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Abstract The theory of error-correcting codes is concerned with constructing codes that optimize simultaneously
transmission rate and relative minimum distance. These conflicting requirements determine an asymptotic bound,
which is a continuous curve in the space of parameters. The main goal of this paper is to relate the asymptotic bound
to phase diagrams of quantum statistical mechanical systems. We first identify the code parameters with Hausdorff
and von Neumann dimensions, by considering fractals consisting of infinite sequences of code words. We then
construct operator algebras associated to individual codes. These are Toeplitz algebras with a time evolution for
which the KMS state at critical temperature gives the Hausdorff measure on the corresponding fractal. We extend
this construction to algebras associated to limit points of codes, with non-uniform multi-fractal measures, and to
tensor products over varying parameters.
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0 Introduction: Asymptotic Bounds
0.1 Notation

The following notation is used throughout the paper. An alphabet is a finite set A of cardinality g > 2, a code is a sub-
set C C A", n = n(C) > 1. Words of length n are elements of A", they are generally denoted (ay, ..., a,),a; € A
and alike. Elements of C are code words.

The Hamming distance between two words (a;), (b;) is defined as

d((ai), (b)) :==#i € (1,...,n)|a; # bi}.

The minimal distance d = d(C) of the code C is

d(C) :=min{d(a,b)|a,b € C,a # b}.

Finally, we put

k=k(C):= logq #C, [k] = [k(C)] := integer part of k(C),

so that

qlkl <#C = qk < q[lirl. 0.1)
The numbers n, k, d and ¢ are called parameters of C, and a code C with such parameters is called an [n, k, d],-
code. Notice that any bijective map between two alphabets produces a bijection between the associated sets of
codes, preserving all code parameters.

Alphabet A and code C may be endowed with additional structures. The most popular case is: A = F, the finite
field with ¢ elements, and C is a linear subspace of FZ. Such codes are called linear ones.

Codes are used to transmit signals as sequences of code words. Encoding such a signal may become computa-
tionally more feasible, if the code is a structured set, such as a linear space. During the transmission, code words may
be spoiled by a random noise, which randomly changes letters constituting such a word. The noise produces some
word in A” which might not belong to C. At the receiver end, the (conjecturally) sent word must be reconstructed,
for example, as closest neighbor in C (in Hamming’s metric) of the received word. This decoding operation again
might become more computationally feasible, if A and C are endowed with an additional structure.

If k is small with respect to n, there are relatively few code words, and decoding becomes safer, but the price con-
sists in the respective lengthening of the encoding signal. The number R = R(C) := k/n, 0 < R < 1, that measures
the inverse of this lengthening, is called the (relative) fransmission rate. If d is small, there might be too many code
words close to the received word, and the decoding becomes less safe. The number § := §(C) =d/n, 0 <§ <1,
is called the relative minimal distance of C.

The theory of error-correcting codes is concerned with studying and constructing codes C that satisfy three
mutually conflicting requirements:

(i) Fast transmission rate R(C).
(i1) Large relative minimal distance §(C).
(iii)) Computationally feasible algorithms of producing such codes, together with feasible algorithms of encoding
and decoding.

As is usual in such cases, a sound theory must produce a picture of limitations, imposed by this conflict. The
central notion here is that of the asymptotic bound, whose definition was given and existence proved in [15]. The
next subsection is devoted to this notion.

0.2 Code Points and Code Domains

We first consider all [n, k, d];-codes C with fixed g > 1 and varying n, k, d. To each such code we associate the
point
P := (R(C), 8(C)) = (k(C)/n(C),d(C)/n(C)) € [0, 11%.
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Notice that in the illustrative pictures below the R-axis is vertical, whereas the §-axis is horizontal: this is the
traditional choice.

Denote by V,, the set of all points Pc, corresponding to [n, k, d];-codes with fixed g. Let U, be the set of limit
points of V.

In the latter definition, there is a subtlety. Logically, it might happen that one and the same code point corresponds
to an infinite family of different codes, but is not a limit point. Then we would have a choice, whether to include
such points to U, automatically or not. However, we will show below (Theorem 2.10), that in fact two possible
versions of definition lead to one and the same Uj,.

0.3 Asymptotic Bound

The main result about code domain is this: U, consists of all points in [0, 11? lying below the graph of a certain
continuous decreasing function denoted o :

Uy = {(R.8)| R < g (®)}. 0.2)

This curve is called the asymptotic bound. Surprisingly little is known about it: only various lower bounds, obtained
using statistical estimates and explicit constructions of families of codes, and upper bounds, obtained by rather
simple count.

In any case, this bound is the main theoretical result describing limitations imposed by the conflict between
transmission rate and relative minimal distance.

0.4 Asymptotic Bounds for Structured Codes

If we want to take into account limitations imposed by the feasibility of construction, encoding and decoding as
well, we must restrict the set of considered codes, say, to a subset consisting of linear codes, or else polynomial
time constructible/decodable codes etc. Linear codes produce the set of code points denoted Véi " and the set of its
limit points denoted U, éi " The latter domain admits a description similar to (0.2), this time with another asymptotic
lin

bound o

. Clearly,
)" (8) < ag(8),

but whether this inequality is strict is seemingly unknown.

Adding the restriction of polynomial computability, we get in the same way asymptotic bounds Ol(‘; ol (8) and
ot,lj"’p ol (8), which are continuous and decreasing and lie below the previous two bounds: see [16,21].
Proofs of (0.2) and its analogs are based upon a series of operations that allow one to obtain from a given code a

series of codes with worse parameters: the so called Spoiling Lemma(s). They form the subject of the next section.

0.5 Asymptotic Bounds as Phase Transitions

In view of (0.2), a picture of the closure of V, would consist of the whole domain under the graph of «, plus a
cloud of isolated code points above it. In a sense, the best codes are (some) isolated ones: cf. our discussion in 2.5
and 2.6 below.

This picture reminds us e. g. of phase diagrams in physics, say, on the plane (femperature, pressure), and alike.
One of the goals of this paper is to elaborate on this analogy.

To this end, we give several interpretations of R and § as “fractional dimensions”, fractal and von Neumann’s
ones.
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1 Spoiling Lemma
1.1 Code Parameters Reconsidered

For linear codes, k is always an integer. For general codes, this fails. One can define U, using any one of the

numbers k/n, [k]/n. As is easily seen, they provide the same asymptotic bound R = o, () : (ki/n;, d;i/n;)

and ([k;]/n;i, d;/n;) diverge or converge simultaneously and have the same limit. Working with both k and [k],

depending on the context, can be motivated as follows.

(i) k supplies the precise cardinality of C, and the precise transmission rate, but allows code points with irrational
coordinates. This introduces unnecessary complications both in the study of computability properties of the
code domains and in the statements of spoiling lemmas.

(i1) [k] gives only estimates for #C, but better serves spoiling. Moreover, in the eventual studies of computability
properties of the graph R = o, (8), it will be important to approximate it by points with rational coordinates,
rather than logarithms.

Unless stated otherwise, we associate with an [n, k, d],-code C the code point (R(C) := k/n, §(C) :=d/n),
and define the family V, and the set U, using these code points.

1.1.1 Spoiling Operations

Having chosen a code C C A" and a pair (f,i), f € Map (C, A),i € {1, ..., n}, define three new codes:
Ci=:Cx fCA™:

(at,...,any1) € Criff (ay,...,ai—1,ai+1,...,a,) € C,

anda; = f(ay,...,ai—1,0i4+1...,an). (1.1)
Cy=:Cx; C A"

(ar,...,an—1) € CiffIb € A, (ay,...,ai—1,b,ai+1,...,ay) € C. (1.2)
C3=:C(a,iy)c CCA": (ay,...,ay) € C3iff a; = a. (1.3)

In plain words: operation x%; f inserts the letter f (x) between the (i — 1)th and the ith letters of each word x € C;
operation *; deletes the ith letter of each word, i. e. projects the code to the remaining coordinates; and (a, i) collects
those words of C that have a at the ith place.

Assume now that C is linear.

Then C #; f remains linear, if f : C — A = F is a linear function. Moreover, C; is always linear. Finally,
C(a, i)x*; is also linear for any a.

These remarks will be used in order to imply that Corollary 1.2.1. below remain true if we restrict ourselves to
linear codes.

Lemma 1.2 If C is an [n, k, d],-code, then the codes obtained from it by application of one of these operations

have the following parameters:

(i) Cir=Cx* f:n+1,k,dly, if f is a constant function.

(i) Ci,=Cx; f:[n+1,k,d+ 11y, if for each pair x, y € C withd(x, y) = d, we have f(x) # f(y).

(i) Co = Cx;: [n—1,k,d]y, if for each pair x,y € C with d(x, y) = d, these points have one and the same
letter at the place i.
Otherwise [n — 1,k,d — 1],.

(iii) C3 := C(a,i). In this case, for each i, there exists such a letter a; € A (perhaps, not unique) that
#C(a;, i) > ¢* " (1.4)
Therefore, the code C(a;, i)*; will have parameters in the following range:

n—1, k—1<k <k, d >dl,. (1.5)
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Proof The statements (i), (i) and (ii) are straightforward. For (iii), remark that for any fixed i, C is the disjoint
union of C(a, i), a € A. Hence

> #Ca.i) =q"* (1.6)

acA

and #A = ¢ together imply (1.4) for at least of one of C(a, i). Passing to C(a;, i)*;, we are deleting the ith letter
of all code words, which is common for all of them, so that the minimal distance does not change. But for subcodes
of C it may be only d or larger. O

Corollary 1.2.1 (Numerical spoiling) If there exists a code C with parameters |n, k, d],, then there exist also a
code with the following parameters:

(i) [n+1,k,dl, (always).
(i) [n—1,k,d—1],(ifn>1,k>0.)
(i) [n—1,k—1<k <k, dly(ifn>1k>1).

The same remains true in the domain of linear codes.
Proof Lemma 1.2 (i) provides the first statement. O

In order to be able to use Lemma 1.2 (ii) for the second statement, we must find a pair of words at the distance
d in C, that have different letters at some place i. This is always possible if #C > 2, n > 2.

The case (iii) can be treated as follows.

If C can be represented in the form C’ *; a where a denotes the constant function x + a € C, then C’ is an
[n—1, k, d],-code. More generally, take the maximal projection of C (onto some coordinate quotient set A™) that is
injective on C and therefore preserves k, d. We will get an [m, k, d],-code withn > m > 2, because form = 1 we
must have 0 < k < 1, the case that we have excluded in (iii). If we manage to worsen its parameters to [m, k', d lg
k — 1 <k’ < k, then afterwards using (i) several times, we will getan [n — 1, k', d]q4-code.

Therefore, it remains to treat the case when C cannot be represented in the form C’ %; a. In this case, in the sum
(1.6) there are at least two non-vanishing summands. Hence for the respective code C(a, i) satisfying (1.4), we
have also

¢ < #C(ai, i) < 4~ (1.7)
Therefore
[k(C(a,i)*;)] = [k] — 1. (1.8)

It might happen that d(C(a;,i)) > d. In this case we can apply to C(a;) * i several times (ii) and then several
times (i).

Remark In the next section, we will prove the existence of the asymptotic bound using only the numerical spoiling
results of Corollary 1.2.1. Thus such a bound exists for any subclass of (structured) codes stable with respect to an
appropriate family of spoiling operations, in particular, for linear codes. Computational feasibility of spoiled codes
must in principle be checked separately, but it holds for usual formalizations of polynomial time computability.

2 Asymptotic Bound: Existence Theorem and Unsolved Problems

2.1 Controlling Cones

Let P = (Rp, ép) be a point of the square [0, 11? with Rp + 8p < 1. All points of U, belong to this domain A.
For two points P, Q, denote by [P, Q] the closed segment of the line /(P, Q) connecting P and Q.
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Fig. 1 Controlling cones 1

For P € A, consider two segments [P, (1,0)] and [P, (0, 1)], The part of A, bounded by these two segments
and the diagonal Rp + §p = 1, will be called the upper (controlling) cone of P and denoted C(P),.

Extend [P, (1, 0)] (resp. [P, (0, 1)]) from their common point P until their first intersection points with §-axis
(resp. R-axis). Then A will be broken into four parts: the upper cone C(P),, the lower cone C (P),y lying below
the lines /(P, (1, 0)) and I[(P, (0, 1)), the left cone C(P); and the right cone C(P),. We agree to include into each
cone two segments of its boundary issuing from P. (See Fig. 1.)

Let P, Q € A.

