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Abstract The theory of error-correcting codes is concerned with constructing codes that optimize simultaneously
transmission rate and relative minimum distance. These conflicting requirements determine an asymptotic bound,
which is a continuous curve in the space of parameters. The main goal of this paper is to relate the asymptotic bound
to phase diagrams of quantum statistical mechanical systems. We first identify the code parameters with Hausdorff
and von Neumann dimensions, by considering fractals consisting of infinite sequences of code words. We then
construct operator algebras associated to individual codes. These are Toeplitz algebras with a time evolution for
which the KMS state at critical temperature gives the Hausdorff measure on the corresponding fractal. We extend
this construction to algebras associated to limit points of codes, with non-uniform multi-fractal measures, and to
tensor products over varying parameters.
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0 Introduction: Asymptotic Bounds

0.1 Notation

The following notation is used throughout the paper. An alphabet is a finite set A of cardinality q ≥ 2, a code is a sub-
set C ⊂ An, n = n(C) ≥ 1. Words of length n are elements of An , they are generally denoted (a1, . . . , an), ai ∈ A
and alike. Elements of C are code words.

The Hamming distance between two words (ai ), (bi ) is defined as

d((ai ), (bi )) := #{i ∈ (1, . . . , n) | ai �= bi }.
The minimal distance d = d(C) of the code C is

d(C) := min {d(a, b) | a, b ∈ C, a �= b}.
Finally, we put

k = k(C) := logq #C, [k] = [k(C)] := integer part of k(C),

so that

q[k] ≤ #C = qk < q[k]+1. (0.1)

The numbers n, k, d and q are called parameters of C , and a code C with such parameters is called an [n, k, d]q -
code. Notice that any bijective map between two alphabets produces a bijection between the associated sets of
codes, preserving all code parameters.

Alphabet A and code C may be endowed with additional structures. The most popular case is: A = Fq , the finite
field with q elements, and C is a linear subspace of Fn

q . Such codes are called linear ones.
Codes are used to transmit signals as sequences of code words. Encoding such a signal may become computa-

tionally more feasible, if the code is a structured set, such as a linear space. During the transmission, code words may
be spoiled by a random noise, which randomly changes letters constituting such a word. The noise produces some
word in An which might not belong to C . At the receiver end, the (conjecturally) sent word must be reconstructed,
for example, as closest neighbor in C (in Hamming’s metric) of the received word. This decoding operation again
might become more computationally feasible, if A and C are endowed with an additional structure.

If k is small with respect to n, there are relatively few code words, and decoding becomes safer, but the price con-
sists in the respective lengthening of the encoding signal. The number R = R(C) := k/n, 0 < R ≤ 1, that measures
the inverse of this lengthening, is called the (relative) transmission rate. If d is small, there might be too many code
words close to the received word, and the decoding becomes less safe. The number δ := δ(C) = d/n, 0 < δ ≤ 1,

is called the relative minimal distance of C .
The theory of error-correcting codes is concerned with studying and constructing codes C that satisfy three

mutually conflicting requirements:

(i) Fast transmission rate R(C).
(ii) Large relative minimal distance δ(C).

(iii) Computationally feasible algorithms of producing such codes, together with feasible algorithms of encoding
and decoding.

As is usual in such cases, a sound theory must produce a picture of limitations, imposed by this conflict. The
central notion here is that of the asymptotic bound, whose definition was given and existence proved in [15]. The
next subsection is devoted to this notion.

0.2 Code Points and Code Domains

We first consider all [n, k, d]q -codes C with fixed q > 1 and varying n, k, d. To each such code we associate the
point

PC := (R(C), δ(C)) = (k(C)/n(C), d(C)/n(C)) ∈ [0, 1]2.
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Notice that in the illustrative pictures below the R-axis is vertical, whereas the δ-axis is horizontal: this is the
traditional choice.

Denote by Vq the set of all points PC , corresponding to [n, k, d]q -codes with fixed q. Let Uq be the set of limit
points of Vq .

In the latter definition, there is a subtlety. Logically, it might happen that one and the same code point corresponds
to an infinite family of different codes, but is not a limit point. Then we would have a choice, whether to include
such points to Uq automatically or not. However, we will show below (Theorem 2.10), that in fact two possible
versions of definition lead to one and the same Uq .

0.3 Asymptotic Bound

The main result about code domain is this: Uq consists of all points in [0, 1]2 lying below the graph of a certain
continuous decreasing function denoted αq:

Uq = {(R, δ) | R ≤ αq(δ)}. (0.2)

This curve is called the asymptotic bound. Surprisingly little is known about it: only various lower bounds, obtained
using statistical estimates and explicit constructions of families of codes, and upper bounds, obtained by rather
simple count.

In any case, this bound is the main theoretical result describing limitations imposed by the conflict between
transmission rate and relative minimal distance.

0.4 Asymptotic Bounds for Structured Codes

If we want to take into account limitations imposed by the feasibility of construction, encoding and decoding as
well, we must restrict the set of considered codes, say, to a subset consisting of linear codes, or else polynomial
time constructible/decodable codes etc. Linear codes produce the set of code points denoted V lin

q and the set of its
limit points denoted Ulin

q . The latter domain admits a description similar to (0.2), this time with another asymptotic
bound αlin

q . Clearly,

αlin
q (δ) ≤ αq(δ),

but whether this inequality is strict is seemingly unknown.
Adding the restriction of polynomial computability, we get in the same way asymptotic bounds α

pol
q (δ) and

α
lin,pol
q (δ), which are continuous and decreasing and lie below the previous two bounds: see [16,21].

Proofs of (0.2) and its analogs are based upon a series of operations that allow one to obtain from a given code a
series of codes with worse parameters: the so called Spoiling Lemma(s). They form the subject of the next section.

0.5 Asymptotic Bounds as Phase Transitions

In view of (0.2), a picture of the closure of Vq would consist of the whole domain under the graph of αq plus a
cloud of isolated code points above it. In a sense, the best codes are (some) isolated ones: cf. our discussion in 2.5
and 2.6 below.

This picture reminds us e. g. of phase diagrams in physics, say, on the plane (temperature, pressure), and alike.
One of the goals of this paper is to elaborate on this analogy.

To this end, we give several interpretations of R and δ as “fractional dimensions”, fractal and von Neumann’s
ones.
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1 Spoiling Lemma

1.1 Code Parameters Reconsidered

For linear codes, k is always an integer. For general codes, this fails. One can define Uq using any one of the
numbers k/n, [k]/n. As is easily seen, they provide the same asymptotic bound R = αq(δ) : (ki/ni , di/ni )

and ([ki ]/ni , di/ni ) diverge or converge simultaneously and have the same limit. Working with both k and [k],
depending on the context, can be motivated as follows.

(i) k supplies the precise cardinality of C , and the precise transmission rate, but allows code points with irrational
coordinates. This introduces unnecessary complications both in the study of computability properties of the
code domains and in the statements of spoiling lemmas.

(ii) [k] gives only estimates for #C , but better serves spoiling. Moreover, in the eventual studies of computability
properties of the graph R = αq(δ), it will be important to approximate it by points with rational coordinates,
rather than logarithms.

Unless stated otherwise, we associate with an [n, k, d]q -code C the code point (R(C) := k/n, δ(C) := d/n),
and define the family Vq and the set Uq using these code points.

1.1.1 Spoiling Operations

Having chosen a code C ⊂ An and a pair ( f, i), f ∈ Map (C, A), i ∈ {1, . . . , n}, define three new codes:

C1 =: C ∗i f ⊂ An+1 :
(a1, . . . , an+1) ∈ C1 iff (a1, . . . , ai−1, ai+1, . . . , an) ∈ C,

and ai = f (a1, . . . , ai−1, ai+1 . . . , an). (1.1)

C2 =: C∗i ⊂ An−1 :
(a1, . . . , an−1) ∈ C2 iff ∃b ∈ A, (a1, . . . , ai−1, b, ai+1, . . . , an) ∈ C. (1.2)

C3 =: C(a, i) ⊂ C ⊂ An : (a1, . . . , an) ∈ C3 iff ai = a. (1.3)

In plain words: operation ∗i f inserts the letter f (x) between the (i −1)th and the i th letters of each word x ∈ C ;
operation ∗i deletes the i th letter of each word, i. e. projects the code to the remaining coordinates; and (a, i) collects
those words of C that have a at the i th place.

Assume now that C is linear.
Then C ∗i f remains linear, if f : C → A = Fq is a linear function. Moreover, C∗i is always linear. Finally,

C(a, i)∗i is also linear for any a.
These remarks will be used in order to imply that Corollary 1.2.1. below remain true if we restrict ourselves to

linear codes.

Lemma 1.2 If C is an [n, k, d]q -code, then the codes obtained from it by application of one of these operations
have the following parameters:

(i) C1 = C ∗i f : [n + 1, k, d]q , if f is a constant function.
(i′) C1 = C ∗i f : [n + 1, k, d + 1]q , if for each pair x, y ∈ C with d(x, y) = d, we have f (x) �= f (y).

(ii) C2 = C∗i : [n − 1, k, d]q , if for each pair x, y ∈ C with d(x, y) = d, these points have one and the same
letter at the place i .
Otherwise [n − 1, k, d − 1]q .

(iii) C3 := C(a, i). In this case, for each i , there exists such a letter ai ∈ A (perhaps, not unique) that

#C(ai , i) ≥ qk−1. (1.4)

Therefore, the code C(ai , i)∗i will have parameters in the following range:

[n − 1, k − 1 ≤ k′ < k, d ′ ≥ d]q . (1.5)
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Proof The statements (i), (i ′) and (i i) are straightforward. For (i i i), remark that for any fixed i , C is the disjoint
union of C(a, i), a ∈ A. Hence
∑

a∈A

#C(a, i) = qk (1.6)

and # A = q together imply (1.4) for at least of one of C(a, i). Passing to C(ai , i)∗i , we are deleting the i th letter
of all code words, which is common for all of them, so that the minimal distance does not change. But for subcodes
of C it may be only d or larger. ��
Corollary 1.2.1 (Numerical spoiling) If there exists a code C with parameters [n, k, d]q , then there exist also a
code with the following parameters:

(i) [n + 1, k, d]q (always).
(ii) [n − 1, k, d − 1]q (if n > 1, k > 0.)

(iii) [n − 1, k − 1 ≤ k′ < k, d]q (if n > 1, k > 1).

The same remains true in the domain of linear codes.

Proof Lemma 1.2 (i) provides the first statement. ��
In order to be able to use Lemma 1.2 (ii) for the second statement, we must find a pair of words at the distance

d in C , that have different letters at some place i . This is always possible if #C ≥ 2, n ≥ 2.

The case (iii) can be treated as follows.
If C can be represented in the form C ′ ∗i a where a denotes the constant function x 
→ a ∈ C , then C ′ is an

[n−1, k, d]q -code. More generally, take the maximal projection of C (onto some coordinate quotient set Am) that is
injective on C and therefore preserves k, d. We will get an [m, k, d]q -code with n > m ≥ 2, because for m = 1 we
must have 0 < k ≤ 1, the case that we have excluded in (iii). If we manage to worsen its parameters to [m, k′, d]q ,
k − 1 ≤ k′ < k, then afterwards using (i) several times, we will get an [n − 1, k′, d]q -code.

Therefore, it remains to treat the case when C cannot be represented in the form C ′ ∗i a. In this case, in the sum
(1.6) there are at least two non-vanishing summands. Hence for the respective code C(a, i) satisfying (1.4), we
have also

qk−1 ≤ #C(ai , i) < qk . (1.7)

Therefore

[k(C(a, i)∗i )] = [k] − 1. (1.8)

It might happen that d(C(ai , i)) > d. In this case we can apply to C(ai ) ∗ i several times (ii) and then several
times (i).

Remark In the next section, we will prove the existence of the asymptotic bound using only the numerical spoiling
results of Corollary 1.2.1. Thus such a bound exists for any subclass of (structured) codes stable with respect to an
appropriate family of spoiling operations, in particular, for linear codes. Computational feasibility of spoiled codes
must in principle be checked separately, but it holds for usual formalizations of polynomial time computability.

2 Asymptotic Bound: Existence Theorem and Unsolved Problems

2.1 Controlling Cones

Let P = (RP , δP ) be a point of the square [0, 1]2 with RP + δP < 1. All points of Uq belong to this domain �.
For two points P, Q, denote by [P, Q] the closed segment of the line l(P, Q) connecting P and Q.
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Fig. 1 Controlling cones

1δ

R

1

For P ∈ �, consider two segments [P, (1, 0)] and [P, (0, 1)], The part of �, bounded by these two segments
and the diagonal RP + δP = 1, will be called the upper (controlling) cone of P and denoted C(P)up.

Extend [P, (1, 0)] (resp. [P, (0, 1)]) from their common point P until their first intersection points with δ-axis
(resp. R-axis). Then � will be broken into four parts: the upper cone C(P)up, the lower cone C(P)low lying below
the lines l(P, (1, 0)) and l(P, (0, 1)), the left cone C(P)l and the right cone C(P)r . We agree to include into each
cone two segments of its boundary issuing from P . (See Fig. 1.)

Let P, Q ∈ �.

Lemma 2.1.1 If P ∈ Uq, then C(P)low ⊂ Uq.

This follows from the Spoiling Lemma. In the proof, it is convenient to use the code points ([k]/n, d/n) rather
than (k/n, d/n).

In fact, if a sequence of code points Qi = ([ki ]/ni , di/ni ) (q being fixed) tends to the limit point (R, δ), then
the following statements are straightforward.

