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Space
o Classical: sample space Q = {1,..., N} category of (finite)
sets

@ Quantum: complex Hilbert space H of dimension dimH = n:
(finite dimensional) Hilbert spaces

Events

o Classical: set P(£2) of subsets of €2, Boolean algebra with U,
N and complement (OR, AND, NOT)

@ Quantum: set P(H) of orthogonal projections in H with
operations \/ (max) and A (min), L complement, but

EN(FRVF)#(EANFR)V(EANFR)

unless E, F1, F, mutually commute
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Observables (random variables)
o Classical: C(Q) = {f : Q — C} = C#? commutative
C*-algebra; real valued random variables f : Q2 — R
e Quantum: B(#) the noncommutative C*-algebra of bounded
linear operators on a Hilbert space # (all linear operators
since H finite dim: sum of matrix algebras); real valued

random variables are hermitian operators A = A*, which have
Spec(A) C R and

A= > \E

AESpec(A)
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Characteristic functions
o Classical: set E € P(2) and xg(x) =1 if x € E and zero
otherwise; for f : Q — C

F)= > yxriyx)

yef(Q)
Xf-1(y) X1y =0, fory#y" and Z X1 (x) =1, ¥xeQ
YEf(Q)
F) = > ¥ xpmx), ando(f)= > o(y) xr1()(x)
YEF(Q) YEF(Q)

forreNand 9p:C—C
e Quantum: {Ey} spectral projections of A

ExEx =0, for \# X, and Y Ey=1
AESpec(A)

AT=3"NEx,  9(A) = @w(\Ex
A A

spectral theorem for A= A* and ¢ : R - R
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Probability distributions and states
e Classical: P:Q — Ry with P = (px)xeq with py, > 0 and
> wecq Px =1, simplex Aq > P

P(E,P)=> p. EcP(Q)

xeE
P(f = \) =P(f1(\), P)

@ Quantum: instead of P = (py) have a density matrix p
non-negative and self-adjoint with Tr(p) =1

p:BH)—=C, ¢(A)="Tr(pA)

PAA) 20 (asp=n20) p1)=1 (asTr(p)=1)
P(A = X) := Tr(pEy), for A € Spec(A), zero otherwise
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Expectation values
o Classical: random variable f : Q@ — R (or C)

f)=> f(x)p
x€EQ

k-th moment of f = expectation of fk

Mi(f,P) =Ep(f*)=> f(x)<pe= > MNP(FH
xeQ AEF(Q)
EP(eitr’) — Z eit>\ P(f_l(k))
AEF(Q)
@ Quantum: expectation of an observable A = A*, state
evaluation

Ey(A) = Tr(pA) = > ATr(pE))
AESpec(A)

]Ep(eitA) _ Tr(peitA) — Z eit)\Tr(pE)\)
A€Spec(A)
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Variance

@ Classical: random variable f : Q — R (or C)
Varp(f) = Ep(f — Ep(f))®> >0

zero if all mass distribution of f concentrated at Ep(f)

@ Quantum: observable A = A*
Var,(A) = Tr(p(A — Tr(pA))?) > 0

zero if operator range of p contains in eigenspace of A with
eigenvalue Tr(pA)
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Extreme points
@ Classical: simplex Aq has N = # extremal points given by
probabilities delta functions

1 x=w

MX):{ 0 x#w

e Quantum: set of all density matrices p is a convex set (and
eigenvalues of p are A > 0)

p=>_ AE, with > AdimE, =1
A€Spec(p) A

one-dimensional projections:
E\ = E Ey i
i

one-dimensional projections cannot be further decomposed
(not convex combinations of other states): extreme points

p=uu =u)ul, uveH, |uf=1
Tr(uu* A) = Tr(u*Au) = (u, Au)



Variance

@ with respect to pure state p = u u*
Var,(A) = Tr(uu*(A — (u, Au))?) = [|(A = (u, Au))ul)?

zero when u eigenvector of A
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Product spaces
o Classical: (1, P1) and (2, P2)

(Q1 x Q,P1P2), P1Pa(x,y) = Pi(x)Pa(y)
independent systems (Note: not a categorical product)
@ Quantum: (Hl,pl) and (Hz,pg)

(H1® Ha, p1 @ p2)

Matilde Marcolli Classical and Quantum Information



Dynamics

@ Classical: T : Q — Q invertible transformation, evolve
functions f : Q2 — C or equivalently evolve states P € Aq

frsfoT, PrPoT !

