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Abstract We consider the CSS algorithm relating self-orthogonal classical linear codes to q-ary quantum stabilizer
codes and we show that to such a pair of a classical and a quantum code one can associate geometric spaces con-
structed using methods from noncommutative geometry, arising from rational noncommutative tori and finite abelian
group actions on Cuntz algebras and fractals associated to the classical codes.
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Cuntz algebras

Mathematics Subject Classification 94B27 · 58B34 · 81P45

1 Introduction

New methods derived from Noncommutative Geometry have been recently applied to the theory of error-correcting
codes, to signal analysis, and to problems of information and communication.

In [22] and [23] the asymptotic bound of error correcting codes introduced in [21] is studied as a phase transition
of certain quantum statistical mechanical systems constructed out of error-correcting codes and code parameters.
This construction involves associating to error-correcting codes certain operator algebras (quantum systems built
out of creation-annihilation operators associated to code words) and fractal spaces describing the set of infinite
words in the language determined by the code. In the more recent paper [23], this approach is further developed to
address the computability problem discussed in [20], and the asymptotic bound for error-correcting codes is related
to the Kolmogorov complexity of codes and to a thermodynamical partition function that weights codes according
to their complexities.
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In [3] the fractals associated to classical error-correcting codes, as described in [22], are related to a construction
of spectral triples on Cantor sets of [25] and to a procedure to obtain crossed product constructions for such spectral
triples.

In [24] constructions of wavelets on fractals are obtained from the noncommutative geometry of Cuntz–Krieger
algebras. This approach builds upon the previous use of representations of Cuntz algebras as a way to construct
and analyze wavelets on fractals ([4,9,16,17]), as well as on wavelet constructions on fractals obtained in [15].
The techniques developed in [24], applied to the operator algebras of codes considered in [22], provide correspond-
ing wavelet constructions on the fractal associated to the code, which provide a new set of analytic methods to study
the decoding procedure in terms of a wavelet representation.

In [19] the geometry of noncommutative tori and their quantized theta functions is related to signal analysis and
the Gabor frame for modulation spaces.

Given this growing interest in the use of operator algebras and noncommutative geometry in coding theory, we
have written this paper with the intent of familiarizing people working in coding theory with methods, concepts,
and techniques from noncommutative geometry.

To this purpose, we concentrate on a well known construction in coding theory, namely the CSS algorithm relat-
ing self-orthogonal classical linear codes to q-ary quantum stabilizer codes, and we show how one can reformulate
the data of the classical and quantum codes involved in the procedure and their relation in terms of geometric spaces
that are well known in noncommutative geometry, such as rational noncommutative tori, Cuntz–Krieger algebras,
crossed products of algebras by group actions and certain bundles over tori with fractal fibers.

The main new result in this paper is the geometric formulation of the CSS relation between classical and quantum
codes in terms of noncommutative spaces.

In addition, we review some of the background notions from noncommutative geometry and some of the results
of [22], for the use of readers with a coding theory background; we also briefly review the CSS algorithm for the
use of readers with a possible noncommutative geometry background, who may be less familiar with the coding
theory side.

More precisely, the paper is structured as follows. In the rest of this introductory section we review some basic
facts about the CSS algorithm relating self-orthogonal classical linear codes to q-ary quantum stabilizer codes.

We then show in Sect. 2 that the construction of q-ary quantum stabilizer codes can be naturally expressed in
terms of the geometry of rational noncommutative tori. We also show that, if the q-ary quantum stabilizer codes is
obtained from a classical self-orthogonal linear code via the CSS algorithm, then some properties of the classical
code can be seen in the resulting algebra, such as a filtration that corresponds to the Hamming weight.

In Sect. 3, we recall some results of [22] on associating to a classical code C a fractal �C and an operator
algebra, a Cuntz algebra OC or a Toeplitz algebra TC . We give an explicit example of a very simple code for which
one can completely visualize the associated fractal space. Since we are dealing only with linear codes here, unlike
in the more general setting of [22], we can enrich these spaces and algebras with group actions coming from the
linear structure of the code. We show that one obtains in this way a crossed product algebra that has the Rokhlin
property.

We then show that the fractals of classical codes can be embedded, compatibly with the group actions in a dis-
connection of a torus and that the geometric construction via rational noncommutative tori obtained in the previous
section can be pulled back to the fractal �C via this embedding and the projection from the disconnection to the
torus giving rise to a quotient space by the group action which is a fibration over a torus with fiber a fractal. We
also show how one can use a crossed product algebra defined by the action of (Z/pZ)2 on the disconnection of
the torus T 2 to obtain a noncommutative space with the property that all the noncommutative spaces associated to
individual classical codes via the group action on the associated fractal �C can be embedded inside (powers of)
this universal one. This gives a common space inside which to compare noncommutative spaces of different codes
and relate their properties. We also give a reinterpretation of the weight polynomial of a linear code in terms of
subfractals of �C and multiplicities of embeddings of the corresponding Toeplitz algebras.
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1.1 Classical Linear Codes

We recall briefly the general setting of classical codes, following [29]. An alphabet is a finite set A of cardinality
q ≥ 2. A classical code is a subset C ⊂ An . Elements of C are code words, identified with n-tuples x = (a1, . . . , an)

in An .
We set k = k(C) = logq #C and �k� the integer part of k. The code rate or transmission rate of the code is the

ratio R = k/n.
The Hamming distance between two code words x = (ai ) and y = (bi ) is given by d(x, y) = #{i | ai �= bi }.

The minimum distance d = d(C) of the code is given by d(C) = min{d(x, y) | x, y ∈ C, x �= y}. The relative
minimum distance of the code is the ratio δ = d/n.

A classical code C with these parameters is called an [n, k, d]q code.
The most important class of codes, in the classical setting, is given by the linear codes. In this class, the alphabet

is given by the elements of a finite field A = Fq of cardinality q = pr and characteristic p > 0. The code is linear
if C ⊂ F

n
q is an Fq -linear subspace of the vector space F

n
q . In particular k = �k� is an integer for linear codes and

is the dimension of C as a vector space.
Given an Fq -bilinear form 〈·, ·〉 on F

n
q , a code C ⊂ F

n
q is self-orthogonal if, for all code words x, y ∈ C one has

〈x, y〉 = 0. The dual code C⊥ is given by the set of vectors v in F
n
q satisfying 〈v, x〉 = 0 for all x ∈ C . Thus, a

self-orthogonal code satisfies C ⊆ C⊥.

1.2 Quantum Stabilizer Codes

A qbit is a vector in the finite dimensional Hilbert space C
2. Quantum codes as in [28] have been typically con-

structed over qbit spaces (C2)⊗n . These are referred to as binary quantum codes. However, more recently nonbinary
quantum codes have also been constructed [5,27], especially in relation to classical codes associated to algebraic
curves.

In this more general setting of nonbinary quantum codes, one considers a vector C
q representing the states of a q-

ary system. A q-ary quantum code of length n and size k is then a k-dimensional C-linear subspace of C
qn = (Cq)⊗n .