(a) ni → ∞.
(b) The boundaries of C(Qi )low converge to the boundary of C((R, δ))low. Moreover, the boundaries of C(Qi )low

contain code points that become more and more dense when ni → ∞, namely ([ki ] − a)/ni , di/ni ) and
([ki ]/ni , (di − b)/ni ), a, b = 1, 2, . . . (Spoiling Lemma).
Thus, the whole boundary of C((R, δ))low belongs to Uq .

(c) When a point Q moves, say, along the right boundary segment of C((R, δ))low, the left boundary segment of
C(Q)low sweeps the whole C((R, δ))low. (See Fig. 2.)

This completes the proof of the Lemma.

Lemma 2.1.2 (i) If P ∈ C(Q)l , then Q ∈ C(P)r , and vice versa.
(ii) If P ∈ C(Q)low, then Q ∈ C(P)up, and vice versa.

Proof This is straightforward; a simple picture shows the reason. ��

Lemma 2.1.3 If P, Q ∈ �(αq) and δP < δQ, then P ∈ C(Q)l , and therefore Q ∈ C(P)r .

Proof In fact, otherwise P must be an inner point of C(Q)low, (or the same with P, Q permuted). But no boundary
point of Uq can lie in the lower cone of another boundary point. ��
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Fig. 2 Code points on the
lower cone boundary

1δ

R

1

Fig. 3 Controlling
quadrangle
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2.2 Controlling Quadrangles

Let P, Q ∈ �, δP < δQ , and P ∈ C(Q)l . Put

C(P, Q) := C(P)R ∩ C(P)l .

When P, Q ∈ �(αq) we will call C(P, Q) the controlling quadrangle with vertices P, Q. (See Fig. 3.)

Lemma 2.2.1 All points of �(αq) between P and Q belong to C(P, Q).

Proof This follows from Lemma 2.1.3. ��
These facts suffice to prove the following result [15,16].

Theorem 2.3 For each δ ∈ [0, 1], put

αq(δ) := sup{RP | P = (RP , δ) ∈ Uq}.
Then

(i) αq is a continuous decreasing function. Denote its graph by �(αq). We have αq(0) = 1, αq(δ) = 0 for
δ ∈ [(q − 1)/q, 1].

(ii) Uq consists of all points lying below or on �(αq). It is the union of all lower cones of points of �(αq).
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(iii) Each horizontal line 0 < R = const < 1 intersects �(αq) at precisely one point, so that the �(αq) is also
the graph of the inverse function.
The same statement remains true, if we restrict ourselves by a subclass of structured codes, for which Cor-
ollary 1.2.1 holds.

Corollary 2.4 The curve �(αq) (asymptotic bound) is almost everywhere differentiable.

This follows from the fact that it is continuous and monotone (Lebesgue’s theorem).

Problem 2.5 (i) Is �(αq) differentiable, or at least piecewise differentiable?
(ii) Is this curve concave?

2.6 Isolated Codes and Excellent Codes

Any code whose point lies strictly above �(αq) is called isolated one. Consider the union Wq of lower cones of
all isolated codes. This is a domain in � bounded from above by a piecewise linear curve, union of fragments of
bounds of these lower cones containing their vertices. A code is called excellent one, if it is isolated and is the vertex
of one of such fragments.

Problem 2.7 (i) Describe (as many as possible) excellent codes.
(ii) Are Reed–Solomon codes excellent in the class of linear, or even all codes?

Reed–Solomon codes are certainly isolated, because they lie on the Singleton boundary R = 1 − δ + 1/(q + 1)

which is higher than Plotkin’s asymptotic bound

αq(δ) ≤ 1 − δ − 1

q − 1
δ.

One easily sees that the set of isolated points is infinite, and that points R = 1, δ = 0 and the segment
R = 0, (q − 1)/q ≤ δ ≤ 1 are limit points for this set.

Problem 2.8 Are there points on �(αq), 0 < R < 1 that are limit points of a sequence of isolated codes?

2.9 Code Domain and Computability

The family Vq is a recursive subfamily of Q: generating all codes and their code points, we get an enumeration of
Vq . Let Wq := supp Vq be the set of all code points.

Question 2.9.1 Is Wq a decidable set?

Problem 2.9.2 Are the following sets enumerable, or even decidable:

(i) {(R(C), δ(C)) | R(C) < αq(δ(C))}.
(ii) {(R(C), δ(C)) | R(C) ≤ αq(δ(C))}.

(iii) {(R(C), δ(C)) | R(C) > αq(δ(C))}.
(iv) {(R(C), δ(C)) | R(C) ≥ αq(δ(C))}.

2.10 Codes of Finite and Infinite Multiplicity

Let (R, δ) be the code point of a code C . We will say that this point (and C itself) has the finite (resp. infinite)
multiplicity, if the number of codes (up to isomorphism) corresponding to this point is finite (resp. infinite).
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If C has parameters [n, k, d]q , then codes with the same code point have parameters [an, ak, ad]q , a ∈ Q∗+.
Clearly, finite (resp. infinite) multiplicity of C can be inferred by looking at whether there exist finitely or infinitely
many a ∈ Q∗+ such that an [an, ak, ad]q -code exists for such a. Moreover, from the proof below one sees that one
can restrict oneself by looking only at integer a.

Theorem 2.11 Assume that the code point of C does not lie on the asymptotic bound. Then it has finite multiplicity
iff it is isolated.

Proof If C is of infinite multiplicity, it cannot be isolated. In fact, spoiling all codes with parameters [an, ak, ad]q ,
we get a dense set of points on the boundary of the lower cone of the respective point.

Conversely, let an [n, k, d]q -code C lie below the asymptotic bound. Then there exist [N , K , D]q -codes with
arbitrarily large N , K , D satisfying the conditions

K

N
>

k

n
,

D

N
>

d

n
. (2.1)

Slightly enlarging N by spoiling, we may achieve N = an, with a ∈ N. Let

K = ak′ + a1, 0 ≤ a1 < a, k′ ∈ N,

D = ad ′ + a2, 0 ≤ a2 < a, d ′ ∈ N,

In view of (2.1), we have

ak′ + a1 > ak, ad ′ + a2 > ad.

To complete the proof, it remains to reduce the parameters K , D by spoiling, and get an [an, ak, ad]q -code; a can
be arbitrarily large. ��

Question 2.12 Can one find a recursive function b(n, k, d, q) such that if an [n, k, d]q -code is isolated, and
a > b(n, k, d, q), there is no code with parameters [an, ak, ad]q?

3 Code Fractals: Rate and Relative Minimum Distance as Hausdorff Dimensions

3.1 Code Rate and the Hausdorff Dimension

In this subsection we will show that the rate R of a code C has a simple geometric interpretation as the Hausdorff
dimension of a Sierpinski fractal naturally associated to the code.

We start with choosing a bijection of the initial alphabet A with q-ary digits {0, 1, . . . , q − 1}. Intermediary
constructions will depend on it, but basic statements will not. For the time being, we will simply identify A with
digits.

The rational numbers with denominators qn , n ≥ 0, admit two different infinite q-ary expansions. Therefore we
will exclude them, and put

(0, 1)q := [0, 1] \ {m/qn | m, n ∈ Z} (3.1)

The remaining points of the cube x = (x1, . . . , xn) ∈ (0, 1)n
q can be identified with (∞ × n)-matrices with entries

in A: the kth column of this matrix consists of the consecutive digits of the q-ary decomposition of xk .
Now, for a code C ⊂ An , denote by SC ⊂ (0, 1)n

q the subset consisting of those points x , for which each line of
the respective matrix belongs to C . This is a Sierpinski fractal.
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Proposition 3.2 The Hausdorff dimension s := dimH (SC ) equals to the rate R = R(C).

Proof SC is covered by #C = qk cubes of size q−1, consisting of such points in (0, 1)n that the first line of their
coordinate matrix belongs to C . Inside each such small cube lies a copy of SC scaled by q−1. This self-similarity
structure shows that s is the solution to the equation (#C)q−ns = 1 (see §9.2 of [9]). Hence

dimH (SC ) = log(#C)

n log q
= k

n
= R. (3.2)

��
Remark Several different notions of fractal dimension (Hausdorff dimension, box counting dimension, and scaling
dimension) agree for SC , hence the Hausdorff dimension can be computed from the simple self-similarity equation.

3.3 Relative Minimum Distance and the Hausdorff Dimension

The most straightforward way to connect the relative minimum distance of a code C with Hausdorff dimension is
to consider intersections of SC with l-dimensional linear subspaces π = π l that are translates of intersections of
coordinate hyperplanes in Rn , that is, are given by the equations xi = x0

i for some i = i1, . . . , in−l .

Proposition 3.3.1 In this notation, we have:

(i) If l < d, then SC ∩ π is empty.
(ii) If l ≥ d, then SC ∩ π has positive Hausdorff dimension:

dimH (SC ∩ π) = log #(C ∩ π)

l log q
> 0. (3.3)

Proof We will embed C ⊂ An in Rn by sending (x1, . . . , xn) to (x1/q, . . . , xn/q). (Notice that all these points
will lie in [0, 1]n , but outside of (0, 1)n

q .)
Then no two points of C will lie in one and the same l-dimensional π , if n − l ≥ n − d + 1, because at least d of

their coordinates are pairwise distinct. On the other hand, if n − l ≤ n − d, then one can find π containing at least
two points of C .

In terms of the iterative construction of the fractal SC , this means the following. For a given π with l ≤ d − 1,
if the intersection C ∩ π is non-empty it must consist of a single point. Thus, at the first step of the construction of
SC ∩ π we must replace the single cube (0, 1)n

q ∩ π with a single copy of a scaled cube of volume q−l , and then
successively iterate the same procedure. This will produce a family of nested open cubes of volumes q−l N . Their
intersection is clearly empty.

When l ≥ d, one can choose π = πd for which C ∩ π contains at least two points. Then the induced iterative
construction of the set SC ∩ π starts by replacing the cube Qd = Qn ∩ π with #(C ∩ π) copies of the same cube
scaled down to have volume q−d . The construction is then iterated inside all the resulting #(C ∩ π) cubes, so that
one obtains a set of Hausdorff dimension s = dimH (SC ∩π) which is a solution to the equation #(C ∩π) ·q−ls = 1.
Thus

dimH (SC ∩ π) = log #(C ∩ π)

l log q
> 0.

This completes the proof. ��
One can refine this construction by associating a fractal set Sπ to each subspace π as above. Namely, define Sπ

as the set of points of (0, 1)n
q whose matrices have all rows in π .

Proposition 3.4 The Hausdorff dimension of Sπ is

dimH Sπ = l

n
. (3.4)

In particular, for l = d one has dimH Sπ = δ.



Error-Correcting Codes and Phase Transitions 143

Proof The argument is similar to the one in the previous proof. We construct Sπ by subdividing, at the first step,
the cube [0, 1]n into qn cubes of volume q−n and of these we keep only those that correspond to points whose first
digit of the n-coordinates, in the q-ary expansion define a point (x11, . . . , x1n) ∈ π ∩ An . We have #(π ∩ An) = ql ,
hence at the first step we replace Qn by ql cubes of volume q−n . The procedure is then iterated on each of these.
Thus, the Hausdorff dimension of Sπ is the number s satisfying qlq−ns = 1, i. e. (3.4). ��

One can now use Sπ in place of π , to make the roles of rate and minimal relative distance more symmetric in
the Hausdorff context. Namely, we obtain,

Proposition 3.5 We have

dimH (SC ∩ Sπ ) = log #(C ∩ π)

n log q
(3.5)

In particular, for all l ≤ d − 1, the set SC ∩ Sπ is empty. For l ≥ d, there exists a subspace π l for which
dimH (SC ∩ Sπ ) > 0 so that SC ∩ Sπ is a genuine fractal set.

Proof Again, the argument is similar to the one we have already used.
The iterative construction of SC ∩ Sπ replaces the initial unit cube [0, 1]n with #(C ∩ π) cubes of volume q−n

given by points with first row (x11, . . . , x1n) ∈ C ∩π . The same procedure is then iterated on each of these smaller
cubes. Thus, the Hausdorff dimension is given by the self-similarity condition #(C ∩ π)q−ns = 1, which shows
(3.5).

The same argument as above then shows that, for all l ≤ d − 1 one has #(C ∩ π) = 1, if C ∩ π is non-empty,
while for l ≥ d there exists a choice of π for which #(C ∩ π) ≥ 2. This shows that once again d is the threshold
value for which there exists a choice of π ∈ �d for which dimH (SC ∩ Sπ ) > 0. ��

4 Operator Algebras of Codes

4.1 Finitely Generated Toeplitz–Cuntz Algebras

We introduce a class of C∗-algebras related to codes. Starting with an arbitrary finite set D, we associate to it
Toeplitz and Cuntz algebras, as in [5,10].

Definition 4.1.1 (i) The Toeplitz–Cuntz algebra TOD is the universal unital C∗-algebra generated by a distin-
guished family of isometries Td , d ∈ D, with mutually orthogonal ranges.

(ii) The Cuntz algebra OD is the universal unital C∗-algebra generated by a distinguished family of isometries
Sd , d ∈ D, with mutually orthogonal ranges, and satisfying the condition
∑

a∈D

Sd S∗
d = 1. (4.1)

Notice that Td T ∗
d form pairwise orthogonal projections, so that operator

PD :=
∑

a∈D

Td T ∗
d ∈ TOD

is a projector. But it is not identical.
From the definition it follows that the canonical morphism TOD → OD: Td 
→ Sd generates the exact sequence

0 → JD → TOD → OD → 0,

where JD is the ideal generated by 1 − PD . The ideal JD is isomorphic to the algebra of compact operators K.
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4.1.2 Functoriality with Respect to D

The Toeplitz–Cuntz algebras TOD are functorial with respect to arbitrary injective maps f : D → D′: the respective
morphism maps Td to T f (d).

