in terms of the motive of X
and the combinatorics of the Feynman graph, using recent results of Li Li. The pullback
to the wonderful compactification of the form defined by the unrenormalized Feynman
amplitude has singularities along a hypersurface, whose real locus is contained in the
exceptional divisors of the iterated blowup that gives the wonderful compactification.
A regularization of the Feynman integrals can be obtained by modifying the cycle of
integration, by replacing the divergent locus with a Leray coboundary. The ambiguities
are then defined by Poincaré residues. While these residues give periods associated to the
cohomology of the exceptional divisors and their intersections, the regularized integrals
give rise to periods of the hypersurface complement in the wonderful compactification.

1. Introduction

In recent years a lot of attention has been devoted to motivic aspects of perturbative
quantum field theory, aimed at providing an interpretation of Feynman integrals of a
(massless, scalar) quantum field theory and their renormalization in terms of periods
of algebraic varieties. If one can control the nature of the motive of the algebraic vari-
ety, then one constrains the kind of numbers that can arise as periods. In particular, the
original evidence of [17] suggested that multiple zeta values, hence mixed Tate motives
would be the typical outcome of these Feynman integral calculations. When computing
Feynman integrals in momentum space, the parametric form of Feynman integrals (see
[11,39]) expresses the unrenormalized Feynman amplitude as an integral on the com-
plement of a hypersurface defined by the vanishing of the Kirchhoff polynomial of the
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graph. The motivic properties of these hypersurfaces have been widely studied. Contrary
to an earlier conjecture of Kontsevich (which was verified in [52] for graphs with up to
12 edges), these hypersurfaces are not always mixed Tate motives. More precisely, it was
shown by Belkale and Brosnan [6] that their classes span the (localized) Grothendieck
ring of varieties, hence they can be very far from mixed Tate as motives (see, however,
[2] for the case of the Grothendieck ring without localization). More recently, it was
proved rigorously by Francis Brown in [18] why all the original cases computed in [17]
gave rise to periods of mixed Tate motives, while the smallest explicit counterexample to
Kontsevich’s conjecture was identified by Doryn in [32], see also [19]. A reformulation
of the original question in terms of the mixed Tate nature of certain relative cohomology
groups for divisors in the complement of the determinant hypersurface and intersections
of unions of Schubert cells in flag varieties was given in [1]. For some related aspects
of the interaction between Feynman integrals and motives see also [49].

It is natural to consider, from a similar motivic perspective, also the dual picture,
where the Feynman integrals and the renormalization procedure take place in config-
uration space, instead of working in momentum space. That is the natural setting of
Epstein–Glaser renormalization [33]. As was shown in the seminal papers of Axelrod–
Singer [4,5] in the case of Chern–Simons theory, renormalization of Feynman integrals
in configuration space is closely related to the algebro-geometric construction of the
Fulton–MacPherson (FM) compactifications of configuration spaces [34]. In fact, they
associate to a Feynman graph a differential geometric version of the FM compactif-
ication of the configuration space on the set of vertices of the graph. The result is a
real manifold with corners, which is obtained, like the FM compactification, from a
series of blowups, and on which the Feynman integrand extends smoothly. In fact, in the
FM compactifications of [34] and of [4,5], one considers the complement of all diag-
onals. It was then observed in [16,40,43], that one can consider configuration spaces
associated to graphs, where only the diagonals that correspond to edges in the graph
are removed. These also have compactifications, obtained in a similar way. In fact, the
resulting compactifications are a particular case of a wider class of generalizations of
the FM compactifications, namely the “wonderful models” in the sense of De Concini–
Procesi, [27]. More precisely, the recent paper of L. Li [45] describes a general procedure
to construct configuration spaces and wonderful compactifications associated to certain
arrangements of subvarieties. The graph configuration spaces and the compactifications
of Kuperberg–Thurston [43] are shown in [45] to be a special case of this general con-
struction. The FM case is also a special case that corresponds to the complete graph.
We show that the configuration spaces of graphs and their compactifications required
for the regularization of Feynman amplitudes are in fact combinatorially the same as
those of Kuperberg–Thurston [43], using the result of Li [45]. The use in Epstein–Glaser
renormalization of these graph configuration spaces and their compactifications in the
De Concini–Procesi sense was recently analyzed in the work of [9,8,51]. In particular,
the recent paper [9] gives a careful description of several geometric aspects of Epstein–
Glaser renormalization, formulated in terms of the wonderful compactifications of [27]
for graph configuration spaces. The role of the Connes–Kreimer Hopf algebra in the
Epstein–Glaser setting was also discussed in [9,51], while a version of the motivic
Galois group incarnation of the renormalization group of [25,26] was formulated in the
Epstein–Glaser setting in [20].

Here we give a reformulation of the motivic question in the configuration space set-
ting. We begin by describing briefly the geometry of our graph configuration spaces
Con f�(X) and their compactifications Con f �(X), and showing that they fit in the
general formalism of [45] and are in fact equivalent to the Kuperberg–Thurston [43]
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compactifications. We then use another recent result of L. Li, [44], on the Chow motives
of wonderful compactifications for smooth projective X (as well as a similar result for
Voevodsky motives in the quasi-projective case) to obtain an explicit formula for the
class of Con f �(X) in the Grothendieck ring of varieties. We obtain from that also an
explicit expression for the virtual Hodge polynomial that generalizes to the Con f �(X)

the known formula of [22,35] for the FM case.
We then concentrate on the residues of divergent Feynman integrals. We show that,

in the log divergent case, by pulling back the form to the wonderful compactification,
one has simple poles along the exceptional divisor of the deepest diagonal. Using a
regularization obtained by replacing the divergence locus with a Leray coboundary, we
show that the ambiguity in the renormalization is due to a single Poincaré residue. In the
case where there are worse than logarithmic divergences, the pullback to the wonderful
compactification has higher order poles along the exceptional divisors and the Poin-
caré residues in this case correspond to pieces of the Hodge filtration on the primitive
cohomology.

While regularized integrals give periods of the complement Con f �(X)� Z� , where
the hypersurface Z� is a quadric determined by the configuration space propagators of
the graph, the Poincaré residues, that measure the ambiguities of the regularization by
Leray coboundaries, determine periods associated to the cohomology of the exceptional
divisors of the iterated blowups and their intersections, in the complement of Z� . A
more detailed analysis of the nature of these periods will be given in [21].

2. Configuration Spaces and Their Combinatorial Compactifications

We describe here briefly the geometry of configuration spaces associated to Feynman
graphs and their wonderful compactifications. Some of what we discuss here can be
traced to the literature on the subject, especially [5,8,34,40,43,45]. See also the recent
extensive treatment in [9]. We focus here on those aspects that we directly need to obtain
the explicit formulae for the motive, the class in the Grothendieck ring, and the virtual
Hodge polynomial.

2.1. Configuration spaces of graphs. In the following, by a graph � we always mean
a finite graph. We use the notation V� for the set of vertices of � and E� for the set
of edges, and we write ∂� : E� → S2(V�) for the boundary map that assigns to an
edge its endpoints. (We consider here the graph as un-oriented, hence the endpoints are
defined up to ordering, in the symmetric product S2(V�).) A looping edge is an edge
for which the two endpoints coincide and multiple edges are edges between the same
pair of endpoints. We assume that all our graphs have no multiple edges and no looping
edges, see Remark 2 below.

For a subgraph γ ⊆ � we write �//γ to indicate the graph obtained from � by
shrinking each connected component of γ to a single (different) vertex, and then replac-
ing each set of multiple edges with a new single edge. Similarly, we denote by �/γ the
quotient where all of γ is identified to the same vertex and then each set of multiple
edges is identified to one single edge.

Notice that, even though we require the original graph to be free of multiple edges
and looping edges, the quotient graphs can in general have both, hence the reason why
we identify multiple edges in the quotients �//γ and �/γ . Replacing multiple edges by
simple edges does not affect anything in the construction, see Remark 2. The problem



38 Ö. Ceyhan, M. Marcolli

of looping edges in the quotients does not arise, as long as we consider only induced
subgraphs, in the sense of Definition 2.

Definition 1. Let X be a smooth quasi-projective variety and let � be a graph. The
configuration space Con f�(X) of � in X is the complement in the cartesian product
XV� = {(xv | v ∈ V�)} of the diagonals associated to the edges of �, namely

Con f�(X) ∼= XV�
�

⋃

e∈E�

�e, (2.1)

with

�e ∼= {(xv | v ∈ V�) | xv1 = xv2 for ∂�(e) = {v1, v2}}. (2.2)

Remark 1. By identifying the product XV� with the set of all maps f : V� → X , one
sees that the configuration space Con f�(X) consist of those maps that are “non-degen-
erate along the edges of �”, that is, such that f (v) �= f (v′) whenever v and v′ are
connected by an edge in �. Notice that one can also consider the configuration space
of all non-degenerate maps f : V� → X , that is, all maps such that f (v) �= f (v′)
whenever v �= v′. This would correspond to removing all the diagonals xv = xv′ from
XV� , regardless of whether the vertices v and v′ are connected by an edge in � or not.
This would correspond to the configuration space of Definition 1 above, but for the
complete graph with the same set of vertices V� as �.

Remark 2. Note that the definition of configurations does not detect multiple edges in
the graph. In fact, in essence the notion of degeneration that defines the diagonals (2.2)
is based on collisions of points and not on contracting the edges connecting them. This
is why we can assume, to begin with, that the graphs we consider have no multiple
edges. On the other hand, the definition of configuration space is void in the presence of
looping edges. In fact, a looping edge only gives the trivial equivalence relation xv = xv ,
so that the diagonal �e associated to a looping edge is the whole space XV� , and the
complement XV�

� �e = ∅. To avoid this degenerate case, we also assume that graphs
have no looping edges. As observed above, the quotients by induced subgraphs (in the
sense of Definition 2 below) will then also have no looping edges.

2.1.1. Subgraphs and corresponding diagonals. We now consider diagonals associated
not only to edges of a graph �, but to certain classes of subgraphs γ ⊆ �.

Definition 2. A subgraph γ ⊆ � is called an induced subgraph if two vertices v, v′ ∈
Vγ are connected by an edge e ∈ Eγ if and only if they are connected by an edge e ∈ E� ,
that is, γ has all edges of � on the same set of vertices. Let SG(�) denote the set of all
connected induced subgraphs of �. Let

SGk(�) = {γ ∈ SG(�) | |Vγ | = k}, (2.3)

be the subset SGk(�) ⊆ SG(�) of all the connected induced subgraphs on k verti-
ces. Then SG(�) is a disjoint union SG(�) = ∪|V� |

k=1 SGk(�), where SG|V� |(�) = {�}.
Also let ŜG(�) denote the set of all subgraphs γ that are unions of disjoint connected
induced subgraphs. One similarly has subsets ŜGk(�) ⊆ ŜG(�) of subgraphs with a
fixed number of vertices.
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We now consider diagonals associated to the induced subgraphs in the following way.

Definition 3. For each induced subgraph γ , the corresponding diagonal is

�γ = {(xv1, . . . , xvn ) ∈ XV� | xvi = xv j f or all vi , v j ∈ Vγ } (2.4)

while the (poly)diagonal is

�̂γ = {(xv1, . . . , xvn ) ∈ XV� | xv = xv′ f or {v, v′} = ∂(e), e ∈ Eγ }. (2.5)

We then have the following simple property.

Lemma 1. For an arbitrary graph � and an induced subgraph γ , the diagonal �γ is
isomorphic to XV�/γ , while the (poly)diagonal �̂γ is isomorphic to XV�//γ . When the
graph γ is connected, then �γ = �̂γ .

Proof In the case where γ is not necessarily connected, an element (xv) ∈ �̂γ has
xv = xv′ for all v, v′ ∈ Vγ that belong to the same connected component of γ . Thus,
one can identify �̂γ with XV�//γ . The space �γ sits as a diagonal in �̂γ where the
values xv assigned to vertices in the different connected components all agree. It can be
identified with XV�/γ where all of γ is reduced to just one vertex.

When the graph γ is connected, �//γ = �/γ is the graph where all of γ is identified
to a single vertex. One then has an isomorphism between the subspace �γ of XV� and
the space XV�//γ . 
�

One can see easily show, in the case of subgraphs that are not connected, the inter-
section of the diagonals �γ does not behave as nicely as the intersection of the �̂γ . For
example, let γ ⊆ � be an induced subgraph with two connected components γ = γ1∪γ2.
Then �̂γ = �̂γ1 ∩ �̂γ2 , while �γ � �γ1 ∩ �γ2 . This observation follows directly from
the previous lemma, using �̂γ = XV�//γ and �γ = XV�/γ and the fact that, for the
connected graphs γi , one has �̂γi = �γi . These have dimensions

dim �γ = dim XV�/γ = dim(X)(|V�| − |Vγ | + 1),
(2.6)

dim �̂γ = dim XV�//γ = dim(X)(|V�| − |Vγ | + b0(γ )).