A quantum error is a linear map E ∈ EndC(C
qn
). For a quantum error of the form E = E1 ⊗ · · · ⊗ En , the weight

is w(E) = #{i | Ei �= id}. A quantum error E is detectable by a quantum code Q if PQ E PQ = λE PQ , where PQ

is the orthogonal projection onto Q ⊂ C
qn

and λE ∈ C is a constant depending only on E . The minimum distance
of a quantum code Q is

dQ = max{d | E is detectable ∀E = E1 ⊗ · · · ⊗ En with w(E) ≤ d − 1}. (1.1)

A quantum code with these parameters is called a [[n, k, d]]q quantum code.
We recall the following notation and basic facts following [1]. Let q = pm and consider, as above, the field

Fq . Viewed as an Fp-vector space, it can be identified, after choosing a basis, with F
m
p . Thus, given an element

x ∈ F
n
q , x = (a1, . . . , an), we can identify the coefficients ai ∈ Fq with vectors ai = (ai1, . . . , aim) with ai j in

Fp. These in turn can then be thought of as elements of Z/pZ, that is, as integer numbers 0 ≤ ai j ≤ p − 1. Thus,
given a linear operator L ∈ EndC(C

p), such that L p = id, we can consider the integer powers Lai j .
In particular, consider the two operators T and R on C

p given by the matrices

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...

0 0 0 · · · 0 1

1 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(1.2)
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R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 ξ 0 · · · 0 0
0 0 ξ2 · · · 0 0
...

...

0 0 0 · · · ξ p−2 0
0 0 0 · · · 0 ξ p−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (1.3)

where ξ = exp(2π i/p). These have the properties that

T p = R p = id and T R = ξ RT, (1.4)

which also imply the relations

T k R� = ξ k�R�T k and (T k R�)(T r Rs) = ξ−r�T r+k Rs+� = ξ sk−r�(T r Rs)(T k R�). (1.5)

Moreover, the operators T k R� form an orthonormal basis of Mp(C) = EndC(C
p)with respect to the inner product

〈A, B〉 = Tr(A∗ B).
Consider then linear maps E = E1 ⊗· · ·⊗ En in EndC(C

qn
), with q = pm , where the factors Ei are of the form

Ei = Tx Ry , where x and y are elements in Fq , which we write as vectors x = (a1, . . . , am), y = (b1, . . . , bm)with
coefficients ai and bi in Fp, and we set Tx = T a1 ⊗· · ·⊗T an and Ry = Rb1 ⊗· · ·⊗ Rbn , with the same conventions
explained above and with T and R as in (1.2) and (1.3). Thus, for v = (x1, . . . , xn) and w = (y1, . . . , yn) vectors
in F

n
q , we can write a corresponding operator

Ev,w = Tx1 Ry1 ⊗ · · · ⊗ Txn Ryn . (1.6)

The relations (1.4) and (1.5) imply that

Ev,wEv′,w′ = ξ 〈v,w′〉−〈w,v′〉Ev′,w′ Ev,w, (1.7)

where, for v,w ∈ F
n
q , the bilinear form 〈v,w〉 is defined as

〈v,w〉 =
n∑

i=1

m∑
j=1

ai j bi j . (1.8)

Similarly, one also has

Ev,wEv′,w′ = ξ−〈w,v′〉Ev+v′,w+w′ , (1.9)

and E p
v,w = id as a pnm × pnm matrix.

One then denotes by E (see [1]) the subgroup of AutC(Cqn
) given by the invertible linear maps of the form

E = {
ξ k Ev,w | v,w ∈ F

n
q , 0 ≤ k ≤ p − 1

}
. (1.10)

It is a finite group of order p2mn+1. The center Z of E is the subgroup {ξ k id} isomorphic to Z/pZ.
A quantum stabilizer code is a quantum code that is obtained as joint eigenspace of all the linear transforma-

tions in a commutative subgroup of E . Namely, let S ⊂ E be a commutative subgroup with #S = pr+1, and let
χ : S → U (1) be a character that is trivial on Z . Then the associated quantum stabilizer code Q = QS,χ is given
by the linear subspace of C

qn

QS,χ = {
ψ ∈ C

qn | Aψ = χ(A)ψ, ∀A ∈ S
}
. (1.11)

The dimension of this vector space is pmn−r , see [1].
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1.3 Classical and Quantum Codes

A very interesting aspect of quantum stabilizer codes is that there is an efficient procedure to go back and forth
between classical self-orthogonal linear codes and quantum stabilizer codes with a good control over the respective
parameters. The procedure is explained in detail in [1] and we only recall it here briefly for what we will need to
use later in the paper.

Given a quantum stabilizer code Q = QS,χ as above and an Fp-linear automorphism ϕ ∈ AutFp (F
m
p ), the set

C = CQ,ϕ = {(v, ϕ−1(w)) | Ev,w ∈ S} (1.12)

is an Fp-linear code of length 2n, with #C = pr , where #S = pr+1. It is self-orthogonal with respect to the
bilinear form 〈v, ϕ(w′)〉 − 〈v′, ϕ(w)〉, with 〈v,w〉 as in (1.8). The minimum distance dQ of the quantum stabilizer
code QS,χ is related to the classical code by dQ = d⊥ = dC⊥�C := min #{i | vi �= 0 or wi �= 0, (v,w) ∈
F

2n
q , (v,w) ∈ C⊥

� C}.
Conversely, given a classical linear self-orthogonal code in F

2n
q , with #C = pr , the linear maps Ev,ϕ(w), with

(v,w) ranging over an Fp-basis of C , together with the elements ξ kid, generate a subgroup S of E . The self-orthog-
onal condition implies by (1.9) that the subgroup S is abelian. By construction, it is of order #S = pr+1. The
associated quantum stabilizer codes QS,χ then have parameters [[n, n − r/m, d⊥]]q .

Notice how, in this construction, the field extension Fq of Fp is identified with the vector space F
m
p , without

keeping track of the field structure. The only choice in the data that can be arranged so as to remember the remaining
structure is the automorphism ϕ. Namely, as shown in [1], that can be chosen so that the bilinear form becomes
Tr(〈v,w′〉 − 〈v′, w〉) with 〈v,w〉 = ∑n

i=1 viwi , with the product in the field Fq and Tr : Fpm → Fp the standard

trace Tr(x) = ∑m−1
k=0 x pk

.
This procedure that constructs quantum stabilizer codes from classical self-orthogonal linear codes was further

refined in [18], but for our purposes here this description suffices.

2 Quantum Codes and Rational Noncommutative Tori

In this section we show that the data of quantum stabilizer codes described above can also be described in terms of
rational noncommutative tori.

2.1 Twisted Group Rings

We recall here also something about twisted group rings, which will be useful later. Given a discrete group G,
the group ring C[G] admits a (reduced) C∗-completion C∗

r (G) by taking the closure of C[G] in the operator
norm of the algebra of bounded operators B(�2(G)), for the action of C[G] on �2(G) by rg f (g′) = f (g′g).
A multiplier σ : G × G → U (1) is a 2-cocycle satisfying the conditions σ(g, 1) = σ(1, g) = 1 and
σ(g1, g2)σ (g1g2, g3) = σ(g1, g2g3)σ (g2, g3). The twisted group ring C[G, σ ] is generated by the twisted transla-
tions rσg f (g′) = f (g′g) σ (g′, g). The properties of the multiplier ensure that the resulting algebra is still associative.
The composition of twisted translations is given by rσg rσg′ = σ(g, g′)rσgg′ . The twisted (reduced) group C∗-algebra

C∗
r (G, σ ) is the norm closure of C[G, σ ] in B(�2(G)).
The following simple observation relates these general facts to the codes we recalled in the previous section.

