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Abstract We consider the CSS algorithm relating self-orthogonal classical linear codes to g-ary quantum stabilizer
codes and we show that to such a pair of a classical and a quantum code one can associate geometric spaces con-
structed using methods from noncommutative geometry, arising from rational noncommutative tori and finite abelian
group actions on Cuntz algebras and fractals associated to the classical codes.
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1 Introduction

New methods derived from Noncommutative Geometry have been recently applied to the theory of error-correcting
codes, to signal analysis, and to problems of information and communication.

In [22] and [23] the asymptotic bound of error correcting codes introduced in [21] is studied as a phase transition
of certain quantum statistical mechanical systems constructed out of error-correcting codes and code parameters.
This construction involves associating to error-correcting codes certain operator algebras (quantum systems built
out of creation-annihilation operators associated to code words) and fractal spaces describing the set of infinite
words in the language determined by the code. In the more recent paper [23], this approach is further developed to
address the computability problem discussed in [20], and the asymptotic bound for error-correcting codes is related
to the Kolmogorov complexity of codes and to a thermodynamical partition function that weights codes according
to their complexities.
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In [3] the fractals associated to classical error-correcting codes, as described in [22], are related to a construction
of spectral triples on Cantor sets of [25] and to a procedure to obtain crossed product constructions for such spectral
triples.

In [24] constructions of wavelets on fractals are obtained from the noncommutative geometry of Cuntz—Krieger
algebras. This approach builds upon the previous use of representations of Cuntz algebras as a way to construct
and analyze wavelets on fractals ([4,9,16,17]), as well as on wavelet constructions on fractals obtained in [15].
The techniques developed in [24], applied to the operator algebras of codes considered in [22], provide correspond-
ing wavelet constructions on the fractal associated to the code, which provide a new set of analytic methods to study
the decoding procedure in terms of a wavelet representation.

In [19] the geometry of noncommutative tori and their quantized theta functions is related to signal analysis and
the Gabor frame for modulation spaces.

Given this growing interest in the use of operator algebras and noncommutative geometry in coding theory, we
have written this paper with the intent of familiarizing people working in coding theory with methods, concepts,
and techniques from noncommutative geometry.

To this purpose, we concentrate on a well known construction in coding theory, namely the CSS algorithm relat-
ing self-orthogonal classical linear codes to g-ary quantum stabilizer codes, and we show how one can reformulate
the data of the classical and quantum codes involved in the procedure and their relation in terms of geometric spaces
that are well known in noncommutative geometry, such as rational noncommutative tori, Cuntz—Krieger algebras,
crossed products of algebras by group actions and certain bundles over tori with fractal fibers.

The main new result in this paper is the geometric formulation of the CSS relation between classical and quantum
codes in terms of noncommutative spaces.

In addition, we review some of the background notions from noncommutative geometry and some of the results
of [22], for the use of readers with a coding theory background; we also briefly review the CSS algorithm for the
use of readers with a possible noncommutative geometry background, who may be less familiar with the coding
theory side.

More precisely, the paper is structured as follows. In the rest of this introductory section we review some basic
facts about the CSS algorithm relating self-orthogonal classical linear codes to g-ary quantum stabilizer codes.

We then show in Sect. 2 that the construction of g-ary quantum stabilizer codes can be naturally expressed in
terms of the geometry of rational noncommutative tori. We also show that, if the g-ary quantum stabilizer codes is
obtained from a classical self-orthogonal linear code via the CSS algorithm, then some properties of the classical
code can be seen in the resulting algebra, such as a filtration that corresponds to the Hamming weight.

In Sect. 3, we recall some results of [22] on associating to a classical code C a fractal A¢ and an operator
algebra, a Cuntz algebra O¢ or a Toeplitz algebra 7¢. We give an explicit example of a very simple code for which
one can completely visualize the associated fractal space. Since we are dealing only with linear codes here, unlike
in the more general setting of [22], we can enrich these spaces and algebras with group actions coming from the
linear structure of the code. We show that one obtains in this way a crossed product algebra that has the Rokhlin
property.

We then show that the fractals of classical codes can be embedded, compatibly with the group actions in a dis-
connection of a torus and that the geometric construction via rational noncommutative tori obtained in the previous
section can be pulled back to the fractal A¢ via this embedding and the projection from the disconnection to the
torus giving rise to a quotient space by the group action which is a fibration over a torus with fiber a fractal. We
also show how one can use a crossed product algebra defined by the action of (Z/pZ)?* on the disconnection of
the torus 72 to obtain a noncommutative space with the property that all the noncommutative spaces associated to
individual classical codes via the group action on the associated fractal A¢ can be embedded inside (powers of)
this universal one. This gives a common space inside which to compare noncommutative spaces of different codes
and relate their properties. We also give a reinterpretation of the weight polynomial of a linear code in terms of
subfractals of A¢ and multiplicities of embeddings of the corresponding Toeplitz algebras.
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1.1 Classical Linear Codes

We recall briefly the general setting of classical codes, following [29]. An alphabet is a finite set 2 of cardinality
q > 2. Aclassical code is asubset C C 2. Elements of C are code words, identified with n-tuples x = (ay, ..., ay)
in A",

Wesetk = k(C) = logq #C and | k] the integer part of k. The code rate or transmission rate of the code is the
ratio R = k/n.

The Hamming distance between two code words x = (a;) and y = (b;) is given by d(x, y) = #{i |a; # b;}.
The minimum distance d = d(C) of the code is given by d(C) = min{d(x, y) |x,y € C, x # y}. The relative
minimum distance of the code is the ratio § = d/n.

A classical code C with these parameters is called an [n, k, d], code.

The most important class of codes, in the classical setting, is given by the linear codes. In this class, the alphabet
is given by the elements of a finite field 20 = F; of cardinality ¢ = p”" and characteristic p > 0. The code is linear
if C C Iy is an Fy-linear subspace of the vector space IFy. In particular k = |k] is an integer for linear codes and
is the dimension of C as a vector space.

Given an F-bilinear form (-, -) on Fy, a code C C Iy is self-orthogonal if, for all code words x, y € C one has
(x,y) = 0. The dual code C* is given by the set of vectors v in IFZ satisfying (v, x) = O for all x € C. Thus, a
self-orthogonal code satisfies C € C+.

1.2 Quantum Stabilizer Codes

A gbit is a vector in the finite dimensional Hilbert space C2. Quantum codes as in [28] have been typically con-
structed over gbit spaces (C%)®". These are referred to as binary quantum codes. However, more recently nonbinary
quantum codes have also been constructed [5,27], especially in relation to classical codes associated to algebraic
curves.