Lemma 2. For any graph�, if γ1 and γ2 are disjoint induced subgraphs, with γ = γ1∪γ2

their disjoint union, then �̂γ1 and �̂γ2 intersect transversely with �̂γ = �̂γ1 ∩ �̂γ2 .
For any graph �, if γ1 and γ2 are induced subgraphs which intersect at a single

vertex γ1 ∩ γ2 = {v}, then the diagonals �̂γ1 and �̂γ2 also intersect transversely with
�̂γ = �̂γ1 ∩ �̂γ2 , for γ = γ1 ∪ γ2.

Remark 3. The union of induced subgraphs is not in general an induced subgraph, as
one can see by taking two sides of a triangle, or, for disjoint unions, the opposite sides
of a square. However, one can still define �̂γ as in (2.5).

Proof (Lemma 2). In the case of disjoint induced subgraphs, the inclusion �̂γ ⊆ �̂γ1 ∩
�̂γ2 is certainly satisfied. Since the two graphs are disjoint, �//γ = (�//γ1)//γ2 =
(�//γ2)//γ1, and the reverse inclusion also holds. The dimension counting (2.6) gives
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dim(XV� ) = dim(X)|V�| = dim(X)((|V�|−|Vγ1 |+b0(γ1))+(|V�|−|Vγ2 |+b0(γ2))−
(|V�| − |Vγ | + b0(γ )) = dim(�̂γ1) + dim(�̂γ2) − dim(�̂γ ).

In the second case, let γ1,i and γ2, j be the connected components of γ1 and γ2, respec-
tively, numbered so that γ1,0 and γ2,0 are the components that contain the vertex v. Then a
point (xv) in the intersection �̂γ1 ∩�̂γ2 satisfies xv = x1,i for all v ∈ Vγ1,i and xv = x2, j

for all v ∈ Vγ2, j and with x1,0 = x2,0, so that set-theoretically �̂γ = �̂γ1 ∩ �̂γ2 . Since

γ1 ∩ γ2 consists of a single vertex, �̂γ1∩γ2 = XV� , while |Vγ | = |Vγ1 | + |Vγ2 | − 1 and
b0(γ ) = b0(γ1) + b0(γ2) − 1, so that the same dimension counting as above holds. 
�
Remark 4. The proof above essentially needs the condition

�//γ = (�//γ1)//γ2 = (�//γ2)//γ1

to be satisfied. The cases, (1) γ1 & γ2 are disjoint and (2) γ1 & γ2 intersect at a vertex,
examined in Lemma 2 are the only possible cases. In all other cases, γ1 �⊂ (�//γ2) and
γ2 �⊂ (�//γ1).

We have also the following property of the diagonals associated to induced subgraphs.

Lemma 3. For arbitrary �, if γ1 ⊆ γ2 are induced subgraphs, then �̂γ2 ⊆ �̂γ1 and
�γ2 ⊆ �γ1 .

If γ1 and γ2 are connected induced subgraphs with γ1 ∩ γ2 �= ∅, such that neither
is a subgraph of the other, and with the property that their union γ = γ1 ∪ γ2 is also
an induced connected subgraph, then the diagonals �γ1 and �γ2 intersect transversely
along the diagonal �γ in �γ1∩γ2 and cleanly in the ambient space XV� .

For (not necessarily connected) induced subgraphs γ1 and γ2, where neither is a
subgraph of the other and such that the number of connected components satisfies

b0(γ ) = b0(γ1) + b0(γ2) − b0(γ1 ∩ γ2), (2.7)

with γ = γ1 ∪ γ2, the diagonals �̂γ1 and �̂γ2 intersect transversely along the diagonal
�̂γ in �γ1∩γ2 and cleanly in the ambient space XV� .

Proof. For γ1 ⊆ γ2, we have XV�//γ1 ⊇ XV�//γ2 and XV�/γ1 ⊇ XV�/γ2 , so the first
property clearly holds. For the second statement, by the first statement �γi ⊆ �γ1∩γ2 ,
and �γ ⊆ �γ1 ∩ �γ2 . Since the subgraphs have non-empty intersection, an element
(xv) ∈ �γ1 ∩ �γ2 has all coordinates xv with v ∈ Vγ with the same value, hence it is
in �γ , so that �γ = �γ1 ∩ �γ2 . By the counting of dimensions as in (2.6) we have
dim �γ1∩γ2 = dim(X)(|V�| − |Vγ1∩γ2 | + 1) = dim(X)((|V�| − |Vγ1 | + 1) + (|V�| −
|Vγ2 | + 1) − (|V�| − |Vγ | + 1) = dim �γ1 + dim �γ2 − dim �γ which imply the trans-
versality of the intersection �γ1 ∩�γ2 in �γ1∩γ2 . Since any transversal intersection in a
subvariety is a clean intersection in the ambient space, �γ1 ∩ �γ2 is a clean intersection
in XV� . The third case is similar. One always has �̂γ ⊆ �̂γ1 ∩ �̂γ2 , and one sees in
the same way that the reverse inclusion also holds, by breaking the argument up into
connected components and applying the previous result. The dimension counting then
gives dim(�̂γ1∩γ2) = dim(X)((|V�|−|Vγ1 |+b0(γ1))+(|V�|−|Vγ2 |+b0(γ2))−(|V�|−
|Vγ | + b0(γ )) = dim(�̂γ1) + dim(�̂γ2) − dim(�̂γ ), where we set �̂γ1∩γ2 = XV� if
γ1 ∩ γ2 = ∅. These equalities of dimensions imply that the intersection �̂γ1 ∩ �̂γ2 is
transversal in �̂γ1∩γ2 and clean in XV� as in the previous case. 
�
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Remark 5. Notice that we need to restrict to induced subgraphs in order to have trans-
versal/clean intersections. In fact, consider the example of the triangle graph, with an
induced subgraph given by a single edge and the two adjacent vertices, and a (non-
induced) subgraph given by the remaining two edges and all three vertices. The diago-
nals associated to these subgraphs do not intersect transversely, since one is contained
in the other. This example clearly does not satisfy (2.7).

Remark 6. The second statement of Lemma 3 does not hold if the union γ = γ1 ∪ γ2 is
not connected. Take as γ1 and γ2 two opposite sides in a hexagon. Both are connected
induced subgraphs and their union is induced, but not connected. The intersection of the
diagonals �γ1 and �γ2 is larger than the diagonal �γ . However, in this case, the third
statement of Lemma 2 ensures that the problem does not arise when working with the
(poly)diagonals �̂γ , since (2.7) is satisfied in this case.

Remark 7. The condition (2.7) is sufficient to guarantee transversal/clean intersections
of the (poly)diagonals �̂γ but not necessary, as we see in Proposition 4 below.

The outcome of the discussion above is that the best behaved class of (poly)diagonals
to consider in our setting is the collection of subvarieties �̂γ , where γ ⊆ � is a union
of disjoint (connected) induced subgraphs. We see next that, in fact, this class has the
right properties required to construct a wonderful compactification.

2.2. The wonderful compactifications of arrangements of subvarieties. The recent work
of L. Li [45] provides a general framework for constructing wonderful compactifications
for configuration spaces associated to arrangements of subvarieties, which generalize
the Fulton–MacPherson compactifications of [34], the wonderful compactifications of
De Concini–Procesi [27], the conical compactifications of MacPherson–Procesi [46],
and the compactifications of graph configuration spaces considered in Kontsevich [40]
and also in Kuperberg–Thurston [43]. We recall here briefly Li’s setting of [45] and we
describe how it can be used to construct a compactification of the configuration spaces
Con f�(X), through a family of (poly)diagonals �̂γ as in (2.5).

In the setting of [45], a simple arrangement S of subvarieties of an ambient smooth
quasi-projective variety Y is a finite collection of nonsingular closed subvarieties Si
with the properties that all nonempty intersections of subvarieties in the collection are
also subvarieties in the collection and that any two Si and S j in the collection intersect
cleanly (along a nonsingular subvariety, with the tangent bundle of the intersection equal
to the intersection of the restrictions of the tangent bundles). A building set G for a sim-
ple arrangement S is a subset of S with the property that, for any S ∈ S, the minimal
elements in the collection {G ∈ G : G ⊇ S} intersect transversely with intersection S.
These minimal elements are called the G-factors of S.

The main result of [45] shows that, given a building set G for a simple arrangement,
one can construct a smooth wonderful compactification YG of the configuration space,

Y � ∪G∈GG, (2.8)

which has an explicit description as a sequence of iterated blowups.

Remark 8. Notice that, in the case where Y is a smooth projective variety, these are
indeed compactifications, while when one still considers the same construction in the
smooth quasi-projective case, the resulting varieties YG obtained by this method are still
referred to as “compactifications” though technically they no longer are.
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Consider now the (poly)diagonals �̂γ defined as in (2.5). First notice that the relation
between the case of induced subgraphs and the case of more general subgraphs is given
by the following simple observation.

Lemma 4. Let γ be a connected subgraph of � and let ι(γ ) be the smallest induced
subgraph of � that contains γ . Then �̂γ = �̂ι(γ ).

Let γ be a (not necessarily connected and not necessarily induced) subgraph of �

and let γ j be the connected components of γ . Then �̂γ = ∩ j �̂ι(γ j ).

Proof. The graph ι(γ ) is obtained by adding to γ all edges of � between vertices of γ that
are not already edges of γ . Then we can see as in Lemma 1 that, for a connected graph,
the condition defining �̂γ is the same as that defining �γ in (2.4), namely xv = xv′
for all vertices in γ . When adding the remaining edges of � between the same set of
vertices, this does not add any new identification, hence one obtains the same diagonal.

In the case where γ has several connected components, the condition defining �̂γ is
that xv = xv′ = x j for all vertices in a given connected component γ j . This condition
again remains unchanged if one replaces each γi by ι(γi ). In fact, the graphs ι(γi ) are
still mutually disjoint, as the additional edges only connect vertices within the same
component. 
�

We then see that the (poly)diagonals �̂γ of disjoint unions of connected induced
subgraphs form an arrangement of subvarieties.

Lemma 5. For a given graph �, let ŜG(�) denote the set of all unions of pairwise
disjoint connected induced subgraphs as in Definition 2. Then the collection

S� = {�̂γ | γ ∈ ŜG(�)} (2.9)

is a simple arrangement of (poly)diagonal subvarieties in XV� .

Proof. Let γ1 and γ2 be unions of disjoint connected induced subgraphs of �. If γ1
and γ2 are themselves disjoint, then the union γ = γ1 ∪ γ2 is also an element in
ŜG(�) and the intersection of the (poly)diagonal �̂γ1 ∩ �̂γ2 = �̂γ is still an element
of S� . If γ1 ∩ γ2 �= ∅, then let γα be the connected components of γ . By Lemma 4,
�̂γ1 ∩ �̂γ2 = �̂γ = ∩α�̂ι(γα) is also still an element in the class S� . The intersections
are clean as all the �̂γ are smooth and the criterion of Lemma 5.1 of [45] characterizing
clean intersection as the scheme-theoretic intersection being nonsingular applies to the
case of the (poly)diagonals. 
�

We can then identify a G-building set for the arrangement S� . We first recall some
further combinatorial properties of graphs that we need in the following.

A graph � is 2-vertex-connected (biconnected) if it cannot be disconnected by the
removal of a single vertex. Note that the removal of a vertex in a graph means removal
of the vertex along with the open star of edges around it. The graph consisting of a single
edge is assumed to be biconnected. (See [1] for a discussion of k-vertex-connectivity in
the context of graph hypersurfaces.)

Any connected graph � admits a decomposition into biconnected components.
Namely, the graph � is determined by a block tree, which is a finite tree whose ver-
tices are decorated by biconnected graphs and whose edges correspond to cut-vertices
(or articulation vertices) of �. The graph � is obtained by joining the biconnected graphs
at the articulation vertices.
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Lemma 6. Let � be a connected graph and γ ⊆ � an induced connected subgraph.
If �i are the biconnected components of �, then γ ∩ �i is either empty or a union of
biconnected induced subgraphs γi j attached at cut-vertices, which are the biconnected
components of γ .

If γ ⊆ � is a biconnected subgraph and ι(γ ) is the smallest induced subgraph
containing γ , then ι(γ ) is also biconnected.

Proof. The intersection γ ∩ �i is clearly an induced subgraph of �i . In fact, each
biconnected component �i is an induced subgraph of �, and intersections of induced sub-
graphs are induced subgraphs. Each γ ∩�i in turn has a decomposition into biconnected
components γi j . Each component γi j is also an induced subgraph. In fact, removing a
cut-vertex from an induced subgraph leaves an induced subgraph.

The second statement follows simply by observing that a cut-vertex for ι(γ ) would
necessarily also be a cut-vertex for γ . In fact, after any additional edge of ι(γ ) which is
in the open star of the cut-vertex is removed, the further removal of all the other edges
in the open star of the cut-vertex disconnects γ so that the vertex is also a cut-vertex for
γ . Additional edges of ι(γ ) not attached to the cut-vertex have endpoints in the same
biconnected component of ι(γ ) and removing them does not affect the cut vertex, which
remains a cut vertex for γ , so that, in both cases, γ would not be biconnected. 
�

We then have the following result. The argument is implicit in Proposition 4.1 of
[45], but we spell it out here for convenience.

Proposition 1. For a given graph �, the set

G� = {�γ | γ ⊆ � induced, biconnected} (2.10)

is a G-building set for the arrangement S� of (2.9). The diagonals associated to the
biconnected components of an induced subgraph γ are the G�-factors of �̂γ .

Proof. Let γ be a union of disjoint induced subgraphs. For each connected component γi
of γ consider the decomposition into its biconnected components γi j . These are induced
subgraphs, whose diagonals �γi j = �̂γi j are the minimal elements in the collection

G� containing the element �̂γ of S� . We know by the first statement of Lemma 2 that
�̂γ = ∩i �̂γi is a transverse intersection. Each �̂γi = ∩ j �̂γi j is in turn a transverse
intersection by the second statement of Lemma 2. 
�
Remark 9. By the second observation in Lemma 6, for the elements of the building set
G� we can equivalently drop the requirement that the subgraphs are induced and use all
biconnected graphs. That gives back the building set used in [45], as in [43].

We then check that the configuration space (2.8) associated to this G-set is the same
as the configuration space Con f�(X) of Definition 1.

Lemma 7. For a graph � and a smooth quasi-projective variety X, the configuration
space Con f�(X) of Definition 1 is

Con f�(X) = XV�
� ∪γ∈G�

�γ . (2.11)

Proof. The subgraphs of � consisting of a single edge are induced biconnected sub-
graphs, so that the inclusion ∪e∈E��e ⊂ ∪γ∈G�

�γ holds. Conversely, given an induced
biconnected subgraph γ of �, �γ = �̂γ is the set of (xv) with xv = xv′ for {v, v′} = ∂(e)
for e ∈ Eγ . Thus, �γ ⊆ �e for e ∈ Eγ . Thus, each �γ ⊆ ∪e∈E��e and the reverse
inclusion also holds. 
�
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2.3. The iterated blowup description. Then the result of Theorem 1.2 of Li [45] shows
that there is a smooth wonderful compactification Con f �(X) = XV�

G�
of the configura-

tion space Con f�(X). This is obtained as the closure of the image of Con f�(X) under
the inclusion

Con f�(X) ↪→
∏

�γ ∈G�

Bl�γ XV� . (2.12)

Theorem 1.3 of [45] shows that this wonderful compactification also has a description
as an iterated sequence of blowups. We recall here briefly how that is obtained, as we
will need it later.

Recall first that, for a blowup π : BlZ (Y ) → Y of a smooth subvariety in a smooth
variety, the dominant transform of an irreducible subvariety V of Y is the proper trans-
form if V is not contained in Z and the (scheme-theoretic) inverse image π−1(V ) if it
is (see Definition 2.7 of [45]).

Enumerate the set G� = {γ1, . . . , γN } in such a way that, whenever there is an inclu-
sion γi ⊇ γ j , the corresponding indices are ordered with i ≤ j . Then, for k = 0, . . . , N ,
let Y (0) = XV� and let Y (k) be the blowup of Y (k−1) along the (iterated) dominant trans-
form of �γk . Theorem 1.3 and Proposition 2.13 of [45] show that the variety Y (N )

obtained through this sequence of iterated blowups is isomorphic to the wonderful com-
pactification XV�

G�
,

Y (N ) = Con f �(X). (2.13)

Remark 10. Proposition 1 and Lemma 7 above, together with Proposition 4.1 of [45],
show that the configurations spaces of graphs and their compactifications we are consid-
ering here are combinatorially the same as the Kuperberg–Thurston compactifications
of [43].

The result of [45] also shows to what extent the result of the iterated sequence of
blowups is dependent on the order in which the blowups are performed. In particular, this
means that, in our case, we can also describe the sequence of blowups in the following
way. For k = 1, . . . , n = |V�|, let Gk,� ⊆ G� be the subcollection Gk,� = G� ∩SGk(�),
where SGk(�), as in (2.3), is the set of connected induced subgraphs with k vertices.

Proposition 2. Let Y0 = Y (0) = XV� . Inductively, let Yk denote the blowup of Yk−1
along the dominant transform of

⋃
γ∈Gn−k+1,�

�γ . Then Yn−1 is the wonderful compac-
tification

Con f �(X) = Yn−1. (2.14)

Proof. This is a special case of the procedure of Theorem 1.3 of [45] described above,
where we label the elements of G� , by listing the subgraphs in Gn−k+1,� , for k =
1, . . . , n − 1, by increasing k, with any arbitrary choice of ordering within each of these
sets. The last set, for k − 1, corresponds to the set G2,� of subgraphs consisting of a
single edge. We have Yk = Yk−1 if there are no biconnected induced subgraphs with
exactly n − k + 1 vertices. So, if � is itself biconnected, then Y1 is the blowup of Y0
along the deepest diagonal �� , which parameterizes the points where the whole � is
collapsed, and otherwise Y1 = Y0. In the resulting sequence of blowups,

Yn−1 → · · · → Y2 → Y1 → XV� , (2.15)
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the order in which the blowups are performed along the (iterated) dominant transforms
of the diagonals �γ , for γ ∈ Gn−k+1,� , for a fixed k, does not matter, for the general
reason described in §3 of [45]. Thus, the intermediate varieties Yk in the sequence (2.15)
are all well defined. 
�
Remark 11. The notational difference above between the Y ( j) and the Yk reflects the
fact that each Yk corresponds to several blowups Y ( j), one for each diagonal �γ j with
γ j ∈ Gn−k+1,� .

Remark 12. The Fulton–MacPherson compactifications [34] are obtained as the won-
derful compactification Con f �n

(X), for �n the complete graph on n vertices, where
each pair of distinct vertices is connected by an edge. In this case one needs to blow up
all the possible diagonals.

Remark 13. Notice that, in the case of the complete graph �n on n vertices, besides the
usual Fulton–MacPherson compactification, one can also consider a different sequence
of blowups, where one obtains a more manifestly symmetric construction with actions of
the symmetric group at each stage. These “polydiagonal compactifications” were intro-
duced in [53]. The difference is that the blowup loci are in this case not just diagonals
but also their intersections. This introduces a number of additional blowups in the con-
struction and the resulting spaces map project down onto the Fulton–MacPherson ones.
These compactifications are also special cases of the general construction of Li [45] for
a different choice of G-building set. One can consider analogs of the compactifications
of [53] also in the case of other graphs �. The difference with respect to the case we are
considering corresponds to the difference between the minimal and maximal wonderful
compactifications in the sense of [27]. This has been recently discussed in [9].

2.4. Stratification. Theorem 1.2 of [45] applied to our case also gives an explicit strati-
fication of Con f �(X) in terms of divisors. This will also be useful in the following and
we recall it briefly.

As above, we consider an arrangement S of subvarieties and a G-building set. Given
a flag F = {S1, . . . , Sr } of elements in S, with S1 ⊆ S2 ⊆ · · · ⊆ Sr , one defines the
associated G-nest, as in [45,46], as the collection

GF = ∪r
i=1{Ri j | G-factors of Si }, (2.16)

where, as above, the G-factors of an element S ∈ S are the minimal elements in the
collection {R ∈ G | R ⊇ S}.

We consider the arrangement S� of (2.9) and the building set G� of (2.10) associated
to a graph � and a smooth quasi-projective variety X . The G�-nests are then described
easily (see [45], §4.3) using the following simple observation.

Lemma 8. Let γ1 and γ2 be biconnected subgraphs of �. If the intersection γ1 ∩ γ2
contains at least two distinct vertices, then the union γ = γ1 ∪ γ2 is biconnected.

Proof. If γ were not biconnected, then there would be a vertex v in Vγ such that γ � {v}
has more than one connected component. If the vertex v belongs to either γ1 or γ2, but
not to the intersection, then the removal of v would also disconnect either γ1 or γ2,
contrary to the hypothesis that they are biconnected. Suppose that the vertex v belongs
to the intersection γ1 ∩ γ2. The two graphs γi � {v} are both connected since both γi
are biconnected. The graph γ � {v} = (γ1 � {v}) ∪ (γ2 � {v}) can then be disconnected
only if (γ1 � {v}) ∩ (γ2 � {v}) = ∅. 
�
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This, together with Proposition 1 gives the characterization of the G�-nests.

Definition 4. A forest T of nested subgraphs of a given graph � is a finite collection of
rooted trees, where each component is a finite tree with vertices labelled by connected
induced subgraphs γi of �, with the property that there is an edge (oriented away from
the root vertex) from a vertex γi to a vertex γ j whenever γi ⊇ γ j . We also require that
graphs γ and γ ′ associated to vertices that lie on different branches of a tree or on
different trees of the forest have γ ∩ γ ′ = ∅.

Recall that S� is the simple arrangement of all (poly)diagonals �̂γ , with γ in ŜG(�)

and that G� is the corresponding building set given by the diagonals �γ with γ induced
biconnected subgraphs of �.

The flags in S� and the associated G�-nests are then described as follows (see [45],
§4.3).

Proposition 3. Flags in S� are in bijective correspondence with forests of nested sub-
graphs. The G�-nests are in bijective correspondence with the sets of biconnected
induced subgraphs with the property that any two subgraphs γ and γ ′ in the set satisfy
one of the following:

(1) γ ∩ γ ′ = ∅;
(2) γ ∩ γ ′ = {v}, a single vertex;
(3) γ ⊆ γ ′ or γ ′ ⊆ γ .

Proof. A flag F in S� consists of a sequence �̂γ1 ⊆ �̂γ2 ⊆ · · · ⊆ �̂γr of (poly)diagonals
associated to disjoint unions of induced subgraphs γi . By definition of the (poly)diago-
nals and the fact that the subgraphs are disjoint unions of induced subgraphs, we see that
the subgraphs satisfy γr ⊆ · · · ⊆ γ1. We then construct a forest of nested subgraphs TF
which has root vertices the connected components γr j of the graph γr , and so on, so that
the set of vertices at a distance r − i to the roots are the connected components γi j of the
graph γi . The tree has an edge from a connected component γi j to a connected compo-
nent γi ′ j ′ whenever i ′ = i +1 and γi ′ j ′ ⊆ γi j . The forest of nested subgraphs constructed
in this way is uniquely determined by the flag F . Conversely, given a forest of nested
subgraphs T , we associate to it a flag FT in S� by setting Si = ∩γi j �̂γi j = �̂γi , where
γi j are all the connected induced subgraphs attached to the vertices of T at a distance
r − i to the root, and γi = ∪i jγi j . This gives a bijection between flags and forests of
nested subgraphs.

As in (2.16), a G�-nest is then given by the set of G�-factors of the elements �̂γ1 ⊆
�̂γ2 ⊆ · · · ⊆ �̂γr of a flag. By Lemma 4 and Proposition 1, the G�-factors of each �̂γi

are the �̂γi j of its biconnected components γi j . These form a set of induced biconnected
subgraphs with the property that any two γi j and γi ′ j ′ are either nested one inside the
other (when i �= i ′), or have intersection that is either empty or consisting of a single
point (when i = i ′). 
�

We then obtain a stratification of the wonderful compactification Con f �(X) as in
Theorem 1.2 of [45].

Proposition 4. For γ ⊆ � a biconnected induced subgraph, let Eγ be the divisor ob-
tained as the iterated dominant transform of �γ in the iterated blowup construction
(2.15) of Con f �(X). Then

Con f �(X) � Con f�(X) =
⋃

�γ ∈G�

Eγ . (2.17)
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The divisors Eγ have the property that

Eγ1 ∩ · · · ∩ Eγ

�= ∅ ⇔ {γ1, . . . , γ
} is a G�-nest. (2.18)

Proof. The statement is a special case of Theorem 1.2 of [45], so we do not reproduce
the proof here in detail. For later use, we just comment briefly on the second statement.
Notice that, if {γ1, . . . , γ
} is a G�-nest, then the divisors Eγi intersect transversely.
In fact, they are the G�-factors of elements �̂γ of a flag, and by construction G�-fac-
tors intersect transversely, with intersection the given elements of the flag, so that after
passing to the (iterated) dominant transforms (see Proposition 2.8 of [45]), one finds a
nonempty transverse intersection.

