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A Personal Introduction

Once upon a time... I moved from MIT to the MPI in 2000, I
started collaborating with Yuri shortly after moving to Bonn

Yuri I. Manin, Matilde Marcolli, Continued fractions, modular
symbols, and noncommutative geometry. Selecta Math.
(N.S.) 8 (2002), no. 3, 475–521.

Yuri I. Manin, Matilde Marcolli, Holography principle and
arithmetic of algebraic curves. Adv. Theor. Math. Phys. 5
(2001), no. 3, 617–650.

the first generated many interesting connections between
arithmetic and noncommutative geometry, the second is connected
to recent developments in p-adic AdS/CFT holography
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Over the years, we coauthored 20 more papers: noncommutative

geometry and arithmetic, F1-geometry, string theory, classical and quantum codes,

cosmology, semantics, motives, persistent homology, dessins, neural networks,

homotopy theory spectra, information

“Word Cloud” from the arXiv
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Some things I learned:

1 math (a lot!)

2 how nice it is to look for unexpected connections between
seemingly different things

3 the value of following one’s own imagination
(math is a way of expressing the imagination)

4 the value of continuously learning new things: what we
half-see in the fog when exploring what we don’t yet know

5 how nice it is to have an amazing friend!

... plus lots of fun, shared thoughts, and surprising coincidences
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Recently... while working on one of our latest papers
• Noemie Combe, Yuri I. Manin, Matilde Marcolli, Moufang
Patterns and Geometry of Information, arXiv:2107.07486
(for the birthday of our friend Don Zagier) ... I was reading:
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About this talk:
I will talk about shapes in the fog, not yet fully formed
recognizable structures

The motivation comes from our recent work

Yuri I. Manin, M. Marcolli, Homotopy Theoretic and
Categorical Models of Neural Information Networks,
arXiv:2006.15136
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Original motivation: some observation from neuroscience and the
theory of computation

(a) neocortical microcircuitry: formation of nontrivial Betti numbers in clique complex

of network activated in response to stimuli; (b) in distributed computing enough

nontrivial homology is necessary for successfully complete their task; (c) neural codes

encode stimulus space up to homotopy; (d) integrated information and other

information measures assigned to networks (not reducible to separate subsystems);

also relation between informational and metabolic resources
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Categories of Resources

mathematical theory of resources

B. Coecke, T. Fritz, R.W. Spekkens, A mathematical theory of
resources, Information and Computation 250 (2016), 59–86.
[arXiv:1409.5531]

Resources modelled by a symmetric monoidal category
(R, ◦,⊗, I) (or written “additively” as (R,⊕, 0))

objects A ∈ Obj(R) represent resources, product A⊗ B
represents combination of resources, unit object I empty
resource

morphisms f : A→ B in MorR(A,B) represent possible
conversions of resource A into resource B

convertibility of resources when MorR(A,B) 6= ∅
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Measuring semigroups of categories of resources (Coecke, Fritz,
Spekkens)

preordered abelian semigroup (R,+,�, 0) on set R of
isomorphism classes of Obj(R) with A + B the class of A⊗ B
with unit 0 given by the unit object I and with A � B iff
MorR(A,B) 6= ∅
maximal conversion rate ρA→B of resources

ρA→B := sup{m
n
| n · A � m · B, m, n ∈ N}

number of copies of resource A are needed on average to
produce B

measuring semigroup: abelian semigroup with partial ordering
and semigroup homomorphism M : (R,+)→ (S , ∗) with
M(A) ≥ M(B) in S when A � B in R

satisfy ρA→B ·M(B) ≤ M(A)
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Summing functors (Segal’s Gamma spaces formalism, 1973)

C a category with sum and zero-object (binary codes,
transition systems, resources, etc)

(X , x0) a pointed finite set and P(X ) a category with objects
the pointed subsets A ⊆ X and morphisms the inclusions
j : A ⊆ A′

a functor ΦX : P(X )→ C summing functor if

ΦX (A ∪ A′) = ΦX (A)⊕ ΦX (A′) when A ∩ A′ = {x0}

and ΦX ({x0}) is zero-object of C
ΣC(X ) category of summing functors ΦX : P(X )→ C,
morphisms are invertible natural transformations

• Key idea: a summing functor is a consistent assignment of
resources of type C to all subsystems of X so that a combination
of independent subsystems corresponds to combined resources
• ΣC(X ) is the configuration space that parameterizes all possible
such assignments
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Category of summing functors

original Segal formulation for C with sum and zero-object,
extended by Thomason to C unital symmetric monoidal

a summing functor ΦX : P(X )→ C completely determined by
values ΦX (x) := ΦX (Ax) on Ax = {x , ?} for x ∈ X r {?}
Ĉ category with same objects as C and the invertible
morphisms of C
X finite pointed set with #X = n + 1: category ΣC(X ) of
summing functors equivalent to Ĉn

similarly for unital symmetric monoidal case: summing
functors specified by

ΦX := {ΦX (x)}x∈Xr?

in Ĉn with morphisms in Ĉn

Matilde Marcolli Categorical dynamics: from Hopfield to Pareto



Meaning in homotopy theory (loop-deloop)

take case where C is an abelian category, then (Quillen) the
higher K-theory K (C) is the K-theory of an infinite loop space

the category of summing functors ΣC(X ) provides a delooping
of this infinite loop space (Carlsson)

a Gamma space defines an associated spectrum, by extending
the functor Γ : F → ∆ with F finite (pointed) sets and ∆
(pointed) simplicial sets to an endofunctor Γ : ∆→ ∆ and
applying it to spheres

when C = F with ΓF : F → ∆ get the sphere spectrum

all connective spectra are obtained through this construction
for C a symmetric monoidal category (Thomason)

hence nerves N (ΣC(X )) are topologically very nontrivial
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Meaning in our setting

nerve N (ΣC(X )) of category of summing functors organizes
all assignments of C-resources to X -subsystems and their
transformations into a single topological structure that keeps
track of equivalence relations between them (invertible natural
transformations as morphisms of ΣC(X ) and their
compositions become simplexes of the nerve)

view N (ΣC(X )) as a topological parameterizing space for all
such consistent assignments of resources of type C to subsets
of X
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From finite sets to networks: directed graphs

category 2 has two objects V ,E and two morphisms
s, t ∈ Mor(E ,V )

F category of finite sets: objects finite sets, morphisms
functions between finite sets

a directed graph is a functor G : 2→ F
G (E ) is the set of edges of the directed graph
G (V ) is the set of vertices of the directed graph
G (s) : G (E )→ G (V ) and G (t) : G (E )→ G (V ) are the usual
source and target maps of the directed graph

category of directed graphs Func(2,F) objects are functors
and morphisms are natural transformations
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Network summing functors

want to replace finite set X with directed graph G (functor
G : 2→ F , from category with objects V ,E morphisms s, t
to finite sets)

basic additivity rule functor Φ : P(G )→ C from subgraphs
with inclusions

Φ(G ′ t G ′′) = Φ(G ′)⊕ Φ(G ′′)

then want additional compositionality rules
1 conservation laws at vertices (Kirchhoff): equalizer and

coequalizer constructions for source and target
2 grafting operation (when target category C has operad or

properad structure)
3 inclusion exclusion (as exact sequences) when C is abelian
4 etc
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Example: Conservation laws at vertices

source and target functors s, t : ΣC(EG ) ⇒ ΣC(VG )

equalizer category ΣC(G ) with functor ι : ΣC(G )→ ΣC(EG )
such that s ◦ ι = t ◦ ι with universal property

ΣC(G )
ι // ΣC(EG ) s //

t
// ΣC(VG )

A

∃u

OO
q

99

this is category of summing functors ΦE : P(EG )→ C with
conservation law at vertives: for all A ∈ P(VG )

ΦE (s−1(A)) = ΦE (t−1(A))

in particular for all v ∈ VG have inflow of C-resources equal
outflow

⊕e:s(e)=vΦE (e) = ⊕e:t(e)=vΦE (e)

another kind of conservation law expressed by coequalizer
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Example: Grafting

C symmetric monoidal category, full subcategories C(n,m)
Obj(C) = ∪n,m∈NObj(C(n,m));
the monoidal structure (⊗, I) satisfies

⊗ : C(n, k)× C(n, r)→ C(m + n, k + r) ;

the family {C(n,m)}n,m∈N is a properad in Cat.

then Σprop
C (G ) ⊂ ΣC(G ) summing functors Φ : P(G )→ C:

1 Φ(G ′) ∈ Obj(C(degin(G ′), degout(G ′))
2 Φ({v}) = Φ(C (v)) corolla C (v)
3 Φ(G ′ ? G ′′) = Φ(G ′) ◦E(G ′,G ′′) Φ(G ′′) with E (G ′,G ′′) ⊂ EG

edges one en in VG ′ one in VG and ◦E(G ′,G ′′) properad
composition

◦E(G ′,G ′′) : C(degin(G ′), degout(G ′))×C(degin(G ′′), degout(G ′′))

→ C(degin(G ′ ? G ′′), degout(G ′ ? G ′′))

network summing functor Φ ∈ Σprop
C (G ) completely

determined by value on corollas
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Discrete and continuous Hopfield dynamics

discrete version (binary neurons)

νj(n + 1) =

{
1 if

∑
k Tjkνk(n) + ηj > 0

0 otherwise

continuous version (neuron firing rates as variables and
threshold-linear dynamics)

dxj
dt

= −xj +

(∑
k

Wjkxj + θj

)
+

Wjk real-valued connection strengths, θj constant external
inputs, and (·)+ = max{0, ·} threshold function

finite difference version

xj(t + ∆t)− xj(t)

∆t
= −xj + (

∑
k

Wjkxk(t) + θj)+

(versions with or without “leak term” −xj on r.h.s.)
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Hopfield Network (original binary case)

• historical connection between statistical physics of spin glass
models and neural networks

• nodes variables si = ±1, update

si =

{
+1

∑
j wijsj ≥ θi

−1 otherwise

E = −1

2

∑
i ,j

wijsi sj −
∑
i

θi si

Energy landscape of the Hopfield network

convergence to fixed point attractor: model of associative memory
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Hopfield Networks with threshold nonlinearity (recent work by
Carina Curto and collaborators)

Hopfield equations (continuous version) with threshold
nonlinearity: patchwork of linear systems across wall crossings
given by a hyperplane arrangement
fixed points arise when fixed points of the linear system lie in
the correct chamber of the hyperplane arrangement
dynamical behavior (fixed points support) from combinatorial
structures of (sub)graphs “motifs”
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• Here we follow a different (but related) idea: Hopfield equations
where variables are not the real xi but assignments of resources to
the network (summing functors Φ): equation on the configuration
space ΣC(G ): key idea: all levels of structure associated to
network (functorially related) evolve consistently in the dynamics

Categorical Hopfield dynamics

as above the configuration space where the dynamics takes
place is a category ΣC(G ) of network summing functors, for a
given network G and category of resources C
two main examples Σeq

C (G ) and Σprop
C (G )

possibly ρ : C → R functor to another category of resources
with respect to which dynamics is measured (can take C = R
for simplicity)

Two main ingredients for a categorical form of the Hopfield
equations:

1 threshold dynamics (using (R,+,�) preordered semigroup of
category R)

2 weights matrix replaced by endofunctors

Matilde Marcolli Categorical dynamics: from Hopfield to Pareto



Threshold and endofunctors

threshold endofunctor (·)+ : Ĉ → Ĉ

(C )+ =

{
C if [ρ(C )] � 0 in (R,+,�)

0 otherwise,

not an endofunctor of C also (·)+ not monoidal

(R,+,�) preordered semigroup of category R
summing functor in terms of {Φ(x)}x∈Xr{?} ⇒ new summing
functor (Φ)+ by values (Φ(x))+ in C for x ∈ X

E(C) = Func(C, C) category of monoidal endofunctors of C,
morphisms natural transformations

sum of endofunctors defined pointwise
(F ⊕ F ′)(C ) = F (C )⊕ F ′(C ) for all C ∈ Obj(C)
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Categorical Hopfield dynamics for Σeq
C (G ) and Σprop

C (G )

Σ
(2)
E(C)(E ) category of bisumming functors

T : P(E )× P(E )→ E(C) summing in both arguments

coordinates: Tee′ with TA,B = ