Notions of Complexity and Information

Matilde Marcolli

Ma148a: Geometry and Physics of Information
Caltech, Fall 2021
Kolmogorov complexity

- Let T_U be a universal Turing machine (a Turing machine that can simulate any other arbitrary Turing machine: reads on tape both the input and the description of the Turing machine it should simulate)

- Given a string w in an alphabet \mathcal{A}, the Kolmogorov complexity

$$K_{T_U}(w) = \min_{P: T_U(P) = w} \ell(P),$$

minimal length of a program that outputs w

- universality: given any other Turing machine T

$$K_T(w) = K_{T_U}(w) + c_T$$

shift by a bounded constant, independent of w; c_T is the Kolmogorov complexity of the program needed to describe T for T_U to simulate it
• conditional Kolmogorov complexity

\[K_{TU}(w \mid \ell(w)) = \min_{P: T_U(P, \ell(w))=w} \ell(P), \]

where the length \(\ell(w) \) is given and made available to machine \(T_U \)

\[K(w \mid \ell(w)) \leq \ell(w) + c, \]

because if know \(\ell(w) \) then a possible program is just to write out \(w \): then \(\ell(w) + c \) is just number of bits needed for transmission of \(w \) plus print instructions

• upper bound

\[K_{TU}(w) \leq K_{TU}(w \mid \ell(w)) + 2 \log \ell(w) + c \]

if don’t know a priori \(\ell(w) \) need to signal end of description of \(w \) (can show for this suffices a “punctuation method” that adds the term \(2 \log \ell(w) \))

• any program that produces a description of \(w \) is an upper bound on Kolmogorov complexity \(K_{TU}(w) \)
Problems with Kolmogorov complexity

- any program that produces a description of \(w \) is an upper bound on Kolmogorov complexity \(\mathcal{K}_{Tu}(w) \)
- good upper bounds but not lower bounds (non-computability, halting problem)
- \(\mathcal{K} \) assigns large complexity to random sequences
- not the heuristic/intuitive notion of "complexity" (interesting patterns)
- are there better notions of complexity?
Kolmogorov Complexity and Entropy

- Independent random variables X_k distributed according to Bernoulli measure $\mathbb{P} = \{p_a\}_{a \in \mathbb{A}}$ with $p_a = \mathbb{P}(X = a)$
- Shannon entropy $S(X) = -\sum_{a \in \mathbb{A}} \mathbb{P}(X = a) \log \mathbb{P}(X = a)$
- $\exists c > 0$ such that for all $n \in \mathbb{N}$
 \[S(X) \leq \frac{1}{n} \sum_{w \in \mathcal{W}^n} \mathbb{P}(w) \mathcal{K}(w | \ell(w) = n) \leq S(X) + \frac{\# \mathcal{A} \log n}{n} + \frac{c}{n} \]
- Expectation value
 \[\lim_{n \to \infty} \mathbb{E}(\frac{1}{n} \mathcal{K}(X_1 \cdots X_n | n)) = S(X) \]

average expected Kolmogorov complexity for length n descriptions approaches Shannon entropy
Kraft inequality for prefix-free codes

- **prefix-free codes** (prefix codes): code where no code word is a prefix of another code word (self-punctuating codes)
- **Kraft inequality for prefix-free codes**: prefix code in an alphabet \mathcal{A} of size $N = \#\mathcal{A}$; lengths of code words $\ell(w_1), \ldots, \ell(w_m)$
 \[
 \sum_{i=1}^{m} D^{-\ell(w_i)} \leq 1
 \]
 and any such inequality is realized by lengths of code words of some prefix-free code
- **Relation between optimal encoding and Shannon entropy**
 \[
 S_D(X) \leq \sum_{i=1}^{m} \mathbb{P}(w_i)\ell(w_i) \leq S_D(X) + 1
 \]
 for $D = \#\mathcal{A}$ and $S_D =$ Shannon entropy with \log_D with w_1, \ldots, w_m code words of optimal lengths for a source X randomly distributed according to Bernoulli $\mathbb{P} = \{p_a\}$
Why Kraft inequality?

- Main observation: a set of prefix-free binary code words corresponds to a binary tree and oriented paths from the root to one of the leaves (0 = turn right, 1 = turn left at the next node)
- for simplest tree with only one step equality $\frac{1}{2} + \frac{1}{2} = 1$
- for other binary trees, Kraft inequality proved inductively over subtrees: isolating root and first subsequent nodes
- Shannon entropy estimate from Kraft inequality

$$S(X) - \sum_{i=1}^{m} P(w_i)\ell(w_i) \leq \sum_{i} P(w_i) \log_2\left(\frac{2^{-\ell(w_i)}}{P(w_i)}\right)$$

$$= \log_2(e) \sum_{i} P(w_i) \log\left(\frac{2^{-\ell(w_i)}}{P(w_i)}\right) \leq \log_2(e) \sum_{i} P(w_i)\left(\frac{2^{-\ell(w_i)}}{P(w_i)} - 1\right) \leq 0$$

using $\log(x) \leq x - 1$ and Kraft inequality
Kraft inequality for Turing machines

- **prefix-free Turing machine**: programs on which it halts are prefix-free codes (unidirectional input/output tapes, bidirectional work tapes...)

- **universal prefix-free Turing machine** T_U

- **encode programs** P using a prefix-free (binary) code

- **Kraft inequality**

 $$\sum_{P : T_U(P) \text{ halts}} 2^{-\ell(P)} \leq 1$$

- **Universal (Sub)Probability**

 $$\mathbb{P}_{T_U}(w) = \sum_{P : T_U(P) = w} 2^{-\ell(P)} = \mathbb{P}(T_U(P) = w)$$

over an ensemble of randomly drawn programs (expressed by binary codes) most don’t halt (or crash) but some halt and output w
Levin’s Probability Distribution

- prefix-free Kolmogorov complexity

$$\mathcal{KP}_{TU}(x) = \min_{P: TU(P) = x} \ell(P)$$

$TU =$ universal prefix-free Turing machine

- Relation of universal measure to Kolmogorov complexity:

$$\mathbb{P}_{TU}(w) \sim 2^{-\mathcal{KP}_{TU}(w)}$$

- dominance of shortest program

behavior of prefix-free Kolmogorov complexity

\[\log(x) + 2\log(\log(x)) \leq K(x) \leq \log(x) \]

\(x \)
Gell-Mann Effective Complexity

- unlike Kolmogorov complexity does not measure description length of whole object
- based on description length of "regularities" (structured patterns) contained in the object
- a completely random sequence has maximal Kolmogorov complexity but zero effective complexity (it contains no structured patterns)
- distinguish system complexity from structural complexity
Gell-Mann Effective Complexity

 - **total information**: combination of Kolmogorov complexity and Shannon entropy

 \[T(x, E) := K(x|E) + H(E) \]

 with \(E \) a statistical ensemble and \(x \) a datum

 - Kolmogorov complexity term \(K(x|E) \) measures algorithmic complexity of computing \(x \) assuming it belongs to the statistical ensemble \(E \)

 - \(H(E) \) computes the Shannon entropy of the ensemble
for a datum x, one looks for a choice of E that minimizes the total information: E is a best fitting statistical model for x.

one also wants a choice of E with the property that x is “typical” in the statistics determined by $E \Rightarrow$ probability $E(x)$ of x in the statistics E not much smaller than predicted by Shannon entropy $2^{-H(E)}$.

these conditions identify a set M_x of candidates E: good statistical models explaining the datum x.

effective complexity of datum x is minimal value of Kolmogorov complexity $\mathcal{K}(E)$ over candidate models E

$$\mathcal{E}(x) = \min_{E \in M_x} \mathcal{K}(E)$$

completely random patterns have small effective complexity
Logical Depth

- Bennett’s notion of logical depth is another variant of complexity using execution time of a nearly-minimal program rather than length of minimal program

$$D_\alpha(x) = \min_P \{\tau(P) \mid \ell(P) - \mathcal{K}(x) \leq \alpha, \ T_U(P) = x\}$$

- computing minimum time of execution of a program P that outputs x, whose length equals (or just slightly larger than) minumum one (whose length is $\mathcal{K}(x)$)

- allowed discrepancy measured by parameter α
from minimal to nearly-minimal: avoid problem that some slightly longer programs may have shorter execution time
it seems small change from length of a program to its execution time but significant effect in reducing role of randomness in high complexity patterns
how $D_\alpha(x)$ changes compared to effective complexity $E(x)$?

phase transition: for small values of $E(x)$ also $D_\alpha(x)$ takes small values; when effective complexity crosses a threshold value (which depends on Kolmogorov complexity) logical depth suddenly jumps to extremely large values (Ay–Mueller–Szkola)

so effective complexity $E(x)$ considered a more stable notion of complexity
Integrated Information (an idea from neuroscience – Tononi)

- want to measure amount of informational complexity in a system that is not separately reducible to its individual parts
- possibilities of causal relatedness among different parts of the system
Computing integrated information

- consider all possible ways of splitting a given system into subsystems
- the state of the system at a given time t is described by a set of observables X_t and the state at a near-future time by X_{t+1}
- partition λ into N subsystems \Rightarrow splitting of these variables $X_t = \{X_{t,1}, \ldots, X_{t,N}\}$ and $X_{t+1} = \{X_{t+1,1}, \ldots, X_{t+1,N}\}$ into variables describing the subsystems
- all causal relations among the $X_{t,i}$ or among the $X_{t+1,i}$, also causal influence of the $X_{t,i}$ on the $X_{t+1,j}$ through time evolution captured (statistically) by joint probability distribution $P(X_{t+1}, X_t)$
- compare information content of this joint distribution with distribution where only causal dependencies between X_{t+1} and X_t through evolution within separate subsystem not across subsystems
set \mathcal{M}_λ of probability distributions $Q(X_{t+1}, X_t)$ with property that

$$Q(X_{t+1}, i|X_t) = Q(X_{t+1}, i|X_t, i)$$

for each subset $i = 1, \ldots, N$ of the partition λ

- minimize Kullback-Leibler divergence between actual system and its best approximation in \mathcal{M}_λ over choice of partition λ

- integrated information

$$\Phi = \min_{\lambda} \min_{Q \in \mathcal{M}_\lambda} KL(P(X_{t+1}, X_t) || Q(X_{t+1}, X_t))$$

- value Φ represents additional information in the whole system not reducible to smaller parts

Question: a Complexity version of integrated information based on Gell-Mann effective complexity?