(opposite transformations: change of variable in integration)
@ Quantum: unitary linear operator U : H — H
@ Heisenberg picture: evolve observables/operators

A— U"AU
@ Schrédinger picture: evolve states
pr— UpU*

compatible via trace Tr(pU*AU) = Tr(UpU*A)
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Pure and mixed states

@ pure states: nonzero vectors 1 in H = C"*1 only up to scale
AeCH

1
@l) <>\¢|>\¢>
@ so pure states = points in P"(C) = (C"*1 \ {0})/C*

@ mixed states: convex combinations p = ), pi|1);)(1);| density
matrices

p= 1) (] = [AP) (A

@ Schrodinger equation:
ihd:|y) = H¢)
ihp = [H,pl

@ in projective coordinates v is (zo : ... : zp) with

ihZoa =Y Hapzg
B
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Projections and probabilities: (quantum logic)

(closed) subspaces of Hilbert space H and their projections P
partially ordered by inclusions

A intersection of subspaces, V join (span of union)

not distributive

H1 C H has co-many complementary Hy NHy = {0} but
only one orthogonal H; with P;P{- = P{-P; = 0 and
H=H1DHT

@ only commuting observable are simultaneously measurable in

quantum mechanics, but pairs of projections typically do not
commute P P> 7& P> Py

@ Gleason theorem: any probability measure p : B(H) — [0, 1]
that satisfies p($;P;) = > _; 1(P;) on mutually orthogonal
projections is of the form p(P) = Tr(pP) for some density
matrix

@ states on a finite dimensional C*-algebra are of the form
©(A) = Tr(pA) for some density matrix
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Qbit: Bloch sphere
@ single particle of spin 1/2: spin up or spin down
o state space H = C? spanned by | 1), | |)
@ single gbit space
e pure states P}(C) ~ S2, Bloch sphere
@ mixed states: 3-dim ball B with 9B = S2 (convex
combinations of points of S?)
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@ Pauli matrices

(01 (0 =i (1 0
01 =0x = 1 0/’ 02 = 0y = i 0 y 03=0z= 0 -1

@ 2 x 2 hermitian density matrix can always be written as

1 .
s+z x—1ly 1
= 2 = — .
p <z+iy ;—z> 21d+T &

T = (x,¥,2) (Bloch vector) and ¢ = (o, 0y,0;)

@ positivity p > 0 (iff nonnegative eigenvalues) iff

X2 +y?+ 22 <

B

Bloch ball coordinates
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Fubini—-Study metric

e C™1 with standard hermitian metric (flat Euclidean metric on
R2"+2)

n
ds® = dz; @ dz
i=0
e not C*-invariant but U(1)-invariant

e restriction of ds to the unit sphere $2"1 c C"*! induced
the round metric ds§2,, i1

o realize P"(C) as quotient P"(C) = S2™+1 /S Hopf fibration
St — §2M - P"(C)

e by U(1)-invariance ds2,,., descends to a metric on P"(C)
(Fubini-Study metric)
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@ projective coordinates (Zy : - -+ : Z,) in P"(C), affine chart C"
with affine coordinates (1, zi, ..., z,)
(1+ zz")dzjdZ — 7/ zjdzjdZ'
(1 + Z,'Zi)2

dsgs =
(sum over repeated indices)
o Kihler potential K = log(1 + zz')

62
87~ Hziozi K

dsfs = gizdz'dZ,
@ projective coordinates (Zy : -+ : Zp,)

22(,dZ5Z1*d 2"
(ZaZ0)?