Lemma 2.1 For q = pm, the matrix algebra Mqn (C) can be identified with the twisted group C∗-algebra
C∗((Z/pZ)2mn, σ ), where the multiplier σ : (Z/pZ)2m × (Z/pZ)2m → U (1) is given by

σ((v,w), (v′, w′)) = ξ−〈w,v′〉, (2.1)

with 〈·, ·〉 defined as in (1.8) and with ξ = exp(2π i/p). This is, in turn, the C∗-algebra C∗(E), with E as in (1.10),
generated by the transformations Ev,w of (1.6).
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Proof The expression (2.1) defines a multiplier on (Z/pZ)2mn . In fact, σ((v,w), (0, 0)) = σ((0, 0), (v,w)) = 1
and

σ((v,w), (v′, w′))σ ((v + v′, w + w′), (v′′, w′′)) = ξ−〈w,v′〉−〈w,v′′〉−〈w′,v′′〉

= σ((v,w), (v′ + v′′, w′ + w′′))σ ((v′, w′), (v′′, w′′)).

The twisted group C∗-algebra (which is the same as the twisted group ring in this finite dimensional case)
C∗((Z/pZ)2mn, σ ) then has generators rσ(v,w) such that rσ(v,w)r

σ
(v′,w′) = ξ−〈w,v′〉rσ

(v+v′,w+w′). By direct compar-

ison with (1.9), one sees that the identification rσ(v,w) �→ Ev,w identifies C∗((Z/pZ)2mn, σ ) with C∗(E/Z). In fact,
notice that the relation (1.7) also follows from the twisted group ring relations since we obtain

rσ(v,w)r
σ
(v′,w′) = σ((v,w), (v′, w′))σ ((v′, w′), (v,w))−1rσ(v′,w′)r

σ
(v,w)

which then gives relation (1.7). The identification between C∗(E/Z) and Mqn (C) follows from the known fact that
the transformations Ev,w generate EndC((C

q)⊗n). ��

2.2 Rational Noncommutative Tori

The (rational or irrational) rotation algebras, also known as noncommutative tori, are the most widely studied exam-
ples of noncommutative spaces. As a C∗-algebra, the rotation algebra Aθ is generated by two unitaries U and V ,
subject to the commutation relation

U V = ξV U, (2.2)

with ξ = exp(2π iθ). In the rational case, θ ∈ Q, it is well known that these algebras are Morita equivalent to
the commutative algebra of functions C(T2) on the ordinary commutative torus T

2, while in the irrational case
θ ∈ R � Q, the Morita equivalence classes correspond to the orbits of the action of SL2(Z) on the real line by
fractional linear transformations.

Let us look more closely at the rational case with ξ = exp(2π i/p). Then elements in the rotation algebra A1/p

are of the form

A1/p � a =
∑
k,�

fk,�(μ, λ) T k R�, (2.3)

where fk,�(μ, λ) are continuous functions of (λ, μ) ∈ S1 × S1 = T
2 and T and R are the matrices (1.2) and (1.3).

The sum is a finite sum for 0 ≤ k, � ≤ p − 1 since T p = R p = id. In particular, the generators U and V are given,
respectively, by U = μT and V = λR, with μ = exp(2π i t) and λ = exp(2π is) in S1. To see this notice that the
algebra A1/p is generated by elements of the form
∑

k,�∈Z

ak�U
k V �.

Since T p = R p = id, we can rewrite these as∑
k,�∈Z/pZ

∑
k′,�′∈Z

ak+k′ p,�+�′ pμ
k+k′ pλ�+�′ pT k R� =

∑
k,�∈Z/pZ

fk,�(λ, μ)T
k R�.

2.3 Quantum Codes and Vector Bundles

Recall (see [11], Proposition 12.2) that the rational noncommutative torus An/m is isomorphic to the algebra

(T 2,End(Em)) of sections of the endomorphism bundle of a rank m vector bundle Em over the ordinary torus T 2,
obtained as follows. Consider the trivial bundle over T 2 with fiber Mm(C), with the action of (Z/mZ)2 given by

τ1,0 : (μ, λ,M) �→ (μ, e−2π in/mλ, T MT −1), τ0,1 : (μ, λ,M) �→ (e2π in/mμ, λ, RM R−1).
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The quotient by this action defines a non-trivial bundle over T 2, which we can view as the endomorphism bundle
End(Em) of a vector bundle Em of rank m, with fiber Mm(C). The algebra of sections 
(T 2,End(Em)) is by
construction the fixed point subalgebra of the algebra C(T 2,Mm(C)) = C(T 2)⊗ Mm(C) of endomorphisms of the
trivial bundle, under the action of (Z/mZ)2 described above. The above action gives on the algebra C(T 2)⊗ Mm(C)

the action
α1,0 : f (μ, λ)⊗ M �→ f (μ, e−2π in/mλ)⊗ T MT −1,

α0,1 : f (μ, λ)⊗ M �→ f (e2π in/mμ, λ)⊗ RM R−1.
(2.4)

The fixed point subalgebra is then generated by the elements μ ⊗ T and λ ⊗ R, which satisfy the commutation
relation of the generators U and V of the noncommutative torus, and is therefore isomorphic to An/m . In particular,
there is a C∗-algebra homomorphism An/m → Mm(C) that sends the generators U and V to the matrices T and R.

We then use this description of the rational noncommutative tori to give a geometric interpretation of the data of
quantum stabilizer codes.

Proposition 2.2 Let E p be the rank p bundle over T 2 such that A1/p = 
(T 2,End(E p)). Then, for q = pm, a
q-ary quantum stabilizer code QS,χ of length n and size k corresponds to a subalgebra AS ⊂ A⊗r

1/p, with r = nm,

and subbundle FS,χ of the external tensor product E�mn
p over T 2r , on which the elements of the algebra AS act

as scalars. Conversely, these data determine a q-ary quantum stabilizer code QS,χ of length n and size k.

Proof Let us first consider the tensor product algebra C(T 2,Mp(C))
⊗r where r = mn. We can write this also

as (C(T 2) ⊗ Mp(C))
⊗r = C(T 2r ) ⊗ Mqn (C) = C(T 2r ,Mqn (C)), for q = pm . This is therefore the algebra of

endomorphisms of the trivial bundle with fiber C
qn

over the higher dimensional torus T 2r . The action of (Z/pZ)2

on C(T 2,Mp(C)) given in (2.4) extends to an action of (Z/pZ)2r on C(T 2r ,Mqn (C)), which is given by

αv,w : f (μ, λ)⊗ M �→ f (ξvμ, ξ−wλ)⊗ Ev,wM E−1
v,w, (2.5)

with μ = (μ
1
, . . . , μ

n
) = (μ11, . . . , μ1m, . . . , μn1, . . . , μnm) and similarly for λ, where the notation ξvμ means

ξvμ = (ξai jμi j )i=1,...,n; j=1,...,m , with v = (x1, . . . , xn) and each xi = (ai1, . . . , aim). The notation ξ−wλ is analo-
gous. We realize here the matrix algebra Mqn (C) as in Lemma 2.1, as the algebra C∗(E/Z) = C∗((Z/pZ)2mn, σ )

generated by elements Ev,w as in (1.6).
The fixed point algebra of the action (2.5) defines the endomorphism algebra of a vector bundle on the torus T 2r

of rank qn . The external tensor product E1 � E2 of two vector bundles V1 and V2, respectively over base spaces X1

and X2, is the vector bundle over X1 × X2 given by π∗
1 (V1)⊗ π∗

2 (V2), with π1 and π2 the projections of X1 × X2

onto the two factors. We then see that the vector bundle on T 2r described above is, in fact, the r -times external
tensor product of the bundle E p on T 2, since the action (2.5) is the product of an action of the form (2.4) on each
copy of C(T 2,Mp(C)). Thus, the fixed point algebra is the algebra of endomorphisms 
(T 2r , E�r

p ).
The fixed point algebra of the action (2.5) on C(T 2r ,Mqn (C)) is generated by elements of the form μ(v) ⊗

λ(w)⊗ Ev,w, where μ(v,w) is the tensor product of those μ(v)i j for which ai j = 0, and similarly for λ(w). Given
the explicit form of the elements Ev,w as in (1.6), we see that the fixed point algebra is equivalently generated
by elements of the form μi j ⊗ (1 ⊗ · · · ⊗ T ⊗ · · · 1), with T in the (i, j)th coordinate of the tensor product, and
λi j ⊗ (1 ⊗ · · · ⊗ R ⊗ · · · ⊗ 1), with R in the (i, j)th place. Thus, it is the r -fold tensor product A⊗r

1/p of the algebra
A1/p of the rational noncommutative torus.

Now suppose one is given a q-ary quantum stabilizer code of length n and size k. This means that we have
a commutative subgroup S of E and a character χ : S → U (1) that is trivial on Z and such that the common
eigenspace QS,χ ⊂ C

qn
on which the operators s ∈ S act as sψ = χ(s)ψ has complex dimension k.

The choice of the commutative subgroup S of E determines a commutative subalgebra AS of the algebra A⊗r
1/p,

which is the subalgebra generated by elements of the formμ(v)⊗λ(w)⊗ Ev,w as above, with Ev,w ∈ S. This is the

commutative subalgebra of the endomorphism algebra
(T 2r , E�r
p ), generated by the unitariesμ(v)⊗λ(w)⊗Ev,w.

The common eigenspaces of the Ev,w ∈ S acting on C
qn

correspond to characters χ of S. Thus, the eigenspace
QS,χ , for the character χ of the data of the q-ary quantum stabilizer code, determines a subbundle FS,χ of the
bundle E�r

p over T 2r with an action of the abelian subalgebra AS of A⊗r
1/p by endomorphisms. ��
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We can give a more explicit description of the algebra AS as follows.

Corollary 2.3 The algebra AS = C(XS) is the algebra of functions of a space XS = ∪
χ∈Ŝ Tχ , where Tχ is a

quotient of the torus T 2r over which the bundle FS,χ descends to a direct sum L⊕k
S,χ of k-copies of a line bundle.

Proof The abelian subalgebra AS of A⊗r
1/p can be identified, via the Gelfand–Naimark correspondence, with the

algebra of functions C(XS) on a compact Hausdorff topological space XS . To give an explicit description of the
space XS in relation to the torus T 2r , it is convenient to also view AS as the subalgebra of the abelian algebra
C(T 2r ,C[S]) generated by the elements μ(v)⊗ λ(w)⊗ Ev,w as above, with Ev,w ∈ S. We write these elements
in shorter notation as μs ⊗ λs ⊗ s, for s ∈ S. For varying s ∈ S, the corresponding μs ⊗ λs generate a subalgebra
C(T 2r ), which corresponds to a quotient space of T 2r .

By Pontrjagin duality, we can identify C[S], which is the same as C∗(S) since S is a finite (abelian) group, with
C(Ŝ), for Ŝ the character group. The isomorphism C∗(S) � C(Ŝ) is by Fourier transform. Since Ŝ is also a finite
(abelian) group, C(Ŝ) = ⊕

χ∈ŜCχ , where Cχ is the 1-dimensional algebra of functions on the point χ ∈ Ŝ . Thus,

we have C(T 2r ,C[S]) = C(T 2r × Ŝ) = ⊕
χ∈ŜC(T 2r )⊗ Cχ . The component in C(T 2r )⊗ Cχ of the subalgebra

AS , which we denote by AS,χ is then generated by the elements of the form μs ⊗ λs ⊗ δ̂s pχ , where δ̂s ∈ C(Ŝ)
is the Fourier transform of the generator δs of C[S], and pχ is the projection onto the Cχ component of C(Ŝ),
where δ̂s pχ = χ(s). Upon denoting by Tχ the quotient space of T 2r that corresponds to the subalgebra of C(T 2r )

generated by the μs ⊗ λs ⊗ δ̂s pχ , we get AS = ⊕
χ∈ŜC(Tχ )⊗ Cχ .

By construction, the subbundle FS,χ then restricts to Tχ as a direct sum L⊕k
S,χ of k-copies of a line bundle LS,χ ,

whose sections transform as (μ, λ, z) �→ (μsμ, λsλ, χ(s)z).

2.4 Classical Codes and the Rational Noncommutative Torus

We show next how, in the case of a quantum stabilizer code obtained from a self-orthogonal classical linear code
via the CSS algorithm, one can read some of the properties of the classical code in the algebra AS .

Let C be a classical linear code C ⊂ F
n
q and let QSC ,χ be a q-ary quantum stabilizer code obtained from C via

the CSS algorithm recalled above. Recall that, for a code word c ∈ C the Hamming weight �(c) is the number of
non-zero coordinates of c ∈ F

n
q .

Proposition 2.4 The algebra AS = C(XS) has a natural filtration by the Hamming weight of words in the classical
code C.

Proof Seen as a subalgebra of C(T 2r )⊗ C[S], the commutative algebra AS is generated by elements of the form
μs ⊗ λs ⊗ δs , where the μs and λs are defined as above as the μi j and λi j , respectively for the indices (i, j) for
which ai j = 0 and bi j = 0 in the coordinates of (v,w), for s = Ev,w ∈ S. Thus, we can write the algebra as
AS = ⊕s∈SC(Ts)⊗ δs , where C(Ts) is the subalgebra of C(T 2r ) generated by the μs and λs as above. The spaces
Ts are quotients of T 2r of dimension equal to 2r −�(v,w), where �(v,w) is the Hamming weight of the word
(v,w). Under multiplication in the algebra, the products of a generator of the form μs ⊗ λs ⊗ δs and a generator
of the form μs′ ⊗ λs′ ⊗ δs′ are (strictly) contained among the set of generators of the form μs+s′ ⊗ λs+s′ ⊗ δs+s′ ,
hence C(Ts) ⊗ δs · C(Ts′) ⊗ δs′ ⊂ C(Ts+s′) ⊗ δs+s′ , so that the filtration by the Hamming weight is compatible
with the algebra structure on AS . ��

3 Algebras and Spaces of Classical and Quantum Codes

In this section we modify the previous setting to describe a noncommutative space where the pairs of a classical
linear code and the corresponding quantum stabilizer code can be embedded as subspaces in a uniform way. This
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Fig. 1 The fractal
associated to the code
C of (3.1)

is based on a modification of the previous construction, where the rational noncommutative tori, obtained from
endomorphism algebras of vector bundles over tori, are replaced by spaces obtained as bundles over tori with fiber
a Cantor set. These are obtained by considering the fractals and the operator algebras associated to classical codes
as in [22].