In this more general setting of nonbinary quantum codes, one considers a vector C? representing the states of a g-
ary system. A g-ary quantum code of length n and size k is then a k-dimensional C-linear subspace of C¢" = (C9)®".
A quantum error is a linear map E € Endc (C?"). For a quantum error of the form £ = E; ® - - - ® E,,, the weight
isw(E) =#{i | E; # id}. A quantum error E is detectable by a quantum code Q if Po EPg = Ag Pg, where Py
is the orthogonal projection onto Q C C9" and Ax € C is a constant depending only on E. The minimum distance
of a quantum code Q is

dg = max{d | E is detectable VE = E; ® --- ® E, withw(E) <d — 1}. (1.1)

A quantum code with these parameters is called a [[n, k, d]], quantum code.

We recall the following notation and basic facts following [1]. Let ¢ = p" and consider, as above, the field
[F,. Viewed as an IF ,-vector space, it can be identified, after choosing a basis, with F’;’ Thus, given an element
X € IFZ, x = (a1, ..., ap), we can identify the coefficients a; € I, with vectors a; = (a;1, ..., ain) With g;; in
F,. These in turn can then be thought of as elements of Z/pZ, that is, as integer numbers 0 < g;; < p — 1. Thus,
given a linear operator L € Endc(CP), such that L? = id, we can consider the integer powers L%/,

In particular, consider the two operators T and R on C? given by the matrices

010 -.---00
001 .-.-00

T=]|": : (1.2)
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10 0 0 0
0 & 0 0 0
00& ... 0 0
R=1]. . ; (1.3)
0O0 0 --- 51)—2 0
00 0 --- 0 gp—l

where £ = exp(2mi/p). These have the properties that

T? =RP =id and TR =E&RT, (1.4)
which also imply the relations

TERY = eMR'TF and (T*RY)(T"R®) = & 7T RS = 555" R)(T*RY). (1.5)
Moreover, the operators T* R form an orthonormal basis of M »(C) = Endc(C?) with respect to the inner product

(A, B) = Tr(A*B).
Consider then linear maps E = E| ® - - - ® E, in End¢ (C1"y, with q = p™, where the factors E; are of the form

E; = TRy, where x and y are elements in I, which we write as vectors x = (a1, ..., an), y = (b1, ..., by) with
coefficients a; and b; inF,,and weset T, = T ®---®@ T% and R, = RY ®. .. ® RP with the same conventions
explained above and with 7" and R as in (1.2) and (1.3). Thus, for v = (x1, ..., x,) and w = (y1, ..., y) vectors

in IFZ, we can write a corresponding operator

Eyw=TqRy ® - ®TR,y,. (1.6)
The relations (1.4) and (1.5) imply that

EywEyw =§0""0N0E, By, (1.7)

where, for v, w € IFZ, the bilinear form (v, w) is defined as

(U, w) Zzzaijbij. (1-8)

i=1 j=1
Similarly, one also has
Ev,wEu/,w/ = §_<w’v >Ev+v’,w+w” (1.9)

and E ,, = id as a p"™™ x p™" matrix.
One then denotes by £ (see [1]) the subgroup of Autc(C4") given by the invertible linear maps of the form

E={E"Eyulv,w e, 0<k<p—1}. (1.10)

It is a finite group of order p>™"+1_ The center Z of £ is the subgroup {£* id} isomorphic to Z/ pZ.

A quantum stabilizer code is a quantum code that is obtained as joint eigenspace of all the linear transforma-
tions in a commutative subgroup of £. Namely, let S C £ be a commutative subgroup with #S = p’*!, and let
x 8 — U(1) be a character that is trivial on Z. Then the associated quantum stabilizer code Q = Qs , is given
by the linear subspace of C?"

Os.y ={¥ eCT" | Ay = x(A)y, VA € S}. (1.11)

mn—r

The dimension of this vector space is p , see [1].
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1.3 Classical and Quantum Codes

A very interesting aspect of quantum stabilizer codes is that there is an efficient procedure to go back and forth
between classical self-orthogonal linear codes and quantum stabilizer codes with a good control over the respective
parameters. The procedure is explained in detail in [1] and we only recall it here briefly for what we will need to
use later in the paper.

Given a quantum stabilizer code Q = Qs , as above and an [ ,-linear automorphism ¢ € Aut, (]FZ’), the set

C=Coyp=1{@, ¢ (W) Epw €S} (1.12)

is an IF,-linear code of length 2n, with #C = p", where #§ = p” +1_ 1t is self-orthogonal with respect to the
bilinear form (v, p(w")) — (v, p(w)), with (v, w) as in (1.8). The minimum distance d¢ of the quantum stabilizer
code Qg , is related to the classical code by dp = dt = deic = min#{i|v; # 0or w; #0, (v,w) €
Fé”, (v, w) € C+~ C).

Conversely, given a classical linear self-orthogonal code in Ffl”, with #C = p’, the linear maps E ¢ (w), With
(v, w) ranging over an I ,-basis of C, together with the elements & kid, generate a subgroup S of . The self-orthog-
onal condition implies by (1.9) that the subgroup S is abelian. By construction, it is of order #S = p’T!. The
associated quantum stabilizer codes Qs , then have parameters [[n,n —r/m, dJ-]]q.

Notice how, in this construction, the field extension I, of I, is identified with the vector space I}, without
keeping track of the field structure. The only choice in the data that can be arranged so as to remember the remaining
structure is the automorphism ¢. Namely, as shown in [1], that can be chosen so that the bilinear form becomes
Tr((v, w') — (v, w)) with (v, w) = >_7_, v;w;, with the product in the field F, and Tr : F,» — [, the standard
trace Tr(x) = 3" x7".

This procedure that constructs quantum stabilizer codes from classical self-orthogonal linear codes was further
refined in [18], but for our purposes here this description suffices.

2 Quantum Codes and Rational Noncommutative Tori

In this section we show that the data of quantum stabilizer codes described above can also be described in terms of
rational noncommutative tori.

2.1 Twisted Group Rings

We recall here also something about twisted group rings, which will be useful later. Given a discrete group G,
the group ring C[G] admits a (reduced) C*-completion C(G) by taking the closure of C[G] in the operator
norm of the algebra of bounded operators B(£2(G)), for the action of C[G] on £%(G) by ro f(g) = f(g'g).
A multiplier 0 : G x G — U(1l) is a 2-cocycle satisfying the conditions o(g,1) = o(l,g) = 1 and
o(g1,82)0(8182,83) = 0(g1, 8283)0 (g2, g3). The twisted group ring C[G, o] is generated by the twisted transla-
tions rg,’ f(g) = f(g'g)o(g, g). The properties of the multiplier ensure that the resulting algebra is still associative.
The composition of twisted translations is given by rg r;’, =o(g, g )r;’g,. The twisted (reduced) group C*-algebra
C*(G, o) is the norm closure of C[G, o] in B(£2(G)).
The following simple observation relates these general facts to the codes we recalled in the previous section.

Lemma 2.1 For ¢ = p™, the matrix algebra Myn(C) can be identified with the twisted group C*-algebra
C*((Z) pZ)*™ , o), where the multiplier o : (Z) pZ)*™ x (Z]pZ)*™ — U (1) is given by

o (v, w), (W, w')) =&~ 2.1

with (-, -) defined as in (1.8) and with & = exp(2wi/p). This is, in turn, the C*-algebra C*(E), with £ as in (1.10),
generated by the transformations E,, , of (1.6).
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Proof The expression (2.1) defines a multiplier on (Z/pZ)z’"". In fact, o ((v, w), (0,0)) = o ((0,0), (v, w)) =1
and

1o

o (v, w), (', wNo (v + v, w+ w), (©, w") = g
= o (v, w), W +v", w +w")o (@, w), W, w").
The twisted group C*-algebra (which is the same as the twisted group ring in this finite dimensional case)

C*((Z/ pZ)>™, o) then has generators Py Such that rg, 0, =&~ fw.v')po Fotvwpur)- BY direct compar-

ison with (1.9), one sees that the identification r( )= E, , identifies C*((Z) pZ)*"™, o) with C*(E/ Z). In fact,
notice that the relation (1.7) also follows from the tw1sted group ring relations since we obtain

r(ﬁ),w)r(i/,w/) = 6((U, w)s (U/v w/))a((v/v w/)s (U, w))7 rg/’w/)r?v,w)

which then gives relation (1.7). The identification between C*(£/2Z) and M,n (C) follows from the known fact that
the transformations E, ,, generate End¢ ((C%)®"). O

2.2 Rational Noncommutative Tori

The (rational or irrational) rotation algebras, also known as noncommutative tori, are the most widely studied exam-
ples of noncommutative spaces. As a C*-algebra, the rotation algebra Ay is generated by two unitaries U and V/,
subject to the commutation relation

Uv =¢VU, 2.2)

with & = exp(27i6). In the rational case, 6 € Q, it is well known that these algebras are Morita equivalent to
the commutative algebra of functions C(T?) on the ordinary commutative torus T2, while in the irrational case
0 € R~ Q, the Morita equivalence classes correspond to the orbits of the action of SL,(Z) on the real line by
fractional linear transformations.

Let us look more closely at the rational case with & = exp(2wi/p). Then elements in the rotation algebra A,
are of the form

Aypsa=Y feelu, ) TR, (2.3)
k.l

where f ¢(u, A) are continuous functions of (A, 1) € S' x S' = T? and T and R are the matrices (1.2) and (1.3).
The sum is a finite sum for 0 < k, £ < p — 1 since T” = R? = id. In particular, the generators U and V are given,
respectively, by U = uT and V = AR, with 1 = exp(27it) and A = exp(27is) in S'. To see this notice that the
algebra Aj,, is generated by elements of the form

z 777 ukve,
kel
Since T? = RP = id, we can rewrite these as

k+k'p o L+ k pt k pt
DD arkprep AP TER = Y fi (0, ) TERE,
kLeZ/pZ k' X' €L kel pZ

2.3 Quantum Codes and Vector Bundles

Recall (see [11], Proposition 12.2) that the rational noncommutative torus A, ,,, is isomorphic to the algebra
(T2, End(E,,)) of sections of the endomorphism bundle of a rank m vector bundle E,, over the ordinary torus T2,
obtained as follows. Consider the trivial bundle over T2 with fiber M,, (C), with the action of (Z/mZ)? given by

110t (A, M) > (u, e 2T M TMT ™Y, o0 (my Ay M) = (2™, 0, RMR™).
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The quotient by this action defines a non-trivial bundle over T2, which we can view as the endomorphism bundle
End(E,,) of a vector bundle E,, of rank m, with fiber M,,(C). The algebra of sections I (T?%,End(E,)) is by
construction the fixed point subalgebra of the algebra C (T2, M,,(C)) = C(T?) ® M,,(C) of endomorphisms of the
trivial bundle, under the action of (Z/mZ)?* described above. The above action gives on the algebra C (THQM,,(C)
the action

aro: [, ) @ M > f(u, e /M) @ TMT ™!,

0.1 f(1. 2) @ M > (""", 3) @ RMR™.

The fixed point subalgebra is then generated by the elements © ® 7 and A ® R, which satisfy the commutation

relation of the generators U and V of the noncommutative torus, and is therefore isomorphic to A, /. In particular,

there is a C*-algebra homomorphism A/, — M,,(C) that sends the generators U and V to the matrices 7 and R.
We then use this description of the rational noncommutative tori to give a geometric interpretation of the data of

quantum stabilizer codes.

Proposition 2.2 Let E|, be the rank p bundle over T2 such that Aiyp = INVES End(E))). Then, for q = p™, a
q-ary quantum stabilizer code Qs of length n and size k corresponds to a subalgebra As C A?/rp, withr = nm,

(2.4)

and subbundle Fs , of the external tensor product E;E’"” over T*, on which the elements of the algebra Ag act
as scalars. Conversely, these data determine a q-ary quantum stabilizer code Qs , of length n and size k.

Proof Let us first consider the tensor product algebra C (T?, M p (C))®" where r = mn. We can write this also
as (C(TH ® M,,(C))‘X’r =C(TY) ® My (C) = c(T?, My (C)), for g = p™. This is therefore the algebra of
endomorphisms of the trivial bundle with fiber C4" over the higher dimensional torus 72" . The action of (Z/ pZ)?
on C(T?, M, (C)) given in (2.4) extends to an action of (Z)pZ)* on C(T?, M4n(C)), which is given by

o fGLA) @M > fE 1w E L) ® EyuwME, L, 2.5)
With& = (&l, e, En) = (U115 Llms--+s Mnls -, Mnm) and similarly for A, where the notation E”E means
' = (Eij)i=1....nj=1...m» Withv = (x1, ..., x,) and each x; = (@;1, .. ., @im). The notation § "1 is analo-

gous. We realize here the matrix algebra M, (C) as in Lemma 2.1, as the algebra C*(£/2) = C*((Z/ pZ)> o)
generated by elements E, ,, as in (1.6).

The fixed point algebra of the action (2.5) defines the endomorphism algebra of a vector bundle on the torus 7>"
of rank ¢". The external tensor product E; X E; of two vector bundles V| and V>, respectively over base spaces X |
and X», is the vector bundle over X x X given by 7| (V1) ® 75 (V>), with 71 and 7> the projections of X1 x X»
onto the two factors. We then see that the vector bundle on 7% described above is, in fact, the r-times external
tensor product of the bundle £, on T2, since the action (2.5) is the product of an action of the form (2.4) on each
copy of C(T?, M »(C)). Thus, the fixed point algebra is the algebra of endomorphisms I'(72", E, X ).

The fixed point algebra of the action (2.5) on C (T?, M, (C)) is generated by elements of the form p) ®
A(w) ® Ey ., where p(v, w) is the tensor product of those u(v),] for which a;; = 0, and similarly for A(w). Given
the explicit form of the elements E, 4, as in (1. 6) we see that the fixed point algebra is equivalently generated
by elements of the form ;; ® (1 ®---® T ® --- 1), with T in the (i, j)th coordinate of the tensor product, and
Aj®(I®---®R®---®1), with R in the (i, j)th place. Thus, it is the r-fold tensor product A‘IX’/I, of the algebra
Aj/p of the rational noncommutative torus.

Now suppose one is given a g-ary quantum stabilizer code of length n and size k. This means that we have
a commutative subgroup S of £ and a character x : S — U(1) that is trivial on Z and such that the common
eigenspace Qg , C C4" on which the operators s € S act as sy = x (s)y has complex dimension k.

The choice of the commutative subgroup S of £ determines a commutative subalgebra Ag of the algebra .Al Ip?
which is the subalgebra generated by elements of the form E(”) ®A(w)® E, 4 as above, with E,, 4, € S. This is the

commutative subalgebra of the endomorphism algebra I" (T* ., E ?r ), generated by the unitaries 4 (V) @A (W) @ Ey -

The common eigenspaces of the E, ,, € S acting on C4 " correspond to characters x of S. Thus, the eigenspace
0s, 4, for the character x of the data of the g-ary quantum stabilizer code, determines a subbundle Fgs , of the
bundle E?’ over T%" with an action of the abelian subalgebra Ag of A?/rp by endomorphisms. O
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We can give a more explicit description of the algebra Ag as follows.

Corollary 2.3 The algebra As = C(Xg) is the algebra of functions of a space X5 = UXGS T, where T is a

quotient of the torus T*" over which the bundle Fs,x descends to a direct sum Lgkx of k-copies of a line bundle.

Proof The abelian subalgebra Ags of .A‘l@/’p can be identified, via the Gelfand—Naimark correspondence, with the
algebra of functions C(Xg) on a compact Hausdorff topological space X s. To give an explicit description of the
space X5 in relation to the torus 7', it is convenient to also view .Ag as the subalgebra of the abelian algebra
C(T*,C[S]) generated by the elements ;1 (v) ® L(w) ® E, , as above, with E,, , € S. We write these elements
in shorter notation as u; ® Ay ® s, for s € S. For varying s € S, the corresponding s ® A generate a subalgebra
C(T?"), which corresponds to a quotient space of 72"

By Pontrjagin duality, we can identify CI[S], which is the same as C*(S) since S is a finite (abelian) group, with
C (S) for S the character group. The isomorphism C*(S) ~ C(S) is by Fourier transform. Since S is also a finite
(abelian) group, C(S) = ®x€ S(CX, where C,, is the 1-dimensional algebra of functions on the point x € S. Thus,

we have C(T?", C[S]) = C(T% x 5‘) = XeSC(TZ’) ® C,. The component in C(T™) ® C, of the subalgebra

As, which we denote by Ag , is then generated by the elements of the form p; ® A; ® 5s Dy Where BS eC (S)
is the Fourier transform of the generator §; of C[S], and p, is the projection onto the C, component of C ),
where Py = x(s). Upon denoting by T), the quotient space of T?" that corresponds to the subalgebra of C(T%")
generated by the 11y ® As ® 8 py, We get Ag = ®, sCT)®Cy.

By construction, the subbundle Fs , then restricts to T), as a direct sum E?kx of k-copies of a line bundle L, X
whose sections transform as (u, A, z) —= (s, Ash, x(5)2).

2.4 Classical Codes and the Rational Noncommutative Torus

We show next how, in the case of a quantum stabilizer code obtained from a self-orthogonal classical linear code
via the CSS algorithm, one can read some of the properties of the classical code in the algebra Ag.

Let C be a classical linear code C C IFZ and let Q. , be a g-ary quantum stabilizer code obtained from C via
the CSS algorithm recalled above. Recall that, for a code word ¢ € C the Hamming weight @ (c) is the number of
non-zero coordinates of ¢ € IF;.

Proposition 2.4 The algebra As = C(Xgs) has a natural filtration by the Hamming weight of words in the classical
code C.

Proof Seen as a subalgebra of C(T%") ® C[S], the commutative algebra Ag is generated by elements of the form
s ® Ay @ d5, where the u; and Ay are defined as above as the w;; and A;;, respectively for the indices (i, j) for
which a;; = 0 and b;; = 0 in the coordinates of (v, w), for s = E, ,, € S. Thus, we can write the algebra as
As = B;esC(Ty) ® 85, where C(Ty) is the subalgebra of C(T%) generated by the 1ty and A as above. The spaces
T, are quotients of 72" of dimension equal to 2r — @ (v, w), where @ (v, w) is the Hamming weight of the word
(v, w). Under multiplication in the algebra, the products of a generator of the form u; ® A; ® §; and a generator
of the form puy ® Ly ® &y are (strictly) contained among the set of generators of the form pty 4y ® Ay 85447,
hence C(T5) ® 85 - C(Ty) ® 8y C C(T44y) @ 8544, sO that the filtration by the Hamming weight is compatible
with the algebra structure on Ag. O

3 Algebras and Spaces of Classical and Quantum Codes

In this section we modify the previous setting to describe a noncommutative space where the pairs of a classical
linear code and the corresponding quantum stabilizer code can be embedded as subspaces in a uniform way. This
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Fig. 1 The fractal 10
associated to the code
C of (3.1)
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is based on a modification of the previous construction, where the rational noncommutative tori, obtained from
endomorphism algebras of vector bundles over tori, are replaced by spaces obtained as bundles over tori with fiber
a Cantor set. These are obtained by considering the fractals and the operator algebras associated to classical codes
as in [22].