The Cuntz algebras are functorial only with respect to bijections: any bijection f : D → D′ generates an
isomorphism OD → OD′ so that isomorphism class of OD depends only on #D. The algebra O{1,...N } is often
denoted simply ON .

Below we will consider, in particular, TOC and OC for codes C , including codes An . The last remark allows us
to canonically identify versions of OC that arise, for example, from different bijections A → {0, . . . , q − 1}, as in
3.1 where they were used for the construction of fractals SC .

Functoriality of TOD with respect to injections allows one to define the algebra TO∞ := TO{1,2,...,... }, see e.g.
[10], identified with the algebra O∞ considered by Cuntz in [5] and treated separately there.

4.1.3 Fractals and Algebras

In order to connect Toeplitz–Cuntz and Cuntz algebras TOC , OC with fractals SC , it is convenient to introduce two
other topological spaces closely related to SC .

We will denote by S̄C the closure of the set SC inside the cube [0, 1]n , after identifying points of SC with n-tuples
of irrational points in [0, 1] written in their q-ary expansion. The set S̄C is also a fractal of the same Hausdorff
dimension as SC , which now includes also the rational points with q-ary digits in C . It is a topological (metric)
space in the induced topology from [0, 1]n .

We also consider the third space ŜC . It is a compact Hausdorff space, which maps surjectively to S̄C , one-to-one
on SC and two-to-one on the points of S̄C � SC . By [5] one knows that ŜC is the spectrum of the maximal abelian
subalgebra of the Cuntz algebra OC .

ŜC can be identified with the set of all infinite words x = x1x2 · · · xm · · · with letters xi ∈ C . Using the matrix
language of 3.1, we can say that points of Ĉ corresponds to all (∞, n)-matrices whose line belong to C . The set SC

is dense in ŜC as the subset of non-periodic sequences.
The map ŜC → S̄C identifies coordinatewise the two q-ary expansions of rational points with q-denominators in

S̄C . The sets ŜC , S̄C and SC only differ on sets of Hausdorff measure zero, so for the purpose of measure theoretic
considerations we often do not need to distinguish between them.

One can consider the abelian C∗-algebra A(ŜC ) generated by the characteristic functions χŜC (w)
, where w =

a1 · · · am runs over finite words with letters ai in C , and ŜC (w) denotes the subset of infinite words x ∈ ŜC that
start with the finite word w. This algebra is isomorphic to the maximal abelian subalgebra of OC . In fact, these
characteristic functions can be identified with the range projections Pw = SwS∗

w = Sa1 · · · Sam S∗
am

· · · S∗
a1

in OC .
We also denote by T A(C) the abelian subalgebra of TOC generated by the range projections TwT ∗

w , and which
maps to A(ŜC ) in the quotient algebra OC .

Notice that, for an injective map f : C → C ′, the induced map T f : TOC ↪→ TOC ′ induces also an embedding
T f : A(C) ↪→ A(C ′) of the respective abelian subalgebras:

TwT ∗
w 
→ T f (w)T

∗
f (w) := T f (a1) · · · T f (am )T

∗
f (am) · · · T ∗

f (a1)
.

For the sets ŜC and the abelian algebras A(ŜC ), one also has a functoriality in the opposite direction for more
general maps f : C → C ′ of codes that are not necessarily injective. Namely, such a map induces a map ŜC → ŜC ′
that sends an infinite sequence x = a1a2 · · · am · · · with ai ∈ C to the infinite sequence f (a1) f (a2) · · · f (am) · · ·
in ŜC ′ . Since the basis for the topology on ŜC is given by the cylinder sets ŜC (w), the map constructed in this way
is continuous. This gives an algebra homomorphism A(ŜC ′) → A(ŜC ).
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4.2 Representations of Cuntz Algebras Associated to SC

In the following let us denote by σ : SC → SC the map that deletes the first row of the coordinate matrix, shifting
to the left the remaining q-adic digits of the coordinates,

σ(x) = (x12 . . . x1k . . . ; x22 · · · x2k . . . ; . . . ; xn2 · · · xnk · · · ) (4.2)

for x = (x11x12 · · · x1k · · · ; x21x22 · · · x2k · · · ; xn1xn2 · · · xnk · · · ) in SC , that is, shifting upward the remaining
rows of the ∞ × n-matrix. For a = (a1, . . . , an) ∈ C ⊂ An , let σa denote the map adding a as the first row of the
coordinate matrix

σa(x) = (a1x11x12 . . . x1k . . . ; a2x21x22 . . . x2k . . . ; . . . ; an xn1xn2 · · · xnk · · · ). (4.3)

Since a ∈ C , (4.3) maps SC to itself. These maps are partial inverses of the shift (4.2). In fact, if we denote by
Ra ⊂ SC the range Ra = σa(SC ), then on Ra one has σaσ(x) = x , while for all x ∈ SC one has σσa(x) = x . We
also introduce the notation

�a(x) = dμ ◦ σa

dμ
, (4.4)

for the Radon–Nikodym derivative of the Hausdorff measure μ composed with the map σa .
Since the maps σa act on SC by

σa(x1, . . . , xn) =
(

x1 + a1

q
, . . . ,

xn + an

q

)
, (4.5)

the Radon–Nikodym derivative �a of (4.4), with μ the Hausdorff measure of dimension s = dimH (SC ), is constant

�a(x) = dμ ◦ σa

dμ
= q−ns = q−k . (4.6)

Proposition 4.2.1 The operators

(Sa f )(x) = χRa (x)�a(σ (x))−1/2 f (σ (x)) (4.7)

determine a representation of the algebra OC on the Hilbert space L2(SC , μ).

Proof The adjoint of (4.7) in the L2 inner product 〈, 〉 is of the form

(S∗
a f )(x) = �a(x)1/2 f (σa(x)), (4.8)

therefore Sa S∗
a = Pa , where Pa is the projection given by multiplication by the characteristic function χRa , so that

one obtains
∑

a Sa S∗
a = 1. Moreover, S∗

a Sa = 1, so that one obtains a representation of the C∗-algebra OC . ��
Changing the identification of abstract code letters with q-ary digits corresponds to an action of the symmetry

group �q . The main invariants of codes like k and d only depend on the equivalence class under this action.

Proposition 4.2.2 The action of the group �q induces a unitary equivalence of the representations of the Cuntz
algebras and a measure preserving homeomorphism of the limit sets.

Proof Suppose given an element γ ∈ �q and let C ′ = γ (C) be the equivalent code obtained from C by the action
of γ . The element γ induces a map γ : SC → SC ′ by

x = x1x2 · · · xk · · · 
→ γ (x) = γ (x1)γ (x2) · · · γ (xk) · · · .

This map is a homeomorphism. In fact, it is a bijection since γ : C → C ′ is a bijection, and it is continuous since
the preimage of a clopen set SC ′(w′) of all words in SC ′ starting with a given finite word w′ consists of the clopen
set SC (w) with w = γ −1(w′). Since both SC and SC ′ are compact and Hausdorff, the map is a homeomorphism. It
is measure preserving since the measure of the sets SC (w) is uniform in the words w of fixed length,

μ(SC (w)) = q−kr , for all w = w1, . . . , wr , wi ∈ C,

so the measure is preserved in permutations of coordinates.
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Thus, the action of γ : SC → SC ′ determines a unitary equivalence Uγ : L2(SC ′ , μ) → L2(SC , μ), and a
representation of the algebra OC on L2(SC ′ , μ) generated by the operators S′

a = U∗
γ SaUγ . This completes the

proof. ��
We have seen that, more abstractly, we can identify ŜC with the spectrum of the maximal abelian subalgebra

of the algebra OC generated by the range projections SwS∗
w, for words w of finite length. One can see in this way

directly that the action of �q induces homeomorphisms of these sets. The uniform distribution of the measure
implies that these are measure preserving.

4.3 Perron–Frobenius and Ruelle Operators

Consider again the shift map σ : SC → SC defined in (4.2). The Perron–Frobenius operator Pσ is the adjoint of
composition by σ , namely

〈h ◦ σ, f 〉 = 〈h,Pσ f 〉. (4.9)

Lemma 4.3.1 The Perron–Frobenius operator Pσ is of the form

Pσ = q−k/2
∑

a∈C

S∗
a . (4.10)

Proof We have
∫

SC

h ◦ σ · f dμ =
∑

a

∫

Ra

h ◦ σ · f dμ =
∑

a

∫

SC

h · f ◦ σa · �a dμ,

with Ra = σa(SC ), so that we have

Pσ f =
∑

a

�a f ◦ σa =
∑

a

�
1/2
a S∗

a f = q−k/2
∑

a

S∗
a f.

This gives (4.10) and completes the proof. ��
Remark A modified version of the Perron–Frobenius operator which is also useful to consider is the Ruelle transfer
operator for the shift map σ : SC → SC with a potential function W : SC → C. One usually assumes that the
potential takes non-negative real values. The Ruelle transfer operator Rσ,W is then defined as

Rσ,W f (x) =
∑

y:σ(y)=x

W (y) f (y). (4.11)

For a real valued potential, the operator Rσ,W is also obtained as the adjoint of h 
→ qk W · h ◦ σ ,

〈qk W · h ◦ σ, f 〉 = 〈h,Rσ,W f 〉,
hence it can be regarded as a generalization of the Perron–Frobenius operator. The Ruelle and Perron–Frobenius
operators are related to the existence of invariant measures on SC and of KMS states for the algebra OC , with
respect to time evolutions related to the potential W .

4.4 Time Evolution and KMS States

We recall some well known facts about KMS states on the Cuntz algebras, see for instance [12,13].
Given a set of real numbers {λ1, . . . , λN } there is a time evolution on the Cuntz algebra ON which is completely

determined by setting

σt (Sk) = eitλk Sk . (4.12)
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Recall that a KMS state at inverse temperature β on a C∗-algebra B with a time evolution σt is a state ϕ : B → C,
such that for each a, b ∈ B there exists a holomorphic function Fab on the strip 0 < �(z) < β, which extends
continuously to the boundary of the strip and satisfies

Fab(t) = ϕ(aσt (b)), and Fab(t + iβ) = ϕ(σt (a)b).

Proposition 4.4.1 For the time evolution (4.12) on the Cuntz algebra ON , there exists a unique KMS state at inverse
temperature β > 0 if and only if β satisfies

N∑

k=1

e−βλk = 1. (4.13)

Proof If {λ1, . . . , λN } and a β satisfy (4.13), then the λk are all positive and define β uniquely.
As in [13], one uses the Ruelle transfer operator on the set X of infinite sequences in an alphabet on N -letters.

For a potential W (x) = e−βλx1 , where x = x1x2 · · · xn · · ·, one finds that the constant function 1 is a fixed point of
Rσ,W ,

Rσ,W 1 =
(

∑

k

e−βλk

)
1,

hence dually there is a probability measure μλ,β on X which is fixed by the dual operator, R∗
σ,W μλ,β = μλ,β . This

is a measure satisfying a self-similarity condition on X . In fact, one has

R∗
σ,W μλ,β = W

dμλ,β ◦ σ

dμλ,β

μλ,β,

so that R∗
σ,W μλ,β = μλ,β implies that

dμλ,β ◦ σk

dμλ,β

= e−λkβ,

and hence μλ,β satisfies the self-similarity condition

μλ,β =
N∑

k=1

e−λkβμλ,β ◦ σ−1
k .

The measure μλ,β is determined by the values μλ,β(Rk) = e−βλk , since then the value on a clopen set X (w) ⊂ X
of all infinite works starting with a given finite word w of length r is given by

μλ,β(X (w)) =
∫

X

dμλ,β ◦ σ�

dμλ,β

dμλ,β = e−λw1 β · · · e−λwr β,

which is consistent with μλ,β(X (w)) = ∑N
k=1 μλ,β(X (wk)).

By the spectral theory of the operatorRσ,W one knows, see [13], that the fixed pointsRσ,W 1 = 1 andR∗
σ,W μλ,β =

μλ,β are unique. This gives then a unique KMS state on ON at inverse temperature the unique β satisfying (4.13),
which is given by integration with respect to the measure μλ,β composed with a continuous linear projection
� : ON → C(X).

The latter is defined as follows: �(SwS∗
w′) = 0, if w �= w′, and χX (w) otherwise, where w and w′ are finite

words in the alphabet on N letters. The state

ϕβ(SwS∗
w′) =

∫
�(SwS∗

w′)dμλ,β = δw,w′e−βλw1 · · · e−βλwr , (4.14)
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for w of length r , is a KMS state on ON at inverse temperature β. One sees that it satisfies the KMS condition since
it suffices to see that ϕβ(SwS∗

w) = ϕβ(σiβ(S∗
w′)Sw). It suffices then to check the latter identity for a single generator,

and use the relations in the algebra to obtain the general case. One has ϕ(Sk S∗
k ) = e−βλk = ϕβ(e−βλk S∗

k Sk) =
ϕβ(σiβ(S∗

k )Sk).
This completes the proof. ��

Remark Notice that (4.13) can be interpreted as the equation that computes the Hausdorff dimension of a self-sim-
ilar set where the recursive construction replaces at the first step a set of measure one with N copies of itself, each
scaled by a factor e−λk and then iterates the procedure.

In particular, in the main example we are considering here, of the Sierpinski fractal SC ⊂ Qn , the Hausdorff
measure μs on SC with parameter s = dimH (SC ) = k/n is a self-similar measure as above, and it corresponds to
the unique KMS state on the algebra OC at inverse temperature β = dimH (SC ) = k/n, for the time evolution

σt (Sa) = q−i tn Sa, (4.15)

for all a ∈ C . In fact, in this case the measure satisfies μs(Ra) = q−ns = q−k for all a ∈ C . Thus, the KMS state
ϕk/n takes values ϕk/n(SwS∗

w) = q−kr for a word w = w1 · · · wr , with wi = (ai1, . . . , ain) ∈ C .

