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Kolmogorov complexity

e Let Ty be a universal Turing machine (a Turing machine that
can simulate any other arbitrary Turing machine: reads on tape
both the input and the description of the Turing machine it should
simulate)

e Given a string w in an alphabet 2, the Kolmogorov complexity

,CTM (W) - P:Tz,rlrzi‘:r’])zwg(P)7

minimal length of a program that outputs w

e universality: given any other Turing machine T
]CT(W) = /CTM(W) +cr

shift by a bounded constant, independent of w; crt is the
Kolmogorov complexity of the program needed to describe T for
Ty to simulate it
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e conditional Kolmogorov complexity

Ko (wltw)) = min  I(P),

where the length ¢(w) is given and made available to machine T,
K(w|l(w)) < l(w) + c,

because if know ¢(w) then a possible program is just to write out
w: then ¢(w) + c is just number of bits needed for transmission of
w plus print instructions

e upper bound
Kr,(w) < K7, (w]|l(w))+2log(w) + ¢

if don't know a priori £(w) need to signal end of description of w
(can show for this suffices a “punctuation method” that adds the
term 2log {(w))

e any program that produces a description of w is an upper bound
on Kolmogorov complexity K1,,(w)
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Problems with Kolmogorov complexity
e any program that produces a description of w is an upper bound
on Kolmogorov complexity K, (w)

e good upper bounds but not lower bounds (non-computability,
halting problem)

e /C assigns large complexity to random sequences

e not the heuristic/intuitive notion of “complexity” (interesting
patterns)

e are there better notions of complexity?
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Kolmogorov Complexity and Entropy

e Independent random variables X} distributed according to
Bernoulli measure P = {p,}.ca with p, = P(X = a)

e Shannon entropy S(X) = — > o P(X = a)log P(X = a)
e Jdc > 0 such that for all n € N

Alogn ¢
, #B3logn ¢
n n

S(X) < % > P(w)K(w|4w) = n) < S(X)
wewn

e expectaction value

lim B(2K(X1- - X | ) = S(X)

n—o00 n

average expected Kolmogorov complexity for length n descriptions
approaches Shannon entropy
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Kraft inequality for prefix-free codes

e prefix-free codes (prefix codes): code where no code word is a
prefix of another code word (self-punctuating codes)

e Kraft inequality for prefix-free codes:

prefix code in an alphabet 2 of size N = #%; lengths of code
words (wy), ... £(Wpm)

i pD—twi) <1
i=1

and any such inequality is realized by lengths of code words of
some prefix-free code
e Relation between optimal encoding and Shannon entropy

m
Sp(X) <D P(wi)l(w;) < Sp(X) +1
i=1
for D = #2 and Sp = Shannon entropy with logp with
wi, ..., Wn code words of optimal lengths for a source X randomly
distributed according to Bernoulli P = {p,}
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Why Kraft inequality?

e Main observation: a set of prefix-free binary code words
corresponds to a binary tree and oriented paths from the root to
one of the leaves (0 = turn right, 1 = turn left at the next node)

e for simplest tree with only one step equality % + % =1

e for other binary trees, Kraft inequality proved inductively over
subtrees: isolating root and first subsequent nodes

e Shannon entropy estimate from Kraft inequality
o—€(w;

ZP(W/)E WI) < ZP(WI |0g2 ]P’( ) )

2—{(w ) 2—L(w;)
) < log,(e ZIP’ w;)( ) -1)<0

-

= log,(e ZIP’ w; Iog
using log(x) < x — 1 and Kraft inequality
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Kraft inequality for Turing machines

e prefix-free Turing machine: programs on which it halts are
prefix-free codes (unidirectional input/output tapes, bidirectional
work tapes...)

e universal prefix-free Turing machine Ty
e encode programs P using a prefix-free (binary) code

e Kraft inequality

Z 2—Z(P) < 1

P: Ty/(P) halts
e Universal (Sub)Probability

Pr,(w)= > 27V =P(Ty(P)=w)
P: Ty(P)=w

over an ensemble of randomly drawn programs (expressed by binary
codes) most don't halt (or crash) but some halt and output w
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Levin's Probability Distribution

o prefix-free Kolmogorov complexity

ICPT“ (X) - P: Trg(ilr;):x E(P)

Ty = universal prefix-free Turing machine

e Relation of universal measure to Kolmogorov complexity:
Pr, (w) ~ 2—KPr, (w)

e dominance of shortest program

@ L.A. Levin, Various measures of complexity for finite objects
(axiomatic description), Soviet Math. Dokl., Vol.17 (1976)
N.2, 522-526.

o A.K. Zvonkin, L.A. Levin, Complexity of finite objects and the
development of the concept of information and randomness by
means of the theory of algorithms, Uspehi Mat. Nauk, Vol.25
(1970) no. 6(156), 85-127.