3.1 Classical Codes and Fractals

As shown in [22], to a classical (not necessarily linear) code C C 2", one can associate a fractal A¢ by identifying
the alphabet 2 with #2l = ¢ with the digits of the g-ary expansion of numbers in the interval [0, 1], so that infinite
sequence of code words xpx1x; ... determine a subset Ac of point in the cube [0, 1]". This subset is typically a
Sierpinski fractal. The parameters of the code are related to the Hausdorff dimension of A¢ and to the Hausdorff
dimension of its intersections with translates of coordinate hyperplanes (see [22]).

To see concretely the fractal structure associated to a code, consider the simple example of the [3, 2, 2], code C
given by
0,0,0)
©,1,1)
(1,0, 1)
(1,1,0)

In this case, the corresponding fractal is the Sierpinski gasket illustrated in Fig. 1.

C = 3.1

3.2 Spectral Triples on Fractals

As we mentioned in the introduction, the fractals associated to classical error-correcting codes were recently related
([3]) to spectral triples on Cantor sets to crossed product constructions for such spectral triples.

A spectral triple is a notion introduced in noncommutative geometry ([8]) as a generalization of the classical
notion of a Riemannian spin manifold. The basic data are an involutive algebra A (which generalizes the algebra of
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smooth functions), with a representation by bounded operators on a Hilbert space H, and a self-adjoint (unbounded)
operator D on H with compact resolvent, which satisfies a compatibility condition with the algebra, given by the
requirement that the commutators [ D, a] are bounded operators on H. An ordinary compact Riemannian spin man-
ifold M is described as a spectral triple by the data A = C*°(M), H = L*(M, S), with S the spinor bundle, and
D the Dirac operator. The Riemannian metric can be reconstructed from these data. However, the advantage of the
spectral triple formalism is that other kind of spaces like fractals, quantum groups, noncommutative tori, can be
treated as smooth manifolds from the point of view of noncommutative geometry.
It is shown in §7.1 of [3] that the generating function

Ge(t) =Y sc(N)"
N

for the language associated to a code C, with sc(N) = #{w = w; ... wy | w; € C}, can be identified with the zeta
function ¢p(s) of the Dirac operator D on a natural spectral triple defined over the fractal Ac.

Some of the actions of G¢ on A described here are especially suitable for the crossed product construction, as
shown for instance in the recent paper [10]. This means that one can regard the crossed product C(Ac) % G¢ as a
spectral triple (a noncommutative manifold) and apply to it methods of noncommutative Riemannian geometry.

There are several interesting constructions of noncommutative geometry, often in the form of spectral triples,
applied to fractal spaces, such as those obtained in [6,7,12,13]. These can be applied to spaces such as the code
fractal Ac, or the subfractals Ac ¢, considered in [22], which we will discuss more in the following sections, or
the quotients (A¢ x Qf;,x )/S we introduce below. The spectral triples constructed in this way capture some of the
information theoretic properties of both the codes, as was shown in [3].

3.3 Noncommutative Spaces and Quantum Statistical Systems from Codes

In [22] it was also suggested to consider operator algebras associated to a classical code C C ", in the form of
a Toeplitz algebra 7¢ generated by isometries S, for a € C, S;S, = 1, with mutually orthogonal ranges, and the
Cuntz algebra Oc, which is the quotient of 7¢ obtained by imposing the additional relation >_ .~ S.S; = 1. The
Cuntz algebra O¢ has a natural representation as bounded operators on the Hilbert space L?(Ac, djt) with the
Hausdorff measure of dimension dim g (A ), where the generators S, act as

Sa f(X) = Xou(ae) ) Pa (o (X)) ™2 f (o (x)).

Here x is an infinite sequence of code words, x = (x1,...,x,) with each x; = Xxj0---Xjp---,X;j €
2, (x1j,...,%y5) € C. The map o, on Ac is given by 0,(x) = (aix1,...,ayx,), fora = (ai,...,a,) € C
and the map o is the one-sided shift that removes the (xo, ..., x,0) code word of x and returns the same infinite
sequence of code words shifted one step to the left, starting with (xq, ..., x,1). The function &, is the Radon—
Nikodym derivative of the Hausdorff measure, ®,(x) = du o o, /d .

As shown in [22], the natural time evolution on the Toeplitz algebra 7¢ given by o,(S,) = qi”’ S, defines a
quantum statistical mechanical system that has as partition function Z¢(8) = (1 — q(R_ﬂ)”)_l, with R the rate
of the code C. This is the same as the structure function of the language Ac, so that the entropy of the language
(which is the log of the radius of convergence) agrees with the rate of the code.

3.4 Linear Codes and Group Actions

In the case of linear codes, one can enrich the construction above with additional structure.

Let C C IFZ be a linear code. Let G ¢ be the additive group generated by the basis vectors of C. Then G¢ acts
on the algebras 7¢ and O¢ by y, : Sp +— Sp+q- This action shuffles the indices of the generating isometries hence
it preserves the relations. Thus, one can consider the algebras 7¢ x G¢ and O¢ x G¢. These are generated by
elements of the form S,y;, with product S, y,Sy vy = SuSh+a’ Vo+b'-
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Actions of finite abelian groups on Cuntz algebras were studied extensively in operator algebras, in relation to
the Rokhlin property.

3.5 The Rokhlin Property

Finite group actions on C*-algebras that have the Rokhlin property have been widely studied in the context of
classification problems for C*-algebras. The Rokhlin property for an action « of a finite group G on a C*-algebra A
prescribes the existence, for any finite F/ C A and any € > 0, of mutually orthogonal projections e, in A, for g € G,
such that ||ag(en) — egnll < € forall g,h € G; |lepa — aeg|| < €,forall g € Ganda € F, and deG
The importance of the Rokhlin property lies in the fact that it ensures that the group actions are classifiable in terms
of Ktheoretic invariants. The case of quasi-free actions of finite groups on Cuntz algebras was considered in [14].

eg = 1.

Lemma 3.1 The action of G¢ on the Cuntz algebra O¢ has the Rokhlin property.

Proof According to [14], an action « of a topological group G on the Cuntz algebra O, is quasi-free if o, globally
preserves the linear span H,, of the generators {S;};=1,. ., of the Cuntz algebra, for each g € G. The action of G¢
on Oc¢ described above is quasi-free in this sense, since it has the effect of permuting the generators S, of O¢, so
it leaves the corresponding space, which we denote by H ¢, invariant. One then sees directly from Proposition 5.6
and Example 5.7 of [14], that the action of G¢ on O¢ has the Rokhlin property. O

We also mention here that, according to Proposition 5.5 of [26], an action of a finite group G on a Cantor set has
the Rokhlin property if and only if the action is free. Later in this section we relate the action of G¢ on O¢ to an
action on the fractal Ac.