4.5 KMS States and Dual Traces

Let �� be the set of translates of �-dimensional intersections of n − � coordinate hyperplanes. To each π ∈ �� we
associate a projection in the algebra OC , by taking

Pπ =
∑

a∈C∩π

Sa S∗
a . (4.16)

The value of the unique KMS state of OC at this projection is

ϕk/n(Pπ ) = q−k · #(C ∩ π) = q�s−k, (4.17)

where s = dimH (SC ∩ π).
Consider then the algebra obtained by compressing OC with the projection Pπ , that is, the algebra generated

by the elements Sπ(a) := Pπ Sa Pπ . These are non trivial when a ∈ C ∩ π , in which case Sπ(a) = Sa , and zero
otherwise, and they satisfy the relations S∗

π(a)Sπ(a) = 1, when Sπ(a) is non-trivial, and
∑

a

Sπ(a)S∗
π(a) = Pπ .

Thus, the algebra obtained by compressing with the projection Pπ is a Toeplitz algebra TOC∩π .
The induced action on the Hilbert space L2(SC ∩ π,μs) of the algebra TOC∩π obtained as above descends to

the quotient as a representation of OC∩π .
On the algebra OC∩π generated by the Sa with a ∈ C ∩ π , one can similarly consider a time evolution of the

form (4.12), with the λa given by

λa = − log μs(Ra), (4.18)

where μs is the Hausdorff measure in dimension s = dimH (SC ∩ π). Then one has a unique KMS state on OC∩π

at inverse temperature β = dimH (SC ∩ π), which is determined by integration in this Hausdorff measure.
In the following we look for a reinterpretation of the Hausdorff dimensions considered above in terms of von

Neumann dimensions. To this purpose, we need to consider a type II von Neumann algebra. As we will see below,
there are two ways to associate a type II algebra to the type III algebras OC that we considered above. The first
is passing to the dual system by taking the crossed product by the time evolution and the second is considering
the fixed point algebra in the weak closure of the GNS representation. We finish this subsection by showing that
the first method may not give the needed projections due to the projectionless nature of the resulting algebra. We
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then consider the second possibility in the next subsection, and see that one can obtain in that way the desired
interpretation as von Neumann dimensions.

It is well known from [4] that, to a C∗-algebra B with time evolution σt , one can associate a dual system (B̂, θ),
where B̂ = B �σ R endowed with a dual scaling action of R∗+ of the form θλ(

∫
R a(t)Ut dt) = ∫

R λi t a(t)Ut dt . A

KMS state ϕβ at inverse temperature β on (B, σ ) determines a dual trace τβ on B̂, with the scaling condition

τβ ◦ θλ = λ−βτβ. (4.19)

The dual algebra B̂ is generated by elements of the form ρ( f )a, with a ∈ B and f ∈ L1(R) and with ρ( f ) =∫
R f (t)Ut dt . The dual trace is then of the form

τβ(ρ( f )a) = ϕβ(a)

∫

R

f̂ (s)e−βsds,

where f̂ is the Fourier transform of f ∈ L1(R). Equivalently, for elements of the form f ∈ L1(R,B) one has
τβ( f ) = ∫

R ϕβ( f̂ (s))e−βsds.

If the trace τβ dual to a KMS state ϕβ is a faithful trace, then, as observed in [3], p.586, any projection P in Â is
homotopic to θ1(P) so that one should have τβ(θ1(P)) = τβ(P), but the scaling property (4.19) implies that this
is also τβ(θ1(P)) = λ−βτβ(P) so that one has τ(P) = 0, which by faithfulness gives P = 0.

4.6 Hausdorff Dimensions and von Neumann Dimensions

We show that one can express the Hausdorff dimensions of the sets SC ∩ π in terms of von Neumann dimensions
of projections associated to the linear spaces π in the hyperfinite type II1 factor.

Proposition 4.6.1 Let C ⊂ An be a code with #C = qk and let π ∈ �� be an �-dimensional linear space as
above, to which we associate the set SC ∩ π . To these data one can associate a projection Pπ in the hyperfinite
type II1 factor with von Neumann trace τ , so that the von Neumann dimension Dim(π) := τ(Pπ ) is related to the
Hausdorff dimension of SC ∩ π by

dimH (SC ∩ π) = k + logq Dim(π)

�
, (4.20a)

dimH (SC ∩ Sπ ) = k + logq Dim(π)

n
. (4.20b)

Proof When we consider as above the algebra OC with the time evolution σt of (4.15), we can consider the spectral
subspaces of the time evolution, namely

Fλ = {X ∈ OC | σt (X) = λX}. (4.21)

In particular, F0 ⊂ OC is the fixed point subalgebra of the time evolution. This is generated linearly by elements
of the form SwS∗

w′ , for words w = w1 · · · wr and w′ = w′
1 · · ·w′

r of equal length in elements w j , w
′
j ∈ C . The

fixed point algebra F0 contains the subalgebra A(ŜC ) identified with the algebra generated by the SwS∗
w. One has

a conditional expectation � : OC → F0 given by

�(X) =
2π/n log q∫

0

σt (X)dt (4.22)

and the KMS state ϕk/n on OC is given by ϕk/n = τ ◦ �, where τ is the unique normalized trace on F0, which
satisfies

τ(SwS∗
w′) = δw,w′q−rk,
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for w and w′ words of length r . This agrees with the values of the KMS state we saw in (4.14) for β = k/n and all
the λi = n. Consider then the GNS representation πϕ associated to the KMS state ϕ on OC . We denote by M the
von Neumann algebra

M = πϕ(OC )′′. (4.23)

By rescaling the time evolution (4.15), the state ϕ becomes a KMS state at inverse temperature β = 1 for the
time evolution

αt (Sa) = qitk Sa . (4.24)

In fact, we have

ϕ(Sa S∗
a ) = q−k = ϕ(αi (S∗

a )Sa).

Thus, up to inner automorphisms, αt is the modular automorphism group for the von Neumann algebra M, which
shows that the algebra M is of type IIIq−k . The fixed point subalgebra M0 for the time evolution αt is the weak
closure of F0. This gives a copy of the hyperfinite type II1 factor M0 inside M, with the restriction to M0 of the
KMS state ϕ giving the von Neumann trace τ . We then consider the projection Pπ = ∑

a∈C∩π Sa S∗
a as an element

in M0. We have seen that the value of the KMS state ϕ on Pπ is

ϕ(Pπ ) = τ(Pπ ) = q−k · #(C ∩ π) = q−k+� dimH (SC ∩π) = q−k+n dimH (SC ∩Sπ ),

which gives (4.20a) and (4.20b). ��

4.7 KMS States and Phase Transitions for a Single Code

As above, let C ⊂ An be an [n, k, d]q code and let TOC and OC be the associated Toeplitz and Cuntz algebras,
respectively with generators Ta and Sa , for a ∈ C , satisfying T ∗

a Ta = 1 for TOC , and S∗
a Sa = 1 and

∑
a Sa S∗

a = 1
for OC .

In addition to the representations of OC on L2(SC , μR) constructed previously, it is natural also to consider the
Fock space representation of TOC on the Hilbert space HC = �2(WC ), where WC is the set of all words of finite
length in the elements a ∈ C ,

WC = ∪m≥0WC,m,

with

WC,m = {w = w1 · · · wm | wi ∈ C ⊂ An}
and WC,0 := {∅}. For all w, we identify the words w∅ = w. We denote by εw, for w ∈ WC , the canonical
orthonormal basis of �2(WC ). We also denote ε∅ = ε0.

Lemma 4.7.1 The operators on HC given by

Taεw = εaw (4.25)

define a representation of the Toeplitz algebra TOC on HC .

Proof The adjoint T ∗
a of the operator (4.25) is given by

T ∗
a εw = δa,w1εσ(w), (4.26)

where δa,w1 is the Kronecker delta, and σ(w) = w2 · · · wm ∈ WC,m−1, for w = w1 · · · wm ∈ WC,m . In fact, we
have

〈Ta f, h〉 =
∑

w

fawhw =
∑

w′=aw

fw′hσ(w′) =
∑

w′
fw′δa,w′

1
hσ(w′) = 〈 f, T ∗

a h〉,
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for f = ∑
w fwεw and h = ∑

w hwεw in HC . Thus, TaT ∗
a = Pa , where Pa is the projection onto the subspace

HC,a spanned by the εw with w1 = a. One also has

T ∗
a Ta f =

∑

w

fwT ∗
a εaw = f,

so that we obtain T ∗
a Ta = 1.

This completes the proof. ��
We consider then time evolutions on the algebra TOC associated to the random walks and Ruelle transfer operators

introduced in Sects. 4.3 and 4.4.

Lemma 4.7.2 Let Wβ(x) = exp(−βλx1), for x ∈ SC , be a potential satisfying the Keane condition∑
a∈C exp(−βλa) = 1. Then setting

σt (Ta) = eitλa Ta (4.27)

defines a time evolution on the algebra TOC , which is implemented, in the Fock representation, by the Hamiltonian

Hεw = (λw1 + · · · + λwm ) εw, for w = w1 · · · wm ∈ WC,m . (4.28)

Proof It is clear that (4.27) determines a 1–parameter group of continuous automorphisms of the algebra TOC . The
Hamiltonian that implements the time evolution in the Fock representation is a self adjoint unbounded operator
on the Hilbert space HC with the property that σt (A) = eit H Ae−i t H , for all elements A ∈ TOC . We see on the
generators Ta that

eit H Tae−i t H εw = eit (λa+λw1 +···+λwn )e−i t (λw1 +···+λwn )εaw

implies that eit H , with H as in (4.28) is the one-parameter group that implements the time evolution (4.27) in the
Fock representation.

The proof is completed. ��
We consider in particular the time evolution associated to the uniform Hausdorff measure on the fractal SC of

dimension R = k/n.

Proposition 4.7.3 For an [n, k, d]q - code C, we consider the time evolution

σt (Ta) = qitnTa

on the algebra TOC . Then for all β > 0 there is a unique KMSβ state on the resulting quantum statistical mechanical
system.

(1) At low temperature β > R, this is a type I∞ state, with the partition function given by ZC (β) = Tr(e−βH ) =
(1 − q(R−β)n)−1 and the Gibbs equilibrium state of the form

ϕβ(A) = ZC (β)−1 Tr(Ae−βH ). (4.29)

(2) At the critical temperature β = R, the unique KMSβ state is a type IIIq−k factor state, which induces the
unique KMS state on the Cuntz algebra OC , and is determined by the normalized R-dimensional Hausdorff
measure μR on SC . It is given by the residue

ϕR(A) = Resβ=RTr(Ae−βH ). (4.30)

(3) At high temperature the unique KMS state is also of type III and determined by the values ϕβ(TwT ∗
w) =

e−β(λw1 +···+λwm ), where λa = n log q for all a ∈ C.
(4) Only at the critical temperature β = R the KMS state ϕR induces a KMS state on the quotient algebra OC .
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Proof First notice that any KMS state at inverse temperature β must have the same values on elements of the form
TwT ∗

w′ . This can be seen from the KMS condition, inductively from

ϕβ(TaT ∗
a ) = ϕβ(σi R(T ∗

a )Ta) = q−Rnϕβ(T ∗
a Ta) = q−βn .

This determines the state uniquely. So we see that at all β > 0 where the set of KMS states is non-empty it consists
of a single element.

The Hamiltonian has eigenvalues mn log q, for m ∈ N, each with multiplicity qmkr = #WC,m . Thus, the partition
function of the time evolution is given by

ZC (β) = Tr(e−βH )

=
∑

m

∑

w∈WC,m

exp(−β(λw1 + · · · + λwm ))

=
∑

m

qmkq−βnm =
∑

m

q(R−β)nm . (4.31)

The series converges for inverse temperature β > R, with sum

ZC (β) = (1 − q(R−β)n)−1.

Thus, in the low temperature range β > R, one has an equilibrium state of the Gibbs form (4.29).
At the critical temperature β = R, we have a KMSβ state of type IIIq−k , which is the unique KMS state on the

algebra OC

ϕR(A) =
∫

SC

�(A) dμR, (4.32)

which induces a KMS state on TOC by pre–composing the expectation � : OC → A(ŜC ) with the quotient map
TOC → OC . Here we use again the identification of A(ŜC ) with the maximal abelian subalgebra of OC , and μR

is the normalized R-dimensional Hausdorff measure on SC . This means that the state ϕR has values

ϕR(TwT ∗
w′) = δw,w′μR(SC (w)) = q−Rnm = q−km,

for w = w1 . . . wm . To see that, at this critical temperature, the state is given by a residue (and can therefore be
expressed in terms of Dixmier trace), it suffices to observe that the partition function Z(β) has a simple pole at
β = R with residue Resβ=R Z(β) = 1, so that we have

Resβ=RTr(TwT ∗
w′ e−βH ) = e−β(λw1 +···+λwm )Resβ=R Z(β) = ϕR(TwT ∗

w′).

At higher temperatures β < R the KMS state is similarly determined by the list of values

ϕR(TwT ∗
w′) = δw,w′e−β(λw1 +···+λwm ) = δw,w′q−βnm .

To see that only the state at critical temperature induces a KMS state on the quotient algebra OC it suffices to
notice that in OC one has the additional relation

∑
a Sa S∗

a = 1, which requires that the values of a KMSβ state
satisfy the Keane relation
∑

a

ϕβ(Sa S∗
a ) =

∑

a

e−βλa = 1.

This is satisfies at β = R, where it gives the self-similarity relation for the Hausdorff dimension of the fractal SC ,
but it is not satisfied at any other β �= R.