If {γ1, . . . , γ
} is not a G�-nest, then there are two subgraphs γi and γ j in this col-
lection, whose intersection γi ∩ γ j contains at least two distinct vertices. In this case,
by Lemma 8, their union γi j = γi ∪ γ j is also a biconnected subgraph with a number
of vertices larger than that of both γi and γ j . Thus, the (iterated) dominant transform of
the diagonal �γi j was blown up at an earlier step in the construction of Con f �(X) as an
iterated blowup. The diagonals �γi and �γ j intersect along �γi j . Even though the graphs
γi and γ j are not part of a G�-nest, their intersection is still transversal in �γi ∩γ j . To see
this, notice that the graphs γi and γ j are connected, and so is γi j . However, the graph
γ̃i j = γi ∩ γ j needs not be connected. Thus, the number of connected components can
violate the relation (2.7), and we cannot deduce transversality directly by the argument
of Lemma 3. However, notice that �̂γi = �γi and �̂γ j = �γ j are both contained not

only in �̂γ̃i j as used in Lemma 3 but also in the possibly smaller �γ̃i j ⊆ �̂γ̃i j . This has
dimension

dim(�γ̃i j ) = dim(X)(|V�| − |Vγ1∩γ2 | + 1),

while dim(�̂γ̃i j ) = dim(X)(|V�|−|Vγ1∩γ2 |+b0(γ̃i j )). Then one has the correct counting
of dimensions

dim(�γ̃i j ) = dim(�γi ) + dim(�γ j ) − dim(�γi j ).

Since �γi and �γ j intersect cleanly along �γi j , whose dominant transform was already
blown up at an earlier stage in the iterated blowup construction, the (iterated) dominant
transforms Eγi and Eγ j no longer intersect, Eγi ∩ Eγ j = ∅. 
�

Let N = {γi j , } be the G�-nest of a flag FT = {�̂γ1 ⊆ �̂γ2 ⊆ · · · ⊆ �̂γr } associated
to a forest of nested subgraphs T . Let XN be the subvariety of Con f �(X) defined by
the intersection

XN := ∩i j Eγi j (2.19)

of the divisors associated to the graphs in the G�-nest N . We know by Proposition 4
that these intersections are nonempty. The forest T provides a stratification of the
varieties XN .

Lemma 9. Given two varieties XN1 and XN2 as in (2.19), the intersection XN1 ∩XN2 �=
∅ if and only if N = N1 ∪ N2 is still a G�-nest. In this case, let FT1 and FT2 be flags
with N1 = N (T1) and N2 = N (T2) the G�-nests associated to these flags. In terms
of forests of nested subgraphs, N = N (T ) corresponds to the flag FT of the forest T
given by the union of T1 and T2.
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Proof. Given two flags FT1 and FT2 associated to forests of nested subgraphs T1 = {γi }
and T2 = {γ ′

k}, let N1 = {γi j } and N2 = {γ ′
kr } be the associated G�-nests. Then, by

construction, the intersection XN1 ∩ XN2 is nonempty if and only if the union N =
{γi j }∪{γkr } is still a G�-nest. Arguing as in Lemma 3, we can construct from N a forest
T of nested subgraphs, so that N is the G�-nest of the flag FT . The forest T is the union
of the forests T1 and T2. The intersection T1 ∩ T2 which is the largest subforest with
common vertices (labelled by the same graphs) is counted only once in T . 
�

We then have the following description of the open stratum:

Proposition 5. The open stratum X◦
N is given by

X◦
N = XN �

⋃

T ′:T =T ′/e

XN (T ′), (2.20)

where the union is over all the forests of nested subgraphs T ′ such that T is obtained
from T ′ by contracting a single edge e, whose vertices are decorated by graphs in the
following way. The graph γ ′ decorating the vertex of e that is farther away from the
root of the tree containing it is the graph decorating the corresponding vertex in T and
the graph γ decorating the end of e closer to the root is the union of γ ′ and a single
additional G�-factor. The G�-nest N (T ′) is the one associated to the flag FT ′ .

Proof. Let T ′ be a forest as above. Assume that the edge e of T ′ is attached to a root
vertex and let γ be the graph decorating the other end of the edge e, and let γr,1 be
the component of γr decorating the vertex of T ′ that is connected in T ′ to the vertex
decorated by γ . Then, if the flag FT is given by �̂γ1 ⊆ �̂γ2 ⊆ · · · ⊆ �̂γr , the flag FT ′ is
simply given by �̂γ1 ⊆ �̂γ2 ⊆ · · · ⊆ �̂γr ⊆ �̂γr+1 , where the graph γr+1 has connected
components given by γ and all the other components γr j of γr , for j ≥ 2. The G�-nest
N (T ′) is then given by the same G�-factors for the graphs γi already in the original flag
FT together with the G�-factors γα of the graph γ . If the graph γ has a single additional
G�-factor γ̃ , in addition to the G�-factors of γr , then the variety XN (T ′) is given by the
intersection

XN (T ′) = ∩i, j :i=1,...,r−1 Eγi j ∩ ∩r, j : j≥2 Eγr j ∩ Eγ̃ , (2.21)

where Eγ̃ ⊆ Eγr1 . By Proposition 4 we then see that the top stratum of XN is obtained
by subtracting the intersections with the other XN ′ and, by Lemma 9, we see that the
largest such intersections are in fact given by the XN (T ′) described above. 
�

This gives a decomposition of Con f �(X) as a disjoint union of open strata.

Corollary 1. The variety Con f �(X) is stratified by the pairwise disjoint subvarieties
X◦

N ,

Con f �(X) = Con f�(X) ∪
⋃

N∈ G−nests

X◦
N . (2.22)

Proof. The statement is a direct consequence of Proposition 4 and Proposition 5. 
�
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2.5. Strata and fiber bundles. The open strata X◦
N also have a description as fiber bun-

dles. To see that, we introduce some preliminary notation and terminology.
Let A

d be the affine space in d-dimensions. The group Gd of translations and
homotheties acts on A

d by ξ �→ λξ + η, for η ∈ A
d and λ ∈ Gm a nonzero scalar.

For a given graph �, then, we define the configuration space of A
d up to translations

and homotheties to be the quotient

C�(Ad) := Con f�(Ad)/Gd . (2.23)

Let v1 and v2 be two vertices of � such that there is an edge e ∈ E� with ∂(e) =
{v1, v2}. The configuration space C�(Ad) of (2.23) can then be identified (non-canoni-
cally) with

C�(Ad) � {(xv)v∈V� ∈ Con f�(Ad) | xv1 = (0, . . . , 0), xv2 = (1, 0, . . . , 0)},
(2.24)

since fixing these coordinates suffices to determine a section of the Gd action.

Lemma 10. The configuration space C�(Ad) has a nonsingular wonderful “compac-
tification” C�(Ad) obtained as in Proposition 2.

Proof. One can construct, as in Proposition 2, the space Con f �(Ad), as an iterated
blowup of A

d|V� |. (Notice that, technically, this is not a compactification in this case.)
To obtain C�(Ad) we need to check the compatibility of the construction with the action
of the group Gd of translations and homotheties. One can do this by choosing a section as
in (2.24) and realize in this way the configuration space C�(Ad) (non-canonically) as a
subspace of Con f�(Ad). Then the space C�(Ad) is the restriction to this subspace of the
“compactification” Con f �(Ad). This can be seen also by considering the original defi-
nition of Con f �(Ad), not in terms of iterated blowups but as the closure of Con f�(Ad)

inside the space
∏

Bl�γ ∈G�
(Ad|V� |). Then when we look only at those configurations as

in (2.24), we allow only those degenerations that do not collapse xv1 and xv2 together and
we obtain the closure of the subspace identified by this choice of section with C�(Ad)

inside the same product space. Another way to see this, which does not require choosing
a section of the Gd -action as in (2.24), is by considering the configuration space C�(Ad)

as a subspace of the quotient XV�/Gd by the action of translations and homotheties.
One then applies the same iterated blowup construction described before, but with the
G� building set given by the images of the diagonals �γ in the quotient XV�/Gd . 
�

Now consider again the description of the wonderful compactifications Con f �(X)

as the closure (2.12) of Con f�(X) in the space
∏

�γ ∈G�

Bl�γ XV� . (2.25)

By Lemma 7 we know that we can write Con f�(X) as the complement (7) of the diag-
onals �γ with γ ∈ G� . Then, in order to describe the strata of the closure of Con f�(X)

in (2.25), we need to describe the datum over a point where different coordinates xv and
xv′ , with v, v′ ∈ Vγ for some graph γ ∈ G� , collide to the same value x ∈ X . Arguing as
in §1 of [34], we see that this datum consists of a collection (ξv) of vectors in the tangent
space Tx = Tx (X), parameterized by the vertices v ∈ Vγ , such that not all coordinates
ξv are equal. These data maintain the infinitesimal information on the tangent directions
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to the points xv when they collide. These data are defined only up to translation and
homotheties, so that, in fact, they define a point ξ = (ξv)v∈Vγ in the projective space

ξ ∈ P(T
Vγ
x /Tx ). (2.26)

Such a point ξ is called a screen for γ , in the terminology of [34].
We introduce the following notation that will be useful later.

Definition 5. Given a graph � and a forest T of nested subgraphs as in Definition 4,
with G-nest N = N (T ). We denote by �/δN (�) the graph obtained as the quotient

�/δN (�) := �//(γ1 ∪ · · · ∪ γr ), (2.27)

for N = {γ1, . . . , γr }. Similarly, for γ an induced biconnected subgraph, γ ∈ G� , we
set

γ /δN (γ ) := γ //(γ1 ∪ · · · ∪ γk), (2.28)

where {γ1, . . . , γk} is the set of γi ∈ N such that γi � γ .

We then have the following description of the open strata X◦
N . This is analogous to

what discussed in §2 of [34].

Theorem 1. The open strata X◦
N are fiber bundles over configuration spaces

Con f�/δN (�)(X), where the fiber FN is obtained as a succession of fiber bundles,
one for each graph γ decorating the vertices of the forest of nested subgraphs T , with
N = N (T ), where at each stage the fiber Fγ is the open subvariety of the space

P(T
Vγ /δN (γ )

x /Tx ) of screen configurations for the graph γ /δN (γ ), which consist of the
distinct labeled |Vγ /δN (γ )|-tuples of points in Tx up to translations and homothety.

Proof. The stratum XN associated to the G-nest N = N (T ) of a forest T of nested
subgraphs is given by the intersection Eγ1 ∩· · ·∩ Eγr of the exceptional divisors associ-
ated to the graphs in the G-nest. Moreover, we have seen in Proposition 5 that the open
stratum X◦

N is obtained by subtracting from XN all the XN (T ′) for all the forests T ′ with
T = T ′/e, with the additional vertex of T ′ decorated by a graph with a single additional
G-factor with respect to the one in the corresponding vertex of T . Under the projection
map π : Con f �(X) → XV� of the iterated blowup construction, this corresponds to
subtracting from the intersection

�γ1 ∩ · · · ∩ �γr (2.29)

all the further intersections

�γ1 ∩ · · · ∩ �̂γ j ∪γ ′
j
∩ · · · ∩ �γr , (2.30)

where γ ′
j is an additional G-factor and, by Lemma 3, �̂γ j ∪γ ′

j
= �γ j ∩ �γ ′

j
. Upon iden-

tifying the diagonal �γ of a biconnected graph γ with the space XV�/γ , we can also
identify the intersection (2.29) with the space XV�//(γ1∪···∪γr ) = XV�/δN (�) . Now we need
to check that subtracting the intersections (2.30) amounts to considering the subspace
Con f�/δN (�)(X) inside the product XV�/δN (�) . By arguing as in Lemma 7, we see that
the complement of the union of the diagonals �γ ′

j
as above is the same as the complement
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of the union of the diagonals �e, with e ranging over the edges of the graph �/δN (�).
This proves that, under the map π : Con f �(X) → XV� of the iterated blowup construc-
tion, the image of an open stratum X◦

N can be identified with the configuration spaces
Con f�/δN (�)(X), for N = N (T ). We then check that π : X◦

N (T )
→ Con f�/δT (�)(X)

is a fiber bundle. In the iterated blowup construction of Con f �(X), we have seen that
one progressively blows up diagonals �γ in G� by decreasing number of vertices. At
each stage, when one of the �γ j is blown up, the exceptional divisor is the projectivized
normal bundle

P(N�γ ⊂∩γ ′∈N :γ ′�γ �γ ′ ), (2.31)

or the projectivized normal bundle P(N�γ ⊂XV� ) when the set {γ ′ ∈ N : γ ′
� γ } = ∅.

This projectivized normal bundle indeed carries the infinitesimal information about the
degeneration, when points collide along the diagonal �γ and can be described, as in
§1 of [34] in terms of screen configurations. In fact, first observe that we can identify
�γ � XV�/γ and similarly we can identify

∩γ ′∈N :γ ′�γ �γ ′ � XV�//(γ1∪···∪γk ) ,

with {γ1, . . . , γk} = {γ ′ ∈ N : γ ′
� γ }. Thus, we have

P(N�γ ⊂∩γ ′∈N :γ ′�γ �γ ′ ) � P(Tx (XV�//(γ1∪···∪γk ) )/Tx (XV�/γ )).

Then observe that the dimension of this projectivized normal bundle is given by

d(|V�| − |Vγ1∪···∪γk | + b0(γ1 ∪ · · · ∪ γk)) − d(|V�| − |Vγ | + 1),

where d = dim X . This is equal to

d(|Vγ | − |Vγ1∪···∪γk | + b0(γ1 ∪ · · · ∪ γk)) − 1).

In fact, we can identify

Tx (XV�//(γ1∪···∪γk ) )/Tx (XV�/γ ) � T

Vγ //(γ1∪···∪γk )

x /Tx ,

so that we obtain

P(N�γ ⊂∩γ ′∈N :γ ′�γ �γ ′ ) � P(T
Vγ /δN (γ )

x /Tx ),

with the notation γ /δN (γ ) as in (2.28). The space P(T
Vγ /δN (γ )

x /Tx ) is exactly the space
parameterizing the screen configurations of γ /δN (γ ) described earlier (see [34], §1).

Similarly, in the case of the projectivized normal bundle P(N�γ ⊂XV� ), the identifi-

cation �γ � XV�/γ , together with the fact that |V�| − |Vγ | + 1 = |V�/γ | gives at the
level of tangent spaces

T

Vγ
x /Tx � T

V�
x /T

V�/γ
x � Tx (XV� )/Tx (�γ ) � N (�γ ⊂ XV� ), (2.32)

where Tx = Tx (X). Thus, we can identify the projectivization P(N (�γ ⊂ XV� )) with
the projectivization

P(N (�γ ⊂ XV� )) � P(T
Vγ
x /Tx ). (2.33)

This again is the space parameterizing the screen configurations of γ .
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One can argue as in the proof of Proposition 2.1 of [34] and identify Fγ with the

subspace of this space of screen configurations P(T
Vγ /δN (γ )

x /Tx ) (or P(T
Vγ
x /Tx )) that

corresponds to the distinct labeled tuples of points in Tx up to translations and homothety.

�

Corollary 2. In the fiber FN of the bundle π : X◦
N → Con f�/δN (�)(X), each Fγ as in

Theorem 1 is isomorphic to the configuration space Cγ /δN (γ )(A
d), with d = dim(X),

defined as in (2.23).

Proof. One can identify the tangent space Tx with a copy of the affine space A
d . Then

the action on A
d of the group Gd of translations and homothety corresponds to the

identifications on Tx that describe screen configurations. Thus, for a given graph γ , the

projective space P(T
Vγ /δN (γ )

x /Tx ) can be identified with the quotient A
d|Vγ /δN (γ )|/Gd ,

which contains the configuration space Cγ /δN (γ )(A
d). Moreover, the latter describes

precisely those screen configurations that consist of distinct labeled |Vγ /δN (γ )|-tuples
of points in Tx up to translations and homothety. 
�
Corollary 3. In the case where the variety X is a projective space P

d , the stratum X◦
N

contains a subspace (non-canonically) isomorphic to C�/δN (�)(A
d).

Proof. When X = P
d , inside Con f�/δN (�)(X) = π(X◦

N ) we have a copy of
Con f�/δN (�)(A

d) ⊂ Con f�/δN (�)(P
d). Moreover, by the (non-canonical) choice of

a section as in (2.24), we can identify inside this Con f�/δN (�)(A
d) a subspace isomor-

phic to C�/δN (�)(A
d). Then the fiber of the map π above this space is still given by the

screen configurations of the graphs γ in the forest T of the G�-nest N , as in Theorem 1,
which, by Lemma 10, give the “compactification” C�/δN (�)(A

d). 
�

3. Motives of Configuration Spaces

In the momentum space description, one considers the complement of a graph hypersur-
face in a projective space or in a toric variety obtained as an iterated blowup of projective
space [13,14]. In an equivalent reformulation of the momentum space integrals given
in [1], one considers a divisor in the complement of a determinant hypersurface. In all
of these cases, one has an ambient space whose motive can be explicitly described as a
mixed Tate motive, while the hypersurface complement in [13,14], or the intersection
of the divisor with the hypersurface complement in [1], become the loci about which
one wants to understand whether they are motivically mixed Tate or not.

We consider here first the motive of the ambient space, which in the configuration
treatment is given by the iterated blowup Con f �(X) we described in the previous sec-
tion. We give an explicit description of the associated motive, based on the results of
L. Li [44] on motives of wonderful compactifications.

3.1. Chow motives of configuration spaces. We state here a first result assuming that
X is a smooth projective variety. In this case, we can work in the category of Chow
motives, and rely directly on the result of [44].

The main ingredient that is used in [44] to compute the Chow motive of the wonder-
ful compactifications is a blowup formula for motives, which follows from §9 of [48],
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and is also proved in Theorem A.2 of [44]. Namely, if f : Ỹ → Y is the blow-up of a
smooth projective variety Y along a non-singular closed subvariety V ⊂ Y , then h(Ỹ )

is canonically isomorphic to

h(Ỹ ) ∼= h(Y ) ⊕
codimY (V )−1⊕

k=1

h(V )(k) (3.1)

in the category of Chow motives.
Here one uses the standard notation for Chow motives, written as triples (X, p, m)

of a variety X , a projector p, and an integer m, where for smooth projective varieties
X one writes the corresponding motive as h(X) = (X, idX , 0), and its Tate twists by
h(X)(
) = (X, idX , 
).

We can then obtain the explicit formula for the Chow motive of the compactifica-
tions Con f �(X) directly from the main formula of [44] for the Chow motive of all the
wonderful compactifications. We first introduce the following notation. Given a G�-nest
N , and a biconnected induced subgraph γ such that N ′ = N ∪ {γ } is still a G�-nest,
we set

rγ = rγ,N := dim(∩γ ′∈N :γ ′⊂γ �γ ′) − dim �γ , (3.2)

MN := {(μγ )�γ ∈G�
: 1 ≤ μγ ≤ rγ − 1, μγ ∈ Z}, (3.3)

‖μ‖ :=
∑

�γ ∈G�

μγ . (3.4)

These agree with the notation used in [44]. We then have the following result.

Proposition 6. Let X be a smooth projective variety of dimension d. Then the Chow
motive of Con f �(X) is given by

h(Con f �(X)) = h(XV� ) ⊕
⊕

N∈G�-nests

⊕

μ∈MN

h(XV�/δN (�) )(‖μ‖). (3.5)

Proof. The result is a direct consequence of Theorem 3.1 of [44], which is proved as a
downward induction on the tower of iterated blowups describing Con f �(X), where at
each stage one applies the blowup formula (3.1). The only thing we need to check to
match (3.5) to the formula of [44] is that the motives involved in the second summation
are indeed the h(XV�/δN (�) ). In Li’s formulation, if we denote by π : Con f �(X) → XV�

the map of the iterated blowup, we have in the formula for the Chow motive of a won-
derful compactification YG a sum over G-nests and, for each G-nest N a sum over
μ of ‖μ‖-twisted copies of the motive h(π(XN )), where, with our notation, XN =
∩γ∈N Eγ . To see that π(XN ) is indeed isomorphic to XV�/δN (�) , then notice that the
(poly)diagonal π(∩γ∈N Eγ ) = ∩γ∈N �γ corresponds to identifying the coordinates
xv of all vertices in each connected component of the graph γ1 ∪ · · · ∪ γN , where
N = {γ1, . . . , γN }. Thus, we can identify π(∩γ∈N Eγ ) with the space XV�/δN (�) , where
�/δN (�) = �//(γ1 ∪ · · · ∪ γN ). 
�
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3.2. Voevodsky motives and the quasi-projective case. We now extend the result of Prop-
osition 6 to the case of smooth quasi-projective varieties. In this case we can no longer
work with Chow motives, but we need mixed motives in the sense of Voevodsky [54].
The argument, however, is entirely similar, after one replaces the blowup formula (3.1)
for Chow motives with the analogous blow-up formula for motives in the Voevodsky cat-
egory. We write here m(X) for the motive in the Voevodsky category. This corresponds
to the notation Mgm of [54].

Then the blowup formula we need is the one proved in Proposition 3.5.3 of [54]. If
f : Ỹ → Y is the blow-up of a smooth scheme Y along a smooth closed subscheme
V ⊂ Y , then m(Ỹ ) is canonically isomorphic to

m(Ỹ ) ∼= m(Y ) ⊕
codimY (V )−1⊕

k=1

m(V )(k)[2k] (3.6)

in the category of Voevodsky’s motives. Here [−] denotes the shift in the triangulated
category of mixed motives, while (−) is, as before, the Tate twist.

As before, we let Y (k) denote the iterated blowups of XV� as in [45], with the won-
derful “compactification” Con f �(X) = Y (N ), where G� = {γ1, . . . , γN }, ordered, as
before, in such a way that whenever γi ⊇ γ j the corresponding indices are ordered by
i ≤ j .

We first introduce the following notation. For a given G�-nest N , let X (k)

N denote

the intersection X (k)

N = ∩γ∈N E (k)
γ , where we denote by E (k)

γ the iterated dominant
transform in Y (k) of �γ .

Proposition 7. Let X be a quasi-projective smooth variety of dimension d. If N is a
G�-nest with N ⊆ {γk+2, . . . , γN }, with the property that N ′ = N ∪ {γk+1} is also a
G�-nest, then the Voevodsky motives of the subvarieties X (k)

N in the iterated blowup Y (k)

of XV� satisfy the recursion formula

m(X (k+1)

N ) = m(X (k)

N ) ⊕
rk,N −1⊕


=1

m(X (k)

N ′)(
)[2
], (3.7)

where the codimension rk,N is given by rk,N = dim(∩γ∈N :γ⊂γk+1�γ ) − dim �γk+1

when {γ ∈ N : γ � γk+1} �= ∅ and by rk,N = d|V�| − dim �γk+1 otherwise.

Proof. The proof is entirely similar to the proof of the analogous statement for Chow
motives in the smooth projective case, proved in Lemma 3.3 of [44], where at each step
one replaces the use of the blowup formula (3.1) with the formula (3.6). 
�

We then have the analog of Proposition 6.

Proposition 8. Let X be a smooth quasi-projective variety. The Voevodsky motive
m(Con f �(X)) of the wonderful “compactification” is given by

m(Con f �(X)) = m(XV� ) ⊕
⊕

N∈G�-nests

⊕

μ∈MN

m(XV�/δN (�) )(‖μ‖)[2‖μ‖]. (3.8)
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Proof. This also follows immediately by the same argument used in the smooth projec-
tive case for Chow motives in the proof of Theorem 3.1 of [44], where, in the downward
induction on the levels k of the iterated blowup describing Con f �(X), one replaces at
each step with the formula (3.7) the analogous formula used in [44] for Chow motives.


�
We obtain then from Propositions 6 and 8 the following simple corollary.

Corollary 4. If the motive of the smooth (quasi)projective variety X is mixed Tate, then
the motive of Con f �(X) is also mixed Tate, for all graphs �. In particular, for example,
the motives of Con f �(Pd), Con f �(Ad) and C�(Ad) are mixed Tate.

Proof. This is an immediate consequence of (3.5) and (3.8), since the motive of
Con f �(X) depends upon the motive of X only through products, Tate twists, sums,
and shifts. All these operations preserve the subcategory of mixed Tate motives. 
�

3.3. Classes in the Grothendieck ring. The formula for the motive of Con f �(X) has a
corresponding formula for a simpler invariant that captures some of the motivic proper-
ties, the class in the Grothendieck ring of varieties K0(V). This is generated by isomor-
phism classes [X ] of quasi-projective varieties, with the relations [X ] = [Y ] + [X � Y ]
for closed embeddings Y ⊂ X and with product [X × Y ] = [X ] · [Y ].

Recall that an invariant χ([X ]) of isomorphism classes of algebraic varieties with
values in a commutative ring R is motivic if it factors through the Grothendieck ring
of varieties, that is if it satisfies the inclusion–exclusion (or scissor congruence) and
product relations

χ([X ]) = χ([Y ]) + χ([X � Y ]) and χ([X × Y ]) = χ([X ]) · χ([Y ]), (3.9)

that is, if it defines a ring homomorphism χ : K0(V) → R. The topological Euler
characteristic is a prototype example of such an invariant, and for that reason the class
[X ] in the Grothendieck ring can be regarded as a universal Euler characteristic, [10].

The class in the Grothendieck ring and the motive of a variety are related through
the motivic Euler characteristic. For Chow motives, this was constructed in [36], as
an invariant χmot ((X, p, m)), satisfying the inclusion–exclusion and product relation,
which associates to an element (X, p, m) a class in the Grothendieck ring K0(MChow)

of the pseudoabelian category MChow of Chow motives. The motivic Euler character-
istic of the Chow motive h(X) = (X, idX , 0) of a smooth projective variety X fac-
tors through the class [X ] in the Grothendieck ring of varieties K0(V)[L−1], with the
Lefschetz motive inverted, via a ring homomorphism χ : K0(V)[L−1] → K0(MChow),
so that χmot (h(X)) = χ([X ]) in K0(MChow). This motivic Euler characteristic was
generalized to the Voevodsky category of mixed motives in [15]. We denote it by
χmot (m(X)).

In the Grothendieck ring, the Lefschetz motive corresponds to L = [A1], the class of
the affine line. The subring Z[L, L

−1] of the Grothedieck ring K0(V)[L−1] is the image
of the mixed Tate motives.

The blowup formulae (3.1) and (3.6) for motives have an analog for the classes in
the Grothendieck ring K0(V) of varieties, namely the Bittner relation [10].

These are based on the fact that, for f : X → Y a locally trivial fibration with fiber
F , the class in the Grothendieck ring of varieties K0(V) satisfies

[X ] = [Y ] · [F]. (3.10)
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This follows directly from the scissor relations defining the Grothendieck ring and
Noetherian induction. This then shows ([10]) that, in the case of a blowup f : Ỹ → Y of
a smooth scheme Y along a smooth closed subscheme V ⊂ Y , with exceptional divisor
E , the class [Ỹ ] in K0(V) satisfies the Bittner relation

[Ỹ ] = [Y ] − [V ] + [E] = [Y ] + [V ]([PcodimY (V )−1] − 1). (3.11)

In fact, it is shown in [10] that this relation can be used as a replacement for the inclu-
sion-exclusion relation [X ] = [Y ] + [X � Y ] for closed embedding, in the construction
of the Grothendieck ring of varieties.

We write this equivalently in the following form, which is more similar to the form
of (3.1) and (3.6).

Lemma 11. The class [Ỹ ] of a blowup f : Ỹ → Y of a smooth scheme Y along a smooth
closed subscheme V ⊂ Y is

[Ỹ ] = [Y ] +
codimY (V )−1∑

k=1

[V ] L
k . (3.12)

Proof. We can write the class of the exceptional divisor as [E]=[V ]([PcodimY (V )−1]−1).
Using

∑codimY (V )−1
k=1 L

k = [PcodimY (V )−1] − 1 one obtains [Ỹ ] = [Y ] + [V ]
∑codimY (V )−1

k=1 L
k . 
�

In particular, through the motivic Euler characteristic, the image in K0(M) of the
class in K0(V) is equal to χ([Ỹ ]) = χmot(m(Ỹ )), so that the formula (3.12) matches
exactly the form of the corresponding (3.1) and (3.6).

We then obtain the following explicit formula for the class in the Grothendieck ring
of the wonderful compactifications Con f �(X).

Proposition 9. Let X be a quasi-projective variety and let [X ] denote its class in the
Grothendieck ring of varieties K0(V). Then, for a given graph �, the class [Con f �(X)]
in K0(V) is given by

[Con f �(X)] = [X ]|V� | +
∑

N∈G�-nests

[X ]|V�/δN (�)| ∑

μ∈MN

L
‖μ‖. (3.13)

Proof. One can once again argue as in Lemma 3.1 of [44], using (3.12) instead of (3.1)
of (3.6), and obtain the analog of (3.7), with the same notation as in Proposition 7,
namely

[X (k+1)

N ] = [X (k)

N ] +
rk,N −1∑


=1

[X (k)

N ′ ] L

 = [X (k)

N ] + [X (k)

N ′ ]([Prγ,N −1] − 1). (3.14)

One then uses the same downward induction argument of Theorem 3.1 of [44], applying
(3.14) at each step and one obtains (3.13). 
�

Thus, for example, in the case of X = P
d we have the following formula for the class

in the Grothendieck ring:
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Corollary 5. For X = P
d , the class [Con f �(Pd)] in K0(V) is

[Con f �(Pd)] = (

d∑


=0

L

)|V� | +

∑

N∈G�-nests

(

d∑


=0

L

)|V�/δN (�)| ∑

μ∈MN

L
‖μ‖. (3.15)

The class in the Grothendieck ring can be written also in terms of the stratification.
This leads to interesting identities for the spaces Con f �(X), similar to the combinatorial
identities proved in [22] in the Fulton–MacPherson case.

Lemma 12. The expression (3.13) for the class [Con f �(X)] in K0(V) can be equiva-
lently written as

[Con f �(X)] = [Con f�(X)] +
∑

N G−nests

[X◦
N ], (3.16)

where the X◦
N are the open strata of (2.22). This can then be written equivalently as

[Con f �(X)] = [Con f�(X)] +
∑

N G−nests

[Con f�/δN (�)(X)]
∏

γ∈VT (N )

[Cγ /δN (γ )(A
d)].

(3.17)

Proof. The stratification (2.22) of Con f �(X) described in § 2.4 also gives us a way to
compute the class in the Grothedieck ring. In fact, by the inclusion-exclusion relation in
the Grothedieck ring, the disjoint union

Con f �(X) = Con f�(X) ∪
⋃

N G−nests

X◦
N

of the open strata corresponds to a sum of classes (3.16). We check the compatibility of
(3.17) with the formula (3.16).

Recall that the open stratum X◦
N is a fiber bundle over a base given by the con-

figuration space Con f�/δN (�)(X), with fiber FN that is obtained as an iteration of
bundles, each with fiber Fγ the space of translations and homothety classes of distinct
labeled |Vγ /δN (γ )|-tuples of points in Tx . Thus, each Fγ is identified with an open

subvariety of the space P(T
Vγ /δN (γ )

x /Tx ) of screen configurations, isomorphic to the
configuration space Cγ /δN (γ )(A

d). Thus, by (3.10), we can write each class in (3.16)
as [X◦

N ] = [Con f�/δN (�)(X)][FN ], where the class of the fiber [FN ] in turn can be
written as a product

∏
γ [Fγ ] over the graphs γ in the forest T of nested subgraphs with

N = N (T ), as in Theorem 1, with each [Fγ ] = [Cγ /δN (γ )(A
d)]. 
�

By comparing the two formulae (3.16) and (3.13), we obtain some explicit combi-
natorial identities involving the classes of the configuration spaces Cγ /δN (γ )(A

d), with
γ ranging over the graphs decorating the vertices of the forest T of nested subgraphs
for a given G�-nest N = N (T ), and the classes of the projective spaces P

rk,N −1, with
rγ,N as in (3.2).

Lemma 13. For a given graph �, consider a G�-nest N . For γ in G� let rγ,N and
μ = (μγ )γ∈G�

∈ MN be as in (3.2) and (3.3). Then we have in K0(V) the identity
∑

μ∈MN

L
‖μ‖ =

∏

γ∈G�

([Prγ,N −1] − 1) =
∏

γ∈G�

L
rγ,N − 1

L − 1
. (3.18)

Proof. Each class [Prγ,N −1] − 1 = ∑rγ,N −1

=1 L


 = (Lrγ,N − 1)(L − 1)−1. Thus, their
product is simply
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∑

μ=(μγ ):1≤μγ ≤rγ,N −1

L

∑
γ μγ =

∑

μ∈MN

L
‖μ‖,

where
∑

γ μγ = ‖μ‖ as in (3.4). 
�
Moreover, we can express the classes of XV� and XV�/δN (�) in the formula (3.13) in

terms of the classes of Con f�(X) and Con f�/δN (�)(X) of (3.16) in the following way:

Lemma 14. For a given graph � and a given G�-nest N , we have the following identities
in K0(V):

[XV� ] = [Con f�(X)] +
∑

N∈G�-nests

[Con f�/δN (�)(X)], (3.19)

[XV�/δN (�)] = [Con f�/δN (�)(X)] +
∑

N ′∈G�-nests : N⊂N ′
[Con f�/δN ′ (�)(X)]. (3.20)

Proof. The first identity is an immediate consequence of the stratification of Con f �(X)

by open strata X◦
N and the fact that, under the projection π : Con f �(X) → XV� the

X◦
N map to the Con f�/δN (�)(X), together with the additivity of Grothendieck classes

over disjoint unions. The second statement follows in the same way, with � replaced by
its quotient �/δN (�), with the observation that the G�-nests N ′ for � that contain the
nest N can be identified with the G�/δN (�)-nests, after identifying

�/δN ′(�) = (�/δN (�))/δN ′(�/δN (�)).


�
We then obtain the following identity:

Proposition 10. The following identity holds between the classes of the configuration
spaces Cγ /δN (γ )(A

d):
∑

N∈G�-nests

[Con f�/δN (�)(X)]
∏

γ∈VT (N )

[Cγ /δN (γ )(A
d)]

=
∑

N∈G�-nests

[Con f�/δN (�)(X)]
⎛

⎝1 +
∑

N ′∈G�-nests :N ′⊂N

∏

γ∈G�

([Prγ,N ′−1] − 1)

⎞

⎠ .

(3.21)

Proof. Using Lemmata 12, 13, and 14, we obtain an identity

[Con f�(X)] +
∑

N∈G�-nests

[Con f�/δN (�)(X)]
∏

γ∈VT (N )

[Cγ /δN (γ )(A
d)]

= [Con f�(X)] +
∑

N∈G�-nests

[Con f�/δN (�)(X)]

+
∑

N∈G�-nests

⎛

⎝[Con f�/δN (�)(X)] +
∑

N ′∈G�-nests : N⊂N ′
[Con f�/δN ′ (�)(X)]

⎞

⎠

×
∏

γ∈G�

([Prγ,N −1] − 1).
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We subtract the [Con f�(X)] on both sides and rearrange and reindex the terms in the
second summation on the right hand side in such a way that each G�-nest N appears
once in the summation, with the corresponding class [Con f�/δN (�)(X)] multiplied by
the sum of the classes

∏
γ∈G�

([Prγ,N ′−1] − 1), one for each N ′ ⊂ N . There is then
an additional +1 term coming from the single contribution of a class [Con f�/δN (�)(X)]
from the first summation on the right hand side of the formula above. This gives the
formula on the right hand side of (3.21). 
�
3.4. Mixed Hodge structures and virtual Hodge polynomials. The discussion of the
motives in the previous section can also be adapted to working with Hodge polynomials
and mixed Hodge structures, instead of classes in the Grothendieck ring.

In the case of the Fulton–MacPherson compactification, the mixed Hodge structures
and Hodge polynomials were computed explicitly in [22,35,47]. In particular, in that
case, one knows that there is a nice way to write a generating function for the Hodge
polynomials. In our case we do not get as explicit an answer, but we can see that the
relation of Proposition 10 provides a partial analog in our setting.

We recall that the virtual Hodge polynomial of an algebraic variety is defined as

e(X)(x, y) =
d∑

p,q=0

ep,q(X)x p yq , with ep,q(X) =
2d∑

k=0

(−1)kh p,q(Hk
c (X)),

(3.22)

where for each pair of integers (p, q) the h p,q(Hk
c (X)) are the Hodge numbers of the

mixed Hodge structure on the cohomology with compact support of X . If X is smooth
projective, then the virtual Hodge polynomial reduces to the Poincaré polynomial, with
ep,q(X) = (−1)p+q h p,q(X) the classical pure Hodge structure. It is well known that the
virtual Hodge polynomial is, like the Euler characteristic, a motivic invariant in the sense
recalled at the beginning of § 3.3 above, namely it factors through the Grothendieck ring
K0(V).

This means that, having an explicit formula for the class of a variety in the
Grothendieck ring, one can use it to compute the virtual Hodge polynomial. The com-
putation of the classes in the Grothendieck ring of varieties we obtained in the previous
section then gives us a formula for the Hodge polynomials of the graph configuration
spaces we are considering here.

Proposition 11. The virtual Hodge polynomial e(Con f �(X))(x, y) is given, as a func-
tion of e(X)(x, y), by the formula

e(Con f �(X)) = e(X)|V� | +
∑

N
e(X)|V�/δN (�)| ∏

γ∈G�

(e(Prγ,N −1) − 1). (3.23)

Moreover, the Hodge polynomials e(Con f �/δN (�)(X))(x, y)and e(Cγ /δN (γ )(A
d))(x, y)

satisfy the relation
∑

N∈G�-nests

e(Con f�/δN (�)(X))
∏

γ∈VT (N )

e(Cγ /δN (γ )(A
d))

=
∑

N∈G�-nests

e(Con f�/δN (�)(X))

⎛

⎝1 +
∑

N ′∈G�-nests :N ′⊂N

∏

γ∈G�

(e(Prγ,N ′−1
) − 1)

⎞

⎠ .

