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Error-correcting codes

• Alphabet: finite set A with #A = q � 2.
• Code: subset C ⇢ An, length n = n(C ) � 1.
• Code words: elements x = (a

1

, . . . , an) 2 C .
• Code language: WC = [m�1

WC ,m, words w = x
1

, . . . , xm;
xi 2 C .
• !-language: ⇤C , infinite words w = x

1

, . . . , xm, . . .; xi 2 C .
• Special case: A = Fq, linear codes: C ⇢ Fn

q linear subspace
• in general: unstructured codes

• k = k(C ) := logq #C and [k] = [k(C )] integer part of k(C )

q[k]  #C = qk < q[k]+1
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• Hamming distance: x = (ai ) and y = (bi ) in C

d((ai ), (bi )) := #{i 2 (1, . . . , n) | ai 6= bi}

• Minimal distance d = d(C ) of the code

d(C ) := min {d(a, b) | a, b 2 C , a 6= b}

Code parameters
• R = k/n = transmission rate of the code
• � = d/n = relative minimum distance of the code

Small R : fewer code words, easier decoding, but longer encoding
signal; small �: too many code words close to received one, more
di�cult decoding. Optimization problem: increase R and �... how
good are codes?
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The space of code parameters:

• Codesq = set of all codes C on an alphabet #A = q

• function cp : Codesq ! [0, 1]2 \Q2 to code parameters
cp : C 7! (R(C ), �(C ))

• the function C 7! (R(C ), �(C )) is a total recursive map

• Multiplicity of a code point (R , �) is #cp�1(R , �)
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Spoiling operations on codes: C an [n, k , d ]q code

• C
1

:= C ⇤i f ⇢ An+1

(a
1

, . . . , an+1

) 2 C
1

i↵ (a
1

, . . . , ai�1

, ai+1

, . . . , an) 2 C ,

and ai = f (a
1

, . . . , ai�1

, ai+1

. . . , an)
C
1

an [n + 1, k , d ]q code (f constant function)

• C
2

:= C⇤i ⇢ An�1

(a
1

, . . . , an�1

) 2 C
2

i↵ 9b 2 A, (a
1

, . . . , ai�1

, b, ai+1

, . . . , an) 2 C .

C
2

an [n � 1, k , d ]q code

• C
3

:= C (a, i) ⇢ C ⇢ An

(a
1

, . . . , an) 2 C
3

i↵ ai = a.

C
3

an [n � 1, k � 1  k 0 < k , d 0 � d ]q code
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Asymptotic bound [Man1]

• Vq ⇢ [0, 1]2: all code points (R , �) = cp(C ), C 2 Codesq
• Uq: set of limit points of Vq

• Asymptotic bound: Uq all points below graph of a function

Uq = {(R , �) 2 [0, 1]2 |R  ↵q(�)}

• Isolated code points: Vq r (Vq \ Uq)

[Man1] Yu.I.Manin, What is the maximum number of points on a
curve over F

2

? J. Fac. Sci. Tokyo, IA, Vol. 28 (1981), 715–720.
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Method: controlling quadrangles

1δ

R

1

R = ↵q(�) continuous decreasing function with ↵q(0) = 1 and
↵q(�) = 0 for � 2 [q�1

q , 1]; has inverse function on [0, (q � 1)/q];
Uq union of all lower cones of points in �q = {R = ↵q(�)}
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Code points and multiplicities

Thm: [ManMar1] [Man2]

• Set of code points of infinite multiplicity
Uq \ Vq = {(R , �) 2 [0, 1]2 \Q2 |R  ↵q(�)} below the
asymptotic bound

• Code points of finite multiplicity all above the asymptotic bound
Vq r (Uq \ Vq) and isolated (open neighborhood containing (R , �)
as unique code point)

[Man2] Yu.I.Manin, A computability challenge: asymptotic bounds
and isolated error-correcting codes, arXiv:1107.4246.
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The computability question [Man2]

Other coarser bounds on codes:

• singleton bound: R + �  1
• Gilbert–Varshamov line: R = 1

2

(1� Hq(�))

Hq(�) = � logq(q � 1)� � logq � � (1� �) logq(1� �)

q-ary entropy (for linear codes GV line R = 1� Hq(�))

But no explicit expression for the asumptotic bound R = ↵q(�):

• Is the function R = ↵q(�) computable?
• Is there a characterization of good codes near or above the
bound?