3.1 Classical Codes and Fractals

As shown in [22], to a classical (not necessarily linear) code C ⊂ An , one can associate a fractal�C by identifying
the alphabet A with #A = q with the digits of the q-ary expansion of numbers in the interval [0, 1], so that infinite
sequence of code words x0x1x2 . . . determine a subset �C of point in the cube [0, 1]n . This subset is typically a
Sierpinski fractal. The parameters of the code are related to the Hausdorff dimension of �C and to the Hausdorff
dimension of its intersections with translates of coordinate hyperplanes (see [22]).

To see concretely the fractal structure associated to a code, consider the simple example of the [3, 2, 2]2 code C
given by

C =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0, 0)
(0, 1, 1)
(1, 0, 1)
(1, 1, 0)

(3.1)

In this case, the corresponding fractal is the Sierpinski gasket illustrated in Fig. 1.

3.2 Spectral Triples on Fractals

As we mentioned in the introduction, the fractals associated to classical error-correcting codes were recently related
([3]) to spectral triples on Cantor sets to crossed product constructions for such spectral triples.

A spectral triple is a notion introduced in noncommutative geometry ([8]) as a generalization of the classical
notion of a Riemannian spin manifold. The basic data are an involutive algebra A (which generalizes the algebra of
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smooth functions), with a representation by bounded operators on a Hilbert space H, and a self-adjoint (unbounded)
operator D on H with compact resolvent, which satisfies a compatibility condition with the algebra, given by the
requirement that the commutators [D, a] are bounded operators on H. An ordinary compact Riemannian spin man-
ifold M is described as a spectral triple by the data A = C∞(M),H = L2(M, S), with S the spinor bundle, and
D the Dirac operator. The Riemannian metric can be reconstructed from these data. However, the advantage of the
spectral triple formalism is that other kind of spaces like fractals, quantum groups, noncommutative tori, can be
treated as smooth manifolds from the point of view of noncommutative geometry.

It is shown in §7.1 of [3] that the generating function

GC (t) =
∑

N

sC (N )t
N

for the language associated to a code C , with sC (N ) = #{w = w1 . . . wN |wi ∈ C}, can be identified with the zeta
function ζD(s) of the Dirac operator D on a natural spectral triple defined over the fractal �C .

Some of the actions of GC on�C described here are especially suitable for the crossed product construction, as
shown for instance in the recent paper [10]. This means that one can regard the crossed product C(�C )� GC as a
spectral triple (a noncommutative manifold) and apply to it methods of noncommutative Riemannian geometry.

There are several interesting constructions of noncommutative geometry, often in the form of spectral triples,
applied to fractal spaces, such as those obtained in [6,7,12,13]. These can be applied to spaces such as the code
fractal �C , or the subfractals �C,�,π considered in [22], which we will discuss more in the following sections, or
the quotients (�C × Q∗

S,χ )/S we introduce below. The spectral triples constructed in this way capture some of the
information theoretic properties of both the codes, as was shown in [3].

3.3 Noncommutative Spaces and Quantum Statistical Systems from Codes

In [22] it was also suggested to consider operator algebras associated to a classical code C ⊂ An , in the form of
a Toeplitz algebra TC generated by isometries Sa for a ∈ C, S∗

a Sa = 1, with mutually orthogonal ranges, and the
Cuntz algebra OC , which is the quotient of TC obtained by imposing the additional relation

∑
a∈C Sa S∗

a = 1. The
Cuntz algebra OC has a natural representation as bounded operators on the Hilbert space L2(�C , dμ) with the
Hausdorff measure of dimension dimH (�C ), where the generators Sa act as

Sa f (x) = χσa(�C )(x)�a(σ (x))
−1/2 f (σ (x)).

Here x is an infinite sequence of code words, x = (x1, . . . , xn) with each xi = xi0 · · · xin · · · , xi j ∈
A, (x1 j , . . . , xnj ) ∈ C . The map σa on �C is given by σa(x) = (a1x1, . . . , an xn), for a = (a1, . . . , an) ∈ C
and the map σ is the one-sided shift that removes the (x10, . . . , xn0) code word of x and returns the same infinite
sequence of code words shifted one step to the left, starting with (x11, . . . , xn1). The function �a is the Radon–
Nikodym derivative of the Hausdorff measure, �a(x) = dμ ◦ σa/dμ.

As shown in [22], the natural time evolution on the Toeplitz algebra TC given by σt (Sa) = qint Sa defines a
quantum statistical mechanical system that has as partition function ZC (β) = (1 − q(R−β)n)−1, with R the rate
of the code C . This is the same as the structure function of the language �C , so that the entropy of the language
(which is the log of the radius of convergence) agrees with the rate of the code.

3.4 Linear Codes and Group Actions

In the case of linear codes, one can enrich the construction above with additional structure.
Let C ⊂ F

n
q be a linear code. Let GC be the additive group generated by the basis vectors of C . Then GC acts

on the algebras TC and OC by γa : Sb �→ Sb+a . This action shuffles the indices of the generating isometries hence
it preserves the relations. Thus, one can consider the algebras TC � GC and OC � GC . These are generated by
elements of the form Saγb with product Saγb Sa′γb′ = Sa Sb+a′γb+b′ .
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Actions of finite abelian groups on Cuntz algebras were studied extensively in operator algebras, in relation to
the Rokhlin property.

3.5 The Rokhlin Property

Finite group actions on C∗-algebras that have the Rokhlin property have been widely studied in the context of
classification problems for C∗-algebras. The Rokhlin property for an action α of a finite group G on a C∗-algebra A
prescribes the existence, for any finite F ⊂ A and any ε > 0, of mutually orthogonal projections eg in A, for g ∈ G,
such that ‖αg(eh) − egh‖ < ε for all g, h ∈ G; ‖eha − aeg‖ < ε, for all g ∈ G and a ∈ F , and

∑
g∈G eg = 1.

The importance of the Rokhlin property lies in the fact that it ensures that the group actions are classifiable in terms
of K theoretic invariants. The case of quasi-free actions of finite groups on Cuntz algebras was considered in [14].

Lemma 3.1 The action of GC on the Cuntz algebra OC has the Rokhlin property.

Proof According to [14], an action α of a topological group G on the Cuntz algebra On is quasi-free if αg globally
preserves the linear span Hn of the generators {Si }i=1,...,n of the Cuntz algebra, for each g ∈ G. The action of GC

on OC described above is quasi-free in this sense, since it has the effect of permuting the generators Sa of OC , so
it leaves the corresponding space, which we denote by HC , invariant. One then sees directly from Proposition 5.6
and Example 5.7 of [14], that the action of GC on OC has the Rokhlin property. ��

We also mention here that, according to Proposition 5.5 of [26], an action of a finite group G on a Cantor set has
the Rokhlin property if and only if the action is free. Later in this section we relate the action of GC on OC to an
action on the fractal �C .

3.6 Twisted Crossed Products and Codes

One can twist the crossed product algebras TC � GC and OC � GC by the cocycle σ as in (2.1).

Lemma 3.2 Let C ⊂ F
n
p2m be a linear code with #C = qk, with q = p2m. Then GC ⊂ (Z/pZ)2mn is GC �

(Z/pZ)2mk and the multiplier (2.1) defines twisted crossed product algebras TC �σ GC and OC �σ GC .

Proof The twisted crossed product algebras are generated by elements S(a,b)γ σ(v,w) with (a, b) ∈ C and (v,w) ∈
(Z/pZ)2mk , with the product given by

S(a,b)γ
σ
(v,w)S(a′,b′)γ

σ
(v′,w′) = σ(v, v′)S(a,b)S(v+a′,w+b′)γ

σ
(v+v′,w+w′).

The associativity, as above, is ensured by the multiplier properties of σ . ��
Lemma 3.3 The (twisted) action of GC on OC preserves the maximal abelian subalgebra of OC isomorphic to
C(�C ).

Proof The action of GC on the generators Sa of OC is given by γb Sa = Sa+b. The subalgebra of OC isomorphic to
C(�C ) is generated by the range projections SαS∗

α , where Sα , for some multi-index α = (a1, . . . , am), ai ∈ C , is
a finite product Sα = Sa1 · · · Sam of generators. The range projection SαS∗

α corresponds to the projection in C(�C )

given by the characteristic function of the subset �C (α) of infinite sequences of code words in �C that start with
the word α.

The induced action γ of the group GC on the fractal �C is then determined by the action on C(�C ) that
maps the characteristic function χ�C (α) = SαS∗

α to the characteristic function χ�C (γb(α)) = γb(Sα)γb(S∗
α), where

γb(Sα) = γb(Sa1) · · · γb(Sam ) = Sa1+b · · · Sam+b.
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This implies that the induced action on the Cantor set is given by addition in each digit of the expansion:
for (x, y) ∈ �C given by (x, y) = (x0x1 . . . xN . . . , y0 y1 . . . yN . . .) with (xi , yi ) ∈ C , one gets γv,w(x, y) =
((x0 + v)(x1 + v) . . . (xN + v) . . . , (y0 + w)(y1 + w) . . . (yN + w) . . .), with (xi + v, yi + w) ∈ C .

Thus, one obtains a subalgebra C(�C ) �σ GC of OC �σ GC of the twisted crossed product. Elements of this
subalgebra can be written as

a =
∑

(v,w)∈C

f(v,w)(x, y) γ σ(v,w), (3.2)

for f(v,w) ∈ C(�C ) and γ σ(v,w) as above, with

f(v,w)(x, y)γ σ(v,w) f(v′,w′)(x, y)γ σ(v′,w′) = σ((v,w), (v′, w′)) f(v,w)(x, y) f(v′,w′)(αv,w(x, y)) γ σ(v+v′,w+w′).

��

Consider then a quantum stabilizer code Q = QS,χ , associated to a classical self-orthogonal linear code C in
F

2nm
p , with an Fp-automorphism ϕ ∈ Aut(Fm

p ), so that S = {ξ k Ev,ϕ(w) | (v,w) ∈ C} is an abelian subgroup of E .

Thus, Q = QC,ϕ . Because of the self-orthogonal condition, the cocycle σ((v,w), (v′, w′)) = ξ−〈w,v′〉 is trivial, so
the crossed product algebras OC �σ GC and C(�C ) �σ GC are just the untwisted OC � GC and C(�C ) � GC

with GC the abelian group identified with the subgroup of S ⊂ E with elements the Ev,ϕ(w). The same holds for
the related algebras TC �σ GC which is TC � GC .

3.7 Disconnection and Group Actions

Consider points of T 2 = S1 × S1 as points in the square Q2 = [0, 1]× [0, 1] with the boundary identifications that
give T 2, where we write the points of [0, 1] in terms of their p-ary digital expansion: x = 0.x1x2x3 . . . xN . . ., with
xi ∈ {0, . . . , p − 1}. As in the decimal case, the expansion is a 1:1 representation on the irrational points and 2:1
on the rational points. Fixing the first N digits of the expansion determines a subinterval of [0, 1] of length p−N .

There is a totally disconnected compact topological space T 2
Q

, called the disconnection of T 2 at the rational points,

which maps surjectively to T 2 with a map that is 1:1 over the irrational points and 2:1 over the rational points.
As a topological space, it is the spectrum of a commutative C∗-algebra C(T 2

Q
), which is the smallest C∗-algebra

containing C(T 2) in which all the characteristic functions of intervals [kp−N , (k +1)p−N )with k ∈ {0, . . . , p −1}
and N ≥ 1 are continuous functions.

Lemma 3.4 The group (Z/pZ)2 acts on the disconnection T 2
Q

by

γ(k,�)(x, y) = (γk(x0)γk(x1) . . . γk(xN ) . . . , γ�(y0)γ�(y1) . . . γ�(yN ) . . .), (3.3)

where, for a ∈ Z/pZ, γb(a) = a + b in Z/pZ. One can then form a crossed product algebra C(T 2
Q
)�σ (Z/pZ)2,

with the action (3.3), and with the twisting given by the cocycle σ((v,w), (v′, w′)) = ξ−〈w,v′〉. ��

Proof The action (xi , yi ) �→ (γk(xi ), γ�(yi )) on the i th digit of the p-ary expansion of (x, y) ∈ T 2
Q

has the

effect of moving the product of intervals [xi p−i , (xi + 1)p−i ) × [yi p−i , (yi + 1)p−i ) inside T 2 to [(xi + k
mod p)p−i , (xi + 1 + k mod p)p−i ) × [(yi + k mod p)p−i , (yi + 1 + k mod p)p−i ). While this is not a
continuous function on T 2 it becomes continuous on the totally disconnected T 2

Q
. Thus, one can form the crossed

product C∗-algebra with respect to this action. It is generated by elements of the form
∑

g∈(Z/pZ)2 hg(λ, μ)rσg , with

(λ, μ) ∈ T 2
Q

and where rσg1
rσg2

= σ(g1, g2)rσg1g2
and rσg h(λ, μ) = h(γg(λ, μ))rσg .
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3.8 Cantor Set Bundles

We start with the geometric setting we have discussed above in Sect. 2 and we see how that gets modified when we
also take into account the fractal geometry �C associated to the classical code C .

We have seen that a q-ary quantum stabilizer code QS,χ of length n and size k identifies a commutative sub-
algebra AS of the endomorphism algebra 
(T 2r ,End(E�r

p )) of a vector bundle E�r
p over the torus T 2r , where

q = pm and r = nm.

Proposition 3.5 If C ⊂ F2n
q is a self-orthogonal linear code and QSC ,χ the associated q-ary quantum code, the

fractal �C can be embedded in the disconnection T 2r
Q

. The pullback of the subbundle FS,χ ⊂ E�r
p to �C via the

projection T 2r
Q

→ T 2r and its quotient by the action of SC determine a fibration over a torus with fiber �C .

Proof We can pull back the bundle E�r
p along the projection map π : T 2r

Q
→ T 2r and further restrict it to �C by

pulling it back along the embedding ι : �C ↪→ T 2r
Q

.

In fact, the fractal �C can be realized as a subspace of the product (T 2
Q
)n , by identifying points of �C , which

are infinite sequences of code words c = c1c2 . . . cN . . ., with ci ∈ C ⊂ F
2n
q � F

2r
p , with points of (T 2

Q
)r , by

writing each ci as a pair of r -tuples of elements in Z/pZ, ci = (xi,1, . . . , xi,r , yi,1, . . . , yi,r ), hence identifying the
pair (x j , y j ) of sequences x j = x1, j x2, j . . . xN , j . . . and y j = y1, j y2, j . . . yN , j . . . , j = 1, . . . , n with the p-ary
expansion of a point in T 2

Q
, hence (x, y) ∈ (T 2

Q
)n , with (x, y) = (x1, . . . , xn, y1, . . . , yn).

Over�C the induced vector bundle can be trivialized, so that ι∗π∗E�r
p � �C ×C

qn
. The subbundle FS,χ of E�r

p
identified by the q-ary quantum stabilizer code QS,χ in turn pulls back to a subbundle ι∗π∗FS,χ � �C × QS,χ .

We now assume that C is a self-orthogonal linear code and that QS,χ is the associated q-ary quantum code, under
the CSS algorithm. When we take into account the action of GC on the linear code C , we then have compatible
actions

ι∗π∗E�r
p

�(v,w) ��

��

ι∗π∗E�r
p

��
�C

γ(v,w) �� �C

where in the trivialization ι∗π∗E�r
p � �C × C

qn
, the action on ι∗π∗E�r

p is given by�(v,w) = (γ(v,w), Ev,w). The
action preserves the subbundle FS,χ , where the induced action is through the character χ ,

�(v,w) = (γ(v,w), χ(Ev,w)).

When taking the quotient with respect to this action, using the trivializations of the bundles, one obtains quotient
spaces, respectively of the form (�C × C

qn
)/SC and (�C × QSC ,χ )/SC . These are, respectively, locally trivial

fibrations over the quotients C
qn
/SC and QSC ,χ /SC . We focus in particular on the case of the subspace QSC ,χ .

Because the quotient QSC ,χ /SC is singular at the origin, it is preferable to remove this singular point and consider
instead the quotient of Q∗

SC ,χ
:= QSC ,χ � {0}. The action of SC is through the character χ , that is, as multiplication

by χ(Ev,w) ∈ U (1) ⊂ C
∗. Thus, one can further restrict to the unit vectors and obtain an action on a torus T pnm−r

,
with quotient still topologically a torus. The fibration then induced a fibration over this torus with fiber a fractal
�C . ��

Variants of this construction may be useful to better take into account the dynamical properties of the action of
GC on the fractal �C . We give another example below.
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3.9 Crossed Product Algebras and Embeddings

One can also use the fact that the fractal�C embeds inside the disconnection T 2r
Q

, in a way that is compatible with
the action of GC , to compare different crossed product algebras C(�C )�σ GC for different codes inside a common
noncommutative space.

Lemma 3.6 Let A = C(T 2
Q
)�σ (Z/pZ)2 be the twisted crossed product algebra of the action of (Z/pZ)2 on the dis-

connection T 2
Q

. For any classical linear code C ⊂ F
2n
p , there is an algebra homomorphism A⊗n → C(�C )�σ GC .

Proof For #C = p2k , we have GC � (Z/pZ)2k . We regard this as a subgroup GC ⊂ (Z/pZ)2n of the group
of translations of the whole space F

2n
p , as the subgroup of translations that preserve the linear subspace C . The

embedding �C ↪→ T 2n
Q

described in Proposition 3.5 determines an algebra homomorphism C(T 2
Q
)⊗n → C(�C )

given by restriction of functions to �C .
We write α : GC ↪→ (Z/pZ)2n for the embedding as a subgroup and ρ : C((T 2

Q
)n) → C(�C ) for the restriction

of functions ρ( f )(x) = f (ι(x)), with ι : �C ↪→ (T 2
Q
)n the embedding of the fractal �C in the disconnection

T 2n
Q

. The algebra homomorphism ρ : C(T 2
Q
)⊗n → C(�C ) is compatible with the action of translations, since we

have γα(a)(ι(x)) = ι(γa(x)), for all x ∈ �C and all a ∈ GC . Thus, we have a morphism of the crossed product
algebras C(T 2n

Q
) �σ (Z/pZ)2n → C(�C ) �σ GC . Finally, we identify C(T 2n

Q
) �σ (Z/pZ)2n with the tensor

product (C(T 2
Q
)�σ (Z/pZ)2)⊗n . ��

The algebra homomorphisms A⊗n → C(�C ) �σ GC are constructed as restriction maps, hence in terms of
noncommutative spaces these correspond to embedding the noncommutative spaces associated to linear codes,
whose algebras of coordinates are the C(�C ) �σ GC , into a common noncommutative space, whose algebra of
coordinates is A⊗n . The latter therefore can be thought of as a “universal family” for all the noncommutative spaces
of linear codes C ⊂ F

2n
p , where the total space corresponds to the “largest” code, namely F

2n
p itself, acted upon by

all the translations (Z/pZ)2n . Moreover, the subfractals�C,�,π associated to linear subcodes Cπ , which we discuss
in the next subsection, determine further compatible specialization maps C(�C )�σ GC → C(�Cπ )�σ GCπ .

3.10 Minimum Distance, Subfractals and the Weight Polynomial

We conclude this section with an observation on how one can reinterpret the weight polynomial of a linear code
in terms of subfractals of the code fractal, satisfying certain scaling (self-similarity) properties, or equivalently in
terms of counting embeddings to associated Toeplitz algebras.

We first recall briefly the interpretation of the minimum distance d of a code C in terms of the fractal geometry
of�C , as given in [22]. Notice that here we use a slightly different notation from [22] and our�C is the S̄C of [22],
so the statement is slightly different from the one formulated for SC in that paper, and we write it out here explicitly
for convenience.

For � = 1, . . . , d, let �� be the set of �-dimensional subspaces in R
n defined by intersections of n − � hyper-

planes, each of which is a translate of a coordinate hyperplane. For any given such linear space π ∈ ��, we denote
by�C,�,π = �C ∩π . The geometry of this intersection varies with the choice of the linear space. When non-empty,
its form changes drastically when � increases. More precisely, one has the following ([22]).

Lemma 3.7 Let C ⊂ An be a code with minimum distance d = min{d(x, y) | x �= y ∈ C}, in the Hamming metric.
For all � < d, the set �C,�,π has dimH (�C,�,π ) = 0 and is either empty or it consists of a single point, while for
� ≥ d the set �C,�,π , when non-empty, has an actual fractal structure of positive Hausdorff dimension.

Proof The property that C has minimum distance d means that any pair of distinct points x �= y in C must have at
least d coordinates that do not coincide, since d(x, y) = #{i | xi �= yi }. Thus, in particular, this means that no two
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points of the code lie on the same π , for any π as above of dimension � ≤ d − 1, while there exist at least one π in
�d which contains at least two points of C . In terms of the iterative construction of the fractal SC , this means the
following. For a given π ∈ �� with � ≤ d − 1, if the intersection C ∩ π is non-empty it must consist of a single
point. Thus, when restricted to a linear space π ∈ �� with � ≤ d − 1, at the first step the induced construction
of �C,�,π consists of replacing the single unit cube of dimension �, Q� = Qn ∩ π , with a single copy of a scaled
cube of volume q−�, successively iterating the same procedure. This produces a single family of nested cubes of
volumes q−�N with intersection a single vertex point. The Hausdorff dimension is clearly zero. When � = d one
knows there exists a choice of π ∈ �d for which C ∩ π contains at least two points. Then the induced iterative
construction of the set �C,�,π starts by replacing the cube Qd = Qn ∩ π with #(C ∩ π) copies of the same cube
scaled down to have volume q−d . The construction is then iterated inside all the resulting #(C ∩ π) cubes. Thus,
one obtains a set of positive Hausdorff dimension dimH (�C,�,π ), since we have a positive solution s > 0 to the
scaling equation #(C ∩ π) · q−�s = 1.

Thus, as observed in [22], the parameter d of the code C can be regarded as the threshold value of � where the
sets �C,�,π jump from being trivial to being genuinely fractal objects.

For example, consider the code C of Fig. 1 and (3.1). The translates of coordinate hyperplanes intersect C in
the following way: C ∩ {x1 = 0} = {(0, 0, 0), (0, 1, 1)},C ∩ {x1 = 1} = {(1, 0, 1), (1, 1, 0)},C ∩ {x2 = 0}
= {(0, 0, 0), (1, 0, 1)},C ∩{x2 = 1} = {(0, 1, 1), (1, 1, 0)},C ∩{x3 = 0} = {(0, 0, 0), (1, 1, 0)} and C ∩{x3 = 1}
= {(0, 1, 1), (1, 0, 1)}, so that all the corresponding�C,2,π have positive Hausdorff dimension. On the other hand,
for � = 1, all the intersections of C with an intersection of two of the above hyperplanes consist of at most one
point.

In the case of linear codes, the Hamming distance d(x, y) = #{i | ai �= bi } = #{i | ai − bi �= 0} = d(x − y, 0),
so that the minimum distance is measured by d(C) = min{d(x, 0) | x ∈ C, x �= 0}. The Hamming weight of x ∈ C
is the number of non-zero components of x . Thus, the minimum distance is also the minimum Hamming weight,
d(C) = min{w(x) | x ∈ C, x �= 0}.

Thus, to describe the minimum distance as in Lemma 3.7, it suffices to consider those π ∈ �� that are intersec-
tions of coordinate hyperplanes, hence Fq -linear subspaces in F

n
q , instead of considering also their translates. This

identifies subfractals�C,�,π associated to Cπ = C ∩π , where the Cπ are also linear codes. We write�0
� ⊂ �� for

the set of linear subspaces π given by intersections of � coordinate hyperplanes.
In the example of (3.1), there are three such subfractals for � = d = 2, which correspond to the intersec-

tions with the three coordinate hyperplanes, C1 = {(0, 0, 0), (0, 1, 1)},C2 = {(0, 0, 0), (1, 0, 1)}, and C3 =
{(0, 0, 0), (1, 1, 0)}.

The Toeplitz algebras TC are functorial with respect to injective maps of sets f : C → C ′, with the corresponding
morphism of algebras mapping Sa �→ S f (a). The Cuntz algebras are only functorial with respect to bijections.

Thus, for each set �C,�,π of positive Hausdorff dimension, corresponding to an intersection Cπ = C ∩ π with
#(C ∩ π) > 1, we have an injective morphism of the corresponding Toeplitz algebras Tπ : TCπ → TC associated
to the inclusion Cπ ⊂ C . Moreover, if π and π ′ are two elements in ��, with � ≥ d, such that #Cπ = #Cπ ′ > 1,
we have an isomorphism of the corresponding algebras TCπ � TCπ ′ .

In the example of [3, 2, 2]2 code of (3.1), the algebras TCπ for all the translates of the coordinate hyperplanes
π ∈ �2 are isomorphic, and one correspondingly has six different embeddings of this as a subalgebra of TC . While,
if one counts only those that also correspond to linear codes, one has only three, coming from the intersections of
C with the three coordinate hyperplanes, as above.

For a linear code C , one can consider the associated weight polynomial of the code C . We recall here briefly the
definition and properties, see [2]. The basic observation is that, for a linear code, The weight polynomial is given
by

A(x, y) =
n∑

i=1

Ai xn−i yi , with Ai = #{x ∈ C |w(x) = i}. (3.4)

In the example of the code C of (3.1), the weight polynomial is A(x, y) = x3 + 3xy2.
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One can then easily see the following interpretation of the coefficients of the weight polynomial.

Lemma 3.8 For a linear code C, the coefficient Ai of the weight polynomial A(x, y) is given by

Ai = # ∪π∈�0
n−i
(Cπ � {0}).

These linear subcodes Cπ correspond to subfractals�C,n−i,π of�C with scaling equation #(C ∩π)q−(n−i)s = 1.

Proof Any point x ∈ C with w(x) = i lies on an intersection of coordinate hyperplanes π ∈ �0
n−i . Thus, Ai

counts the number of nonzero x ∈ C that lie in some π ∈ �0
n−i , that is, Ai = #{x �= 0 ∈ C | ∃π ∈ �0

n−i : x ∈
π} = #{x �= 0 ∈ C | x ∈ cup�0

n−i
π}. Moreover, if w(x) = i so that x ∈ π , for some π ∈ �0

n−i , the intersection

Cπ is not contained in any π ′ ∈ �0
n−i−1, since x /∈ π ′, so that �C,n−i,π is obtained by scaling #Cπ copies of the

cube Qn−i of volume q−(n−i), so that the scaling equation is as stated. ��
Thus, one can view the weight polynomial of the code as a generating function for the multiplicities of the

embeddings TCπ → TC for linear subcodes with π ∈ �0
� giving rise to nontrivial subfractals.

As seen in [22] the Toeplitz algebra TC and the Cuntz algebra OC associated to a classical code C have represen-
tations on the Hilbert space L2(�C , dμH ) and a time evolution σt (Sa) = qitn Sa , whose critical temperature KMS
state recovers integration in the Hausdorff measure of dimension dimH (�C ) on the fractal �C . The embeddings
TCπ → TC therefore inherit an action on the same Hilbert space and the induced time evolution. The critical tem-
perature KMS state for the time evolution on the subalgebra then recovers the integration in the Hausdorff measure
of dimension dimH (�C,�,π ) on the subfractal �C,�,π .
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