Matilde Marcolli Notions of Complexity and Information



behavior of prefix-free Kolmogorov complexity

" log(x)+2log(log(x))_

-
—_—

-

L J
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Gell-Mann Effective Complexity
e unlike Kolmogorov complexity does not measure description
length of whole object

e based on description length of “regularities” (structured
patterns) contained in the object

e a completely random sequence has maximal Kolmogorov
complexity but zero effective complexity (it contains no structured
patterns)

e distinguish system complexity from structural complexity
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Gell-Mann Effective Complexity

e Nihat Ay, Markus Mueller, Arleta Szkola, Effective complexity
and its relation to logical depth, IEEE Trans. Inf. Th., Vol. 56/9
(2010) 4593-4607. [arXiv:0810.5663]

@ total information: combination of Kolmogorov complexity and
Shannon entropy

T(x,E) := K(x|E) + H(E)

with E a statistical ensemble and x a datum

e Kolmogorov complexity term K(x|E) measures algorithmic
complexity of computing x assuming it belongs to the
statistical ensemble E

e H(E) computes the Shannon entropy of the ensemble
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@ for a datum x, one looks for a choice of E that minimizes the
total information: [E is a best fitting statistical model for x

@ one also wants a choice of E with the property that x is
“typical” in the statistics determined by E = probability E(x)
of x in the statistics E not much smaller than predicted by
Shannon entropy 2~ H(E)

@ these conditions identify a set M, of candidates E: good
statistical models explaining the datum x

o effective complexity of datum x is minimal value of
Kolmogorov complexity X(E) over candidate models E

£09 = nip, 1)

@ completely random patterns have small effective complexity
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Logical Depth

@ Charles H. Bennett, Logical Depth and Physical Complexity,
in “The Universal Turing Machine — a Half-Century Survey”
(Ed. Rolf Herken), Oxford University Press, 1988.

@ Charles H. Bennett, Peter Gacs, Ming Li, Paul M.B. Vitanyi,
Wojciech H. Zurek, Information distance, IEEE Transactions
on Information Theory, 44(1998) N.4, 1407-1423.

@ Bennett's notion of logical depth is another variant of
complexity using execution time of a nearly-minimal program
rather than length of minimal program

Da(x) = mPin{'r(P) | 4(P) — K(x) < a, Ty(P)=x}

@ computing minimum time of execution of a program P that
outputs x, whose length equals (or just slightly larger than)
minumum one (whose length is K(x))

@ allowed discrepancy measured by parameter «
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@ from minimal to nearly-minimal: avoid problem that some
slightly longer programs may have shorter execution time

@ it seems small change from from length of a program to its
execution time but significant effect in reducing role of
randomness in high complexity patterns

@ how D, (x) changes compared to effective complexity £(x)?

@ phase transition: for small values of £(x) also D,(x) takes
small values; when effective complexity crosses a threshold
value (which depends on Kolmogorov complexity) logical
depth suddenly jumps to extremely large values
(Ay-Mueller-Szkola)

@ so effective complexity £(x) considered a more stable notion
of complexity
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Integrated Information (an idea from neuroscience — Tononi)

@ G. Tononi G (2008) Consciousness as integrated information:
A provisional manifesto, Biol. Bull. 215 (2008) N.3, 216-242.

@ M. Oizumi, N. Tsuchiya, S. Amari, Unified framework for
information integration based on information geometry,
PNAS, Vol. 113 (2016) N. 51, 14817-14822.

@ want to measure amount of informational complexity in a
system that is not separately reducible to its individual parts

@ possibilities of causal relatedness among different parts of the
system
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Computing integrated information

@ consider all possible ways of splitting a given system into
subsystems

@ the state of the system at a given time t is described by a set
of observables X; and the state at a near-future time by X1

@ partition A into N subsystems =- splitting of these variables
Xi = {Xt71, .. 7Xt,N} and Xt+1 = {Xt+1,17 ... 7Xt+1,N} into
variables describing the subsystems

@ all causal relations among the X;; or among the X:,1 ;, also
causal influence of the X;; on the X; 1 ; through time
evolution captured (statistically) by joint probability
distribution P(X¢41, Xt)

@ compare information content of this joint distribution with
distribution where only causal dependencies between X;;1 and
X: through evolution within separate subsystem not across
subsystems
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@ set M of probability distributions Q(X¢+1, Xt) with property
that

Q(Xet1,i| Xe) = Q(Xeqa,i
for each subset i = 1,..., N of the partition A

Xt.i)

@ minimize Kullback-Leibler divergence between actual system
and its best approximation in M over choice of partition A

@ integrated information

d=mi in KL(P(X X X X
min min (P(Xet1, Xe)[|Q(Xet1, Xt))

@ value ® represents additional information in the whole system
not reducible to smaller parts

Question: a Complexity version of integrated information based on
Gell-Mann effective complexity?
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