[ManMar2]: R = ↵q(�) becomes computable with the help of an
oracle that knows Kolmogorov complexity of codes...
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Statistics of codes and the Gilbert–Varshamov bound

Known statistical approach to the GV bound: random codes

Shannon Random Code Ensemble: !-language with alphabet A;
uniform Bernoulli measure on ⇤A; choose code words of C as
independent random variables in this measure

Volume estimate:

q(Hq(�)�o(1))n  Volq(n, d = n�) =
dX

j=0

✓
n

j

◆
(q � 1)j  qHq(�)n

Gives probability of parameter � for SRCE meets the GV bound
with probability exponentially (in n) near 1: expectation

E ⇠
✓
qk

2

◆
Volq(n, d)q

�n ⇠ qn(Hq(�)�1+2R)+o(n)

But... no good statistical description of the asymptotic bound
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Kolmogorov complexity
X = infinite constructive world: have structural numbering
computable bijections ⌫ : Z+ ! X principal homogeneous space
over group of total recursive permutations Z+ ! Z+

• Ordering: x 2 X is generated at the ⌫�1(x)-th step

Optimal partial recursive enumeration u : Z+ ! X
(Kolmogorov and Schnorr)

Ku(x) := min{k 2 Z+ | u(k) = x}

(exponential) Kolmogorov complexity
• changing u : Z+ ! X changes Ku(x) up to bounded
(multiplicative) constants c

1

Kv (x)  Ku(x)  c
2

Kv (x)
• min length of program generating x (by Turing machine)

Warning: Kolmogorov complexity not a computable function
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X , Y infinite constructive worlds, ⌫X , ⌫Y structural bijections, u, v
optimal enumerations, Ku and Kv Kolmogorov complexities

• total recursive function f : X ! Y ) 8y 2 f (X ), 9x 2 X ,
y = f (x): 9 computable c = c(f , u, v , ⌫X , ⌫Y ) > 0

Ku(x)  c · ⌫�1

Y (y)

Kolmogorov ordering
Ku(x) = order X by growing Kolmogorov complexity Ku(x)

c
1

Ku(x)  Ku(x)  c
2

Ku(x)

So... if know how to generate elements of X in Kolmogorov
ordering then can generate all elements of f (X ) ⇢ Y in their
structural ordering
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In fact... take F (x) = (f (x), n(x)) with

n(x) = #{x 0 | ⌫�1

X (x 0)  ⌫�1

X (x), f (x 0) = f (x)}

total recursive function ) E = F (X ) ⇢ Y ⇥ Z+ enumerable

• Xm := {x 2 X | n(x) = m} and Ym := f (Xm) ⇢ Y enumerable

• for x 2 X
1

and y = f (x): complexity Ku(x)  c · ⌫�1

Y (y) (using
inequalities for complexity under composition)

Multiplicity: mult(y) := #f �1(y)

Y1 ⇢ · · · f (Xm+1

) ⇢ f (Xm) ⇢ · · · ⇢ f (X
1

) = f (X )

Y1 = \mf (Xm) and Yfin = f (X )r Y1

Prop: y 2 Y1 and m � 1: 9 unique xm 2 X , y = f (xm),
n(xm) = m and c = c(f , u, v , ⌫X , ⌫Y ) > 0

Ku(xm)  c · ⌫�1

Y (y)m log(⌫�1

Y (y)m)
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Oracle mediated recursive construction of Y1 and Yfin

• Choose sequence (Nm,m), m � 1, Nm+1

> Nm

• Step 1: A
1

= list y 2 f (X ) with ⌫�1

Y (y)  N
1

; B
1

= ;
• Step m + 1: Given Am and Bm, list y 2 f (X ) with
⌫�1

Y (y)  Nm+1

; Am+1

= elements in this list for which 9 x 2 X ,
y = f (x), n(x) = m + 1; Bm+1

= remaining elements in the list

• Am [ Bm ⇢ Am+1

[ Bm+1

, union is all f (X ); Bm ⇢ Bm+1

and
Yfin = [mBm, while Y1 = [m�1

(\n�0

Am+n)

• from Am to Am+1

first add all new y with Nm < ⌫�1

Y (y)  Nm+1

then subtract those that have no more elements in the fiber
f �1(y): these will be in Bm+1
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Structural numbering for codes

• X = Codesq, Y = [0, 1]2 \Q2 and f : X ! Y is
cp : C 7! (R(C ), �(C )) code parameters map

• A = {0, . . . , q � 1} ordered, An lexicographically; computable
total order ⌫X :
(i) if n

1

< n
2

all C ⇢ An
1 before all C 0 ⇢ An

2 ;
(ii) k

1

< k
2

all [n, k
1

, d ]q-codes before [n, k
2

, d 0]q-codes;
(iii) fixed n and qk : lexicographic order of code words,
concatenated into single word w(C ) (determines code):
order all the w(C ) lexicographically

• total recursive map cp : Codesq ! [0, 1]2 \Q2

• fixed enumeration ⌫Y of rational points in [0, 1]2
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Building the asymptotic bound

• Cm = set of code points with denominators dividing m! (vertices
of square lattice of size 1/m!)