Lemma 2.1.1 If P € Uy, then C(P)jouw C Uj.

This follows from the Spoiling Lemma. In the proof, it is convenient to use the code points ([k]/n, d/n) rather
than (k/n, d/n).

In fact, if a sequence of code points Q; = ([k;]1/n;, d;/n;) (q being fixed) tends to the limit point (R, §), then
the following statements are straightforward.

(a) n; —> oo.

(b) The boundaries of C(Q;);0y converge to the boundary of C((R, 8));0- Moreover, the boundaries of C(Q;)iow
contain code points that become more and more dense when n; — oo, namely ([k;] — a)/n;, d;/n;) and
((kil/ni, (di — b)/n;),a,b =1,2,...(Spoiling Lemma).

Thus, the whole boundary of C((R, §));ow belongs to U, .

(c) When a point Q moves, say, along the right boundary segment of C ((R, §));ow, the left boundary segment of

C(Q)iow sweeps the whole C((R, §));ow- (See Fig. 2.)

This completes the proof of the Lemma.

Lemma 2.1.2 () IfP € C(Q),, then Q € C(P),, and vice versa.
(i) If P € C(Q)iow, then Q € C(P)yp, and vice versa.

Proof This is straightforward; a simple picture shows the reason. O
Lemma 2.1.3 If P, Q € I'(ay) and §p < 8¢, then P € C(Q),, and therefore Q € C(P),.

Proof 1In fact, otherwise P must be an inner point of C(Q);ow, (or the same with P, Q permuted). But no boundary
point of U, can lie in the lower cone of another boundary point. O
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Fig. 2 Code points on the 1
lower cone boundary )

Fig. 3 Controlling
quadrangle

2.2 Controlling Quadrangles

Let P, Q € A,8p < g, and P € C(Q);. Put

C(P,Q):=C(P)rNC(P).
When P, Q € I'(ay) we will call C(P, Q) the controlling quadrangle with vertices P, Q. (See Fig. 3.)

Lemma 2.2.1 All points of I'(aty) between P and Q belong to C(P, Q).

Proof This follows from Lemma 2.1.3. O
These facts suffice to prove the following result [15,16].

Theorem 2.3 For each § € [0, 1], put

ay(8) :=sup{Rp | P = (Rp, ) € Uy}.

Then

(1) oy is a continuous decreasing function. Denote its graph by I'(a,). We have ay(0) = 1, az(8) = 0 for

dellg—1/q, 11
(ii) Uy consists of all points lying below or on I (ay). It is the union of all lower cones of points of T (atg).
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(iii) Each horizontal line 0 < R = const < 1 intersects I'(ay) at precisely one point, so that the I' (o) is also
the graph of the inverse function.
The same statement remains true, if we restrict ourselves by a subclass of structured codes, for which Cor-
ollary 1.2.1 holds.

Corollary 2.4 The curve I' (o) (asymptotic bound) is almost everywhere differentiable.
This follows from the fact that it is continuous and monotone (Lebesgue’s theorem).

Problem 2.5 (i) Is I'(ay) differentiable, or at least piecewise differentiable?
(i1) Is this curve concave?

2.6 Isolated Codes and Excellent Codes

Any code whose point lies strictly above I'(e) is called isolated one. Consider the union W, of lower cones of
all isolated codes. This is a domain in A bounded from above by a piecewise linear curve, union of fragments of
bounds of these lower cones containing their vertices. A code is called excellent one, if it is isolated and is the vertex
of one of such fragments.

Problem 2.7 (i) Describe (as many as possible) excellent codes.
(ii)) Are Reed—Solomon codes excellent in the class of linear, or even all codes?

Reed-Solomon codes are certainly isolated, because they lie on the Singleton boundary R =1—-6+1/(g + 1)
which is higher than Plotkin’s asymptotic bound

1
) <1—-6— ——6.
aq()_ g—1

One easily sees that the set of isolated points is infinite, and that points R = 1,8 = 0 and the segment
R=0,(qg—1)/q <6 <1 are limit points for this set.

Problem 2.8 Are there points on I'(ay), 0 < R < 1 that are limit points of a sequence of isolated codes?

2.9 Code Domain and Computability

The family V, is a recursive subfamily of Q: generating all codes and their code points, we get an enumeration of
Vy. Let Wy := supp V;; be the set of all code points.

Question 2.9.1 Is W, a decidable set?

Problem 2.9.2 Are the following sets enumerable, or even decidable:
@ {(R(C),8(C) | R(C) < g (8(C))}

(i) {(R(C),8(C) [ R(C) = ag(8(C))}.

(i) {(R(C),8(C)) [ R(C) > ag(8(C))}

1v) {(R(C),3(C)) | R(C) = g (3(C))}

2.10 Codes of Finite and Infinite Multiplicity

Let (R, §) be the code point of a code C. We will say that this point (and C itself) has the finite (resp. infinite)
multiplicity, if the number of codes (up to isomorphism) corresponding to this point is finite (resp. infinite).
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If C has parameters [n, k, d],, then codes with the same code point have parameters [an, ak, ad],, a € Qi.
Clearly, finite (resp. infinite) multiplicity of C can be inferred by looking at whether there exist finitely or infinitely
many a € Qj_ such that an [an, ak, ad],-code exists for such a. Moreover, from the proof below one sees that one
can restrict oneself by looking only at integer a.

Theorem 2.11 Assume that the code point of C does not lie on the asymptotic bound. Then it has finite multiplicity
iff it is isolated.

Proof If C is of infinite multiplicity, it cannot be isolated. In fact, spoiling all codes with parameters [an, ak, ad],,
we get a dense set of points on the boundary of the lower cone of the respective point.

Conversely, let an [n, k, d];-code C lie below the asymptotic bound. Then there exist [NV, K, D],-codes with
arbitrarily large N, K, D satisfying the conditions

K k D d
— > =, = > - (2.1)
N n N n

Slightly enlarging N by spoiling, we may achieve N = an, witha € N. Let

K =ak' +a;, 0<a; <a, kK €N,
D=ad +a;, 0<ay» <a, d eN,

In view of (2.1), we have
ak’' +ay > ak, ad +a> > ad.

To complete the proof, it remains to reduce the parameters K, D by spoiling, and get an [an, ak, ad],-code; a can
be arbitrarily large. O

Question 2.12 Can one find a recursive function b(n, k,d, q) such that if an [n, k, d],-code is isolated, and
a>bn, k,d,q), there is no code with parameters [an, ak, ad],?

3 Code Fractals: Rate and Relative Minimum Distance as Hausdorff Dimensions
3.1 Code Rate and the Hausdorff Dimension

In this subsection we will show that the rate R of a code C has a simple geometric interpretation as the Hausdorff
dimension of a Sierpinski fractal naturally associated to the code.

We start with choosing a bijection of the initial alphabet A with g-ary digits {0, 1, ..., g — 1}. Intermediary
constructions will depend on it, but basic statements will not. For the time being, we will simply identify A with
digits.

The rational numbers with denominators ¢”, n > 0, admit two different infinite g-ary expansions. Therefore we
will exclude them, and put

0, g :=1[0,11\ {m/q" |m,n € Z} (3.1)

The remaining points of the cube x = (x1, ..., x,) € (0, l)g can be identified with (oo x n)-matrices with entries
in A: the kth column of this matrix consists of the consecutive digits of the g-ary decomposition of x.

Now, for a code C C A", denote by S¢ C (0, 1)2 the subset consisting of those points x, for which each line of
the respective matrix belongs to C. This is a Sierpinski fractal.
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Proposition 3.2 The Hausdorff dimension s := dimpy (Sc) equals to the rate R = R(C).

Proof Sc is covered by #C = ¢* cubes of size ¢!, consisting of such points in (0, 1)" that the first line of their

coordinate matrix belongs to C. Inside each such small cube lies a copy of Sc scaled by ¢ ~!. This self-similarity
structure shows that s is the solution to the equation (#C)q " = 1 (see §9.2 of [9]). Hence
log#C)  k

dimpg (Sc) = =—-=R. (3.2)
nloggqg n

O

Remark Several different notions of fractal dimension (Hausdorff dimension, box counting dimension, and scaling
dimension) agree for Sc, hence the Hausdorff dimension can be computed from the simple self-similarity equation.

3.3 Relative Minimum Distance and the Hausdorff Dimension

The most straightforward way to connect the relative minimum distance of a code C with Hausdorff dimension is
to consider intersections of Sc with /-dimensional linear subspaces 7 = 7! that are translates of intersections of
coordinate hyperplanes in R”, that is, are given by the equations x; = x? forsomei =iy, ..., .

Proposition 3.3.1 In this notation, we have:
(1) Ifl <d, then Sc N7 is empty.
(ii) Ifl > d, then Sc N 7 has positive Hausdorff dimension:
log #(C Nm)
I log q g

Proof We will embed C C A" in R” by sending (x1, ..., x,) to (x1/q, ..., x,/q). (Notice that all these points
will lie in [0, 1]”, but outside of (O, I)Z.)

Then no two points of C will lie in one and the same /-dimensional r, if n — [ > n —d + 1, because at least d of
their coordinates are pairwise distinct. On the other hand, if » — [ < n — d, then one can find 7 containing at least
two points of C.

In terms of the iterative construction of the fractal Sc, this means the following. For a given & withl < d — 1,
if the intersection C N 7 is non-empty it must consist of a single point. Thus, at the first step of the construction of
Sc N we must replace the single cube (0, 1)2 N 7 with a single copy of a scaled cube of volume ¢, and then

dimpy (Sc Nw) = 0. (3.3)

successively iterate the same procedure. This will produce a family of nested open cubes of volumes ¢ !V . Their
intersection is clearly empty.

When [ > d, one can choose m = 7 for which C N 7 contains at least two points. Then the induced iterative
construction of the set Sc N 7 starts by replacing the cube Q¢ = Q" N 7 with #(C N 1) copies of the same cube
scaled down to have volume q’d. The construction is then iterated inside all the resulting #(C N ) cubes, so that
one obtains a set of Hausdorff dimension s = dimy (Sc M) which is a solution to the equation #(C Nr) - q’lS =1.
Thus
log #(C N 1)
_— >

[ log g
This completes the proof. O

dimgy(Sc Nmw) = 0.

One can refine this construction by associating a fractal set S, to each subspace 7 as above. Namely, define Sy
as the set of points of (0, 1)2 whose matrices have all rows in 7.

Proposition 3.4 The Hausdorff dimension of Sy is

!
dimpy Sy = —. (3.4)
n

In particular, for | = d one has dimyg S; = .



Error-Correcting Codes and Phase Transitions 143

Proof The argument is similar to the one in the previous proof. We construct S; by subdividing, at the first step,
the cube [0, 1]" into ¢" cubes of volume ¢ =" and of these we keep only those that correspond to points whose first

digit of the n-coordinates, in the g-ary expansion define a point (x11, ..., X1,) € 7 N A”. We have #(z N A") = ¢,
hence at the first step we replace Q" by ¢’ cubes of volume ¢ ~". The procedure is then iterated on each of these.
Thus, the Hausdorff dimension of S is the number s satisfying qlq’”s =1,i.e.(3.4). O

One can now use Sy in place of m, to make the roles of rate and minimal relative distance more symmetric in
the Hausdorff context. Namely, we obtain,

Proposition 3.5 We have

log #(C N
dimp (Sc N $y) = 28 HENT) (3.5)
n log g
In particular, for all | < d — 1, the set Sc N Sy is empty. For | > d, there exists a subspace w* for which
dimgy (Sc N S;) > 0so that Sc N Sy is a genuine fractal set.

Proof Again, the argument is similar to the one we have already used.

The iterative construction of S¢ N Sy replaces the initial unit cube [0, 1]* with #(C N ) cubes of volume ¢ ~"
given by points with first row (x11, ..., x1,) € C Nx. The same procedure is then iterated on each of these smaller
cubes. Thus, the Hausdorff dimension is given by the self-similarity condition #(C N w)g ™" = 1, which shows
(3.9).

The same argument as above then shows that, for all/ < d — 1 one has #(C N ) = 1, if C N 7 is non-empty,
while for /[ > d there exists a choice of 7 for which #(C N 7)) > 2. This shows that once again d is the threshold
value for which there exists a choice of & € I, for which dimy (S¢c N S;) > 0. m|

4 Operator Algebras of Codes
4.1 Finitely Generated Toeplitz—Cuntz Algebras

We introduce a class of C*-algebras related to codes. Starting with an arbitrary finite set D, we associate to it
Toeplitz and Cuntz algebras, as in [5,10].