The proof is complete. ��
We see from the above result that the situation is very similar to the one encountered in the construction of the

Bost–Connes system [2], where the case of the system without interaction is obtained as a tensor product of Toeplitz
algebras (in that case in a single generator) with their unique KMSβ state at each β > 0. We explain below how
a similar approach with tensor products plays a role here in describing the curve R = αq(δ) in terms of phase
transitions.
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4.8 Crossed Product Description

Before we discuss families of codes and tensor products of quantum statistical mechanical systems, it is worth
reformulating the setting described above in a way that may make it easier to pass to the analog of the “systems
with interaction” of [2].

Let C be an [n, k, d]q code. We introduce the notation �C (P) for the algebra obtained by compressing the
abelian subalgebra T A(C) ⊂ TOC with a projection P of TOC ,

�C (P) := P T A(C) P.

The isometries Ta , for a ∈ C , determine an endomorphism ρ of the algebra T A(C) given by

ρ(X) =
∑

a

Ta X T ∗
a . (4.33)

This endomorphism satisfies ρ(1) = P , the idempotent
∑

a TaT ∗
a = P in T A(C) ⊂ TOC . The endomorphism ρ

has partial inverses σa given by

σa(X) = T ∗
a XTa, (4.34)

for X ∈ �C (Pa), where Pa = TaT ∗
a is the range projection. They satisfy

σaρ(X) = X, ∀X ∈ T A(C). (4.35)

Notice that, for X = TwT ∗
w in T A(C), we have P X = Tw1 T ∗

w1
TwT ∗

w = TwT ∗
w = X and X P = TwT ∗

wTw1 T ∗
w1

=
TwT ∗

w = X , so that, if one represents an arbitrary element X ∈ T A(C) in the form X = λ0+∑
w λwTwT ∗

w , one finds
P X = X P = ∑

a λ0TaT ∗
a + ∑

w λwTwT ∗
w . Similarly, one has ρ(X) = λ0 P + ∑

aw λwTaTwT ∗
wT ∗

a , which acts as
a shift on the coefficients λw and lands in the compressed algebra �C (P). The partial inverses σa satisfy σa(1) = 1
since T ∗

a Ta = 1, and they map an element X = λ0 +∑
w λwTwT ∗

w of T A(C) to σa(X) = λ0 +∑
w=aw′ λwTw′ T ∗

w′ .
In the case of the quotient algebra OC , where one imposes the relations S∗

a Sa = 1 and
∑

a Sa S∗
a = 1, the

endomorphism above induces an endomorphism ρ̄ of the algebra A(ŜC ) with ρ̄(1) = 1, which is given simply by
the composition

ρ̄( f ) =
∑

a

Sa f S∗
a = f ◦ σ

with the one-sided shift map σ : SC → SC ,

σ(x1x2 · · · xm · · · ) = x2x3 · · · xm+1 · · ·
and the partial inverses are the compositions with the partial inverses of the one sides shift

σ̄a( f ) = S∗
a f Sa = f ◦ σa,

where σa(x1x2 · · · xm · · · ) = ax1x2 · · · xm · · ·.
Thus, we can form the crossed product algebra T A(C) �ρ M, where M is the additive monoid M = Z+. This

has generators TwT ∗
w together with an extra generator S satisfying S∗S = 1 and SX S∗ = ρ(X). It also satisfies

SS∗ = P and S∗ X S = σa(X), for X ∈ �C (Pa).

Proposition 4.8.1 The morphism � : TOC → T A(C) �ρ M defined by setting

�(Ta) = Pa S (4.36)

identifies TOC with the subalgebra �C (P) �ρ M. On the quotient algebra OC , the induced morphism �̄ gives an
isomorphism OC � A(ŜC ) �ρ M.

Proof Notice that

�(Ta)∗�(Ta) = S∗ Pa S = σa(Pa) = T ∗
a Pa Ta = 1
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and
∑

a

�(Ta)�(Ta)∗ =
∑

a

Pa SS∗ Pa =
∑

a

Pa P Pa =
∑

a

Pa = P,

since, as observed above, Pa P = P Pa = Pa . Thus, � maps injectively TOC ⊂ T A(C) �ρ M. To see that surjec-
tivity also holds, notice that �C (P) �ρ M is spanned linearly by monomials of the form TwT ∗

w Sk and Sk TwT ∗
w , for

w ∈ WC,m , m ≥ 1, and k ≥ 0. It suffices to show that these are all in the range of the map �. First observe that the
map � is the identity on the subalgebra T A(C) ⊂ TOC . In fact, for w = w1 · · · wm , with wi ∈ C , we have

�(TwT ∗
w) = Pw1ρ(Pw2) · · · ρm−1(Pwm )(SS∗)mρm−1(Pwm ) · · · Pw1

= Pw P Pw = Pw = SwS∗
w.

Notice then that we have �(
∑

a Ta) = ∑
a Pa S = P S. Let Y = ∑

a Ta in TOC . We then have

�(TwT ∗
w)�(Y k) = TwT ∗

w(P S)k .

We have (P S)k = P . . . ρk−1(P)Sk . Since P = SS∗ and ρ(X) = SX S∗, we see that Pρ(P) = ρ(P) and
Pρ(P) · · · ρk−1(P) = ρk−1(P) = Sk−1S∗k−1. Thus, ρk−1(P)Sk = Sk and we obtain that

�(TwT ∗
wY k) = TwT ∗

w Sk .

The argument for elements of the form Sk TwT ∗
w is analogous. Thus, all the monomials with w ∈ WC,m with m ≥ 1

are in the range of � and the only missing terms are the Sk and their adjoints (the case of w = ∅ ∈ WC,0).
This induces the isomorphism OC � A(ŜC )�ρ̄ M of [8], where in the quotient algebra S̄∗ f S̄ = q−k ∑

a f ◦σa

is the Perron–Frobenius operator and the induced map �̄ preserves the additional relation
∑

a Sa S∗
a = 1. Thus, in

this case we have �̄(
∑

a Sa) = ∑
a Pa S̄ = S̄, since in this case P̄ = ∑

a Sa S∗
a = 1. We then obtain that the range

of �̄ is all of A(ŜC ) �ρ̄ M. This completes the proof. With this description of the algebra TOC in terms of crossed
product of �C (P) by the monoid M, one can view the time evolution as given by

σt (X) = X, for X ∈ �C (P), and σt (S) = qitn S. (4.37)

��

5 Quantum Statistical Mechanics and Kolmogorov Complexity

Our reformulation of the rate and relative minimum distance of codes in terms of Hausdorff dimensions, as well
as the construction of algebras with time evolutions for individual codes, can be reinterpreted within the context of
Kolmogorov complexity and Levin’s universal enumerable semi-measures.

5.1 Languages and Fractals

We begin with some considerations on structure functions and entropies for codes. Suppose given a code C ⊂ An ,
for an alphabet A with # A = q. We assume that C is an [n, k, d]q code.

First we reinterpret the construction of the fractal SC in terms of languages and ω-languages.
Given the alphabet A, one writes A∞ = ∪n An for the set of all words of finite length in the alphabet A and one

denotes by Aω the set of all words of infinite length in the same alphabet. A language � is a subset of A∞ and an
ω-language is a subset of Aω.

To a code C one can associate a language �C given by all words in A∞ that are successions of words in C ⊂ An .
Similarly, one has an ω-language �ω

C given by all infinite words in Aω that are a succession of elements in C . As

such, the ω-language �ω
C is set-theoretically identified with the fractal ŜC we considered previously.
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There is a notion of entropy for languages ([7], see also the recent [20]), which is defined as follows. One first
introduces the structure function

s�(m) = #{w ∈ � : �(w) = m},
the number of words of length m in the language �. These can be assembled together into a generating function

G�(t) =
∑

m

s�(m)tm .

The entropy of the language � is then the log of the radius of convergence of the series above

S� = − log# A ρ(G�).

Lemma 5.1.1 For the language �C defined by an [n, k, d]q -code C the structure function satisfies

G�C (q−β) = ZC (β),

where ZC (β) is the partition function of the quantum statistical mechanical system (TOC , σt ) associated to the
code C. The entropy of the language �C is the rate of the code S�C = k/n = R.

Proof In the case of an [n, k, d]q -code C , notice that the series G�C is given by

G�C (t) =
∑

m

qkmtnm = (1 − qktn)−1,

since one has s�(N ) = 0 for N �= mn, while for N = mn one has s�(nm) = qkm . In particular, when expressed
in the variable t = q−s this becomes

G�C (q−s) =
∑

m

q(R−s)nm = (1 − q(R−s)n)−1,

with convergence for β = �(s) > R. This recovers the partition function ZC (β) of the quantum statistical
mechanical system associated to the code C . This gives an entropy

S�C = − logq ρ(G�) = R = k/n,

since domain of convergence for β > R corresponds to |t | = |q−s | < q−R .
Intersection with linear spaces π� determines induced languages �C,�. The threshold value � = d corresponds

to the minimal dimension for there is a choice of πd for which the resulting language is non-trivial, with entropy d.
��

5.2 Kolmogorov Complexity

There are several variants of Kolmogorov complexity for words w of finite length in a given alphabet, see [14],
§5.5.4. To any such complexity function K (w) one associates the lower Kolmogorov complexity for infinite words
by setting

κ(x) = lim inf
w→x

K (w)

�(w)
,

where the limit is taken over finite words w that are truncations of increasing length �(w) = m → ∞ of an infinite
word x . There is a characterization (see [14,23]) of the lower Kolmogorov complexity in terms of measures, which
we discuss more at length in the case of codes here below.

We begin by recalling the notion of semi-measures and provide examples taken from the constructions we have
already seen in the previous sections of this paper.
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Definition 5.2.1 A semi-measure on SC is a positive real valued function on the cylinder sets {SC (w)} that satisfies
μ(SC ) ≤ 1 and the subadditivity property

μ(SC (w)) ≥
∑

a∈C

μ(SC (wa)).

Here we do not distinguish between ŜC = �ω
C and SC since the difference is of measure zero in any of the above

measures. An example of semi-measures is obtained using the Ruelle transfer operator techniques considered above.

Lemma 5.2.2 Let Wβ(x) be a potential that satisfies the Keane condition at β = β0 and such that, for a fixed x, it
is monotonically decreasing as a function of β. Then the function

μx0,β(SC (w)) = Wβ(w1x0) · · · Wβ(wn · · · w1x0)

is a semi-measure.

Proof Suppose given a potential Wβ(x), and assume that for a β = β0 it satisfies the Keane condition∑
a∈C Wβ0(ax) = 1. Assume, moreover, that for fixed x ∈ SC , the function Wβ(x) is monotonically decreas-

ing as a function of β. This will certainly be the case for the special cases we considered with Wβ(x) = e−βλx1 of
Wβ(x) = e−βλx1x2 . One will then have
∑

a∈C

Wβ(ax) ≤ 1, for β ≥ β0, ∀x ∈ SC .

Thus, one has
∑

a∈C

μ(SC (wa)) =
∑

a∈C

Wβ(w1x0) · · · Wβ(wn · · · w1x0) · Wβ(awn · · ·w1x0)

≤ Wβ(w1x0) · · · Wβ(wn · · · w1x0) = μx0,β(SC (w)),

for all β ≥ β0. This completes the proof. ��

5.3 Enumerable Semi-Measures

In complexity theory one is especially interested in those semi-measures that are enumerable. We recall here a
characterization of enumerable semi-measure given in Theorem 4.5.2 of [14], which will be useful in the following,

Given a language �, let F� be the class of functions (called monotone in [14]) f : A∞ → �, where A∞ is
the set of all finite words (of arbitrary length) in the alphabet A, with f (ww′) = f (w) f (w′), the product being
concatenation of words in �. These extend to functions from Aω, the set of all infinite words in the alphabet A to
the ω-language �ω.

Given a semi-measure μ on Aω and a function f ∈ F� one obtains a semi-measure μ f on �ω by setting

μ f (�
ω(w)) =

∑

w′∈A∞: f (w′)=w

μ(Aω(w′)),

where, as usual, �ω(w) and Aω(w′) denote the subsets of �ω and Aω, respectively, made of infinite words starting
with the given prefix word w or, respectively, w′.

In particular, let λ denote the 1-dimensional Lebesgue measure on [0, 1]. This induces a measure on Aω by
mapping the infinite sequences in Aω to points of [0, 1] written in their q-ary expansion. The measure satisfies

λ(Aω(w)) = q−�(w),

where �(w) is the length of the word w ∈ A∞.
Then Theorem 4.5.2 of [14] characterizes enumerable semi-measures on �ω as those semi-measures μ that are

obtained as μ = λ f for a function f ∈ F�.
We observe first that these measures satisfy the following multiplicative property. For simplicity of notation, we

write in the following μ(w) for μ(�ω(w)).
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Lemma 5.3.1 The enumerable semi-measures are multiplicative on concatenations of words, μ(ww′) =
μ(w)μ(w′).

Proof The uniform Lebesgue measure λ clearly has that property since λ(ww′) = q−�(ww′) = q−(�(w)+�(w′)) =
λ(w)λ(w′). Suppose then given a function f ∈ F�. This satisfies f (ww′) = f (w) f (w′) by definition. Thus, in
particular, we can write f (w) = f (w1) · · · f (wm), for a word w = w1 · · · wm of length �(w) = m. Consider then
the measure μ = λ f given by λ f (u) = ∑

w: f (w)=u λ(w). For a word u = u1 · · · um of length �(u) = m, we can
then write this equivalently as

λ f (u) =
∑

f (wi )=ui

∏

i

λ(wi ) =
m∏

i=1

λ f (ui ).

This completes the proof. ��
The characterization of enumerative semi-measure as semi-measures of the form μ = λ f shows, for example,

that the uniform Hausdorff measure of dimension dimH SC = R = k/n on the set SC considered above is an
enumerative (semi)-measure. In fact, it is of the form μ = λ f , where the map f is induced by the coding map
E : Ak → C ⊂ An , so that elements a ∈ C are described as a = f (w) for a word w ∈ Ak . In this case, since the
coding map E is injective, there is a unique word w with f (w) = a.