(3.24)
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Proof. The result follows directly from the Grothendieck ring calculations in (3.13) and
(3.21), using the fact that the virtual Hodge polynomial defines a ring homomorphism
e : K0(V) → Z[x, y]. 
�

Other aspects of complements of arrangements of subvarieties associated to graphs
and their compactification, which it may be interesting to investigate, include funda-
mental group questions, from a point of view similar to [30]. This is outside the purpose
of the present paper.

4. Residues of Feynman Integrals

We now consider the Feynman integrals in configuration space and discuss the rele-
vance of the motivic point of view discussed in the previous sections. The regularization
and renormalization of Feynman amplitudes in configuration space, using the worn-
derful compactifications of [27,45], was recently analyzed in the paper of Bergbauer–
Brunetti–Kreimer [9]. Here we concentrate on the residues of the Feynman amplitudes,
rather than on their renormalized values as in [9]. We then find a setting that parallels
to some extent the analysis in terms of Hodge structures for the Feynman amplitudes in
momentum space given in [14].

Definition 6. Suppose given an underlying variety X of dimension d = dim X. A con-
nected graph � is logarithmically divergent (log divergent) if it satisfies the condition

d b1(�) = 2 |E�|, (4.1)

or equivalently (for connected graphs)

(d − 2) |E�| = d (|V�| − 1), (4.2)

and all subgraphs γ ⊆ � satisfy

d b1(γ ) ≤ 2 |Eγ |, (4.3)

which for a connected subgraph means (d − 2)|Eγ | ≤ d|Vγ | − d. A subgraph γ ⊆ � is
divergent if it satisfies d b1(γ ) ≥ 2 |Eγ |. A primitive graph is a log divergent graph that
contains no divergent subgraphs. A graph with d b1(�) > 2 |E�| is said to have worse
than logarithmic divergences. For connected graphs this corresponds to (d − 2)|E�| >

d |V�| − d.

In the four-dimensional case d = 4 the log divergent condition recovers the usual
condition that the graph has n loops and 2n edges. Renormalization in momentum space
for graphs with worse than logarithmic divergences was considered from a Hodge the-
oretic point of view in [14].

In [9], the regularization and renormalization of Feynman integrals in configuration
spaces is obtained in the primitive case by a simple subtraction, whereby the Feynman
density is pulled back to the wonderful compactification Con f �(X) and regularized
there to a meromorphic function of a complex parameter s with a pole at s = 1, whose
residue is supported on the exceptional divisor of the blowup. This is then subtracted
(local minimal subtraction) and the resulting density is pushed forward to a regular
density on XV� whose value at s = 1 is the renormalized density (see Theorem 3.1 of
[9]). The case of log-divergent, non-primitive graphs is more complicated because the
stratification of the exceptional divisor of the blowup plays an important role and the
regularization and renormalization procedure is given by a local minimal subtraction in
every factor of a product indexed over G-nests, see Theorem 5.3 of [9].
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4.1. Weights of Feynman graphs. We consider as above a (quasi)projective variety X
of dimension d = dim X . We write X (C) for its complex points and M = X (R) for its
real part. In particular, one can consider the case where X = P

d(C) and M = P
d(R),

as a compactification of the d-dimensional spacetime R
d .

We also consider a scalar quantum field theory where the Lagrangian has a potential
U given by a polynomial in field φ,

U =
s∑

k=1

Ukφ
k .

Let then � be a connected Feynman diagram of the quantum field theory having
no multiple edges or tadpoles (looping edges). Let Con f�(X) and Con f �(X) be the
configuration space and its wonderful compactification, as in the previous sections. We
also consider Con f�(M) and Con f �(M), which are the real loci of Con f�(X) and
Con f �(X), respectively.

Remark 14. Notice that the real locus we consider here is not the “real blowup” of MV�

in the sense of [5] and [9], but the real locus of the complex blowup Con f �(X) of
the complex manifold XV� . The real blowup, as shown in [5], is a real manifold with
corners, hence it defines a chain with boundary. The real locus of the complex blowup
is a real algebraic variety. Thus, it defines a middle dimensional cycle in the complex
variety. However, the real variety Con f �(M) may be non-orientable.

Feynman rules assign a weight to a graph � as follows:

• The vertices are labelled by the coordinates x1, . . . , xn of Con f�(M).
• To each edge with ∂�(e) = {x, y}, one assigns a massless Euclidean propagator

G(x − y) = i

(
1

(x − y)2

) d−2
2

. (4.4)

These are rational functions when the dimension d is even.
• The (unregularized) weight of the graph � is defined as

0W� :=
∫

MV�

ω�, (4.5)

where MV� = XV� (R) is the real locus, and

ω� :=
∏

v∈V�

U|v| ×
∏

∂�(e)={ve .ve}
e∈E�

G(xve − xve )
∏

v∈V�

dxv, (4.6)

where U|v| is the coefficient of the monomial φk in the potential U with k = |v| the
valence of the vertex v.
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4.2. Graph hypersurfaces and divergences. Let π� : Con f �(X) → XV� be the rational
map inductively constructed in § 2.3 as iterated blowups, and let πR

� : Con f �(M) →
MV� be its restriction to the real locus.

Lemma 15. The divergent locus of the density ω� of (4.6) in MV� is given by the union
of diagonals

⋃
e∈E�

�e.

Proof. For massless Euclidean field theories, the graph hypersurface of � (that is, the
pole locus {ω� = ∞} in XV� ) is simply the union of quadrics

Z� :=

⎧
⎪⎪⎨

⎪⎪⎩

∏

∂�(e)={ve .ve}
e∈E�

(xve − xve)2 = 0

⎫
⎪⎪⎬

⎪⎪⎭
. (4.7)

The defining Eq. (4.7) of Z� is a real polynomial with non-negative values on real
points, hence the intersection Z�(C)

⋂
M[�] is given by xve = xve i.e., it is the union

of diagonals
⋃

e∈E�
�e ⊂ M |V� |. 
�

In the Lorentzian case, where the quadric is not positive semi-definite, the real locus
of integration meets the polar locus of ω� in a more complicated way, but for the purpose
of this paper we only consider the Euclidean case.

4.3. Order of poles in the blowups. In the following, assuming d even, we use the
notation

fe(x) = (xv1 − xv2) for {v1, v2} = ∂(e), (4.8)

so that the propagator G of (4.4) is given by G(xv1 − xv2) = f 2−d
e (x), as in (4.6). The

function fe is also the defining function of the diagonal �e = { fe = 0}, which is a
codimension d subvariety in XV� .

Proposition 12. Let � be a primitive (hence log divergent), biconnected graph. Then
the proper transform ω̃� = π∗

�(ω�) of the form ω� of (4.6) to the blowup of XV� along
the deepest diagonal �� has a pole of order one along the exceptional divisor, while
the pullback to the blowups along (the dominant transforms of) the (poly)diagonals �γ ,
with γ ⊂ � have no other poles along the exceptional divisors Eγ .

Proof. In the model case of a coordinate linear space L defined by equations {z1 = · · · =
z p = 0} ⊂ C

d |V� |, one can choose coordinate charts in the blowup with coordinates
wi , so that wi = zi for i = p, . . . , d|V�| and wiwp = zi for i < p, so that, in these
coordinates, the exceptional divisor is defined by wp = 0. Thus, the orientation form
satisfies

π∗(dz1 ∧ · · · ∧ dzd|V� |) = d(wpw1) ∧ · · · ∧ d(wpwp−1) ∧ dwp ∧ · · · ∧ dwd|V� |
= w

p−1
p dw1 ∧ · · · ∧ dwp−1 ∧ dwp ∧ · · · ∧ dwd|V� |.

This has a zero of order codim(L) − 1 along the exceptional divisor of the blowup.
Let �γ be the diagonal associated to a connected subgraph γ ⊂ �. One obtains a

minimal set of equations defining �γ by choosing a spanning tree τ for γ . Then

�γ = { fe = 0 | e ∈ Eτ }, (4.9)
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with fe as in (4.8). This gives codim(�γ ) = d |Eτ |. For a spanning tree we have
|Eτ | = |Vγ | − 1, since γ is connected, so this gives dim(�γ ) = d (|V�| − |Vγ | + 1), as
we saw in the previous sections.

The form ω� of (4.6) has order of pole along �γ given by

ord∞(ω�,�γ ) = (d − 2)|Eγ |, (4.10)

coming from the factors f 2−d
e with e ∈ Eγ .

When we consider the blowup πγ : Bl�γ (XV� ) → XV� and we pull back the singu-
lar differential form ω� along πγ , we obtain a form π∗

γ (ω�) that has order of pole along
the exceptional divisor Eγ of the blowup given by

ord∞(π∗
γ (ω�), Eγ ) = (d − 2)|Eγ | − d|Eτ | + 1 = (d − 2)|Eγ | − d(|Vγ | − 1) + 1.

(4.11)

If the graph � is a primitive, biconnected graph, then (d − 2)|E�| = d|V�| − d and
� contains no divergent subgraphs, so that (d − 2)|Eγ | < d|Vγ | − d, for all subgraphs
γ ⊂ �. Thus, in this case, the pullback π∗

�(ω�) along the map that corresponds to the
blowup along the deepest diagonal �� has a pole of order one along the exceptional
divisor, while all the further blowups along the dominant transforms of the �γ do not
contribute any poles. 
�

This corresponds to the case analyzed in Theorem 3.1 of [9], where one needs just
one pole subtraction in order to renormalize the Feynman amplitude. Here it comes from
the subtraction of the simple pole along the exceptional divisor E� of the blowup along
the deepest diagonal �� .

In the case where � is log divergent but no longer primitive, the pullback of ω� to the
blowups along (the dominant transforms of) the �γ with (d −2)|Eγ | = d(|Vγ |−1) has
a pole of order one along the exceptional divisor Eγ . This is the more general situation
analyzed in §5 of [9].

In the even more general case of graphs � that have worse than logarithmic singular-
ities, one finds that the order of pole along the exceptional divisors of the iterated chain
of blowups that define the wonderful model Con f �(X) is given by the following.

Corollary 6. Let � be a connected graph which has worse than logarithmic divergences.
Then for every connected induced subgraph γ ⊂ � that has (d − 2)|E�| > d |V�| − d,
the pullback π∗

γ (ω�) of the form ω� of (4.6) to the blowup along the (dominant transform
of) �γ has poles of higher order

ord∞(π∗
γ (ω�), Eγ ) = (d − 2)|Eγ | − d(|Vγ | − 1) + 1 > 1 (4.12)

along the exceptional divisors Eγ in the blowup.

4.4. The Poincaré residue. We discuss briefly the residues of Feynman amplitudes, first
in the primitive and the log divergent case and then in the more general case of graphs
with worse than logarithmic divergences. We want to remain within the setting of alge-
braic varieties and periods, hence we describe the residues of Feynman amplitudes in
terms of Poincaré residues and Hodge structures.

We recall the basic definition of the Poincaré residue of a differential form with sim-
ple poles along a hypersurface (see [38], p.147). Given a hypersurface Y in a smooth
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n-dimensional projective variety X , locally defined by an equation { f (z) = 0}, an
n-form

ω = g(z) dz1 ∧ · · · ∧ dzn

f (z)
∈ �n(X) (4.13)

can always be written as

ω = d f

f
∧ ω′, (4.14)

where ω′ can be taken of the form

ω′ = (−1)i−1 g(z) dz[i]
∂ f
∂zi

,

for any i such that ∂ f
∂zi

�= 0, with

dz[i] = dz1 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn .

The Poincaré residue of ω is then the (n − 1)-form on V defined by

Res[ω] = (−1)i−1 g(z) dz[i]
∂ f
∂zi

∣∣∣∣∣
f =0

∈ �n−1(Y ). (4.15)

Proposition 13. Let � be a primitive (log divergent), biconnected graph. Then the pull-
back of the differential form ω� of (4.6) to the wonderful model Con f �(X) has a unique
residue, which is a (d|V�|−1)-form on Ê� = E� \ (E� ∩ Z�), with E� the exceptional
divisor of the blowup of the deepest diagonal, and Z� the graph hypersurface:

Res[π∗(ω�)] ∈ �d |V� |−1(Ê�). (4.16)

Proof. We have seen in Proposition 12 that, in the case of a primitive graph �, the pull-
back ω̃� = π∗

�(ω�) to the blowup of XV� along the deepest diagonal �� � X , is a
differential form as in (4.13), with a simple pole along the exceptional divisor E� , with
f = 0 the defining equation of E� . Therefore ω̃� can be rewritten in the form (4.14)
and it has a well defined Poincaré residue Res[ω̃�], which is a (d|V�| − 1)-form on
Ê� . The successive blowups along the dominant transforms of the �γ , for γ ranging
over G� , do not contribute any further poles, since the graph has no subdivergences.
Moreover, because the order of the sequence of blowup is determined by ordering G�

in such a way that i ≤ j if γi ⊇ γ j , so that �γi ⊆ �γ j , any two diagonals �i and � j
that intersect along �γi ∪γ j have dominant transforms that no longer intersect, once the
blowup along �γi ∪γ j has been performed already, and intersect transversely the excep-
tional divisor of this blowup. Thus, after the first blowup along the deepest diagonal �� ,
one obtains a residue Res[π∗

�(ω�)] ∈ �d|V� |−1(Ê�). The pullback of this form along
the successive blowups gives a (d|V�| − 1)-form supported on the dominant transform
E� in Con f �(X), which has zeros at the intersections of E� with the other exceptional
divisors Eγ . 
�
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Consider next the case where the graph � is logarithmically divergent, but not prim-
itive. Let G� be ordered in such a way that i ≤ j if γi ⊇ γ j , as before, with π :
Con f �(X) → XV� the iterated blowups along the �γ , with γ ∈ G� in the assigned
ordering.

This means that there are connected induced subgraphs γ ⊂ � for which the pullback
to the blowup along (the dominant transform of) �γ of the form ω� has poles of order
one along the exceptional divisor Eγ . They are precisely those satisfying the divergence
condition.

Let us denote by Glog
� the subset Glog

� ⊂ G� of subgraphs γ , satisfying the logarithmic
divergence condition

Glog
� := {γ ∈ G� | (d − 2)|Eγ | = d(|Vγ | − 1)}. (4.17)

We then have the following result on the residues of the Feynman amplitude.

Proposition 14. Let � be a logarithmically divergent, non-primitive graph. Then the
pullback π∗(ω�) of the form (4.6) has Poincaré residues along each Êγ = Eγ \ (Eγ ∩
Z�), for γ ∈ Glog

� . Then the residue is given by a form

Res
[π∗(ω�)] ∈ �n−
(Êγ1 ∩ · · · ∩ Êγ

). (4.18)

This is trivial unless the set Glog
� is a G�-nest.

Proof. First notice that the form π∗(ω�) has poles of order one along Êγ , for each
γ ∈ G� satisfying (d −2)|Eγ | = d(|Vγ |−1). Thus, π∗(ω�) is defined on Con f �(M)�

∪
γ∈Glog

�

Eγ . By iterating the procedure used to rewrite a form (4.13) as (4.14), one can

define iterated residues (see for instance Theorem 1.1 of [3]). For an n-form ω with a
pole of order one along each component Yi of a hypersurface Y = Y1 ∪ · · · ∪ Y
, where
the Yi intersect transversely, the iterated residue gives an (n − 
)-form

Res
[ω] ∈ �n−
(Y1 ∩ · · · ∩ Y
). (4.19)

We know that the intersection ∩
γ∈Glog

�

Eγ is non-empty if and only if the set Glog
� is a

G�-nest. Thus, one obtains the residue (4.18). 
�
In the more general case, where the graph has more than logarithmically divergent

subgraphs, one has to deal with a form π∗(ω�) that has poles of higher order along some
of the exceptional divisors Eγ .

In affine space A
N a differential form

ω = P(z) dz1 ∧ · · · ∧ dzN

Qr1
1 (z) · · · Qrm

m (z)

with poles of higher order rk along the hypersurfaces Yi defined by Qi = 0 is cohomol-
ogous to a form with only poles of order one,

ω′ =
∑

J

PJ (z) dz1 ∧ · · · ∧ dzN

Q j1(z) · · · Q jk (z)
,

with J = { j1, . . . , jk}, k ≤ N . (See for instance Theorem 1.8 of [3].)
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This is not true in general for the complement of a hypersurface in a smooth projective
variety, by using rational forms. However, in the case of a smooth hypersurface Y in P

n ,
it was shown by Griffiths in [37] that there are Poincaré residues for forms with higher
order poles. The n-forms

ω = P(z) dz1 ∧ · · · ∧ dzn

Qr+1(z)

with poles of order r + 1 along the smooth hypersurface Y = {Q = 0} generate a
subspace Fn−r Hn(Pn

� Y ) of the cohomology Hn(Pn
� Y ) whose image under the

Poincaré residue gives the pieces of the Hodge filtration on the primitive cohomology
of the hypersurface,

Res(Fn−r Hn(Pn
� Y )) = F (n−1−r)Hn−1

prim(Y ).

This result relating the pole filtration to the Hodge filtration was further generalized to
the complement of normal crossings divisors in smooth projective varieties by Deligne
in [28] II §3.13, and the comparison between pole and Hodge filtration for singular
hypersurfaces was further analyzed by Deligne and Dimca in [29] and Dimca and Saito
in [31].

Thus, if we momentarily ignored the other divergences coming from the rest of Z�

in Con f �(X), we would conclude that for a subgraph γ ⊆ � that has worse than log-
arithmic divergences, the pullback π∗

γ (ω�) of the Feynman density (4.6) determines
an element in the polar filtration of the complement of the exceptional divisor Eγ in
Con f �(X). Through Poincaré residues, this would then determine an element in the
Hodge filtration of the primitive cohomology of Eγ . The situation is in fact made more
complicated by the presence of the additional singularities coming from the hypersurface
Z� of (4.7).

4.5. Regularization of contours by Leray coboundaries. We propose here a regulariza-
tion procedure for the divergent Feynman amplitudes (4.5), where instead of regularizing
the form as in [9] we regularize the domain of integration using Leray coboundaries, see
[50].

Let Eγ be one of the exceptional divisors in Con f �(X) along which the pullback
π∗(ω�) of the Feynman amplitude (4.6) has poles (possibly of higher order).

The unregularized Feynman weight (4.5) is given by the integral over the middle
dimensional cycle in XV� given by the real locus σ = XV� (R) = MV� , see Remark 14.

Remark 15. In the case of even dimensional spacetime, the real locus Con f �(Rd) of
the configuration space Con f �(Ad) is non-orientable. Thus, the configuration spaces
Con f �(M) that contain Con f �(Rd) are non-orientable. However, in such cases, one
can define the regularized weights in the same way that is described here below, after
passing to a double cover of Con f �(X), branched along

⋃
γ∈G�

Eγ . The real locus of
this branched cover is orientable. With a slight abuse of notation, in the following we do
not distinguish explicitly between Con f �(M) and its orientable double cover.

In particular, as we have seen in Lemma 15, the divergences along the domain of
integration come from the real locus of ∪e�e, and in particular, within this locus, from
the intersection σ ∩ �γ = �γ (R), for γ ⊆ � a divergent subgraph.
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Let σ̃γ = π−1(σ ∩ �γ ) ⊂ Eγ . This is a d|V�| − 1-cycle in Eγ . The Leray coboun-
dary Lε(σ̃γ ) of σ̃γ is a d|V�|-cycle in Con f �(X) obtained as follows. Let ∂ Dε(Eγ )

be the boundary of a tubular neighborhood of radius ε around Eγ . This is a circle bun-
dle πε : ∂ Dε(Eγ ) → Eγ over Eγ and one sets Lε(σ̃γ ) = π−1

ε (σ̃γ ). The preimage
Con f �(M) = π−1(σ ) ⊂ Con f �(X) of the real locus σ = MV� intersects ∂ Dε(Eγ )

in its real points.
Let then �ε ⊂ Lε(σ̃�) be a deformation to ∂ Dε(Eγ ) of Con f �(M) ∩ Dε(Eγ ), with

fixed Con f �(M) ∩ ∂ Dε(Eγ ). If �ε does not intersect the locus Z̃� ∩ Lε(σ̃�), where
Z̃� = π−1

� (Z�) is the preimage of the graph hypersurface of (4.7) along which the form
ω� is singular, one can regularize the integral

∫

Con f �(M)

π∗(ω�)

by replacing the part
∫

Con f �(M)∩Dε (Eγ )

π∗(ω�)

of the integral with an integration along the Leray coboundary
∫

�ε

π∗(ω�). (4.20)

There is an ambiguity involved in the choice of this regularization of the domain of
integration, as in the choice of contours that avoid poles in the one dimensional setting,
which is measured in terms of residues.

Proposition 15. Let � be a logarithmically divergent graph with γ ⊆ � a divergent
subgraph. Then the regularization (4.20) is defined up to an ambiguity measured by the
integral

2π i
∫

σ̃γ

Res[π∗
γ (ω�)] (4.21)

of the Poincaré residue Res[π∗
γ (ω�)] ∈ �d|V� |−1(Êγ ) along the cycle σ̃γ = π−1(σ ∩

�γ ) ⊂ Eγ . These ambiguities are given by periods of Êγ .
In the more general case, if γ ⊂ � is a subgraph with worse than logarithmic diver-

gences, so that the pullback π∗
γ (ω�) has a pole of order k along Êγ , then the ambiguities

in the contour regularization of the Feynman amplitude are given by periods of the Hodge
filtration of the primitive part of the cohomology, F (d|V� |−1−k) Hd|V� |−1

prim (Êγ ).

Proof. The Poincaré residue is dual to the Leray coboundary, in the sense that, if ω is an
n-form with logarithmic poles along a hypersurface Y ⊂ X , and σ is an (n − 1)-chain
in Y , then

1

2π i

∫

L(σ )

ω =
∫

σ

Res[ω].

Thus, the ambiguity in the choice of a domain of integration �ε as in (4.20), which is
up to the value of the integral
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∫

Lε (σ̃�)

π∗(ω�)

is measured by (integral multiples of) (4.21).
In general, the form π∗(ω�) has further singularities on Lε(σ̃�). These come from

the intersections of Lε(σ̃�) with the preimage Z̃� of the graph hypersurface of (4.7).
For sufficiently small ε > 0, up to a locus of codimension at least two, the intersec-

tions Z̃�∩Lε(σ̃�) are coming from the components of Z� associated to those exceptional
divisors Eγ ′ that have non-empty intersection Eγ ∩ Eγ ′ �= ∅, and such that γ ′ is also a
divergent subgraph of �.

In the model case where there would be only one divergent graph γ , which is a loga-
rithmic divergence, the form π∗(ω�) would have no further singularities on Lε(σ̃�) and
the values of the integral (4.21) would then be periods

Hd|V� |−1(Êγ ) × Hd|V� |−1(Eγ ) → C

Res[π∗
γ (ω�)] ⊗ σ̃γ �→

∫

σ̃γ

Res[π∗
γ (ω�)].

In the more general case of a higher order pole, the resulting period pairing would be
with the part of the cohomology that comes from Res(Fd|V� |−k Hn(Con f �(X) � Z�))

which gives the piece of the primitive cohomology F (d|V� |−1−k)Hd|V� |−1
prim (Êγ ), as in

[28,37].
However, in general, there will be other divergent subgraphs γ ′ with Eγ ′ ∩Eγ �= ∅. In

this case, assuming only log divergences are present, one ends up with an iterated residue
as in (4.19), with values in the cohomology of the intersection of all the corresponding
exceptional divisors. 
�

The integrals along the Leray coboundaries measure residues around the exceptional
divisors Eγ of the blowups, in a way similar to what happens with the toric blowups
of [14] for the Feynman integrals in momentum space. The formulae described in the
previous sections for the motive of the wonderful compactification of the configuration
spaces show that, if the underlying smooth (quasi)projective variety X is mixed Tate as
a motive, then the Eγ , their intersections, and the complements Con f �(X) � Eγ that
appear in the above are also mixed Tate, so those ambiguities (residues) in the Leray
regularization of the Feynman amplitudes that are supported on these loci will give peri-
ods of mixed Tate motives. A more detailed analysis of the nature of these periods and
the conditions under which they are mixed Tate will be given in the forthcoming paper
[21].

More generally, one considers the full integral
∫

Con f �(M)

π∗(ω�)

and its regularization
∫

Con f �(M)

π∗(ω�) −
∑

γ∈Glog
�

(∫

Con f �(M)∩Dε (Eγ )

π∗(ω�) −
∫

�ε(σ̃γ )

π∗(ω�)

)
.

In order to view these integrations as period computations, one needs to work with the
complement Con f �(X)�Z� , for which we do not have a comparably simple description
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of the motive. In particular, the components of the graph hypersurface Z� are cones,
which are simple to understand when one restricts them to a tubular neighborhood of one
of the divisors Eγ , as we have seen above. However, these cones intersect in complicated
ways outside of these tubular neighborhoods, so that one does not have a good control
over the motivic nature of these intersections.
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