Definition 4.1.1 (i) The Toeplitz—Cuntz algebra TO is the universal unital C*-algebra generated by a distin-
guished family of isometries 74, d € D, with mutually orthogonal ranges.

(ii) The Cuntz algebra Op is the universal unital C*-algebra generated by a distinguished family of isometries
S4, d € D, with mutually orthogonal ranges, and satisfying the condition

> SaS;=1. .1

aeD

Notice that 7, Tj form pairwise orthogonal projections, so that operator

Pp = Z T,T; € TOp
aeD

is a projector. But it is not identical.
From the definition it follows that the canonical morphism 70p — Op: Ty — S, generates the exact sequence

0—>JD—>TOD—>OD—>O,

where Jp is the ideal generated by 1 — Pp. The ideal Jp is isomorphic to the algebra of compact operators K.
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4.1.2 Functoriality with Respect to D

The Toeplitz—Cuntz algebras TO p are functorial with respect to arbitrary injective maps f : D — D’: the respective
morphism maps Ty to T'7(a).

The Cuntz algebras are functorial only with respect to bijections: any bijection f : D — D’ generates an
isomorphism Op — Op so that isomorphism class of Op depends only on #D. The algebra Oy, n) is often
denoted simply Oy .

Below we will consider, in particular, TO¢ and O for codes C, including codes A”. The last remark allows us

to canonically identify versions of O that arise, for example, from different bijections A — {0,...,qg — 1}, asin
3.1 where they were used for the construction of fractals Sc.
Functoriality of TOp with respect to injections allows one to define the algebra TO, := TOy1 3, ...,...}, see e.g.

[10], identified with the algebra Oy, considered by Cuntz in [5] and treated separately there.

4.1.3 Fractals and Algebras

In order to connect Toeplitz—Cuntz and Cuntz algebras TO¢, O¢ with fractals Sc, it is convenient to introduce two
other topological spaces closely related to Sc.

We will denote by S¢ the closure of the set Sc inside the cube [0, 11", after identifying points of S¢ with n-tuples
of irrational points in [0, 1] written in their g-ary expansion. The set Sc is also a fractal of the same Hausdorff
dimension as Sc¢, which now includes also the rational points with g-ary digits in C. It is a topological (metric)
space in the induced topology from [0 171"

We also consider the third space Sc.Itisa compact Hausdorff space, which maps surjectively to Sc, one-to-one
on S¢ and two-to-one on the points of Sc ~ Sc. By [5] one knows that SC is the spectrum of the maximal abelian
subalgebra of the Cuntz algebra Oc.

S‘C can be identified with the set of all infinite words x = x1x2 - - - X, - - - with letters x; € C. Using the matrix
language of 3.1, we can say that points of c corresponds to all (oo, n)-matrices whose line belong to C. The set S¢
is dense in Sc as the subset of non-periodic sequences.

The map S¢ — Sc identifies coordinatewise the two g-ary expansions of rational points with g-denominators in
Sc. The sets SC, Sc and S¢ only differ on sets of Hausdorff measure zero, so for the purpose of measure theoretic
considerations we often do not need to distinguish between them.

One can consider the abelian C*-algebra ASe) generated by the characteristic functions x Se(w) where w =

ajp - - - a,, runs over finite words with letters a; in C, and S’c(w) denotes the subset of infinite words x € S'c that
start with the finite word w. This algebra is isomorphic to the maximal abelian subalgebra of Oc¢. In fact, these
characteristic functions can be identified with the range projections Py, = Sy, S;, = Su; -+ - S, Sjm . Sjl in Oc.
We also denote by 7.A(C) the abelian subalgebra of TO¢ generated by the range projections Ty, T, and which
maps to A(S‘c) in the quotient algebra Oc¢.

Notice that, for an injective map f : C — C’, the induced map Ty : TOc — TO¢ induces also an embedding
Ty : A(C) — A(C’) of the respective abelian subalgebras:

TwTy = TranT iy = Tra  TranTfa)  Tia):

For the sets S’c and the abelian algebras A(S’c), one also has a functoriality in the opposite direction for more
general maps f : C — C’ of codes that are not necessarily injective. Namely, such a map induces a map Sc — S'c/
that sends an infinite sequence x = aja; - - with @; € C to the infinite sequence f(ay) f(az)--- f(am) - -
in Scr. Since the basis for the topology on SC is given by the cyhnder sets Sc(w), the map constructed in this way
is continuous. This gives an algebra homomorphism A(Sc/) — .A(SC)
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4.2 Representations of Cuntz Algebras Associated to S¢

In the following let us denote by o : S¢c — Sc the map that deletes the first row of the coordinate matrix, shifting
to the left the remaining g-adic digits of the coordinates,

a(x) = (xlz...xlk...;x22-~-x2k...; ...;xn2~-~x,,k--~) (4.2)
for x = (x11X12- - X1k 3 X21X22 -+ X2k =+ * 3 Xn1Xn2 - Xnk - - - ) in Sc, that is, shifting upward the remaining
rows of the co x n-matrix. For a = (ay, ..., a,) € C C A", let 0, denote the map adding a as the first row of the

coordinate matrix

O’a(x) = (a1x11x12 e Xk e e A2X21X22 e XD ey e A X1 X2 c Xkt ) (4.3)

Since a € C, (4.3) maps Sc to itself. These maps are partial inverses of the shift (4.2). In fact, if we denote by
R, C Sc the range R, = 0,(Sc), then on R, one has o,0 (x) = x, while for all x € S¢ one has oo, (x) = x. We
also introduce the notation

d
() = 228, “4)
"
for the Radon—-Nikodym derivative of the Hausdorff measure . composed with the map o, .

Since the maps o, act on S¢ by

Ga(xly"'5xn)=(XI+al7"‘7xn+an)ﬂ (4'5)

q q

the Radon—-Nikodym derivative @, of (4.4), with u the Hausdorff measure of dimension s = dimg (S¢), is constant
d

By(x) = L2 = g = gk, (4.6)

du

Proposition 4.2.1 The operators

(Sa )X = xr, () Pa(0 ()™ f o (x) 4.7

determine a representation of the algebra O¢ on the Hilbert space L*(Sc, 1)

Proof The adjoint of (4.7) in the L? inner product (, ) is of the form

OFIEEE HESNEFICHENS (4.8)

therefore S, S} = P,, where P, is the projection given by multiplication by the characteristic function y,, so that

one obtains 2 SaS; = 1. Moreover, S;S, = 1, so that one obtains a representation of the C*-algebra Oc. O

Changing the identification of abstract code letters with g-ary digits corresponds to an action of the symmetry
group X,. The main invariants of codes like k and d only depend on the equivalence class under this action.

Proposition 4.2.2 The action of the group L, induces a unitary equivalence of the representations of the Cuntz
algebras and a measure preserving homeomorphism of the limit sets.

Proof Suppose given an element y € X, and let C' = y(C) be the equivalent code obtained from C by the action
of y. The element y induces amap y : Sc — Sc¢r by

X =x1x2 X >y () =y @)y () y )

This map is a homeomorphism. In fact, it is a bijection since y : C — C’ is a bijection, and it is continuous since
the preimage of a clopen set S¢(w’) of all words in S¢r starting with a given finite word w’ consists of the clopen
set Sc(w) with w =y~ (w’). Since both Sc and S¢+ are compact and Hausdorff, the map is a homeomorphism. It
is measure preserving since the measure of the sets Sc (w) is uniform in the words w of fixed length,

w(Scw)) =g~ %, forall w=wi,...,w, w;e€C,

so the measure is preserved in permutations of coordinates.
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Thus, the action of y : S¢ — S¢’ determines a unitary equivalence U, : LZ(SC/, n) — L%(Sc, uw), and a
representation of the algebra Oc on L?(S¢v, 1) generated by the operators S, = U;f SqU, . This completes the
proof. O

We have seen that, more abstractly, we can identify Sc with the spectrum of the maximal abelian subalgebra
of the algebra O¢ generated by the range projections S, S}, for words w of finite length. One can see in this way
directly that the action of ¥, induces homeomorphisms of these sets. The uniform distribution of the measure
implies that these are measure preserving.

4.3 Perron—Frobenius and Ruelle Operators

Consider again the shift map o : S¢ — Sc defined in (4.2). The Perron—Frobenius operator P, is the adjoint of
composition by o, namely

(hoo, f) = (h, Py f). (4.9)

Lemma 4.3.1 The Perron—Frobenius operator Py is of the form

Pe=q 2> 55 (4.10)
aeC

Proof We have

with R, = 0,(S¢), so that we have

Pof =D ®ufoou= &2sif =g 2> siF.

This gives (4.10) and completes the proof. O

Remark A modified version of the Perron—Frobenius operator which is also useful to consider is the Ruelle transfer
operator for the shift map o : S¢ — Sc¢ with a potential function W : S¢ — C. One usually assumes that the
potential takes non-negative real values. The Ruelle transfer operator R, w is then defined as

Rowfx)= D W) ). (4.11)
yio(y)=x
For a real valued potential, the operator R, w is also obtained as the adjoint of & +— g* W - h o o,
("W -hoo f)=(h.Raowf),

hence it can be regarded as a generalization of the Perron—Frobenius operator. The Ruelle and Perron—Frobenius
operators are related to the existence of invariant measures on S¢ and of KMS states for the algebra O¢, with
respect to time evolutions related to the potential W.

4.4 Time Evolution and KMS States

We recall some well known facts about KMS states on the Cuntz algebras, see for instance [12,13].
Given a set of real numbers {A1, ..., Ay} there is a time evolution on the Cuntz algebra Oy which is completely
determined by setting

01 (Sp) = €' Sy (4.12)
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Recall that a KMS state at inverse temperature $ on a C*-algebra 3 with a time evolution oy is astate ¢ : B — C,
such that for each a, b € B there exists a holomorphic function F,j; on the strip 0 < J(z) < B, which extends
continuously to the boundary of the strip and satisfies

Fap(t) = @(ao; (b)), and Fap(t +iB) = ¢(o/(a)b).

Proposition 4.4.1 For the time evolution (4.12) on the Cuntz algebra O\, there exists a unique KMS state at inverse
temperature B > 0 if and only if B satisfies

N
S e, (4.13)
k=1

Proof If {A1, ..., An} and a B satisfy (4.13), then the Aj are all positive and define 8 uniquely.

As in [13], one uses the Ruelle transfer operator on the set X of infinite sequences in an alphabet on N-letters.
For a potential W(x) = e Pry , where x = x1x3 - - - x5 - - -, one finds that the constant function 1 is a fixed point of
RU, W

Rowl = (Z e_ﬁ)‘k) 1,
k

hence dually there is a probability measure /1, g on X which is fixed by the dual operator, R7 y,15,p = s, . This
is a measure satisfying a self-similarity condition on X. In fact, one has

d/,L)L,/g [eX e

Ro.wing =W dus.p

Ha.B5

so that RY s, g = i, g implies that

d/“nﬁ O Of i e—)»kﬁ
dus,g '

and hence u; g satisfies the self-similarity condition

N
Mg = Ze_)‘kﬂuk,ﬁ o O’k_l.
k=1

The measure (1), g is determined by the values u; g(Ry) = e~ P since then the value on a clopen set X (w) C X
of all infinite works starting with a given finite word w of length r is given by

d,bL)L’ OO’Z _ .
g X = [ LELET g,y = bt
e dus.p

which is consistent with uy g (X (w)) = ZII{VZI ., g (X (wk)).

By the spectral theory of the operator R, w one knows, see [13], that the fixed points R, w1 = 1 and R:’;’Wu A=
M, g are unique. This gives then a unique KMS state on Oy at inverse temperature the unique g satisfying (4.13),
which is given by integration with respect to the measure u; g composed with a continuous linear projection
d: Oy — C(X).

The latter is defined as follows: CID(SwS;‘),) =0, if w # w', and xx () otherwise, where w and w’ are finite
words in the alphabet on N letters. The state

Pp(SwS) = / D (S SENd s p = 8y yre Pror e Phur (4.14)
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for w of length r, is a KMS state on Oy at inverse temperature 8. One sees that it satisfies the KMS condition since
it suffices to see that ¢ (Sy Sy,) = ¢p(0ig(S},)Sw). It suffices then to check the latter identity for a single generator,
and use the relations in the algebra to obtain the general case. One has ¢(S;S)) = e P = oy (e PH SpSk) =
95 (0ip(SP)SE).

This completes the proof. O

Remark Notice that (4.13) can be interpreted as the equation that computes the Hausdorff dimension of a self-sim-
ilar set where the recursive construction replaces at the first step a set of measure one with N copies of itself, each
scaled by a factor e~** and then iterates the procedure.

In particular, in the main example we are considering here, of the Sierpinski fractal S¢ C Q”, the Hausdorff
measure s on Sc with parameter s = dimy (Sc¢) = k/n is a self-similar measure as above, and it corresponds to
the unique KMS state on the algebra O¢ at inverse temperature 8 = dimy (Sc) = k/n, for the time evolution

01(Sa) = g~ Sy, (4.15)

for all @ € C. In fact, in this case the measure satisfies us(R;) = ¢~ = q_k for all a € C. Thus, the KMS state
@k/n takes values @i /n (Sw Sy = q‘k’ fora word w = wq - - - wy, with w; = (a1, ..., ain) € C.

4.5 KMS States and Dual Traces

Let I, be the set of translates of £-dimensional intersections of n — £ coordinate hyperplanes. To each & € I1, we
associate a projection in the algebra O¢, by taking

Pa= > sk (4.16)

aeCNm

The value of the unique KMS state of Oc at this projection is
/m(Pr) =q - #(C Ny =¢"7F, (4.17)

where s = dimg (Sc N ).

Consider then the algebra obtained by compressing O¢ with the projection Py, that is, the algebra generated
by the elements Sy (,) := Py S, Pr. These are non trivial when a € C N 7, in which case Sy ) = S4, and zero
otherwise, and they satisfy the relations S; ( a)S,,(a) = 1, when Sy (4) is non-trivial, and

Z Sx@)Sz@ay = Pr-
a

Thus, the algebra obtained by compressing with the projection Py is a Toeplitz algebra TOcny

The induced action on the Hilbert space L*(Sc N, Ws) of the algebra TOcn, obtained as above descends to
the quotient as a representation of Ocny.

On the algebra Ocn, generated by the S, with a € C N 7, one can similarly consider a time evolution of the
form (4.12), with the X, given by

dg = —log s (Ry), (4.18)

where 15 is the Hausdorff measure in dimension s = dimg (S¢ N ). Then one has a unique KMS state on Ocny
at inverse temperature 8 = dimg (S¢c N ), which is determined by integration in this Hausdorff measure.

In the following we look for a reinterpretation of the Hausdorff dimensions considered above in terms of von
Neumann dimensions. To this purpose, we need to consider a type II von Neumann algebra. As we will see below,
there are two ways to associate a type II algebra to the type III algebras O¢ that we considered above. The first
is passing to the dual system by taking the crossed product by the time evolution and the second is considering
the fixed point algebra in the weak closure of the GNS representation. We finish this subsection by showing that
the first method may not give the needed projections due to the projectionless nature of the resulting algebra. We
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then consider the second possibility in the next subsection, and see that one can obtain in that way the desired
interpretation as von Neumann dimensions.

It is well known from [4] that, to a C*-algebra B with time evolution oy, one can associate a dual system (é ,0),
where B = B xs R endowed with a dual scaling action of R of the form 6, (fR a(hUsdt) = fR Mla®Udt. A

KMS state @g at inverse temperature $ on (3, o) determines a dual trace g on B, with the scaling condition
5060, = A Prg. (4.19)

The dual algebra Bis generated by elements of the form p(f)a, witha € B and f € L'(R) and with p(f) =
Jg f @)U dt. The dual trace is then of the form

t5(p()a) = g5(@) / Fisye s,
R

where f is the Fourier transform of f € L!(R). Equivalently, for elements of the form f € L'(R, B) one has
w5(f) = Jpos(f(s)e P ds.

If the trace tg dual to a KMS state ¢g is a faithful trace, then, as observed in [3], p.586, any projection P in Ais
homotopic to 01 (P) so that one should have 75(0;(P)) = 75(P), but the scaling property (4.19) implies that this
is also 74(61(P)) = )Fﬂrﬁ(P) so that one has 7(P) = 0, which by faithfulness gives P = 0.

4.6 Hausdorff Dimensions and von Neumann Dimensions

We show that one can express the Hausdorff dimensions of the sets S¢ N 7 in terms of von Neumann dimensions
of projections associated to the linear spaces 7 in the hyperfinite type II; factor.

Proposition 4.6.1 Let C C A" be a code with #C = ¢* and let w € Tl be an {-dimensional linear space as
above, to which we associate the set Sc N 1. To these data one can associate a projection Py in the hyperfinite
type 11 factor with von Neumann trace t, so that the von Neumann dimension Dim(r) := t(Py) is related to the
Hausdorff dimension of Sc N m by

k 4+ log, Dim(rr)
dimy(Sc Nw) = g+, (4.20a)
) k + logq Dim(r)
dimg(ScNSy) = ———. (4.20b)

n
Proof When we consider as above the algebra O¢ with the time evolution o; of (4.15), we can consider the spectral
subspaces of the time evolution, namely

Fr={X € Oc|o:(X) = A X}. 4.21)

In particular, 7o C Oc is the fixed point subalgebra of the time evolution. This is generated linearly by elements

of the form S, S*, for words w = wy ---w, and w’ = w/ --- w, of equal length in elements w, w;. € C. The

fixed point algebra Fy contains the subalgebra A(Sc) identified with the algebra generated by the S,,S};,. One has
a conditional expectation ® : Oc — Fg given by

2 /nloggq
O (X) = / o (X)dt (4.22)
0

and the KMS state ¢/, on Oc is given by ¢r/, = T o @, where 7 is the unique normalized trace on Fo, which
satisfies

r(SwS:),) = Sw’w,q*rk’
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for w and w’ words of length r. This agrees with the values of the KMS state we saw in (4.14) for 8 = k/n and all
the A; = n. Consider then the GNS representation 7, associated to the KMS state ¢ on Oc. We denote by M the
von Neumann algebra

M =7,(0¢)". (4.23)

By rescaling the time evolution (4.15), the state ¢ becomes a KMS state at inverse temperature 8 = 1 for the
time evolution

o, (S,) = q"*s,. (4.24)
In fact, we have
9(SuSH) = q7F = p(e: (S)Sa).

Thus, up to inner automorphisms, «; is the modular automorphism group for the von Neumann algebra M, which
shows that the algebra M is of type Il —«. The fixed point subalgebra My for the time evolution ¢ is the weak
closure of Fy. This gives a copy of the hyperfinite type II; factor M inside M, with the restriction to M of the
KMS state ¢ giving the von Neumann trace t. We then consider the projection Py = >, _cn, SaSi as an element
in M. We have seen that the value of the KMS state ¢ on Py is

(p(Pr[) — T(Py-[) — qfk . #(C ﬂf[) — q7k+€dimH(SCﬂ7T) — q7k+ndimH(ScﬁSﬂ)7

which gives (4.20a) and (4.20b). |

4.7 KMS States and Phase Transitions for a Single Code

As above, let C C A" be an [n, k, d]; code and let TO¢ and Oc¢ be the associated Toeplitz and Cuntz algebras,
respectively with generators T, and S,, for a € C, satisfying 7,T, = 1 for TO¢, and S, = 1 and > 2 SaS; =1
for O¢.

In addition to the representations of O¢ on L%(Sc, W) constructed previously, it is natural also to consider the
Fock space representation of TO¢ on the Hilbert space H¢ = ¢>(Wc), where W is the set of all words of finite
length in the elements a € C,

WC = UszWC,ma
with
WC,m ={w=wi-wy|lw eC CAn}

and Wc,o = {#}. For all w, we identify the words w¥) = w. We denote by ¢, for w € W, the canonical
orthonormal basis of EZ(WC). We also denote €y = €.

Lemma 4.7.1 The operators on Hc given by

Ta€w = €qu (4.25)
define a representation of the Toeplitz algebra TOc on Hc.

Proof The adjoint T of the operator (4.25) is given by

T €y = Sa,w €0(w)s (4.26)
where 6, 4, is the Kronecker delta, and o (w) = wa - - - wy, € We -1, for w = wy - - - w, € We . In fact, we
have

(Tafoh) =D Jawhw =D Fuhow) =D fubaw how) = (f, T, h),
w

w'=aw w’
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for f =2, fwew and h = 3 hyey, in He. Thus, T,TF = P,, where P, is the projection onto the subspace
‘Hc o spanned by the €,, with w; = a. One also has

Ta*Taf = waTa*eaw =f
w

so that we obtain 7,/ 7, = 1.
This completes the proof. O

We consider then time evolutions on the algebra 7O ¢ associated to the random walks and Ruelle transfer operators
introduced in Sects. 4.3 and 4.4.

Lemma 4.7.2 Let Wg(x) = exp(—BAy), for x € Sc, be a potential satisfying the Keane condition
> acc €Xp(—Pry) = 1. Then setting
01(T,) = €' T, 4.27)

defines a time evolution on the algebra TO¢, which is implemented, in the Fock representation, by the Hamiltonian
Hey = Ay, + -+ Ay,) €w, forw=wi: - wy € Wcn. (4.28)

Proof 1Ttis clear that (4.27) determines a 1—parameter group of continuous automorphisms of the algebra TO¢. The

Hamiltonian that implements the time evolution in the Fock representation is a self adjoint unbounded operator

on the Hilbert space H¢ with the property that o,(A) = e/'# Ae=""H for all elements A € TOc. We see on the

generators 7, that

GtHT —itH
a

i1 (hatay D) =it Gy -+ )

€y =¢€ €aw

implies that ¢/’ with H as in (4.28) is the one-parameter group that implements the time evolution (4.27) in the
Fock representation.

The proof is completed. O

We consider in particular the time evolution associated to the uniform Hausdorff measure on the fractal S¢ of
dimension R = k/n.

Proposition 4.7.3 For an [n, k, d],- code C, we consider the time evolution
o1(Ty) = ¢'"' T,

onthe algebra TOc. Then for all B > 0 there is a uniqgue KMSg state on the resulting quantum statistical mechanical
system.

(1) At low temperature B > R, this is a type I, state, with the partition function given by Z¢(8) = Tr(e PH) =
(1 — g R=Pmy=1 and the Gibbs equilibrium state of the form

pp(A) = Zc(B)™" Tr(Ae™PH). (4.29)

(2) At the critical temperature B = R, the unique KMSg state is a type Il -« factor state, which induces the
unique KMS state on the Cuntz algebra Oc, and is determined by the normalized R-dimensional Hausdorff
measure [Lg on Sc. It is given by the residue

@Rr(A) = Resg_gTr(Ae PH). (4.30)

(3) At high temperature the unique KMS state is also of type Il and determined by the values ¢g(T,,T,;) =
e~ PO+ thun) ohere *a =nlogq foralla € C.
(4) Only at the critical temperature B = R the KMS state ¢ induces a KMS state on the quotient algebra Oc.
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Proof First notice that any KMS state at inverse temperature § must have the same values on elements of the form
Tw Tu’j,. This can be seen from the KMS condition, inductively from

0p(TaT,) = 9p(oir(TNT) = g~ Mg (T, Ty) = ¢~
This determines the state uniquely. So we see that at all 8 > 0 where the set of KMS states is non-empty it consists
of a single element.

The Hamiltonian has eigenvalues mn log ¢, form € N, each with multiplicity ¢”* = #Wc m- Thus, the partition
function of the time evolution is given by
Ze(B) = Tr(e ")

= Z Z exp(_ﬂ()\w] +-- 4+ )Hum))
m weWe.m

_ qukq—ﬂnm _ Zq(R—ﬂ)nm. 4.31)
m m

The series converges for inverse temperature § > R, with sum
Ze(B) = (1 —gF=Pm~L
Thus, in the low temperature range 8 > R, one has an equilibrium state of the Gibbs form (4.29).

At the critical temperature f = R, we have a KMSg state of type III,—«, which is the unique KMS state on the
algebra Oc¢

or(h) = [ ©() dur, (432)
Sc
which induces a KMS state on 7O¢ by pre—composing the expectation ® : O¢c — A(S¢) with the quotient map

TOc — Oc. Here we use again the identification of A(S‘C) with the maximal abelian subalgebra of O¢, and ug
is the normalized R-dimensional Hausdorff measure on Sc. This means that the state ¢ has values

OR(TwT) = Suuw i (Sc(w)) = g~ F" = ¢~
for w = wj ... wy,. To see that, at this critical temperature, the state is given by a residue (and can therefore be

expressed in terms of Dixmier trace), it suffices to observe that the partition function Z(8) has a simple pole at
B = R with residue Resg_rZ(B) = 1, so that we have

Resp_gTr(T,, T e Py = e PlutFhun)Resg p Z(B) = or(TWT).
At higher temperatures 8 < R the KMS state is similarly determined by the list of values
QR(TTY) = 8y e Pl tFhum) — 5 g=Frm,
To see that only the state at critical temperature induces a KMS state on the quotient algebra O¢ it suffices to

notice that in O¢ one has the additional relation >, S, S = 1, which requires that the values of a KMSg state
satisfy the Keane relation

D p(SaSp =D e Pe=1.
a a

This is satisfies at B = R, where it gives the self-similarity relation for the Hausdorff dimension of the fractal Sc,
but it is not satisfied at any other 8 # R.
The proof is complete. O

We see from the above result that the situation is very similar to the one encountered in the construction of the
Bost—Connes system [2], where the case of the system without interaction is obtained as a tensor product of Toeplitz
algebras (in that case in a single generator) with their unique KMSg state at each 8 > 0. We explain below how
a similar approach with tensor products plays a role here in describing the curve R = «,(5) in terms of phase
transitions.
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4.8 Crossed Product Description

Before we discuss families of codes and tensor products of quantum statistical mechanical systems, it is worth
reformulating the setting described above in a way that may make it easier to pass to the analog of the “systems
with interaction” of [2].

Let C be an [n, k, d]; code. We introduce the notation E¢(P) for the algebra obtained by compressing the
abelian subalgebra T A(C) C TO¢ with a projection P of TO¢,
Ec(P):=P TA(C) P.

The isometries T, for a € C, determine an endomorphism p of the algebra T A(C) given by

p(X) = Z T, XTF. (4.33)

This endomorphism satisfies p(1) = P, the idempotent >, 7,7 = P in T.A(C) C TO¢. The endomorphism p
has partial inverses o, given by

0a(X)=T}XT,, (4.34)

for X € Ec(P,), where P, = T,T is the range projection. They satisfy

o.p(X) =X, VX eTA). (4.35)
Notice that, for X = 7, T,; in TA(C), we have PX = Ty, Ty Ty Ty = Ty T,y = X and XP = T, Ty Ty, Ty, =

T, T, = X,sothat, if one represents an arbitrary element X € 7.A4(C) inthe form X = Ag +zw AwTyw Ty, one finds
PX =XP =2 ,T.T)+ >, *uwTyT,. Similarly, one has p(X) = AP + >, 2w Tu T T, T, which acts as

aw wra?’
a shift on the coefficients X, and lands in the compressed algebra E¢ (P). The partial inverses o, satisfy o,(1) = 1

since T, T, = 1, and they map an element X = Ao+ >, AwTy Ty of TA(C) to 0, (X) = Ao+ 21—y 2w Tw Ty -

In the case of the quotient algebra Oc, where one imposes the relations SS, = 1 and >, S, S} = 1, the
endomorphism above induces an endomorphism p of the algebra A(S¢) with p(1) = 1, which is given simply by
the composition

P=D SafS;=foo0

with the one-sided shift map o : S¢ — Sc,

O(X1X2 - Xy ) = X2X3 -+ Xppp] - - -

and the partial inverses are the compositions with the partial inverses of the one sides shift
0a(f) =S, fSa=fooa,

where o, (X1X2 - Xy - -+ ) = axpxo - Xy -+ .

Thus, we can form the crossed product algebra T.A(C) x, M, where M is the additive monoid M = Z*. This
has generators T, 7,; together with an extra generator S satisfying S*S = 1 and SXS* = p(X). It also satisfies
SS* = P and S*XS = 0,(X), for X € Ec(P,).

Proposition 4.8.1 The morphism WV : TOc — T A(C) x, M defined by setting
(T, = P,S (4.36)

identifies TOc with the subalgebra Ec(P) %, M. On the quotient algebra Oc, the induced morphism W gives an
isomorphism O¢ ~ A(Se) X, M.

Proof Notice that

W(Ta)*q/(Ta) = S*PaS =04(Py) = Ta*PaTa =1
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and
> W(T)W(T)* =D PuSS* Py =D P,PPy= > Py=P,
a a a a

since, as observed above, P, P = PP, = P,. Thus, ¥ maps injectively TOc C T.A(C) x, M. To see that surjec-
tivity also holds, notice that E¢ (P) <, M is spanned linearly by monomials of the form 7,,7,}S k and Sk T, T, for
w € Wce.m,m > 1, and k > 0. It suffices to show that these are all in the range of the map W. First observe that the

map W is the identity on the subalgebra T A(C) C TOc¢. In fact, for w = wy - - - wy,, with w; € C, we have

‘I/(TwTw*) = Pwllo(sz) . "pmil(Pwm)(SS*)mpmil(Pwm) e Pwl
= P,PP, = wZSwS:).

Notice then that we have W(>", T,) = >, P.S = PS.LetY = >, T, in TOc. We then have
W(T, THW (YY) = T, T (PS)..

We have (PSK = P...pF"1(P)Sk. Since P = §S* and p(X) = SXS*, we see that Pp(P) = p(P) and
Po(P)--- pk=1(P) = pk=1(P) = S¥=1§*=1 Thus, pk~1(P)S* = S* and we obtain that

W(T, T} YY" = T, TSk,

The argument for elements of the form § KT T is analogous. Thus, all the monomials with w € Wc ,, withm > 1
are in the range of W and the only missing terms are the S* and their adjoints (the case of w = # € W ).

This induces the isomorphism O¢ =~ A(Sc) x5 M of [8], where in the quotient algebra S* fS = g% > f oo,
is the Perron—Frobenius operator and the induced map W preserves the additional relation > SaS; = 1. Thus, in
this case we have lTJ(Za Sa) =2, P,S = S, since in this case P = > . SaSk = 1. We then obtain that the range
of W is all of A(S¢) 5 M. This completes the proof. With this description of the algebra TO¢ in terms of crossed
product of E¢ (P) by the monoid M, one can view the time evolution as given by

0/(X) =X, for X e Zc(P), and o,(S)=q'"Ss. (4.37)

O

5 Quantum Statistical Mechanics and Kolmogorov Complexity

Our reformulation of the rate and relative minimum distance of codes in terms of Hausdorff dimensions, as well
as the construction of algebras with time evolutions for individual codes, can be reinterpreted within the context of
Kolmogorov complexity and Levin’s universal enumerable semi-measures.

5.1 Languages and Fractals

We begin with some considerations on structure functions and entropies for codes. Suppose given a code C C A",
for an alphabet A with #A = ¢g. We assume that C is an [n, k, d], code.

First we reinterpret the construction of the fractal S¢ in terms of languages and w-languages.

Given the alphabet A, one writes A% = U,, A" for the set of all words of finite length in the alphabet A and one
denotes by A® the set of all words of infinite length in the same alphabet. A language A is a subset of A% and an
w-language is a subset of A®.

To a code C one can associate a language A ¢ given by all words in A®° that are successions of words in C C A”".
Similarly, one has an w-language A given by all infinite words in A that are a succession of elements in C. As

such, the w-language A is set-theoretically identified with the fractal Sc we considered previously.



Error-Correcting Codes and Phase Transitions 155

There is a notion of entropy for languages ([7], see also the recent [20]), which is defined as follows. One first
introduces the structure function

sa(m) =#{w e A : L(w) = m},
the number of words of length m in the language A. These can be assembled together into a generating function

Galt) = ZSA (m)t".

The entropy of the language A is then the log of the radius of convergence of the series above

Sp = —logyy p(Gy).

Lemma 5.1.1 For the language Ac defined by an [n, k, d],-code C the structure function satisfies
Gacla™®) = Zc(B),

where Zc(B) is the partition function of the quantum statistical mechanical system (TOc, o;) associated to the
code C. The entropy of the language Ac is the rate of the code Sp. = k/n = R.

Proof In the case of an [n, k, d];-code C, notice that the series G is given by
Gap(t) = qumtnm — (1 =gk,
m

since one has sp (N) = 0 for N # mn, while for N = mn one has sa (nm) = ¢*. In particular, when expressed
in the variable r = ¢~* this becomes

Gaclg™) =D q® =1 —q®m
m

with convergence for § = N(s) > R. This recovers the partition function Z¢c(8) of the quantum statistical
mechanical system associated to the code C. This gives an entropy

Sae = —logqp(GA) =R =k/n,

since domain of convergence for 8 > R corresponds to |¢| = |¢~%| < g~ &.

Intersection with linear spaces 7, determines induced languages Ac ¢. The threshold value £ = d corresponds
to the minimal dimension for there is a choice of 7, for which the resulting language is non-trivial, with entropy d.
0

5.2 Kolmogorov Complexity

There are several variants of Kolmogorov complexity for words w of finite length in a given alphabet, see [14],
§5.5.4. To any such complexity function K (w) one associates the lower Kolmogorov complexity for infinite words
by setting

«(x) = lim inf =)
w—x  L(w)
where the limit is taken over finite words w that are truncations of increasing length £(w) = m — oo of an infinite
word x. There is a characterization (see [14,23]) of the lower Kolmogorov complexity in terms of measures, which
we discuss more at length in the case of codes here below.
We begin by recalling the notion of semi-measures and provide examples taken from the constructions we have
already seen in the previous sections of this paper.
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Definition 5.2.1 A semi-measure on S¢ is a positive real valued function on the cylinder sets {S¢ (w)} that satisfies
1(Sc) < 1 and the subadditivity property

1(Scw)) = " u(Sc(wa)).

aeC

Here we do not distinguish between Sc = A and Sc since the difference is of measure zero in any of the above
measures. An example of semi-measures is obtained using the Ruelle transfer operator techniques considered above.

Lemma 5.2.2 Let Wg(x) be a potential that satisfies the Keane condition at B = By and such that, for a fixed x, it
is monotonically decreasing as a function of 8. Then the function

Mxo,p(Sc(w)) = Wg(wixg) - - - Wg(wy, - - - wix0)

is a semi-measure.

Proof Suppose given a potential Wg(x), and assume that for a B = fo it satisfies the Keane condition
> aucc Wgy(ax) = 1. Assume, moreover, that for fixed x € Sc, the function Wg(x) is monotonically decreas-

ing as a function of B. This will certainly be the case for the special cases we considered with Wg(x) = e Pra of
Wg(x) = e P 122, One will then have

> Wglax) <1, for p=fo. Vx e Sc.
acC
Thus, one has

> uScwa)) = > We(wixo) - - We(wy - wixo) - Wp(aw, - wixo)

aeC aeC
< Wg(wixg) - -- Wg(wy - - - wix0) = iy, g(Sc(w)),
for all B > Byp. This completes the proof. O

5.3 Enumerable Semi-Measures

In complexity theory one is especially interested in those semi-measures that are enumerable. We recall here a
characterization of enumerable semi-measure given in Theorem 4.5.2 of [14], which will be useful in the following,
Given a language A, let F5 be the class of functions (called monotone in [14]) f : A — A, where A is
the set of all finite words (of arbitrary length) in the alphabet A, with f(ww’) = f(w) f(w’), the product being
concatenation of words in A. These extend to functions from A®, the set of all infinite words in the alphabet A to
the w-language A®.
Given a semi-measure (. on A“ and a function f € F one obtains a semi-measure 1 r on A“ by setting

pp(Aw) = D> p(A%w),

w'eAX: f(w)=w
where, as usual, A®(w) and A®(w’) denote the subsets of A® and A®, respectively, made of infinite words starting
with the given prefix word w or, respectively, w’.

In particular, let A denote the 1-dimensional Lebesgue measure on [0, 1]. This induces a measure on A® by
mapping the infinite sequences in A® to points of [0, 1] written in their g-ary expansion. The measure satisfies
MWAY W) =g~ ™,
where ¢(w) is the length of the word w € A®°.

Then Theorem 4.5.2 of [14] characterizes enumerable semi-measures on A® as those semi-measures y that are
obtained as = A ¢ for a function f € Fj.

We observe first that these measures satisfy the following multiplicative property. For simplicity of notation, we
write in the following pu(w) for w(A®(w)).
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Lemma 5.3.1 The enumerable semi-measures are multiplicative on concatenations of words, p(ww'’) =
() p(w").