• Choose sequence Nm so that {y | ⌫�1

Y (y)  Nm} contains Cm

• Plot points of Am \ Cm and Bm \ Cm

• Saturated subset of Cm: union of sets
Sa,b = {(x , y) | x  a, y  b}, (a, b) 2 Cm

• part of Cm below or on asymptotic bound is saturated

• Dm = maximal saturated subset of Am \ Cm

• upper boundary �m of Dm is m-th step approximation to the
asymptotic bound

• Bm is m-th step approximation of set of isolated code points

• points above �m not in Bm sorted at subsequent step: end
eventually either below asymptotic bound or in one of the Bm+n

• Question: is there a statistical view of this procedure?
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Partition function for code complexity

Z (X ,�) =
X

x2X
Ku(x)

��

weights elements in constructive world X by inverse complexity;
� = inverse temperature, thermodynamic parameter

• variant with prefix-free complexity ZP(X ,�) =
P

KPv (x)��

• prefix-free complexity: intrinsic characterization by Levin in
terms of maximality for all probabilities enumerable from below
p : X ! R

+

[ {1},

{(r , x) | r < p(x)} ⇢ Q⇥ X enumerable
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Convergence properties

• Kolmogorov complexity and Kolmogorov ordering

c
1

Ku(x)  Ku(x)  c
2

Ku(x)

• convergence of Z (X ,�) controlled by series

X

x2X
Ku(x)

�� =
X

n�1

n�� = ⇣(�)

• Partition function Z (X ,�) convergence for � > 1; phase
transition at pole � = 1
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Asymptotic bound as a phase transition
• X 0 ⇢ X infinite decidable subset of a constructive world
• i : X 0 ,! X total recursive function; also j : X ! X 0 identity on
X 0 constant on complement

Ku(i(x
0))  c

1

Kv (x
0) and Kv (j(x))  c

2

Ku(x)

• � = �q(R) inverse of ↵q(�) on R 2 [0, 1� 1/q]

• Fix R 2 Q \ (0, 1) and � 2 Q \ (0, 1)

Z (R ,�;�) =
X

C :R(C)=R;1���(C)1

Ku(C )��+�(C)�1

Thm: Phase transition at the asymptotic bound
• 1�� > �q(R): partition function Z (R ,�;�) real analytic in �
• 1�� < �q(R): partition function Z (R ,�;�) real analytic for
� > �q(R) and divergence for � ! �q(R)+
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Classical statistical mechanical system on the space of codes

Partition function Z (Codesq,�) =
P

C2Codesq Ku(C )�� defines
probability measure on Codesq

P�(C ) =
Ku(C )��

Z (Codesq,�)

Observables = computable functions; expectation values

hf i� =

Z
f (C ) dP�(C ) =

1

Z (Codesq,�)

X

C2Codesq

f (C )Ku(C )��
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Measures and oracle aided plot of the asymptotic bound

Algorithm constructing Am and Bm sets determines probability
measures

PBm,�(C ) =
Ku(C )��

Z (cp�1(Bm),�)

PEM,N ,�(C ) =
Ku(C )��

Z (cp�1(EM,N),�)

with EM,N = [M
m=1

(\N
n=0

Am+n), converging to

PYfin,�(C ) =
Ku(C )��

Z (cp�1(Yfin),�)

PY1,�(C ) =
Ku(C )��

Z (cp�1(Y1),�)

Similarly get measures supported on �m approximating measure on
� asymptotic bound curve
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Quantum statistical mechanical system on the space of codes

• Quantize the classical system: independent degrees of freedom
) creation/annihilation operators

• for a single code C : code words are degrees of freedom

• Algebra of observable of a single code: Toeplitz algebra on code
words

TC : Tx , x 2 C , T ⇤
x Tx = 1

TxT ⇤
x mutually orthogonal projectors

• Fock space representation HC spanned by ✏w , words
w = x

1

, . . . , xN in code language WC

Tx ✏w = ✏xw
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QSM system of a single code

• algebra of observables TC ; time evolution � : R ! Aut(TC )

�t(Tx) = Ku(C )it Tx

• Hamiltonian ⇡(�t(T )) = qitH⇡(T )q�itH

H ✏w = `(w) logqKu(C ) ✏w

in Fock representation, `(w) length of word (# of code words)