dsps =
with Zj, Wy = 3(Z.Wjs — ZgW,,) skew part of tensor
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o for Zo, =(2Zo:--:Zy)and Wy, = (W @ ...: W,) points in
P"(C) representing pure states |¢) (10| and |¢){¢| geodesic
distance in FS metric

| Z,We WgZB
distrs(v, ¢) = arccos EZ;Zé YZ‘@; = arccos ZaZO‘—W;VT/B

e on PY(C) = $3/S! = S? Fubini-Study metric is round metric
of radius 1/2 (Bloch sphere)

dx®> 4+ dy? 1

e R A 0dd? + db?
(14 r?2)2 4(sm ¢° +do7)

dsps =

affine chart coordinates z = x + iy € C and x = rcos#,
y = rsin with (¢,0) coordinates on S? related via
stereographic projection
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o cell decomposition
P"(C) = A"(C)UA"}(C)u- - -UAH(C)UA’(C) = A"(C)UP"H(C)

case of P1(C) = A}(C) U A%(C) = C U {oc} =~ S? one point
compactification

o linear subspaces PK(C) C P"(C) systems of linear equations
> o PaZs =0 in the projective coordinates
Zo=(2o: 1 2Zp)

@ general subvarieties (or schemes): systems of homogeneous
polynomial equations in the Z,

@ space parameterizing linear subspaces of dimension k in
P"(C): Grassmannian Gr(k, n)

o lilnes and hyperplanes duality Gr(n — 1, n) ~ Gr(1, n) and
more generally projective duality Gr(k, V) ~ Gr(n— k, V*)
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@ projective group: GL,(C) acts as linear transformations on
C" so
SLA(C)/(Z/nZ)

acts on P11
e case of P1(C) projective group

PSL,(C) = SLy(C)/(Z/2Z)

@ action by Mobius transformations

a b\ (2 _(aZo+bZy
c d 1 o cZo + dZq

in an affine chart (z,1) with z = Zy/ 23
a b ,_ +b
c d)° cz+d
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Segre embeddings
e tensor product V @ W = C"1 @ Cm*1 ~ CrH1(m+1) \ith
(v®@w)j = viw;
@ product of projective spaces P" x P is not a projective space
but it embeds via Segre embedding

]P)n % Pm N H:p(n-f—l)(m-i-l)—l

induced by the tensor product of vector spaces
Zo =Ly = Xu Yy
@ image is the subvariety of P("*1)(m+1)~1 defined by the
equations
Zyw Loy = Ly Zyy
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o Example: Segre quadric P! x P! C P3 equation
ZoZ3 - lez =0 (where Zo = ZoWp, Zl = ZoW1q, Zg = Z1W,
Z3 =21 Wl)

P! x P!

o ruled surface: two rulings

2y =\ and Zr = Ay
I = A3 Z3 =\

each pair of linear equations a line P! in P3, each P! factor in
P! x P! goes to a family of lines
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pure states and projective spaces
e pure states in P1(C): single gbit
@ pure states in P"(C) in terms of gbits?
e vector ¥ = (2, ..., Z,) € C"*! = polynomial
Py(t) = Zot" + Z1t" -+ Z, 1t + Z,
@ vector up to scaling by C* (affine chart where Zy # 0) =
monic polynomial
Py(t) =t"+z1t" 1ot zp 1t + 2,

can be identified uniquely with (unordered) set of roots
e points in P"(C) < unordered sets of n points in P1(C)
@ identification as symmetric product
S"X)=Xx---xX/S, PC)=S"(PYC))
n—times
@ in general symmetric products of a smooth variety are
singular, but not for complex curves (Riemann surfaces):
S"(Xg) are smooth
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e Wigner's theorem: all isometries of P"(C) arise from unitary
or anti-unitary transformations of C"*1

SU(n+1)/(Z/(n+1)Z), for n=1: SU(2)/(Z/2Z) = SO(3)

e infinitesimal isometries generators of Lie(SU(n + 1))
hermitian matrices H

e corresponding flow iZ% = HgZﬂ (Schrodinger)
@ pure and mixed states: P"(C) < Hermitian
(n+ 1) x (n+ 1)-matrices

1
ds® = ETr(d,o dp)
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Space of density matrices

@ density matrices
M™M= {p e Myn(C) | p* = p, p >0, Tr(p) =1}

e positivity (1, py) >0, all » € CN; p = a*a; spectrum
Spec(p) C R+

@ pure states are one-dimensional projections p = |¢)(1| hence
idempotent p? = p

@ seen that pure states form a PN=1(C) embedded as set of
extremal points of MV)

e Hilbert-Schmidt inner product (A, B) = Tr(A*B)
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e Herm(N) real vector space of hermitian matrices
N2-dimensional

Herm(N) ~ Lie(U(N))
N2—1
A=rT1pid + Z Tj O;
i=1
o = basis of Lie(SU(N))

Tr(A 1
O = Is/)’ Ti = ETI‘(O','A)

® p(n) = %id maximally mixed state, like uniform probability in
classical case: tracial state ¢(A) = Tr(pn)A) = & Tr(A)

@ subspace Lie(SU(N)) of matrices with Tr(A) =0

e P C Herm(N) positive cone p > 0
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@ can write density matrices in the form

e_BH N2—1
p = m with H= Z; Xio;
=

o; = basis of Lie(SU(N)) and x; “exponential coordinates”,
with 8 inverse temperature
@ one-parameter unitary group U = e’

@ time evolution p = i[p, H] infinitesimal of
O't(P) — eithe—itH

e BH .
® P = T(e—rHy equilibrium state
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e Kadison theorem: ¢ : M) — MV) bijection preserving
convex structure

d(Ap1 + (1= N)p2) = Ap(p1) + (1 — N)g(p2)

is given by p — UpU* with U unitary or anti-unitary

@ preserving convex structure: affine and sends extremal points
to extremal points, hence symmetry of PN=1(C) so from
Wigner theorem implemented by unitary/antiunitary

e adjoint action of unitaries is adjoint action of SU(N) on its
Lie algebra

1 N-—1 1 N-—1
pl=UpUt = nid+ Y nUoiU* = id+ Y 7/ 0;
i=1 i=1
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@ rotated Bloch vector

ETr(p ai) =3 ZTr oiUo;U")T;
J

@ the entries of an orthogonal matrix O = (Oj;) since
(00%); = dj

Oy = zTr(o;Uo; U*)

1
2
@ this realizes embedding

SU(N)/(Z/NZ) — SO(N? — 1)

e case of N = 2 have SU(2)/(Z/2Z) = SO(3)
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structure of M(V) as a convex set
e p = p* diagonalizable: eigenvalues \; > 0 with >, A\; =1 are
a classical probability distribution

e boundary strata of M(M), where at least one of the
eigenvalues is equal to zero

o copies of M) with k < N in the boundary

@ extremal points (pure states) where all but one are zero
(one-dimensional projections)

e fix a basis: those p € M(N) that are diagonal in that fixed
basis form an (N — 1)-dimensional simplex Ay_; ¢ M(V)
(eigenvalue simplex)

@ one such eigenvalue simplex for each choice of basis; each p is
in an eigenvalue simplex (for basis that diagonalizes it)
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structure organized by orbits of the unitary group
diagonalization: p = UAU* with U unitary and A diagonal
consider a A and the U(N)-orbit A — UAU*

if B is diagonal and unitary then [A, B] =0 so

UANU* = UBAB*U*

o if diagonal entries of A are all distinct this is the only
ambiguity

o if k entries agree then a further U(k) that commutes with A

@ densities p with nondegenerate spectrum have orbit the flag
manifold

U(N)/U(L) % - x U(L) = Flag{y |

o if degeneracies k; with Z,’ll ki = N in the spectrum then
orbit of p flag manifold

N
U(N)/U(kt) % - % Ulkm) = Flagll) o
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)

M

Figure 8.5 An attempt to visualise M. We rotate the eigenvalue simplex to
obtain a cone, then we rotate it in another dimension to turn the base of the cone
into a Bloch ball rather than a disc; that is a maximal face of M® . On the right,
we imagine that we have done this to all the three edges of the simplex. In each
maximal face we have placed three equidistant points — it happens that when these
points are placed correctly on all the three spheres, they form a regular simplex
inscribed in M.

from I.Bengtsson, K.Zyczkowski, “Geometry of quantum states”,
Cambridge University Press, 2017
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e resulting structure of M(V) subdivided into products of
simplices and flag manifolds

@ A diagonal densities is a classical simplex Apy_1
o first divide into N! pieces (different orderings of eigenvalues)

o one of these pieces Ay_; Weyl chamber: (N — 1)-dimensional
space of U(N) orbits

@ subdivide the Weyl chamber AN,l into pieces Ky, .k, with
ki + -4+ km = N, according to degeneracies of eigenvalues

e structure of MN)

N) (N)
M( ) = U Flagkl,k1+k27---,z,-ki X Kkl""’k'"
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:)  (on) (10) G2)=p.

Figure 8.6 The eigenvalue simplex and the Weyl chamber for N = 2,3 and 4.
The Weyl chamber Ay_i, enlarged on the right-hand side, can be decomposed
according to the degeneracy into 2V~ parts.

from |.Bengtsson, K.Zyczkowski, “Geometry of quantum states”,
Cambridge University Press, 2017
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Entropy for quantum information

@ analog of Shannon entropy S(P) = — ), pilog p;

@ von Neumann entropy for density matrices p € MV)

5(p) = —Tr(plog p)

where use spectral theorem to define log p
e if p diagonal
A1
A2
p= 5 = S(p) == _AilogX
: i

AN

e zero for pure states; log N for maximally mixed p(y) = N~Yid

Matilde Marcolli Classical and Quantum Information



e disjoint states p; have orthogonal ranges (nontrivial
eigenvectors span orthogonal subspaces)

e extensivity property: p; disjoint and p = ), pip; with
probabilities P = (p;)

N
S(p) = S(P)+ " PiS(p)
i=1

follows from Shannon entropy via diagonalization

e concavity: p=Ap1 + (1 — N)p2
S(p) = AS(pn) + (1 — N)S(p2)

@ subadditivity: p on Hi ® Hp with marginals (partial traces)
P11 = Ter(p) and p = Tryy, (p)

S(p) < S(p1) + S(p2)

o equality if p = p1 ® p2 independent subsystems
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relative entropy in quantum information

@ analog of Kullback—Leibler divergence

5(plo) = Tr(p(log p — log o))
@ can be oo (if o has zero eigevalue) and in general
S(plo) # S(alp)
for diagonal matrices Kullback—Leibler divergence
unitary invariance S(UpU*|UoU*) = S(plo)
positivity: S(p|le) > 0 and zero for p = o
joint convexity

5(Apat(1=A)pb|Apc+(1=A)pd) < AS(palpc)+(1=A)S(pslpd)

@ monotonicity under partial trace: p,o on Hi ® Ho with
marginals (partial traces) p1 = Try,(p) and p2 = Try, (p)
same for o1, 09

S5(piloi) < S(plo)
o for maximally mixed state S(p|p(n)) = log N — S(p) von
Neumann
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Kullback—Leibler divergence revisited

e classical case corresponds to requiring [p, h] = 0 (so diagonal
in same basis)

1 _
S(p+ hlp) = (h. 5p™"h) + O(h)
with (h, 1p=1h) Fisher-Rao metric

S(p+hlp) = Tr((p+ h)log(p+ h)) — Tr((p + h)logp)
= Tr(plog(p(! + p~'h))) + Tr(hlog(p(l + p~"h))) — Tr(plog p)
= Tr(plog(l 4+ p~th)) + Tr(hlog(l + p~*h))

S(p+hlp) = Te(pp~ h)—ETr(pp Lhp~th)+Tr(hp~ h)+O(h’) = Tr(hp’lh)

using log(/ + p~th) = p~th— 2p~thp=th+ O(h®) and Tr(h) = 0 and
h=h*
Lp (hp~*h) = (h 1 ~1h)
5Te(hp™ h) = (h, Sp
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Baker—Campbell-Hausdorff formula

@ quantum case [p, h] # 0 need to replace
log(p(1 4 p~th)) = log(p) + log(I 4 p~1h)) with BCH formula
o Baker—Campbell-Hausdorff formula:

log(e*e") = Z Z > k(a b)[XTYPXZYE L Xy
n>0 i=1 aj+b;>0

e r(a, b) combinatorial coefficients

aj )L
/<c(a, b) — (Z/( it bl))

ailbi!---aplby!

o [Xrybixayb2... xanybn] jterated commutators starting
with a; commutators with X, followed by b; commutators
with Y, etc
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@ more explicitly

log(eXe¥) = X+Y 4= [X Y]+ ([x X, Y1+ Y, 1Y, X]])

[Y X, X, Y]]]—ﬁ([[[[x Y], Y] Yl Y]

+[[[[Y7X],X]7X]7X])

+%([[[[X YL YL YEXT Y, X1 X1 X, YD) +

@ BCH up to second order terms in Y:

adx

XY
log(eXe”) = X + 22XE

where adx Y := [X, Y]
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Second order term in the relative entropy

@ quantum case [p,h] #0

S(p+ hlo) = (h.(F(p) — 3)p~"h) + O(A?)

e F(p) is given by

adjog o g2diog p
ead|ogp —1

F(p) =
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Tr((p + h)log(p + h)) — Tr((p + h) log p)

= Tr(plog(p(! + p~"h))) + Tr(hlog(p(! + p~"h))) — Tr(plog p) — Tr(hlog p)

S(p+ hlp)

= Tr(plogp) + Tr(plog(l + p~1h)) + %Tr(p[log p,log(l + p~th)]) + - --

+  Tr(hlog p) + Tr(h(F(p)log(! + p~*h) + O(h?))) — Tr(p log p) — Tr(hlog p)
up to second order log(/ + p~1h) = p~th — %pflhpflh—i- O(h®) so get

S(o+hlp) = Te(h) — Te(ho ')

1 1
+5Tx(pllog p, p~ A1) — 3 Tr(pllog p, p~ hp™ A1) + - -

+Tr(hF(p)p~ h) + -+

have Tr(h) = 0 and up to second order in h iterated commutators contain at most one
Y = —%pflhpflh and all other equal to X = log p or at most two Y = p~1h with all
the other X = log p; commute p with the X = log p variables, obtain trace of a
commutator (involving variables X and Y’ = —%hp‘lh) and trace vanishes on
commutators:

S(p+ hlp) = — 5 Te(ho ™" h) + Te(h(F (o) log(/ + p*h) + O(H?).
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o leading term in Taylor series expansion of (h, (F(p) — )p~1h)
recovers classical Fisher metric (h, 3p~1h)

1. adjog , €2deer 1 _ 1 1 _
(Flp)=300" = (d_l - 2/) Pt = (51 gadiog - )p

e quadratic form (h, (F(p) — 1)p~1h) contains the quantum

corrections to the classical Fisher metric
e quadratic form (h, (F(p) — 3)p~'h) is positive definite
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positivity
e basis in which p is diagonal p = (A\;),, but h is not

e commutator [log p, h] is given by
[log p, h]jj = (log A\j — log Aj)h;; and
(adfoy ,h)j = (log A — log Aj)¥hji

@ using h* = h

_ (log \; — Iog>\
k
(hadlsg, p~1h) = §:h R

I<J

o coefficients /\:('5') >0

R - )k
(A= A)(log \i —log A o

AR — N
ij (A +A)(log i —log M) 0, o,
i\ |
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@ expression F(p) —1/2 can be expanded as

11 1 1, 1 1
2 T goep T adiog o — 755ee » T 30576708 » T 1300600

ad?

Iogp+'”

e consider function G(t) even, with G(t) ~ t2/4 and G'(t) > 0
fort =0

tet 1 1 et/2(L — 1)+ e 2(5+1)

G(t):et—1_§_§(1+t): et/2 — e~ 1t/2

o after first order term %adbgp only even powers appear in
Taylor series expansion of F(p) — 1/2 of form:

Af;)jf (X 4 Glog(M) — log(A)))

2
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double expansion of relative entropy
e classical case [p, h] = [p, €] = [h,{] =0

Sp+ blo+0) ~ {(h—0), 5p™(h ~ )

same Fisher metric term

@ quantum case with nontrivial commutation of p, h, £
1 _
S(p+hlp+0) ~ {(h=0), 507 (h=0)+(h, (F(p)=1)p™  (h=0))
o first term still Fisher metric ((h — ¢), 3p~1(h — £)) > 0 but

remaining term (h, (F(p) — I)p~*(h —£)) no longer necessarily
non-negative
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Completely positive maps

@ evolution of a quantum system:
@ in isolation: p — UpU* unitary evolution
@ non-isolated = non-unitary processes H = H1 ® Ho with Hy
system and H, environment (ancillary)

p= p = Try,(U(p @ o) U”)

U unitary on H
@ case where o = |¢)(¢)| pure state and |¢) o.n. basis of H>

Ay = (9|U[y) € B(H1)
o = ey (U(p © 0)U") = Ty (Up ® ) (] U)
= > (BUR) (I U*16) = 3 AspA;
¢ o

S AAL =3 WU} 0|U) = (U U) = idy,
¢ )
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operator sum representation of completely positive maps

o family of operators {A;} in B(#1), one for each ¢; o.n. basis
of Ho
N AA =1, P =) ApAf
i i
@ measurement postulate: space of all possible measurement

outcomes
{A} D AA=1
i

(completeness relation)

@ quantum measurement performed on p produces new state

AipAs

= pi= =t
P T (A AT)

with probability p; = Tr(A;pA%¥) where ) . pi =1 by
completeness
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@ projective measurement: case where A; = AT = P; projectors
P% = P; = P¥ and orthogonal P;P; = §;P;

N

pr > PipP;
i=1

@ outcome of projective measurement

PipPi

= ith babilit ;= Tr(P;pP;) = Tr(P;
Pi= Ty Wit probability p (PipPi) (Pip)
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@ positive operator valued measures (not necessarily projections)

k
id=Y E, E=E, E>0
i=1
pi = Tr(Eip) = Tr(AipA7) with E; = AfA
@ any positive operator valued measure {E,-}ff:1 defines an affine

map from MW to A,_4

p— P=(p)y, pi=Tr(Ep)

o {E;} statistically complete if image P = (p;) determines p
uniquely (need N2 elements)

e {E;} pure if each E; = |¢;){¢;| has rank one

@ can always purify by passing to spectral projections
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Quantum channels

@ what are all possible “good” physical operations
® : MN) 5 MV on the set of quantum states?

@ seen case of p— > AjpAF with ), ATA; =1

@ is this the most general case? analog of stochastic matrices
for classical probabilities

e completely positive maps: positive maps ¢ : B(H) — B(H)
send positive elements to positive elements; completely
positive maps if on all extensions H ® H’ the map ® ® idy is
a positive map

@ quantum channels: trace preserving completely positive maps
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@ quantum channels ® can always be written (non-uniquely) in
Kraus form as

O(p) =D AipA;,  with D ATA =1
i i

@ can also represent completely positive trace preserving maps
with ®(px) = py through associated stochastic Choi matrix
S¢ with

(py)i = Z(5¢)a.b (Px)ab

a,b y

@ Kraus representations from factorizations Sp = AA*
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Entropy and channel capacity
e entropy of an operation ® :: MM — M) ysing Choi matrix

S(®) = 5(%&,,)

@ larger entropy when more terms in Kraus decomposition of &,
so when farther away from unitary (more decoherence)

@ can check this way how much entropy a quantum channel
introduces when acting on an initial pure state

@ entropy exchange of ¢

Co(p) = n]aaxz S(doi|Pp)
P -
1
over set of all representations of p as a mixed state
& ={oipilp=>_pioi}
i

@ channel capacity:

C(P) := max Co(p)
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Quantum information and categories

@ probabilistic category PC associated to a category C with zero
object and sum: wreath product of C and the category FP of
finite classical probabilities

@ similar idea for quantum probabilities QC

@ category of quantum probabilities: finite set X = Hilbert
space Hx = ®xexCx with C one-dimensional space at site
xeX

@ can also replace C, with Hilbert space V of fixed dimension:
the internal degrees of freedom at site x € X
@ category FQ of finite quantum probabilities

e objects: pairs (X, px) finite set X and density matrix px on
Hx

e morphisms: Morxg((X, px),(Y,py)) are given by quantum
channels @, completely positive trace preserving maps with
®(px) = py

Matilde Marcolli Classical and Quantum Information



quantum probabilistic categories OC

@ a category C with zero object and categorical sum
@ quantum probabilistic version QC

e objects: pC = ((Ca, Cp), pab)ab, With (Cs, Cp) finite collection
of pairs of objects in C and p = (pap) density matrix
o morphisms: for pC = ((G, Cp), pap) and p'C" = ((C/, C}), pj;),

=((c/.C
morphisms = € Morge(pC, p'C") given by finite collection

== {(¢ai,ra wbj,r)}v (SCD,)an}

where Y~ So, = So Choi matrix of quantum channel ® with
®(p) =p'
@ composition of morphisms =’ o = given by collection

E/ o= = {((bua,r’ o ¢ai7r7 wvb,r’ o wbj,r)v (S¢r)qb(5¢’r,) ij }r,r’
ij uv

which satisfies

D (S0.)a5(S0,) i =Y (S6)an(Ser) j = (Swrow)ab
if uv ij uv uv

rr’ig ij
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@ objects pC = ((Ca,, Cp), pab)ab, for a,b=1,..., N include
case N =1 just objects C € Obj(C) with weight p = 1 and
morphisms in C: embedding of category C into its quantum
probability version QC

o off-diagonal terms p;; of density matrix p describe interference
between amplitudes of the j-th and j-th state = a measure of
coherence of the mixed state

@ objects pC of category QC have an assigned amount of
coherence of pairs of objects Cj, C; in C, described by the
coefficients pj; of density matrix
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o if category C has zero object 0 and categorical sum II then
QC also does

@ zero object: pair (0,1) with 0 the zero object of C with p =1

@ coproduct is of the form
pClp'C" = (Glle C,p®p)
@ satisfies universal property of coproduct

((Cus Gs), fius)

((rirtbs) b T WQ)

. C: P . ! N« !
((Cn Cj)7 pU)((Z,',Ij),&I?’ HC CJ,P (9 p( a,Ib),\Ul)((Ca’ Cb)a pab)

Matilde Marcolli Classical and Quantum Information



e 7 :C — Clle Cf from universal property of coproduct in C
@ maps Vp=p®p and V'p' = p® p’ given by

Voo =6l and W = 8,0
(i'j"),(ab) (if),(a'b")

@ map pCIlp/C' — ﬁf that makes the diagram commute

% _ a1
®i)oey = Pus (P12

when the entry pys # 0 and

iy = (P1)u 0ab + (®2)us 0

when matrix entry pys =0
@ coproduct induced on FQ: product of independent systems
pUrgp' =p&p
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decoherence subcategory
@ decoherence subcategory PC of QC (case of mixed states with
diagonal density matrices — in a fixed basis)
e objects given by pairs (C,z) = ((Ci,...,GC),(z1: -+ 2n))
with C; € Obj(C) and z = (z1: -+ : z,) € P"7Y(C)
e morphisms given by a morphism ® : P"~1 — P™1 induced by
a linear map ® : C" — C™ up to scalars with ®z = 2z’ and a
collection {(¢ji., : G — Cj’,&J,)} with 32, &, = &
e coproduct (C,z) I (C',Z") = ((G; 1 G)ij, anm(z, 2')) where
Qnm P71 x PM1 5 PPm=1 s the Segre embedding
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variant: categories of arrows

@ variant of construction of categories QC by working with
arrows of C instead of pairs of objects in C
@ category C with zero object and sum: category of arrows AC
e objects: ¢c ¢ given by elements of Mor¢(C, C') for arbitrary
C,C’ € Obj(C)
o morphisms: L € Morac(¢c.c/, paa) pairs L= (Ly, L) with
Ly € Mor¢(C, A) and Ly € More(C’, A’) such diagram
commutes:

c Pc,ct c’

Daar

o category AC also has zero object and sum
e zero object of AC is identity morphism 1j of zero object of C
o coproduct ¢c ¢’ L ac ¢4 4 given by unique morphism
dcuacna : Clle A— C' Il A' determined by the morphisms
@c,cr and ¢a 4 via universal property of coproduct of C
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@ associate to category of arrows AC the category QAC, wreath
product with finite quantum probabilities 7O

e objects: pp = {@jj, pij} given by collections of morphisms
i CG—=CGinC, fori,j=1,...,N, some N € N, together
with an N x N density matrix p = (pj)

e morphisms: Morgac(po, p'¢’), with ¢ = (¢;) and ¢’ = (¢.,)
are pairs (L, ®) of a quantum channel ®(p) = o, with Choi

matrix (Se) j and a finite collection
ab

L={(Lj ,(5¢,)aljl'))}

ab"

of morphisms
. ’
L’j r d)lj - ¢ab
ab’

in AC with associated So, satisfying

> So, = So
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