Another example of an enumerative (semi)-measure on SC can be obtained using as function f ∈ F� the decod-
ing map P , by which we mean the map that assigns to each element in An the nearest point in C in the Hamming
metric. Then one obtains

μ f (SC (u)) =
∑

w=(wi ):wi ∈An , P(wi )=ui

λ(w) = #{w = (wi ) : P(wi ) = ui }q−nm,

for u = u1 · · · um with ui ∈ C , and w = w1 · · · wm with wi ∈ An .
We now connect enumerable semi-measures on SC to quantum statistical mechanical systems on the Toeplitz–

Cuntz algebra TOC in the following way.

Lemma 5.3.2 Let μ be a semi-measure on SC such that μ(ww′) = μ(w)μ(w′), where μ(w) is shorthand for
μ(SC (w)). Then setting

σt (Ta) = μ(SC (a))−i t Ta

determines a time evolution σt ∈ Aut (TOC ). In the Fock space representation of TOC , this time evolution has
Hamiltonian

Hεw = − log μ(SC (w)) εw.

The partition function is

Zμ,C (β) =
(

1 −
∑

a∈C

μ(SC (a))β

)−1

,

with a pole at a critical βc ≤ 1, the inverse temperature at which
∑

a μ(a)βc = 1. The functional

ϕ(TwT ∗
w′) = δw,w′ μ(SC (w))β

is a KMSβ state for the quantum statistical mechanical system (TOC , σ ).

Proof In the Fock representation the time evolution is generated by a Hamiltonian

eit H Tae−i t H εw = σt (Ta)εw = μ(a)−i tεaw,

which gives

eit H εw = μ(w)−i tεw



158 Y. I. Manin, M. Marcolli

using the fact that the semi-measure satisfies μ(aw) = μ(a)μ(w). This gives Hεw = − log μ(w). The partition
function is then given by

Zμ,C (β) = T r(e−βH ) =
∑

w

μ(w)β.

Again using μ(w) = μ(w1) · · · μ(wm) for w = w1 · · ·wm a word of length �(w) = m, we write the above as

∑

w

μ(w)β =
∑

m

∑

w1,...,wm

μ(w1)
β · · · μ(wm)β =

∑

m

(
∑

a∈C

μ(a)β

)m

.

For β > βc where
∑

a μ(a)βc = 1, the series converges to

Zμ,C (β) =
(

1 −
∑

a∈C

μ(a)β

)−1

.

Since μ is a semi-measure, it satisfies
∑

a μ(a) ≤ 1, so that βc ≤ 1. The state defined by the condition ϕ(TwT ∗
w′) =

δw,w′μ(w)β satisfies the KMSβ condition. This can be checked inductively from

ϕ(TaT ∗
a ) = μ(a)β = μ(a)βϕ(T ∗

a Ta) = ϕ(T ∗
a σiβ(Ta)).

This completes the proof. ��
This result in particular shows that, given a semi-measure on SC with strict inequality

∑
a μ(a) < 1, there is a

way to associate to it a measure by raising the temperature, that is, lowering β from β = 1 to β = βc. One then has
ϕ(SwS∗

w) = μ(w)βc , this time satisfying the correct normalization
∑

a μ(a)βc = 1, which also implies
∑

a

μ(wa)βc = μ(w)βc
∑

a

μ(a)βc = μ(w)βc ,

so that one indeed obtains a measure.

5.4 Universal Enumerable Semi-Measure

A well known result of Levin (see [23] or Theorem 4.5.1 of [14]) is that there exist universal (or maximal) enumer-
able semi-measures μU on �ω. They are characterized by the following property: any enumerable semi-measure μ

is absolutely continuous with respect to μU with bounded Radon–Nikodym derivative, or equivalently μU ≥ c f λ f ,
for all f ∈ F�. Such universal semi-measures are not unique. A way to construct one is by listing the enumerable
semi-measures (or equivalently listing the functions f ∈ F�) and then taking μU = ∑

n αnλ fn with positive real
coefficients αn with

∑
n αn ≤ 1, see Theorem 4.5.1 of [14]. Another description which is more suitable for our

purposes is as an enumerable semi-measure μU = λ fU , where fU is a universal monotone machine in the sense
of Definitions 4.5.2 and 4.5.6 of [14], that is, universal for Turing machines with a one-way read-only input tape,
some work tapes, and a one-way write-only output tape. As an enumerable semi-measure, we can apply to it the
construction of a corresponding time evolution and quantum statistical mechanical system as above. Notice that μU

is not recursive and it is not a measure, that is, the inequality
∑

a μU (a) < 1 is strict, see Lemma 4.5.3 of [14].
We can then consider on the Toeplitz–Cuntz algebra TOC the universal time evolution

σt (Ta) = μU (a)−i t Ta

induced by the universal enumerable semi-measure μU = λ fU . The critical value βU < 1 at which the partition
function

ZU,C (β) =
(

1 −
∑

a

μU (a)β

)−1
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has a pole is the universal critical inverse temperature. This universal critical temperature can be regarded as another
parameter of a code C , which in this setting replaces the code rate R as the critical β of the time evolution.

The universal critical inverse temperature βU can also be described as a Hausdorff dimension, by modifying the
construction of the Sierpinski fractal SC associated to the code C in the following way.

Recall that SC is constructed inductively starting with the space (0, 1)n
q viewed as (∞× n)-matrices with entries

in A. At the first step, replacing it by qk copies scaled down by a factor of q−n , each identifies with the subset
(0, 1)n

q,a of points in (0, 1)n
q where the first row is equal to the element a ∈ C , with C ⊂ An . Each (0, 1)n

q,a is a
copy of (0, 1)n

q scaled down by a factor of q−n . One obtains then SC by iterating this process on each (0, 1)n
q,a and

so on.
Now we consider a very similar procedure, where we again start with the same set (0, 1)n

q . We again consider all
the subsets (0, 1)n

q,a as above, but where the set (0, 1)n
q,a is metrically a scaled down copy of (0, 1)n

q , now scaled
by a factor μU (a) instead of being scaled by the uniform factor q−n as in the construction of SC . One obtains in
this way a fractal SC,U , by iterating this process. The self similarity equation for the non-uniform fractal SC,U is
then given by
∑

a∈C

μU (a)s = 1,

which identifies its Haudorff dimension with s = βU .
One also has a Ruelle transfer operator associated to the universal enumerable semi-measure, which is given by

Rσ,U,β f (x) =
∑

a∈C

μU (a)β f (ax).

It is then natural to investigate how the universal enumerative semi-measure is related to the Hausdorff dimension
dimH SC = R and to Kolmogorov complexity.

Lemma 5.4.1 For all words x ∈ ŜC the lower Kolmogorov complexity is bounded above by

κ(x) ≤ dimH (SC ) = R.

Proof The universal enumerable semi-measure μU is related to the lower Kolmogorov complexity by ([20,22,23])

κ(x) = lim inf
w→x

− logq μU (w)

�(w)
,

where again the limit is taken over finite length truncations w of the infinite word x as the length �(w) goes to infin-
ity. We know by construction that the universal μU dominates multiplicatively all the enumerable semi-measures.
Thus, in particular, if μ is the Hausdorff measure on SC of dimension R = dimH (SC ), which we have seen above
is an enumerable (semi)-measure, there is a positive real number α such that μU (w) ≥ αμ(w), for all finite words
w. This implies that

− logq μU (w)

�(w)
≤ − logq μ(w)

�(w)
+ − logq α

�(w)
.

This gives

lim inf
w→x

− logq μU (w)

�(w)
≤ lim

w→x

− logq μ(w)

�(w)
= lim

m→∞
km

nm
= R.

��
Moreover, we have the following result.

Lemma 5.4.2 The lower Kolmogorov complexity satisfies

sup
x∈ŜC

κ(x) = R

with the supremum achieved on a set of full measure.
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Proof This follows directly from Ryabko’s inequality [18,19], which shows that in general one has the estimate

dimH (�ω) ≤ sup
x∈�ω

κ(x).

To see this more explicitly in our case, recall first that the Hausdorff dimension of a set X embedded in some larger
ambient Euclidean space can be computed in the following way. Consider coverings {Uα} of X with diameters
diam(Uα) ≤ ρ and consider the sum

∑
α diam(Uα)s . Set

�s(X, ρ) = inf

{
∑

α

diam(Uα)s : diam(Uα) ≤ ρ

}
.

Then one has

dimH (X) = inf

{
s : lim

ρ→0
�s(X, ρ) = 0

}
= sup

{
s : lim

ρ→0
�s(X, ρ) = ∞

}
.

We then use an argument similar to the one used in [19]: from

κ(x) = lim inf
w→x

− logq μU (w)

�(w)

we know that, for a given x ∈ SC , and for arbitrary δ > 0, there is an integer m(x) such that, if w(x) denotes the
truncation of length m(x) of the infinite word x then

− logq μU (w(x))

m(x)
≤ κ(x) + δ ≤ κ + δ,

where κ = supx κ(x) as above. The integer m(x) can be taken so that q−m(x) ≤ ρ for a given size ρ ∈ R∗+. Let L
be the countable set of words w = w(x) of lengths m(x), for x ∈ SC , obtained as above. We can then construct a
covering of SC with sets SC (w), for w ∈ L, with diameters diam(SC (w)) = √

n q−m(x) ≤ √
n ρ, for a positive

constant α that only depends on n. These satisfy
∑

w∈L
diam(SC (w))κ+δ ≤ α

∑
q−m(x)(κ+δ),

with α = √
n(κ+δ). This gives

∑
q−m(x)(κ+δ) ≤

∑
qm(x)

logq μU (w(x))

m(x) ≤
∑

w∈L
μU (w) ≤ 1.

We then have

�s(SC , ρ) ≤
∑

w∈L
diam(SC (w))s

and therefore

lim
ρ→0

�s(SC , ρ) ≤
∑

w∈L
diam(SC (w))s .

For s = κ + δ the right hand side is uniformly bounded above, so limρ→0 �κ+δ(SC , ρ) < ∞, hence κ + δ ≥
dimH (SC ), hence κ ≥ dimH (SC ), since δ can be chosen arbitrarily small. ��

6 Functional Analytic Constructions for Limit Points

6.1 Realizing Limit Points of the Code Domain

We have seen in the previous sections that, given an [n, k, d]q code C , one can construct fractal sets SC and Sπ as
in Sect. 3.3, that have Hausdorff dimension, respectively, equal to R = k/n and δ = d/n, and that the parameter d
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can be characterized in terms of the behavior of the Hausdorff dimension of the intersections SC,�,π = SC ∩ Sπ for
π of dimension �. We now consider the case where two assigned values R and δ are not necessarily realized by a
code C , but are an accumulation point of the code domain, namely there exists an infinite family Cr of [nr , kr , dr ]q

codes, where kr/nr → R and dr/nr → δ as r → ∞.
We show here that one can still construct sets SR and Sδ , depending on the approximating family Cr , with the

property that dimH (SR) = R and dimH (Sδ) = δ and so that these sets are, in a suitable sense, approximated by the
sets SCr and Sπr with πr ∈ �dr of the family of codes Cr .

6.2 Multifractals in Infinite Dimensional Cubes

Let then (0, 1)∞q denote the union (0, 1)∞q = ∪n(0, 1)n
q which can be considered as direct limit under the inclusion

maps that embed [0, 1]n ⊂ [0, 1]n+1 as the face in [0, 1]n+1 of which the last coordinate is equal to zero. This is
a metric space with the induced metric. In terms of the q-ary expansion, elements in (0, 1)∞q can be described as
infinite matrices with only finitely many columns with non zero entries. We can embed all the SCr ⊂ (0, 1)

nr
q of an

approximating family inside (0, 1)∞q . Thus, we can view the set SR = ∪r SCr as SR ⊂ (0, 1)∞q .

Proposition 6.2.1 (1) For any limit point (R, δ) of the code domain there exists a family Cr of [nr , kr , dr ]q codes
with kr/nr ↗ R and dr/nr ↗ δ.

(2) For such a sequence Cr the sets SR = ∪r SCr and Sδ = ∪r Sπdr
have

dimH (SR) = R, dimH (Sδ) = δ, and dimH (SR ∩ Sδ) > 0. (6.1)

(3) Moreover, given a sequence π�r ∈ �
(nr )
�r

with �r ≤ dr − 1, one can form the analogous S� = ∪r Sπ�r
. This has

the property that dimH (SR ∩ S�) = 0.

Proof (1) We first show that we can find an approximating family Cr with kr/nr ↗ R and dr/nr ↗ δ. To this
purpose we use the spoiling operations on codes described above. We know from Corollary 1.2.1 that, given
an [n, k, d]q code, we can produce an [n, k − 1 ≤ k′ ≤ k, d − 1]q code from it by applying the second and
third spoiling operations and twice the first one. Starting with an approximating family Cr with kr/nr → R
and dr/nr → δ and using the spoiling operations as described, we can produce from it other approximating
families with kr replaced by kr − �r and dr − �r with �r/nr → 0 and such that, for sufficiently large r ,
kr/nr −�r/nr ≤ R and dr/nr −�r/nr ≤ δ. Possibly after passing to a subsequence, we obtain a family where
the new kr and dr satisfy kr/nr ↗ R and dr/nr ↗ δ.