3.6 Twisted Crossed Products and Codes

One can twist the crossed product algebras 7¢ x G¢ and O¢ x G¢ by the cocycle o as in (2.1).

Lemma 3.2 Let C C IF;Z,,I be a linear code with #C = q*, with ¢ = p*". Then G¢ C (Z)pZ)*™ is G¢ ~
(Z] pZ)*™ and the multiplier (2.1) defines twisted crossed product algebras Tc xo G¢ and O¢ x4 Ge.

Proof The twisted crossed product algebras are generated by elements S(a,b)y(‘;’w) with (a,b) € C and (v, w) €
(Z/ pZ)¥"*, with the product given by

S(a,b)yg),w)s(a’,b’) y((lr/,w/) =o(v, v/)S(a,b) S(v+a’,w+b’)y((:)+v’,w+w’)'

The associativity, as above, is ensured by the multiplier properties of o. O

Lemma 3.3 The (twisted) action of G¢ on Oc¢ preserves the maximal abelian subalgebra of O¢ isomorphic to
C(Ac).

Proof The action of G ¢ on the generators S, of O¢ is given by y,,S; = S;+5. The subalgebra of O¢ isomorphic to
C(Ac) is generated by the range projections S, S, where S, for some multi-index & = (ay, ..., an),a; € C, is
a finite product S, = S, - - - Sy, of generators. The range projection S, S, corresponds to the projection in C(A¢)
given by the characteristic function of the subset Ac () of infinite sequences of code words in A¢ that start with
the word «.

The induced action y of the group G¢ on the fractal A¢ is then determined by the action on C(A¢) that
maps the characteristic function xa. () = S¢S to the characteristic function x(y, @) = ¥ (Sa)¥s(Sy), where

Vo (Sa) = Vb(Sal) s Vb(Sam) = SaH—b ce Sam—&-b'
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This implies that the induced action on the Cantor set is given by addition in each digit of the expansion:
for (x,y) € Ac given by (x,y) = (X0X1...XN ..., YoY1-..YN ...) With (x;, y;) € C, one gets y, ,(x,y) =
((xo+vV)x14+v)...(xn+V) ..., 0o+ w1 +w)...(yv +w)...), with (x; + v,y +w) € C.

Thus, one obtains a subalgebra C(A¢) Xo G¢ of O¢ X G¢ of the twisted crossed product. Elements of this
subalgebra can be written as

a= > fow@ )V (32)

(v,w)eC

for fy,w) € C(Ac) and y(‘; w) s above, with

f(v,w)(xv y)y(?;,w)f(v/,w/) (x, y)yg/,w/) =o((v,w), (U/, w/)) f(v,w) (x, Y)f(v/,w’)(av,w(x, ) y((:)+v’,w+w’)‘

O

Consider then a quantum stabilizer code Q = Qs ,, associated to a classical self-orthogonal linear code C in
IF%,”’”, with an [F,-automorphism ¢ € Aut(IF’I’,’), so that S = {EkEU,(p(w) | (v, w) € C}is an abelian subgroup of £.
Thus, O = Qc,,-. Because of the self-orthogonal condition, the cocycle o ((v, w), W, w)) = é’(w’w is trivial, so
the crossed product algebras O¢ X, G¢ and C(A¢) X, G¢ are just the untwisted O¢ X G¢ and C(A¢) % G¢
with G¢ the abelian group identified with the subgroup of & C & with elements the E, 4(w). The same holds for
the related algebras 7¢ X, G¢ whichis 7¢ x G¢.

3.7 Disconnection and Group Actions

Consider points of 72 = S x Stas points in the square Q2 = [0, 1] x [0, 1] with the boundary identifications that
give T2, where we write the points of [0, 1] in terms of their p-ary digital expansion: x = 0.x1x2x3...xx ..., with
x; € {0,..., p — 1}. As in the decimal case, the expansion is a 1:1 representation on the irrational points and 2:1
on the rational points. Fixing the first N digits of the expansion determines a subinterval of [0, 1] of length p~—V.
There is a totally disconnected compact topological space T;2, called the disconnection of 7' at the rational points,

which maps surjectively to 72 with a map that is 1:1 over the irrational points and 2:1 over the rational points.
As a topological space, it is the spectrum of a commutative C*-algebra C(Té), which is the smallest C*-algebra

containing C(7?) in which all the characteristic functions of intervals [kp ", (k+1)p~N) withk € {0, ..., p—1}
and N > 1 are continuous functions.

Lemma 3.4 The group (Z/ pZ)? acts on the disconnection Té by

Vik,o)(x, ) = o) ye(x1) - ve@xen) - ve (o) ve(yo) - ve(n) - L), (3.3)

where, for a € 7./ pZ, yy(a) = a + b in Z/ pZ. One can then form a crossed product algebra C(Té) Xo (7] pZ)?,
with the action (3.3), and with the twisting given by the cocycle o ((v, w), (v, w')) = S’“"’”/). |

Proof The action (x;, yi) — (yk(xi), ye(y;)) on the ith digit of the p-ary expansion of (x,y) € Té has the
effect of moving the product of intervals [x;p~", (xi + Dp~") x [yip~", (vi + D)p~") inside T? to [(x; + k
mod p)p~', (x; + 1 +k mod p)p~") x [(yi +k mod p)p~, (yi + 1 + k mod p)p~"). While this is not a
continuous function on 72 it becomes continuous on the totally disconnected Té. Thus, one can form the crossed
product C*-algebra with respect to this action. It is generated by elements of the form > ¢e(Z/ pZ)? hg(A, M)rg, with
(A, ) € Té and where rgl rgz =o(gl, gz)rglg2 and rg"h(A, w) = h(ys (A, ,u))rg.
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3.8 Cantor Set Bundles

We start with the geometric setting we have discussed above in Sect. 2 and we see how that gets modified when we
also take into account the fractal geometry A ¢ associated to the classical code C.

We have seen that a g-ary quantum stabilizer code Qs , of length n and size k identifies a commutative sub-
algebra Ag of the endomorphism algebra I'(T2", End(EI;E’)) of a vector bundle E;E’ over the torus 7%, where
g = p™andr = nm.

Proposition 3.5 I[fC C F qz” is a self-orthogonal linear code and Qs , the associated q-ary quantum code, the
fractal Ac can be embedded in the disconnection Té’ . The pullback of the subbundle Fs , C E?’ to Ac via the

projection Té’ — T?" and its quotient by the action of Sc determine a fibration over a torus with fiber Ac.