Proof The uniform Lebesgue measure A clearly has that property since A(ww’) = q’e(“)w/) = q’““"”aw/)) =
A(w)A(w’). Suppose then given a function f € F,. This satisfies f(ww’) = f(w)f(w’) by definition. Thus, in
particular, we can write f(w) = f(wi)--- f(wy), for a word w = wy - - - wy, of length £(w) = m. Consider then
the measure i = Ay given by A r(u) = Zw:f(w):u M(w). For a word u = uy - - - uy, of length £(u) = m, we can
then write this equivalently as

rpy= D []re) =]]rs@.
i=1

fwi=u; i
This completes the proof. O

The characterization of enumerative semi-measure as semi-measures of the form p = Ay shows, for example,
that the uniform Hausdorff measure of dimension dimy S¢ = R = k/n on the set S¢ considered above is an
enumerative (semi)-measure. In fact, it is of the form 1 = Ay, where the map f is induced by the coding map
E : A¥ > C c A", so that elements a € C are described as a = f(w) foraword w € A¥ . In this case, since the
coding map E is injective, there is a unique word w with f(w) = a.

Another example of an enumerative (semi)-measure on Sc can be obtained using as function f € F the decod-
ing map P, by which we mean the map that assigns to each element in A” the nearest point in C in the Hamming
metric. Then one obtains

py(Sc() = >, hw) = #{w = () : P(w) = uilg "™,
w=(w;):w; €A", P(w;)=u;
foru =uy---u, withu; € C,and w = wy - - - wy,, with w; € A",
We now connect enumerable semi-measures on Sc to quantum statistical mechanical systems on the Toeplitz—
Cuntz algebra TO¢ in the following way.

Lemma 5.3.2 Let p be a semi-measure on Sc¢ such that p(ww') = uw(w)u(w’), where u(w) is shorthand for
w(Sc(w)). Then setting

01 (Ty) = u(Sc@) "1,

determines a time evolution o, € Aut(TOc). In the Fock space representation of TOc, this time evolution has
Hamiltonian

Hey = —log u(Sc(w)) €.

The partition function is

-1
Zuc(B) = (1 - Zu(sc(a»ﬂ) :

aecC
with a pole at a critical B, < 1, the inverse temperature at which ), w(a)Pe = 1. The functional
O(TwTy) = 8uur w(Sc ()’
is a KMSg state for the quantum statistical mechanical system (TOc, o).
Proof In the Fock representation the time evolution is generated by a Hamiltonian
M T Mey = 01(Tw)ew = @)™ eaw,
which gives

eitHGw — M(w)iitew
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using the fact that the semi-measure satisfies u(aw) = p(a)u(w). This gives He,, = — log p(w). The partition
function is then given by

ZucB) =Tre )y =" uw)?.

Again using w(w) = pu(wy) - - - w(wy,) for w = wy - - - wy, a word of length £(w) = m, we write the above as

Duf=>" " pwnf - pw)f = Z(Z u(a)ﬁ) :

m wi,..., Wy m acC

For g > B. where >, w(a)Pe =1, the series converges to

—1
Zuc(B) = (1 - Zu(a)ﬂ) :

acC

Since j is a semi-measure, it satisfies >, i(a) < 1, so that B < 1. The state defined by the condition ¢(7, T,;,) =

8w,w/u(w)ﬁ satisfies the KMSg condition. This can be checked inductively from
O(T.T)) = w@’ = @)’ (T, T, = o(T; 0i5(To)).

This completes the proof. O

This result in particular shows that, given a semi-measure on Sc¢ with strict inequality >, (a) < 1, there is a
way to associate to it a measure by raising the temperature, that is, lowering g from 8 = 1 to 8 = .. One then has
e(SySi) = M(w)ﬂ", this time satisfying the correct normalization )", ,u(a)ﬁ" = 1, which also implies

D nwa)e = p@)f 3 p@b = p),

so that one indeed obtains a measure.

5.4 Universal Enumerable Semi-Measure

A well known result of Levin (see [23] or Theorem 4.5.1 of [14]) is that there exist universal (or maximal) enumer-
able semi-measures ;g on A®. They are characterized by the following property: any enumerable semi-measure
is absolutely continuous with respect to uy with bounded Radon-Nikodym derivative, or equivalently uy > cri g,
for all f € FA. Such universal semi-measures are not unique. A way to construct one is by listing the enumerable
semi-measures (or equivalently listing the functions f € F) and then taking iy = >, a,A 5, with positive real
coefficients o, with zn a, < 1, see Theorem 4.5.1 of [14]. Another description which is more suitable for our
purposes is as an enumerable semi-measure iy = A s, , where fy is a universal monotone machine in the sense
of Definitions 4.5.2 and 4.5.6 of [14], that is, universal for Turing machines with a one-way read-only input tape,
some work tapes, and a one-way write-only output tape. As an enumerable semi-measure, we can apply to it the
construction of a corresponding time evolution and quantum statistical mechanical system as above. Notice that ;g
is not recursive and it is not a measure, that is, the inequality >", iy (a) < 1 is strict, see Lemma 4.5.3 of [14].
We can then consider on the Toeplitz—Cuntz algebra TO¢ the universal time evolution

0(Ty) = py(a) ™' T,

induced by the universal enumerable semi-measure iy = A s, . The critical value By < 1 at which the partition
function

—1
Zy.c(B) = (1 - Zuum)ﬁ)



Error-Correcting Codes and Phase Transitions 159

has a pole is the universal critical inverse temperature. This universal critical temperature can be regarded as another
parameter of a code C, which in this setting replaces the code rate R as the critical 8 of the time evolution.

The universal critical inverse temperature By can also be described as a Hausdorff dimension, by modifying the
construction of the Sierpinski fractal S¢ associated to the code C in the following way.

Recall that Sc is constructed inductively starting with the space (0, 1) viewed as (0o x n)-matrices with entries
in A. At the first step, replacing it by ¢* copies scaled down by a factor of ¢ ™", each identifies with the subset
(0, 1)Z,a of points in (0, I)Z where the first row is equal to the element a € C, with C C A”. Each (0, I)Z’a is a
copy of (0, 1)2 scaled down by a factor of ¢ ~". One obtains then S¢ by iterating this process on each (0, 1);, o and
SO on.

Now we consider a very similar procedure, where we again start with the same set (0, 1)2. We again consider all
the subsets (0, l)g’ 4 as above, but where the set (0, l)g’ ., 1s metrically a scaled down copy of (0, 1), now scaled
by a factor uy (a) instead of being scaled by the uniform factor ¢ =" as in the construction of Sc¢. One obtains in
this way a fractal Sc y, by iterating this process. The self similarity equation for the non-uniform fractal Sc y is
then given by

D nu@) =1,

aeC
which identifies its Haudorff dimension with s = By .
One also has a Ruelle transfer operator associated to the universal enumerable semi-measure, which is given by

Roupfx) =D nu@? flax).
acC

Itis then natural to investigate how the universal enumerative semi-measure is related to the Hausdorff dimension
dimgy Sc = R and to Kolmogorov complexity.

Lemma 5.4.1 For all words x € S¢ the lower Kolmogorov complexity is bounded above by
k(x) <dimy(Sc) = R.
Proof The universal enumerable semi-measure p(; is related to the lower Kolmogorov complexity by ([20,22,23])

K (x) = liminf M,
w—x L(w)

where again the limit is taken over finite length truncations w of the infinite word x as the length £(w) goes to infin-

ity. We know by construction that the universal pyy dominates multiplicatively all the enumerable semi-measures.

Thus, in particular, if u is the Hausdorff measure on S¢ of dimension R = dimg (S¢), which we have seen above

is an enumerable (semi)-measure, there is a positive real number « such that py (w) > ap(w), for all finite words

w. This implies that
- logq ,LLU(LU) < - logq ,LL(U)) - logq o

L(w) - L(w) £(w)
This gives
—lo w —lo w k
liminf ot ) Tlogg W)k
w—x L(w) w—Xx L(w) m—o00 nm

Moreover, we have the following result.

Lemma 5.4.2 The lower Kolmogorov complexity satisfies

sup k(x) =R
xeS‘c

with the supremum achieved on a set of full measure.
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Proof This follows directly from Ryabko’s inequality [18, 19], which shows that in general one has the estimate

dimg (A®) < sup «(x).
XeA®

To see this more explicitly in our case, recall first that the Hausdorff dimension of a set X embedded in some larger
ambient Euclidean space can be computed in the following way. Consider coverings {U,} of X with diameters
diam(Uy) < p and consider the sum >_, diam(U,)*. Set

(X, p) = inf{Zdiam(Ua)S s diam(Uy) < ,0}.
o
Then one has
dimg (X) = inf [s : lir%ES(X, p) = O] = sup [s : liHBZS(X, p) = oo] .
pP—> p—>

We then use an argument similar to the one used in [19]: from
- logq Hu (w)
£(w)
we know that, for a given x € Sc, and for arbitrary § > 0, there is an integer m(x) such that, if w(x) denotes the
truncation of length m(x) of the infinite word x then

k(x) = lim inf
w—Xx

—log, ity (w(x))
T <kx)+68 =<K+,

where k = sup, k(x) as above. The integer m(x) can be taken so that g ") < p for a given size p € R%. Let £
be the countable set of words w = w(x) of lengths m(x), for x € Sc, obtained as above. We can then construct a
covering of Sc with sets Sc(w), for w € £, with diameters diam(Sc(w)) = /n g% < /n p, for a positive
constant « that only depends on n. These satisfy

Z diam(SC(w))K+8 S o qum(x)(ld»é)’
wel
with & = /n* ™. This gives

logg py (w(x))

Zq_’"(x)(K+5) < qu(x)w < Z //-U(w) < 1.
wel
‘We then have
&(Sc, p) < D diam(Sc(w))*
wel
and therefore
li < ] 5.
lim €,(Sc, p) = 3 diam(Sc(w))
wel
For s = « + & the right hand side is uniformly bounded above, so lim,_.o £, 1+5(Sc, p) < oo, hence x + 4§ >
dimg (S¢), hence k > dimy (S¢), since § can be chosen arbitrarily small. O

6 Functional Analytic Constructions for Limit Points
6.1 Realizing Limit Points of the Code Domain

We have seen in the previous sections that, given an [n, k, d],; code C, one can construct fractal sets Sc and Sy as
in Sect. 3.3, that have Hausdorff dimension, respectively, equal to R = k/n and § = d/n, and that the parameter d
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can be characterized in terms of the behavior of the Hausdorff dimension of the intersections Sc ¢ » = Sc N Sy for
7 of dimension £. We now consider the case where two assigned values R and § are not necessarily realized by a
code C, but are an accumulation point of the code domain, namely there exists an infinite family C; of [n,, k,, d; 14
codes, where k. /n, — R and d,/n, — § asr — o0.

We show here that one can still construct sets Sg and Ss, depending on the approximating family C,, with the
property that dimg (Sg) = R and dimg (S5) = 6 and so that these sets are, in a suitable sense, approximated by the
sets Sc, and Sy, with 7, € I, of the family of codes C,.

6.2 Multifractals in Infinite Dimensional Cubes

Let then (O, 1);O denote the union (0, 1)20 = U, (0, I)Z which can be considered as direct limit under the inclusion
maps that embed [0, 1] C [0, 1]"*! as the face in [0, 1]7"*! of which the last coordinate is equal to zero. This is
a metric space with the induced metric. In terms of the g-ary expansion, elements in (0, 1);° can be described as
infinite matrices with only finitely many columns with non zero entries. We can embed all the S¢, C (0, 1)g” of an
approximating family inside (0, 1)°. Thus, we can view the set Sg = U, S¢, as Sg C (0, 1)2°.

Proposition 6.2.1 (1) For any limit point (R, §) of the code domain there exists a family C, of [n,, k., d; ], codes
with k. /n, /' R and d,/n, /6.
(2) For such a sequence C; the sets Sg = U, Sc, and S5 = U, Sz, have

diInH(SR) = R, dimH(S(s) = 8, and dimH(SR N S(s) > 0. (6.1)

(3) Moreover, given a sequence 1y, € Hé’:’) with £, < d, — 1, one can form the analogous Sy = U, sz,~ This has
the property that dimy (Sp N Sp) = 0.

Proof (1) We first show that we can find an approximating family C, with k,/n, / R and d,/n, / §. To this
purpose we use the spoiling operations on codes described above. We know from Corollary 1.2.1 that, given
an [n, k, d]; code, we can produce an [n, k — 1 < kK <k,d— 1]4 code from it by applying the second and
third spoiling operations and twice the first one. Starting with an approximating family C, with k. /n, — R
and d, /n, — 6 and using the spoiling operations as described, we can produce from it other approximating
families with k, replaced by k. — £, and d, — ¢, with ¢,/n, — 0 and such that, for sufficiently large r,
ky/n, —4;/n, < Randd,/n, —{,/n, < §.Possibly after passing to a subsequence, we obtain a family where
the new k;, and d, satisfy k. /n, /" R and d,/n, /4.