• Partition function

Z (C ,�,�) = Tr(e��H) =
X

m

(#WC ,m)Ku(C )��m

=
X

m

qm(nR�� logq Ku(C)) =
1

1� qnRKu(C )��

• Convergence: � > nr/ logq Ku(C )
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QSM system at a code point (R , �)

• Di↵erent codes C 2 cp�1(R , �) as independent subsystems

• Tensor product of Toeplitz algebras T
(R,�) = ⌦C2cp�1

(R,�)TC
• Shift on single code temperature so that

Z (C ,�, n(� � � + 1))  (1� Ku(C )��)�1

by singleton bound on codes R + � � 1  0

• Fock space H
(R,�) = ⌦HC ; time evolution � = ⌦�C

• Partition function (variable temperature)

Z (cp�1(R , �),�;�) =
Y

C2cp�1

(R,�)

Z (C ,�, n(� � � + 1))

• Convergence controlled by
Q

C (1� Ku(C )��)�1; in turned
controlled by the classical zeta function
Z (cp�1(R , �),�) =

P
C2cp�1

(R,�) Ku(C )��
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first versus second quantization

• Bosonic second quantization: example of primes p and integers
n 2 N; independent degrees of freedom (primes) quantized by
isometries ⌧⇤p ⌧p = 1; tensor product of Toeplitz algebras

⌦pTp = C ⇤(N) semigroup algebra; �t(⌧p) = pit⌧p, partition
function ⇣(�) =

Q
p(1� p��)�1 prod of partition functions

individual systems

• Infinite tensor product: second quantization; finite tensor
product: quantum mechanical (finitely many degrees of freedom)
first quantization

• (T
(R,�),�) is quantum mechanical above the asymptotic bound;

bosonic QFT below asymptotic bound

Asymptotic bound boundary between first and second quantization
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Code parameters and Hausdor↵ dimensions [ManMar1]

• !-language ⇤C of code C , infinite sequences of code words

• ⇤C fractal in [0, 1]n hypercube

• Hausdor↵ dimension dimH(⇤C ) = R(C ) rate of code

• min distance d(C ): threshold dim, lower dim slices (all directions
parallel to coord axes) of ⇤C empty or singletons; higher dim some
sections of positive Hausdor↵ dim
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Example [MarPe]: unstructured [3, 2, 2]
2

code C , code words

{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}

[MarPe] Matilde Marcolli, Christopher Perez, Codes as fractals and
noncommutative spaces, arXiv:1107.5782.
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Code algebra

• TC Toeplitz algebra; quotient Cuntz algebra OC by ideal 1� PC ,
projector PC =

P
x TxT ⇤

x

• OC contains max abelian subalgebra C (⇤C ); � = dimH(⇤C )
unique inverse temperature for which KMS state for time evolution
�t(Tx) = q�itnTx on OC ; KMS state Hausdor↵ measure on ⇤C

• (TC ,�t), �t(Tx) = q�itnTx , partition function

ZC (�) = (1� q(R��)n)�1
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!-language and complexity [ManMar1]

• Entropy of language WC , generating function:

sC (m) = #WC ,m, GC (t) =
X

m

sC (m)tm

Entropy: SC = � logq ⇢(GC (t)) with ⇢ = radius of convergence

• GC (q�s) = ZC (s) partition function is generating function of
language structure functions; entropy of language is code rate R

• complexity K (w) of words in a language; for infinite words in
!-language ⇤C complexity (w) = lim infwn!w K (wn)/`(wn)

• Levin: (w) = lim infwn!w
� logq µU(wn)

`(wn)
, universal enumerable

semi-measure µU ; bounds uniform Bernoulli measure on ⇤C so

(x)  lim
� logq µ(w)

`(w)

= R (achieved on full measure subset)

Matilde Marcolli (joint work with Yuri Manin) Quantum statistical mechanics, Kolmogorov complexity, and the asymptotic bound for error-correcting codes



Asymptotic bound as a phase transition [ManMar1]
(QSM point of view)

• Variable temperature partition function: A = ⌦s2SAs ,
� = ⌦s�s ; � : S ! R

+

; Z (A,�,�) =
Q

s Z (As ,�s ,�(s))

• fix a code point (R , �); partition function (variable �)

Z ((R , �),�;�) =
Y

C2cp�1

(R,�)

(1� q(R��)nC )�1

• if (R , �) above bound finite product; if below bound convergence
governed by

P
C q(R��)nC , for � > R .

• change of behavior of the system at R = ↵q(�) asymptotic bound
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