Proof We can pull back the bundle E;E’ along the projection map 7 : Té’ — T? and further restrict it to A¢ by
pulling it back along the embedding ¢ : A¢ — Té’.

In fact, the fractal A¢ can be realized as a subspace of the product (Té)", by identifying points of A¢, which
are infinite sequences of code words ¢ = cjc2...cy ..., with¢; € C C ]Fé" ~ IF%,’, with points of (Té)’, by

writing each ¢; as a pair of r-tuples of elements in Z/pZ, ¢; = (x; 1, ..., Xir, Yi.l, - - -, Yi.r), hence identifying the
pair (x;, y;) of sequences x; = x1,jx2,j...XN,j...and y; = y1 jy2.j...YN,j--.,J = 1,...,n with the p-ary
expansion of a point in T2, hence (x, y) € (Té)”, with (x, y) = (X1, -y Xny Y1y oo s Yn)-

Over A ¢ the induced vector bundle can be trivialized, so that (*7* E ;E’ ~ A¢c xC?". The subbundle Fs,xof E ;E’
identified by the g-ary quantum stabilizer code Qs , in turn pulls back to a subbundle *7*Fs , ~ Ac x Qs 4.

We now assume that C is a self-orthogonal linear code and that Qs , is the associated g-ary quantum code, under
the CSS algorithm. When we take into account the action of G¢ on the linear code C, we then have compatible
actions

(v,w)

@
L*n*E;E’ — L*n*E;,E’

l Yw,w) J/

Ac ———Ac¢

where in the trivialization t*n*E;Er ~ Ac X C4", the action on t*n*E;Er is given by @y, w) = (V(v,w)» Ev,w). The
action preserves the subbundle Fs , , where the induced action is through the character yx,

q)(v,w) = (V(v,w)a X(Ev,w))~

When taking the quotient with respect to this action, using the trivializations of the bundles, one obtains quotient
spaces, respectively of the form (A¢ x C4")/Sc and (A¢ x 0sc.,x)/Sc. These are, respectively, locally trivial
fibrations over the quotients C4" /S¢ and 0sc,x/Sc. We focus in particular on the case of the subspace Q.. .
Because the quotient Q5. , /Sc is singular at the origin, it is preferable to remove this singular point and consider
instead the quotient of QZ“SC’X = 05¢,x {0} The action of Sc is through the character x, that is, as multiplication

nm-—r

by x(Ey.w) € U(1) C C*. Thus, one can further restrict to the unit vectors and obtain an action on a torus 77",
with quotient still topologically a torus. The fibration then induced a fibration over this torus with fiber a fractal
Ac. O

Variants of this construction may be useful to better take into account the dynamical properties of the action of
G ¢ on the fractal A¢. We give another example below.
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3.9 Crossed Product Algebras and Embeddings

One can also use the fact that the fractal A embeds inside the disconnection 72", in a way that is compatible with
the action of G ¢, to compare different crossed product algebras C (A¢) X, G¢ for different codes inside a common
noncommutative space.

Lemma 3.6 Let A =C (Té) X o (Z) pZ)? be the twisted crossed product algebra of the action of (Z./ pZ)? on the dis-

connection Té. For any classical linear code C C IF%,”, there is an algebra homomorphism A" — C(Ac) X Gc.

Proof For #C = p**, we have G¢ ~ (Z/pZ)**. We regard this as a subgroup G¢ C (Z/pZ)>" of the group
of translations of the whole space 2", as the subgroup of translations that preserve the linear subspace C. The
embedding A¢c — Té” described in Proposition 3.5 determines an algebra homomorphism C(Té)‘@” — C(A¢)
given by restriction of functions to Ac.

Wewritew : G¢ — (Z/ pZ)z" for the embedding as a subgroup and p : C ((Té)") — C(A() for the restriction

of functions p(f)(x) = f(t(x)), witht : Ac — (Té)” the embedding of the fractal A¢ in the disconnection

T2". The algebra homomorphism p : C (Té)@’” — C(Ac) is compatible with the action of translations, since we
have Yy (t(x)) = t(ya(x)), for all x € Ac and all @ € G¢. Thus, we have a morphism of the crossed product
algebras C(Té”) X (Z)pZ)* — C(Ac) %o Ge. Finally, we identify C(Té”) Xo (Z/pZ)* with the tensor
product (C(Té) Xo (2] pZ)*)®". O

The algebra homomorphisms A®" — C(A¢) Xs G¢ are constructed as restriction maps, hence in terms of
noncommutative spaces these correspond to embedding the noncommutative spaces associated to linear codes,
whose algebras of coordinates are the C(A¢) %y G¢, into a common noncommutative space, whose algebra of
coordinates is A®". The latter therefore can be thought of as a “universal family” for all the noncommutative spaces
of linear codes C C IF%”, where the total space corresponds to the “largest” code, namely IF?,” itself, acted upon by
all the translations (Z/ pZ)Z”. Moreover, the subfractals Ac ¢  associated to linear subcodes C;, which we discuss
in the next subsection, determine further compatible specialization maps C(Ac) X Gc — C(Ac,) %o Gc, .

3.10 Minimum Distance, Subfractals and the Weight Polynomial

We conclude this section with an observation on how one can reinterpret the weight polynomial of a linear code
in terms of subfractals of the code fractal, satisfying certain scaling (self-similarity) properties, or equivalently in
terms of counting embeddings to associated Toeplitz algebras.

We first recall briefly the interpretation of the minimum distance d of a code C in terms of the fractal geometry
of Ac, as given in [22]. Notice that here we use a slightly different notation from [22] and our A is the Sc of [22],
so the statement is slightly different from the one formulated for Sc in that paper, and we write it out here explicitly
for convenience.

For¢ =1,...,d, let I1; be the set of £-dimensional subspaces in R” defined by intersections of n — £ hyper-
planes, each of which is a translate of a coordinate hyperplane. For any given such linear space = € Iy, we denote
by Ac.¢e. = AcNm.The geometry of this intersection varies with the choice of the linear space. When non-empty,
its form changes drastically when £ increases. More precisely, one has the following ([22]).

Lemma 3.7 Let C C A" be a code with minimum distance d = min{d(x, y) | x # y € C}, in the Hamming metric.
Forall £ < d, the set Ac ¢z has dimpg(Ac ¢.z) = 0 and is either empty or it consists of a single point, while for
£ > d the set Ac ¢z, when non-empty, has an actual fractal structure of positive Hausdorff dimension.