(2) The Hausdorff dimension of a union behaves like

dimyg (U, X,) = supdimpg (X,)

by countable stability [9, p. 37]. Thus, if k. /n, / R and d,/n, /' §, we obtain that dimy (Sg) = R and
dimg(Ss) = 6.

Let us now show that dimg (Sg N S5) > 0. We have Sg N Ss = U, (S¢c, N Sy,). Again by countable stability
of the Hausdorff dimension we obtain

dimy (Sg N Ss) = supdimpy (Sc, N Sz,) > 0.

The Hausdorff dimension is also bounded above by the dimension of Sg and S5 so 0 < dimy(Sg N Ss) <
min{R, §}.

(3) For a given sequence ¢, < d, — 1 with corresponding linear spaces 7y, € I'IZ"), we can form the sets
Sz, C (O, 1);’0. If the ¢, are chosen so that the ratio sequence ¢, /n, /' £ approaches a limit from below as
r — 00, then the same argument given above shows that the Hausdorff dimension dim g (U, Sﬂ{.r) = {. For
S¢ = U, Sx,, , the intersection Sk N S¢ is given as above by Sg N Sy = U, (Sc, N Sy, ) Since ¢, < d, — 1, we
know that dimg (Sc, N Sm,) =0 for all r. Thus, we have dimg (Sg N S¢) = 0. This shows that the set Sy still
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has the same threshold property with respect to the behavior of the Hausdorff dimension of the intersection
with Sg, as in the case of the individual S¢ of a single code.
O

6.3 Random Processes and Fractal Measures for Limit Points of Codes

We have seen how, for an individual code C C A" we can construct a fractal set S¢ of Hausdorff dimension the
code rate R and with the Hausdorff measure g in dimension R satisfying the self-similarity condition

ur=q"% > proo,".

acA"
We now consider the case of a limit point (R, §), which is an accumulation point of the code domain, so that we
have a family of codes C, with k. /n, — R and d,/n,, — 8. As we have seen in Proposition 6.2.1 above, we can
construct a set Sg C (0, 1)2O with Hausdorff dimension dimg (Sg) = R.

The construction of Sk shows that the Hausdorff dimension of each Sc, is dominated by that of the larger ones
and of Sg. Therefore for the uniform R-dimensional Hausdorff measure each of the Sc, becomes negligible. How-
ever, it is possible to construct non-uniform measures on Sg that give non-trivial probability to each of the S¢c,. We
investigate here how to obtain self-similar multifractal measures on the sets Sk using the method of Ruelle transfer
operators.

On the set Sg C (0, 1)20 we consider a potential W = Wpg with non-negative real values satisfying the Keane
condition

> Wglax) =1, Vx e Sg. (6.2)
a

where for x € Sc, C Sg the sum is over all the elements a € C,.
The Ruelle transfer operators on Sg will then be of the form

Rowf)= D Wyfmn= >, Wax)f(ax), (6.3)

o(y)=x aeU, (C,NA"r)

where the shift map o on Sk is the one induced by the shift maps on the individual Sc,. The partial inverses of o
are given by maps o, (x) = ax, where, for x € Sc,, a is an element of corresponding C,.

Example I One can consider the case where the potential Wg(x) is a piecewise constant function on Sg, which
depends only on the first coordinate (first row) x| € U, (C, N A™) of x. One can write it in this case as

Wg(x) = e PP, with > ePe=1 (6.4)
aeU,(C,NA"r)

Example 2 Another case we will consider in the following is where the potential is also a piecewise constant func-
tion on Sg, but which depends on the first two coordinates (first two rows) x1, x2 € U,.(C N A™) of x € (0, l)go.
In this case we write it in the form

Wg(x) = e Pran with > e e =1, (6.5)
aeU, (C,NAMTY

forall x; € U, (C, N A"). We then think of A, as an infinite matrix indexed by elements a, b € U, (C, N A™"). The
condition that >, Wg(ax) = 1 for all x € Sg implies that the function f(x) = 1 is a fixed point for the transfer
operator Ry w 4.

Here is a version of the construction given in [6] (see also for instance [17]), for an arbitrary potential Wg
satisfying the Keane condition.
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Proposition 6.3.1 For a choice of a point xo € Sg, one can then construct a measure [Lgx, on Sg by assign-
ing to the subset Sgp(w) C Sg of words x € Sg that start with a given finite length word w = wy - - - wy, with
w; € Uy (Cr N A") the measure

mp.xo (SR(W)) = Wg(wix0) Wg(wawixp) ... Wg(wy ... wixop). (6.6)

Proof To see that this indeed defines a probability measure we need to check that
D g (Srw)) = 1,
w

and that
D 1pry (SRWa)) = g ry (SR (w)).
acU, A"
The first condition is satisfied since we have
z Wg(wixo) Wg(wawixo) - - - We(wp—1 - - - wixo) Wg (wy - - - wixo)
—

= Z Wg(wix0)Wg(wawixg) - - - Wg(wp—1 - - - wixo)

Wy Wp—1

e = ZWﬂ(w]XO) = 1,

wi

by repeatedly using the Keane condition (6.2). The second condition also follows from (6.2), since we have
D o (Sr(wa)) = D" We(wixo) - -+ Wg(wy -+ wix0) W (@wy, - - wixo)
a a

= Wg(wix0) Wg(wawixg) - - - Wg(wy, - - - wixp),
since >, Wg(awy, - - - wixg) = 1. This completes the proof. O

The idea is that one thinks of the measure constructed as above as the probability of a random walk that starts at
xo and proceeds at each step in the direction marked by an element a € U,.(C, N A’). In the special cases (6.4)
and (6.5), the probabilities are given, respectively, by

m
—Bhw;
1o (Sr(w)) = [ e s,
j=1
which is, in this case, independent of the choice of the point xq, and by
148,50 (SR(w)) = e Pronvi ... g=Phuymn g=Phunsg

Consider then a fixed Sc, inside Sg = U, Sc, . The measure constructed as above on Sy induces a multi-fractal
measure on each Sc,. We describe the resulting system of measures explicitly in the two cases where the measure
on Sg satisfies (6.4) or (6.5).

Proposition 6.3.2 (1) If the measure on Sg satisfies (6.4), then it induces on each Sc, a multi—fractal measure
by assigning

1 — B,
upr(Sc, (W) = Z—g [Te ", 6.7)
' j

for w = wy - - - wy, with w; € Cy, where Z.(B) is given by

Zr(B)= D e P (6.8)

aeC,
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(2) If the measure on Sy satisfies (6.5), then it induces on each Sc, a multi-fractal measure by assigning

Wg (W wp—1) - - Wg(wixo) £

P, 0

KB.r.xo (Sc, (w)) = (6.9)

for w = wy ---wy, with w; € Cy, where f) is the Perron—Frobenius eigenvector of the positive matrix
Wg(ab) = e Prab and Pp,r the eigenvalue equal to the spectral radius.

Proof When one restricts the potential Wg from Sk, to a single Sc, , the infinite sum (6.2) is replaced by a truncated
finite sum

> Wglax) <1, Vx e Sg. (6.10)
acC,NA"r

Thus, in the case (6.4), instead of the normalization condition given by the infinite sum

Z e Pra — 1,

aeVU,Cy

we have a partition function given by the finite sum (6.8). The induced probability measure on Sc, is then given by
assigning measures

e_ﬁ)"a
Z.(B)’

and more generally by (6.7) onthe sets Sc, (w) withw = wy - - - w,, withw; € C,. Since Z, (,3)’1 ZaeC,
this assignment satisfies the required properties in order to define a probability measure on Sc,. Notice that the
measure obtained in this way is no longer a uniform self-similar measure like the Hausdorff measure on S¢c, of
Hausdorff dimension &, /d,, but it is a non-uniform multi-fractal measure in the sense of [9, §17].

The case where the potential Wg on Sg satisfies (6.5) is similar. The restriction of Wy to a single Sc, gives a
qk’ X qk’ -matrix, Wg(ab) = e Prab fora, b € C,. This matrix is positive, in the sense that all its entries are, by
construction, positive real numbers. Thus, the Perron—Frobenius theorem applied to the matrix Wg(ab) (or rather

mp.r(Sc, (@) =

efﬂ)\a — 1’

to its transpose) shows that there exists a unique eigenvector f) = ( fa(r))

> Welab) £ = pp.r £, (6.11)

aeC,

with positive entries fa(r) > 0 and with eigenvalue pg , equal to the spectral radius of Wg(ab).
We then show that setting the measure of Sc, (w) equal to (6.9), for w = wy - - - w,, with w; € C,, defines an
induced probability measure on Sc, . We check that

> oS,y = 3 L) Hp ) i
w . P fxo
B Z Wﬂ(wm_lwm—z)-“Wﬁ(wlxo)fugf,z,l
e ooV £
_y Wewixo) fur) _ |
Il

since we have

> Wewinwp) i) = pp.r f)-

W+t
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Similarly, we have

Z Wglawy) ... Wg(wixo) £
m+1 ,(r)
a Pﬁr X0
(r)
We(wmwm—1) - - - Wg(wixo) fu,
= CF = i g (Sc, (W),
'Oﬂr X0

> wprxo(Sc, (wa))

since we have

Z We(awn) £ = ppr £,
a

We therefore obtain a family of induced multi-fractal probability measures on the Sc,. This completes the
proof. O

A similar construction can be done in the case of the family of sets Sy 4 withd, /n, /' § and the set Ss = U, Sy -

6.4 Limit Points and Algebra Representations

As above, consider a family of codes C, with parameters &, /n, / R and d,/n, /' 5. We have Toeplitz algebras
TOc, associated to each code in this family. It is then natural to consider as algebra associated to the limit point
(R, §) the infinite Toeplitz algebra in the union of the generators of all the 7Oc,, namely 7Oy, c, generated by
isometries S, fora € U, C,.

Proposition 6.4.1 Let g y, be a probability measure on Sg constructed as above, in terms of a potential Wg(x).
The algebra TO\, c, has a representation on the Hilbert space L%(Sk, B, x) given by

(Sa f)(x) = Wg(ax0) ™% xsp@ (x) f(o(x)), (6.12)

fora € U,C,.
Proof We must check that the operators (6.12), for a € U, C,, satisfy the relations S¥S, = 1 of TOy,c,, with
SaS} = P, orthogonal range projections.

First observe that the Radon—-Nikodym derivative of 1 g x, with respect to composition with o, for a € U,C,
satisfies

dg,xy © 0q

— Wj(axo). (6.13)
diig.xo ¢

In fact, we have

146.xo (SR(w)) = Zuﬂ x0(Sr(wa))

dy, o O,

D I o Ty
d,lLﬁx a

@ Sp(w)

It then follows that the operators S, of (6.12) have adjoints

(SE ) (x) = Wg(axo)/? f (04(x)). (6.14)
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In fact, we have

(Sqh, f) = / Wg(axo) ™ > h(o (x)) f(x) dpigry(x)
Sr(a)

MB,xp © Oa

J— d
= / W (axo) ™ h(u) f(oau)) y d g o (1)
& B, x0

= / h(u) Wp(ax0)'"? f (0a (W) dip.zg () = (. S f).
Sr
One then sees explicitly that the operators S, and S} satisfy S;'S, = 1, while S,S} is the range projection P, given
by multiplication by the characteristic function xs, ). Notice that, for a # @’ in U, C;, the sets Sg(a) and Sg(a’)
are disjoint, hence the range projections are orthogonal. Thus, we obtain a representation of the algebra 7Oy, c, .
This completes the proof. O

One can proceed in a similar way with respect to the parameter § using the set Ss with a similar measure and
representation. Thus, the choice of a limit point (R, §) corresponds to the pair of Hilbert spaces L>(Sg, i B,x) and
LZ(S(s, Mg x(/)) with representations of the algebras 7Oy, ¢, and TOy, 0 respectively.

The main asymptotic problem of codes [15,21] consists of identifying a continuous curve R = oy () (which
can also be symmetrically formulated as § = a; (R)) that gives for fixed é the maximal possible value of R in the
closure of the subset of limit points of the code domain (respectively, the maximal § for fixed R). We describe here a
way to characterize the curve R = «,(8) in terms of the measures jg v, on the sets Sg and the uniform self-similar
measures on the Sc, for approximating families of codes.