(2) The Hausdorff dimension of a union behaves like

dimH (∪r Xr ) = sup
r

dimH (Xr )

by countable stability [9, p. 37]. Thus, if kr/nr ↗ R and dr/nr ↗ δ, we obtain that dimH (SR) = R and
dimH (Sδ) = δ.
Let us now show that dimH (SR ∩ Sδ) > 0. We have SR ∩ Sδ = ∪r (SCr ∩ Sπd ). Again by countable stability
of the Hausdorff dimension we obtain

dimH (SR ∩ Sδ) = sup
r

dimH (SCr ∩ Sπd ) > 0.

The Hausdorff dimension is also bounded above by the dimension of SR and Sδ so 0 < dimH (SR ∩ Sδ) ≤
min{R, δ}.

(3) For a given sequence �r ≤ dr − 1 with corresponding linear spaces π�r ∈ �
(nr )
�r

, we can form the sets
Sπ�r

⊂ (0, 1)∞q . If the �r are chosen so that the ratio sequence �r/nr ↗ � approaches a limit from below as
r → ∞, then the same argument given above shows that the Hausdorff dimension dimH (∪r Sπ�r

) = �. For
S� = ∪r Sπ�r

, the intersection SR ∩ S� is given as above by SR ∩ S� = ∪r (SCr ∩ Sπ�r
). Since �r ≤ dr − 1, we

know that dimH (SCr ∩ Sπ�r
) = 0 for all r . Thus, we have dimH (SR ∩ S�) = 0. This shows that the set Sδ still
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has the same threshold property with respect to the behavior of the Hausdorff dimension of the intersection
with SR , as in the case of the individual SC of a single code.

��

6.3 Random Processes and Fractal Measures for Limit Points of Codes

We have seen how, for an individual code C ⊂ An we can construct a fractal set SC of Hausdorff dimension the
code rate R and with the Hausdorff measure μR in dimension R satisfying the self-similarity condition

μR = q−n R
∑

a∈An

μR ◦ σ−1
a .

We now consider the case of a limit point (R, δ), which is an accumulation point of the code domain, so that we
have a family of codes Cr with kr/nr → R and dr/nn → δ. As we have seen in Proposition 6.2.1 above, we can
construct a set SR ⊂ (0, 1)∞q with Hausdorff dimension dimH (SR) = R.

The construction of SR shows that the Hausdorff dimension of each SCr is dominated by that of the larger ones
and of SR . Therefore for the uniform R-dimensional Hausdorff measure each of the SCr becomes negligible. How-
ever, it is possible to construct non-uniform measures on SR that give non-trivial probability to each of the SCr . We
investigate here how to obtain self-similar multifractal measures on the sets SR using the method of Ruelle transfer
operators.

On the set SR ⊂ (0, 1)∞q we consider a potential W = Wβ with non-negative real values satisfying the Keane
condition
∑

a

Wβ(ax) = 1, ∀x ∈ SR, (6.2)

where for x ∈ SCr ⊂ SR the sum is over all the elements a ∈ Cr .
The Ruelle transfer operators on SR will then be of the form

Rσ,W f (x) =
∑

σ(y)=x

W (y) f (y) =
∑

a∈∪r (Cr ∩Anr )

W (ax) f (ax), (6.3)

where the shift map σ on SR is the one induced by the shift maps on the individual SCr . The partial inverses of σ

are given by maps σa(x) = ax , where, for x ∈ SCr , a is an element of corresponding Cr .

Example 1 One can consider the case where the potential Wβ(x) is a piecewise constant function on SR , which
depends only on the first coordinate (first row) x1 ∈ ∪r (Cr ∩ Anr ) of x . One can write it in this case as

Wβ(x) = e−βλx1 , with
∑

a∈∪r (Cr ∩Anr )

e−βλa = 1. (6.4)

Example 2 Another case we will consider in the following is where the potential is also a piecewise constant func-
tion on SR , but which depends on the first two coordinates (first two rows) x1, x2 ∈ ∪r (Cr ∩ Anr ) of x ∈ (0, 1)∞q .
In this case we write it in the form

Wβ(x) = e−βλx1x2 , with
∑

a∈∪r (Cr ∩Anr )

e−βλax1 = 1, (6.5)

for all x1 ∈ ∪r (Cr ∩ Anr ). We then think of λab as an infinite matrix indexed by elements a, b ∈ ∪r (Cr ∩ Anr ). The
condition that

∑
a Wβ(ax) = 1 for all x ∈ SR implies that the function f (x) = 1 is a fixed point for the transfer

operator Rσ,W,β .

Here is a version of the construction given in [6] (see also for instance [17]), for an arbitrary potential Wβ

satisfying the Keane condition.
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Proposition 6.3.1 For a choice of a point x0 ∈ SR, one can then construct a measure μβx0 on SR by assign-
ing to the subset SR(w) ⊂ SR of words x ∈ SR that start with a given finite length word w = w1 · · · wm with
w j ∈ ∪r (Cr ∩ Anr ) the measure

μβ,x0(SR(w)) = Wβ(w1x0)Wβ(w2w1x0) . . . Wβ(wn . . . w1x0). (6.6)

Proof To see that this indeed defines a probability measure we need to check that
∑

w

μβ,x0(SR(w)) = 1,

and that
∑

a∈∪n An

μβ,x0(SR(wa)) = μβ,x0(SR(w)).

The first condition is satisfied since we have
∑

w1···wn

Wβ(w1x0)Wβ(w2w1x0) · · · Wβ(wn−1 · · · w1x0)Wβ(wn · · · w1x0)

=
∑

w1···wn−1

Wβ(w1x0)Wβ(w2w1x0) · · · Wβ(wn−1 · · · w1x0)

= · · · =
∑

w1

Wβ(w1x0) = 1,

by repeatedly using the Keane condition (6.2). The second condition also follows from (6.2), since we have
∑

a

μβ,x0(SR(wa)) =
∑

a

Wβ(w1x0) · · · Wβ(wn · · · w1x0)Wβ(awn · · ·w1x0)

= Wβ(w1x0)Wβ(w2w1x0) · · · Wβ(wn · · ·w1x0),

since
∑

a Wβ(awn · · · w1x0) = 1. This completes the proof. ��
The idea is that one thinks of the measure constructed as above as the probability of a random walk that starts at

x0 and proceeds at each step in the direction marked by an element a ∈ ∪r (Cr ∩ Anr ). In the special cases (6.4)
and (6.5), the probabilities are given, respectively, by

μβ,x0(SR(w)) =
m∏

j=1

e−βλw j ,

which is, in this case, independent of the choice of the point x0, and by

μβ,x0(SR(w)) = e−βλwnwn−1 · · · e−βλw2w1 e−βλw1x0 .

Consider then a fixed SCr inside SR = ∪r SCr . The measure constructed as above on SR induces a multi-fractal
measure on each SCr . We describe the resulting system of measures explicitly in the two cases where the measure
on SR satisfies (6.4) or (6.5).

Proposition 6.3.2 (1) If the measure on SR satisfies (6.4), then it induces on each SCr a multi–fractal measure
by assigning

μβ,r (SCr (w)) = 1

Zr (β)m

∏

j

e−βλw j , (6.7)

for w = w1 · · · wm with wi ∈ Cr , where Zr (β) is given by

Zr (β) =
∑

a∈Cr

e−βλa . (6.8)
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(2) If the measure on SR satisfies (6.5), then it induces on each SCr a multi-fractal measure by assigning

μβ,r,x0(SCr (w)) = Wβ(wmwm−1) · · · Wβ(w1x0) f (r)
wm

ρm
β,r f (r)

x0

, (6.9)

for w = w1 · · · wm with wi ∈ Cr , where f (r) is the Perron–Frobenius eigenvector of the positive matrix
Wβ(ab) = e−βλab and ρβ,r the eigenvalue equal to the spectral radius.

Proof When one restricts the potential Wβ from SR to a single SCr , the infinite sum (6.2) is replaced by a truncated
finite sum

∑

a∈Cr ∩Anr

Wβ(ax) < 1, ∀x ∈ SR . (6.10)

Thus, in the case (6.4), instead of the normalization condition given by the infinite sum
∑

a∈∪r Cr

e−βλa = 1,

we have a partition function given by the finite sum (6.8). The induced probability measure on SCr is then given by
assigning measures

μβ,r (SCr (a)) = e−βλa

Zr (β)
,

and more generally by (6.7) on the sets SCr (w) with w = w1 · · ·wm with wi ∈ Cr . Since Zr (β)−1 ∑
a∈Cr

e−βλa = 1,
this assignment satisfies the required properties in order to define a probability measure on SCr . Notice that the
measure obtained in this way is no longer a uniform self-similar measure like the Hausdorff measure on SCr of
Hausdorff dimension kr/dr , but it is a non-uniform multi-fractal measure in the sense of [9, §17].

The case where the potential Wβ on SR satisfies (6.5) is similar. The restriction of Wβ to a single SCr gives a
qkr × qkr -matrix, Wβ(ab) = e−βλab , for a, b ∈ Cr . This matrix is positive, in the sense that all its entries are, by
construction, positive real numbers. Thus, the Perron–Frobenius theorem applied to the matrix Wβ(ab) (or rather

to its transpose) shows that there exists a unique eigenvector f (r) = ( f (r)
a )

∑

a∈Cr

Wβ(ab) f (r)
a = ρβ,r f (r)

b , (6.11)

with positive entries f (r)
a > 0 and with eigenvalue ρβ,r equal to the spectral radius of Wβ(ab).

We then show that setting the measure of SCr (w) equal to (6.9), for w = w1 · · · wm with w j ∈ Cr , defines an
induced probability measure on SCr . We check that

∑

w

μβ,r,x0(SCr (w)) =
∑

w1···wm

Wβ(wmwm−1) · · · Wβ(w1x0) f (r)
wm

ρm
β,r f (r)

x0

=
∑

w1···wm−1

Wβ(wm−1wm−2) · · · Wβ(w1x0) f (r)
wm−1

ρ
(m−1)
β,r f (r)

x0

=
∑

w1

Wβ(w1x0) f (r)
w1

ρβ,r f (r)
x0

= 1,

since we have
∑

w j+1

Wβ(w j+1w j ) f (r)
w j+1

= ρβ,r f (r)
w j

.
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Similarly, we have

∑

a

μβ,r,x0(SCr (wa)) =
∑

a

Wβ(awm) . . . Wβ(w1x0) f (r)
a

ρm+1
β,r f (r)

x0

= Wβ(wmwm−1) · · · Wβ(w1x0) f (r)
wm

ρm
β,r f (r)

x0

= μβ,r,x0(SCr (w)),

since we have
∑

a

Wβ(awm) f (r)
a = ρβ,r f (r)

wm
.

We therefore obtain a family of induced multi-fractal probability measures on the SCr . This completes the
proof. ��

A similar construction can be done in the case of the family of sets Sπdr
with dr/nr ↗ δ and the set Sδ = ∪r Sπdr

.

6.4 Limit Points and Algebra Representations

As above, consider a family of codes Cr with parameters kr/nr ↗ R and dr/nr ↗ δ. We have Toeplitz algebras
TOCr associated to each code in this family. It is then natural to consider as algebra associated to the limit point
(R, δ) the infinite Toeplitz algebra in the union of the generators of all the TOCr , namely TO∪r Cr generated by
isometries Sa for a ∈ ∪r Cr .

Proposition 6.4.1 Let μβ,x0 be a probability measure on SR constructed as above, in terms of a potential Wβ(x).
The algebra TO∪r Cr has a representation on the Hilbert space L2(SR, μβ,x0) given by

(Sa f )(x) = Wβ(ax0)
−1/2 χSR(a)(x) f (σ (x)), (6.12)

for a ∈ ∪r Cr .

Proof We must check that the operators (6.12), for a ∈ ∪r Cr , satisfy the relations S∗
a Sa = 1 of TO∪r Cr , with

Sa S∗
a = Pa orthogonal range projections.

First observe that the Radon–Nikodym derivative of μβ,x0 with respect to composition with σa for a ∈ ∪r Cr

satisfies

dμβ,x0 ◦ σa

dμβ,x0

= Wβ(ax0). (6.13)

In fact, we have

μβ,x0(SR(w)) =
∑

a

μβ,x0(SR(wa))

=
∑

a

∫

SR(w)

dμβ,x0 ◦ σa

dμβ,x0

dμβ,x0 =
∑

a

Wβ(ax0)μβ,x0(SR(w)).

It then follows that the operators Sa of (6.12) have adjoints

(S∗
a f )(x) = Wβ(ax0)

1/2 f (σa(x)). (6.14)
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In fact, we have

〈Sah, f 〉 =
∫

SR(a)

Wβ(ax0)
−1/2 h(σ (x)) f (x) dμβ,x0(x)

=
∫

SR

Wβ(ax0)
−1/2 h(u) f (σa(u))

dμβ,x0 ◦ σa

dμβ,x0

dμβ,x0(u)

=
∫

SR

h(u) Wβ(ax0)
1/2 f (σa(u)) dμβ,x0(u) = 〈h, S∗

a f 〉.

One then sees explicitly that the operators Sa and S∗
a satisfy S∗

a Sa = 1, while Sa S∗
a is the range projection Pa given

by multiplication by the characteristic function χSR(a). Notice that, for a �= a′ in ∪r Cr , the sets SR(a) and SR(a′)
are disjoint, hence the range projections are orthogonal. Thus, we obtain a representation of the algebra TO∪r Cr .
This completes the proof. ��

One can proceed in a similar way with respect to the parameter δ using the set Sδ with a similar measure and
representation. Thus, the choice of a limit point (R, δ) corresponds to the pair of Hilbert spaces L2(SR, μβ,x0) and
L2(Sδ, μβ ′,x ′

0
) with representations of the algebras TO∪r Cr and TO∪r πdr

, respectively.
The main asymptotic problem of codes [15,21] consists of identifying a continuous curve R = αq(δ) (which

can also be symmetrically formulated as δ = α′
q(R)) that gives for fixed δ the maximal possible value of R in the

closure of the subset of limit points of the code domain (respectively, the maximal δ for fixed R). We describe here a
way to characterize the curve R = αq(δ) in terms of the measures μβ,x0 on the sets SR and the uniform self-similar
measures on the SCr for approximating families of codes.

We have shown earlier that given a point (R, δ) in the closure of the code domain, it is always possible to construct
an approximating family of codes Cr with kr/nr ↗ R and dr/nr ↗ δ. In the following, we refer to such a family
{Cr } as a good approximating family.

We have shown that a measure μβ,x0 on the set SR ⊂ (0, 1)∞q induces a compatible family of non-uniform fractal
measures on the sets SCr ⊂ (0, 1)

nr
q . We now show that, conversely, the family of uniform self-similar measures on

the SCr determine a family of non-uniform measure μβ,x0 on the set SR ⊂ (0, 1)∞q , for β > R.

Proposition 6.5 Let Cr be a good approximating family for a limit point (R, δ). For a ∈ ∪r Cr set λa = nr log q,
where nr corresponds to the smallest Cr ⊂ (0, 1)

nr
q for which a ∈ Cr . Then the series

Z∪r Cr (β) :=
∑

a∈∪r Cr

e−βλa (6.15)

converges for β > R and the potential

Wβ(x) = Z∪r Cr (β)−1 exp(−βλx1) (6.16)

defines a probability measure on the set SR. The analogous construction holds for Sδ with convergence in the
domain β > δ.

Proof We have

Z∪r Cr (β) =
∑

r

qkr q−βnr ,

since the SCr are disjoint in (0, 1)∞q . Since {Cr } is a good approximating family, we have kr/nr ≤ R and we see
that
∑

r

qkr q−βnr ≤
∑

r

q(R−β)nr .

This is convergent for β > R. The potential Wβ(x) of (6.16) then satisfies the Keane condition
∑

a Wβ(ax) = 1.
The construction for Sδ is entirely analogous, using the uniform measures on the Sπdr

. This completes the proof. ��
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We then obtain the following characterization of the curve R = αq(β) of the fundamental asymptotic problem
for codes.

Proposition 6.6 The domain β ≥ αq(δ) is the closure of the common domain of convergence of the functions
Z∪r Cr (β) for all the points (R, δ) with fixed δ in the closure of the subset of limit points of the code domain and for
all good approximating families {Cr }.

Proof The domain β ≥ R is in fact the closure of the common domain of convergence of the functions Z∪r Cr (β)

when one varies the good approximating family Cr . In fact, the argument above shows that they all converge for
β > R. The SCr are disjoint in (0, 1)∞q so that the zeta function (6.15) is given by

∑
r qkr q−βnr . Then if β < R,

for sufficiently large r one will have kr/nr − β > 0 and the series diverges. Then by varying the limit point (R, δ)

with fixed δ one obtains the result. ��

Remark We constructed in Sect. 6.4 multi-fractal measures on the set ∪r SCr for a family of codes {Cr } approxi-
mating a limit point (R, δ). We also considered, associated to the same family of codes, the infinite Toeplitz algebra
TO∪r Cr . Notice that in this case, unlike what happens for the case of a single code, the set ∪r SCr is no longer
dense in the spectrum of the maximal abelian subalgebra. In fact, the latter consists of all infinite sequences in the
elements of ∪r Cr , while the set ∪r SCr only contains those sequences where all the successive elements in an infinite
sequence belong to the same Cr . Both sets can be regarded as the union of the ω-languages defined by the codes Cr ,
where in the case of ∪r SCr one is keeping track of the information of the embeddings of the codes Cr ⊂ Anr , that
is, of viewing elements of each language as matrices so that the concatenation operation of successive words can
only happen for matrices that has the same row lengths, while in the case of the spectrum of the maximal abelian
subalgebra one does not take the embedding into account so that all concatenations of words in the languages
defined by the codes Cr are possible and one obtains a larger set.

6.7 Quantum Statistical Mechanics Above and Below the Asymptotic Bound

We have seen in Sect. 4 how to associate a quantum statistical mechanical system to an individual code. We also
know from Theorem 2.11 that code points have multiplicities: in particular, code points that lie below the asymptotic
bound have infinite multiplicity, while isolated codes, which lie above the asymptotic bound have finite multiplic-
ity. In terms of quantum statistical mechanical systems, it is therefore more natural to fix a code point (R, δ) and
construct an algebra with time evolution (TO(R,δ), σ ) which does not depend on choosing a code C representing
the code point, but allowing for all representatives simultaneously. This can be done in the same way we used in
Sect. 6.4 for limit points. Namely, we let TO(R,δ) be the Toeplitz algebra with generators the elements in the union
of all codes C with parameters (R, δ). This will be isomorphic to a finite rank Toeplitz algebra TON for isolated
codes and isomorphic to the infinite Toeplitz algebra TO∞ in the case of code points that lie below the asymptotic
bound. Similarly, we can consider the fractal set given by the union of the SC for all the representative codes with
fixed (R, δ). In this case all these sets have the same Hausdorff dimension equal to R, but in the case of isolated
codes they are obtained as a finite union and therefore they admit a uniform self-similar probability measure, the
R-dimensional Hausdorff measure, while in the case of the points below the asymptotic bound one can construct
non-uniform probability measure using the same method we described in Sect. 6.2 for limit points. We can use
potentials as in (6.4) to construct such measures. This in turn induces a time evolution on TO(R,δ) of the form

σt (Ta) = eitλa Ta .

In this way, the properties of the quantum statistical mechanical system associated to a code point (R, δ) reflect the
difference between point above or below the asymptotic bound.
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7 The Asymptotic Bound as a Phase Diagram

The goal of this section is to extend the construction of quantum statistical mechanical systems from the case of
individual codes C to families of codes in such a way as to obtain a description of the asymptotic bound R = αq(δ)

as a phase transition curve in a phase diagram.

7.1 Variable Temperature KMS States

We begin by giving here a generalization of the usual notion of KMS states, which we refer to as variable tem-
perature KMS states and which will be useful in our example. This is similar to the notion of “local KMS states”
considered, for instance, in [1] in the context of out of equilibrium thermodynamics, as well as in the context of
information theory in [11], though definition we give here is more general. We formulate it first in the case of an
arbitrary algebra of observables and we then specialize it to the case of families of codes.

Definition 7.1.1 Let B be a unital C∗-algebra and let X be a parameter space, assumed to be a (compact Hausdorff)
topological space, together with an assigned continuous function β : X → R+. For t ∈ C(X , R), let σt ∈ Aut(B)

be a family of automorphisms satisfying σt1+t2 = σt1 ◦ σt2 . A KMSβ state for (B, σ ) is a continuous linear func-
tional ϕ : B → C with ϕ(1) = 1 and ϕ(a∗a) ≥ 0 for all a ∈ B, and such that, for all a, b ∈ B there exists a
function Fa,b(z), for z : X → C, with the property that the function Fa,b(z(α)) for any fixed α ∈ X and varying
z ∈ C(X , C) is a holomorphic function of the complex variable z(α) ∈ Iβ(α), where

Iβ(α) = {z ∈ C | 0 < �(z) < β(α)},
and extends to a continuous function on the boundary of Iβ(α) with

Fa,b(t (α)) = ϕ(aσt (α)(b)), and Fa,b(t (α) + iβ(α)) = ϕ(σt (α)(b)a),

where t (α) = z(α)|�(z(α))=0.

Example In the case where the parameter space is a finite set of points, say X = {1, . . . , N } one finds that σt is an
action of RN by automorphisms and the variable temperature KMS condition gives a functional such that ϕ(ab) =
ϕ(σiβ(b)a), with β = (β1, . . . , βN ). The partition function, correspondingly, is a function Z(β1, . . . , βN ) =
Tr(e−〈β,H〉), where H = (Hk) implements the time evolution σt in the sense that

π(σt (a)) = ei〈t,H〉π(a)e−i〈t,H〉,

in a given Hilbert space representation π of B.

We are interested in the case where the algebra is itself a tensor product over the parameter space, and the
resulting C∗-dynamical system is also a tensor product. Namely, we have B = ⊗α∈X Bα with σt = ⊗ασt (α) and a
representation π = ⊗απα on a product H = ⊗αHα , with a Hamiltonian H = ⊗α Hα generating the time evolution,
namely so that on Hα one has

πα(σt (α)(aα)) = eit (α)Hαπα(aα)e−i t (α)Hα .

Then for a given β : X → R+, a state ϕ = ⊗αϕα is a KMSβ state iff the ϕα are KMSβ(α) states for the time
evolution σt (α). We assume here that X is a discrete set and that the C∗-algebras Bα are nuclear so that tensor
products over finite subsets of X are unambiguously defined and the product over X is obtained as direct limit, as
in Proposition 7 of [2].
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7.2 Phase Transitions for Families of Codes

We consider approximations to the curve R = αq(δ) by families of N points (δ j , R j ) that are code points, that is,
for which there exists a code C j with k j/n j = R j and d j/n j = δ j . To such a collection of points we associate a
quantum statistical mechanical system that is the tensor product of the systems associated to each code C j , with
algebra of observables A = ⊗ j TOC j and with the dynamics given by σ : RN → Aut(A), with σt = ⊗ jσt j , where
σt j is the time evolution on TOC j given by

σt j (Sa) = qitn j Sa .

Lemma 7.2.1 Let (A, σ ) be the product system described above, for a collection C j of codes, with j = 1, . . . , N.
Then for any given β = (β1, . . . , β j ) there is a unique KMSβ state on (A, σ ), which is given by the product
ϕβ = ⊗ jϕβ j of the unique KMSβ j states on the algebras TOCJ . For β in the region β j > R j , the KMS state is of
type I∞. The partition function is the product of the partition functions of the individual systems.

Proof The product state ϕβ = ⊗ jϕβ j is a KMSβ state for (A, σ ) with β = (β1, . . . , β j ). The uniqueness for the
tensor product state follows from an argument similar to the one used in Proposition 8 of [2], adapted to our more
general notion of KMS state. It suffices in fact to observe that, if ϕ is a KMSβ state with β = (β1, . . . , β j ) on the
product A = ⊗ j TOC j , then for fixed a1, . . . , a j−1, a j+1, . . . , aN , the functional

ϕa1⊗···⊗a j−1⊗a j+1⊗···⊗aN (a j ) = ϕ(a1 ⊗ · · · ⊗ aN )

is a KMSβ j state on TOC j , by the same argument used in the ordinary case.
The Hamiltonian Hj generating the time evolution σt j on the algebra TOC j has eigenvalues mn j log q, with

integers m ≥ 0, with multiplicities qmk j , and partition function

Z(β j ) = Tr(e−β j H j ) =
∑

m

q(R j −β j )n j m = (1 − q(R j −β j )n j )−1.

The partition function for the product system is then

Z(β1, . . . , βN ) = Tr(e−∑
j β j H j ) =

∑

m=(m1,...,m N )

q
∑

j (R j −β j )n j m j

=
∏

j

⎛

⎝
∑

m j

q(R j −β j )n j m j

⎞

⎠ =
∏

j

(1 − q(R j −β j )n j )−1 =
∏

j

Z(β j ).

It converges in the domain of RN determined by the conditions β j > R j . This finishes the proof. ��
To further refine the picture described above, we consider quantum statistical mechanical systems associated to

families of codes approximating a limit point in the closure of the code domain.
As before, let C = {Cr } be a family of codes with kr/nr ↗ R and dr/nr ↗ δ. We consider again the union ∪r Cr

and the corresponding Toeplitz algebra TO∪r Cr . On the fractal SR = ∪r SCr of Hausdorff dimension dimH (SR) = R,
consider a potential Wβ(x) = e−βλx1 , such that, when β = R it satisfies the Keane condition
∑

a∈∪r Cr

e−Rλa = 1.

We consider then the time evolution on TO∪r Cr given by

σ W
t (Ta) = eitλa Ta .

In the representation of TO∪r Cr on its Fock space, this time evolution is generated by a Hamiltonian

Hεw = (λw1 + · · · + λwm )εw,
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for w = w1 · · · wm with wi ∈ ∪r Cr . This has partition function

ZC(β) =
∑

m

∑

w∈W∪r Cr ,m

e−β(λw1 +···+λwm ) =
∑

m

⎛

⎝
∑

a∈∪r Cr

e−βλa

⎞

⎠
m

.

If we introduce the notation

�(β) :=
∑

a∈∪r Cr

e−βλa ,

we have �(R) = 1 and, for β > R, �(β) < 1, while for β < R one has �(β) > 1, which becomes possibly
divergent after some critical value β0 < R. Thus, the partition function for the system (TO∪r Cr , σ

W ) is

ZC(β) =
∑

m

�(β)m = (1 − �(β))−1,

convergent for β > R, with a phase transition at β = R. The same argument of Proposition 4.7.3 can be extended
to this case to show the existence at all β > 0 of a unique KMSβ state, which is of type I∞ below the critical
temperature and is given by a residue at the critical temperature.

One can then consider approximations of the curve R = αq(δ) by points (R j,N , δ j,N ) in Uq , for j = 1, . . . , N .
To each of these points one associates a quantum statistical mechanical system constructed as above using a family
C j,N = {Cr j,N } of codes approximating the limit point (δ j,N , R j,N ) with the time evolution σ W j,N described above
on the algebra TOC j,N . By taking the product of these systems one can form a system with variable temperature
KMS states with phase transition at β j,N = R j,N ≤ αq(δ j,N ). This can be extended to the case of a countable
dense set of points below the curve R = αq(δ) and the corresponding countable tensor product system.

It would be interesting to extend this type of tensor product construction for families of algebras associated to
codes to a version that corresponds to a “system with interaction” more like the Bost–Connes algebra.
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