Proof The property that C has minimum distance d means that any pair of distinct points x # y in C must have at
least d coordinates that do not coincide, since d(x, y) = #{i | x; # y;}. Thus, in particular, this means that no two
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points of the code lie on the same 7, for any 7 as above of dimension £ < d — 1, while there exist at least one 7 in
I1; which contains at least two points of C. In terms of the iterative construction of the fractal Sc, this means the
following. For a given w € I1, with £ < d — 1, if the intersection C N 7 is non-empty it must consist of a single
point. Thus, when restricted to a linear space 7 € I, with £ < d — 1, at the first step the induced construction
of Ac.¢. consists of replacing the single unit cube of dimension £, Q¢ = Q" N 7, with a single copy of a scaled
cube of volume ¢ ¢, successively iterating the same procedure. This produces a single family of nested cubes of
volumes ¢ ~“V with intersection a single vertex point. The Hausdorff dimension is clearly zero. When £ = d one
knows there exists a choice of m € Il for which C N 7 contains at least two points. Then the induced iterative
construction of the set Ac ¢, starts by replacing the cube 0% = Q" N with #(C N 1) copies of the same cube
scaled down to have volume ¢ ~¢. The construction is then iterated inside all the resulting #(C N 1) cubes. Thus,
one obtains a set of positive Hausdorff dimension dimg (Ac ¢,z ), since we have a positive solution s > 0 to the
scaling equation #(C Nx) - ¢~ = 1.

Thus, as observed in [22], the parameter d of the code C can be regarded as the threshold value of £ where the
sets Ac,¢,» jump from being trivial to being genuinely fractal objects.

For example, consider the code C of Fig. 1 and (3.1). The translates of coordinate hyperplanes intersect C in
the following way: C N {x; = 0} = {(0,0,0), (0,1, D}, C N{x; = 1} = {(1,0,1),(1,1,0)},C N {xp = 0}
={(0,0,0), (1,0, D}, CN{xp, =1} ={(0,1,1), (1, 1,0)}, CN{x3 = 0} = {(0,0,0), (1,1,0)} and C N {x3 = 1}
={(0,1, 1), (1, 0, 1)}, so that all the corresponding A >  have positive Hausdorff dimension. On the other hand,
for £ = 1, all the intersections of C with an intersection of two of the above hyperplanes consist of at most one
point.

In the case of linear codes, the Hamming distance d(x, y) = #{i |a; # b;} =#{i |a; — b; # 0} =d(x — y,0),
so that the minimum distance is measured by d(C) = min{d(x, 0) | x € C, x # 0}. The Hamming weightof x € C
is the number of non-zero components of x. Thus, the minimum distance is also the minimum Hamming weight,
d(C) = min{w(x) |x € C, x # 0}.

Thus, to describe the minimum distance as in Lemma 3.7, it suffices to consider those = € I1; that are intersec-
tions of coordinate hyperplanes, hence I, -linear subspaces in IFZ , instead of considering also their translates. This
identifies subfractals Ac ¢ r associated to C; = C N, where the C are also linear codes. We write 1'[2 C Iy for
the set of linear subspaces 7 given by intersections of ¢ coordinate hyperplanes.

In the example of (3.1), there are three such subfractals for £ = d = 2, which correspond to the intersec-
tions with the three coordinate hyperplanes, C; = {(0,0,0), (0, 1, D)}, C2 = {(0,0,0), (1,0, 1)}, and C3 =
{(0,0,0), (1, 1,0)}.

The Toeplitz algebras 7¢ are functorial with respect to injective maps of sets f : C — C’, with the corresponding
morphism of algebras mapping S, — S (). The Cuntz algebras are only functorial with respect to bijections.

Thus, for each set Ac ¢ of positive Hausdorff dimension, corresponding to an intersection C, = C N 7 with
#(C Nmr) > 1, we have an injective morphism of the corresponding Toeplitz algebras 7 : 7c, — 7¢ associated
to the inclusion C; C C. Moreover, if = and 7/ are two elements in Iy, with £ > d, such that #C,, = #C,/ > 1,
we have an isomorphism of the corresponding algebras 7¢, >~ 7c ,.

In the example of [3, 2, 2], code of (3.1), the algebras 7¢c_ for all the translates of the coordinate hyperplanes
7 € Iy are isomorphic, and one correspondingly has six different embeddings of this as a subalgebra of 7¢. While,
if one counts only those that also correspond to linear codes, one has only three, coming from the intersections of
C with the three coordinate hyperplanes, as above.

For a linear code C, one can consider the associated weight polynomial of the code C. We recall here briefly the
definition and properties, see [2]. The basic observation is that, for a linear code, The weight polynomial is given
by

Alx.y) =D A"y with A =#{x € Clw(x) =i}. (3.4)
i=1

In the example of the code C of (3.1), the weight polynomial is A(x, y) = x> + 3xy?.
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One can then easily see the following interpretation of the coefficients of the weight polynomial.

Lemma 3.8 For a linear code C, the coefficient A; of the weight polynomial A(x, y) is given by
A =# Unel‘lg,i (Cr ~{0}).

These linear subcodes Cy correspond to subfractals Ac n—i x of Ac with scaling equation #(C N m)g~ s =1,

Proof Any point x € C with w(x) = i lies on an intersection of coordinate hyperplanes 7 € Hgﬂ.. Thus, A;
thatis, 4; = #{x £0e C|Imr e N’ . : x €

counts the number of nonzero x € C that lie in some 7 € I1° i

n—i’
w}=#x #0¢€ C|x € cupo m}. Moreover, if w(x) = i so that x € 7, for some 7 € 1'[271., the intersection

C is not contained in any 7’ € Hgfl.fl , since x ¢ 7', so that Ac ,—; » is obtained by scaling #C, copies of the
cube Q" of volume ¢~ so that the scaling equation is as stated. O

Thus, one can view the weight polynomial of the code as a generating function for the multiplicities of the
embeddings 7¢, — 7c for linear subcodes with 7 € 1'[2 giving rise to nontrivial subfractals.

As seen in [22] the Toeplitz algebra 7¢ and the Cuntz algebra O¢ associated to a classical code C have represen-
tations on the Hilbert space L?(Ac, dj ) and a time evolution o;(S,) = ¢'"S,,, whose critical temperature KMS
state recovers integration in the Hausdorff measure of dimension dimy (Ac) on the fractal A¢. The embeddings
Tc, — Tc therefore inherit an action on the same Hilbert space and the induced time evolution. The critical tem-
perature KMS state for the time evolution on the subalgebra then recovers the integration in the Hausdorff measure
of dimension dimg (Ac ¢,) on the subfractal Ac ¢ .
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