We have shown earlier that given a point (R, §) in the closure of the code domain, it is always possible to construct
an approximating family of codes C, with k. /n, / R and d,/n, / §. In the following, we refer to such a family
{C,} as a good approximating family.

We have shown that a measure g x, on the set Sg C (0, 1);’o induces a compatible family of non-uniform fractal
measures on the sets S¢, C (0, 1)'(}*. We now show that, conversely, the family of uniform self-similar measures on
the Sc, determine a family of non-uniform measure (g x, on the set Sg C (0, 1);’0, for 8 > R.

Proposition 6.5 Let C, be a good approximating family for a limit point (R, §). For a € U,C, set A, = n,loggq,

where n, corresponds to the smallest C, C (0, I)Z’ for which a € C,. Then the series

Zo.c,(B) = D, e P (6.15)
aeU,C,
converges for B > R and the potential

Wg(x) = Zu,c,(B)~" exp(—Biy,) (6.16)

defines a probability measure on the set Sg. The analogous construction holds for Ss with convergence in the
domain > 6.

Proof We have
Zoe,(B) =D q"q7 P,
r

since the Sc, are disjoint in (0, 1).°. Since {C;} is a good approximating family, we have k,/n, < R and we see
that

zqqu—ﬁnr < Z q(R—ﬁ)nr.
r r

This is convergent for 8 > R. The potential Wg(x) of (6.16) then satisfies the Keane condition >, Wg(ax) = 1.
The construction for S; is entirely analogous, using the uniform measures on the Sy, . This completes the proof. O
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We then obtain the following characterization of the curve R = o, () of the fundamental asymptotic problem
for codes.

Proposition 6.6 The domain B > oy (8) is the closure of the common domain of convergence of the functions
Zu,c,(B) for all the points (R, §) with fixed 6 in the closure of the subset of limit points of the code domain and for
all good approximating families {C,}.

Proof The domain 8 > R is in fact the closure of the common domain of convergence of the functions Zy, ¢, (8)
when one varies the good approximating family C,. In fact, the argument above shows that they all converge for
B > R. The Sc, are disjoint in (0, 1)‘q>O so that the zeta function (6.15) is given by >, gkrg=P"  Thenif B < R,
for sufficiently large » one will have k. /n, — 8 > 0 and the series diverges. Then by varying the limit point (R, §)
with fixed 6 one obtains the result. O

Remark We constructed in Sect. 6.4 multi-fractal measures on the set U, S¢, for a family of codes {C,} approxi-
mating a limit point (R, §). We also considered, associated to the same family of codes, the infinite Toeplitz algebra
TOy, c, . Notice that in this case, unlike what happens for the case of a single code, the set U, Sc, is no longer
dense in the spectrum of the maximal abelian subalgebra. In fact, the latter consists of all infinite sequences in the
elements of U, C,, while the set U, S¢c, only contains those sequences where all the successive elements in an infinite
sequence belong to the same C,.. Both sets can be regarded as the union of the w-languages defined by the codes C,,
where in the case of U, Sc, one is keeping track of the information of the embeddings of the codes C, C A", that
is, of viewing elements of each language as matrices so that the concatenation operation of successive words can
only happen for matrices that has the same row lengths, while in the case of the spectrum of the maximal abelian
subalgebra one does not take the embedding into account so that all concatenations of words in the languages
defined by the codes C, are possible and one obtains a larger set.

6.7 Quantum Statistical Mechanics Above and Below the Asymptotic Bound

We have seen in Sect. 4 how to associate a quantum statistical mechanical system to an individual code. We also
know from Theorem 2.11 that code points have multiplicities: in particular, code points that lie below the asymptotic
bound have infinite multiplicity, while isolated codes, which lie above the asymptotic bound have finite multiplic-
ity. In terms of quantum statistical mechanical systems, it is therefore more natural to fix a code point (R, §) and
construct an algebra with time evolution (TO(g,s), o) which does not depend on choosing a code C representing
the code point, but allowing for all representatives simultaneously. This can be done in the same way we used in
Sect. 6.4 for limit points. Namely, we let 7O g ) be the Toeplitz algebra with generators the elements in the union
of all codes C with parameters (R, §). This will be isomorphic to a finite rank Toeplitz algebra 7Oy for isolated
codes and isomorphic to the infinite Toeplitz algebra 7O, in the case of code points that lie below the asymptotic
bound. Similarly, we can consider the fractal set given by the union of the S¢ for all the representative codes with
fixed (R, §). In this case all these sets have the same Hausdorff dimension equal to R, but in the case of isolated
codes they are obtained as a finite union and therefore they admit a uniform self-similar probability measure, the
R-dimensional Hausdorff measure, while in the case of the points below the asymptotic bound one can construct
non-uniform probability measure using the same method we described in Sect. 6.2 for limit points. We can use
potentials as in (6.4) to construct such measures. This in turn induces a time evolution on 7O g s) of the form

01(T,) = '™ T,.

In this way, the properties of the quantum statistical mechanical system associated to a code point (R, §) reflect the
difference between point above or below the asymptotic bound.
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7 The Asymptotic Bound as a Phase Diagram

The goal of this section is to extend the construction of quantum statistical mechanical systems from the case of
individual codes C to families of codes in such a way as to obtain a description of the asymptotic bound R = o, (3)
as a phase transition curve in a phase diagram.

7.1 Variable Temperature KMS States

We begin by giving here a generalization of the usual notion of KMS states, which we refer to as variable tem-
perature KMS states and which will be useful in our example. This is similar to the notion of “local KMS states”
considered, for instance, in [1] in the context of out of equilibrium thermodynamics, as well as in the context of
information theory in [11], though definition we give here is more general. We formulate it first in the case of an
arbitrary algebra of observables and we then specialize it to the case of families of codes.

Definition 7.1.1 Let 3 be a unital C*-algebra and let X" be a parameter space, assumed to be a (compact Hausdorff)
topological space, together with an assigned continuous function 8 : X — Ry. Forr € C(X, R), let o; € Aut(5)
be a family of automorphisms satisfying oy, 4+, = 07, o 01,. A KMSg state for (B3, o) is a continuous linear func-
tional ¢ : B — C with ¢(1) = 1 and ¢(a*a) > 0 for all @ € B, and such that, for all a, b € B there exists a
function F, 5(z), for z : X — C, with the property that the function F, ;(z(cr)) for any fixed @ € X and varying
z € C(X, C) is a holomorphic function of the complex variable z(a) € Ig(4), Where

Ip@) ={z € C|0 < N(2) < f(w)},
and extends to a continuous function on the boundary of /g« with
Fap(t(@) = ¢(aoi@(0)),  and  Fup(t(a) +if(@)) = ¢(01@ (b)a),

where 1 () = z2(0)|9i(z(«))=0-

Example In the case where the parameter space is a finite set of points, say X = {1, ..., N} one finds that o; is an
action of RV by automorphisms and the variable temperature KMS condition gives a functional such that ¢ (ab) =
p(oig(b)a), with B = (B1, ..., Bn). The partition function, correspondingly, is a function Z(By, ..., By) =
Tr(e~‘#-H)), where H = (Hy) implements the time evolution o; in the sense that

7 (o1(a) = &M (@ye 01,

in a given Hilbert space representation 7 of B.

We are interested in the case where the algebra is itself a tensor product over the parameter space, and the
resulting C*-dynamical system is also a tensor product. Namely, we have B = ®qecx By With 0; = ®¢07(4) and a
representation 7 = Q47 on a product H = ®qH,y, with a Hamiltonian H = ®, H, generating the time evolution,
namely so that on H, one has

7o (01 (@a)) = €'y (ag)e™ e,

Then for a given B : X — Ry, a state ¢ = ®q¢, is a KMSy state iff the ¢, are KMSg(q) states for the time
evolution o;(y). We assume here that X is a discrete set and that the C*-algebras B, are nuclear so that tensor
products over finite subsets of X are unambiguously defined and the product over X is obtained as direct limit, as
in Proposition 7 of [2].
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7.2 Phase Transitions for Families of Codes

We consider approximations to the curve R = «4(8) by families of N points (8;, R;) that are code points, that is,
for which there exists a code C; with kj/n; = Rj and d;/n; = ;. To such a collection of points we associate a
quantum statistical mechanical system that is the tensor product of the systems associated to each code C;, with
algebra of observables A = ® ;T0¢ ; and with the dynamics given by o : RY — Aut(A), witho, = ® jOt;» Where
oy; is the time evolution on 7O¢; given by

01,(Sa) = q'"" Sa.

Lemma 7.2.1 Let (A, o) be the product system described above, for a collection C; of codes, with j =1, ..., N.
Then for any given B = (B1, ..., Bj) there is a unique KMSg state on (A, o), which is given by the product
¥p = ®jpp, of the unique KMSp, states on the algebras TOc,. For B in the region Bj > R;, the KMS state is of
type l. The partition function is the product of the partition functions of the individual systems.

Proof The product state pg = ® jpp; is a KMSg state for (A, o) with B = (Bi, ..., B;). The uniqueness for the
tensor product state follows from an argument similar to the one used in Proposition 8 of [2], adapted to our more
general notion of KMS state. It suffices in fact to observe that, if ¢ is a KMSg state with 8 = (B1, ..., 8;) on the
product A = ®jTOc/., then for fixed ay, ...,a;_1,aj41, ..., an, the functional

Par®-®aj1®a;41@-@ay (@)) = @@ @ --- @ an)

is a KMSg; state on 7Oc;, by the same argument used in the ordinary case.
The Hamiltonian H; generating the time evolution oy; on the algebra T7O¢; has eigenvalues mn j log g, with
integers m > 0, with multiplicities q’”kf, and partition function

Z(B;) = Tr(e Pitliy = Zq<RJ—ﬂj)"fm = (1 — gRi=Pimiy=1,

m

The partition function for the product system is then

Z(Br.....py) =Te(e 2Pty = 3" g2 Ri=hpmm;
m=(my,...,my)
= H Zq(Rj—ﬁj)"jmj = H(l —gRi=Pnjy=1 = H Z(B)).
AN J i
It converges in the domain of RV determined by the conditions 8 7 > R;. This finishes the proof. O

To further refine the picture described above, we consider quantum statistical mechanical systems associated to
families of codes approximating a limit point in the closure of the code domain.

As before, let C = {C,} be a family of codes with k. /n, /" R andd,/n, /' §. We consider again the union U, C,
and the corresponding Toeplitz algebra TOy, ¢, . On the fractal Sg = U, S¢, of Hausdorff dimensiondimy (Sg) = R,
consider a potential Wg(x) = e Prn , such that, when 8 = R it satisfies the Keane condition

Z e R =1,

acU,C,

We consider then the time evolution on 7Oy, ¢, given by
O'ZW(TM) = ¢itha T,.
In the representation of 7Oy, ¢, on its Fock space, this time evolution is generated by a Hamiltonian

HEw = ()‘wl + - +)\w,,,)€w,
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forw = wy - - - wy, with w; € U, C,.. This has partition function

Zc(B) :Z Z o= BOw ) Z Z P

m weWy,c,.m m aeU,C,

If we introduce the notation

NG

aeU,C,
we have A(R) = 1 and, for 8 > R, A(B) < 1, while for § < R one has A(B) > 1, which becomes possibly
divergent after some critical value Sy < R. Thus, the partition function for the system (70y, ¢, , o%)is

Ze(B) =D A" =1 -AB) .

convergent for 8 > R, with a phase transition at 8 = R. The same argument of Proposition 4.7.3 can be extended
to this case to show the existence at all 8 > 0 of a unique KMSg state, which is of type I, below the critical
temperature and is given by a residue at the critical temperature.

One can then consider approximations of the curve R = «,(8) by points (R y,8; n) in Uy, for j =1,..., N.
To each of these points one associates a quantum statistical mechanical system constructed as above using a family
Cin=1{Cs . v} of codes approximating the limit point (8; v, R; y) with the time evolution o WiN described above
on the algebra 7O, . By taking the product of these systems one can form a system with variable temperature
KMS states with phase transition at 8; y = R; v < a4(8; y). This can be extended to the case of a countable
dense set of points below the curve R = «,(5) and the corresponding countable tensor product system.

It would be interesting to extend this type of tensor product construction for families of algebras associated to
codes to a version that corresponds to a “system with interaction” more like the Bost—Connes algebra.
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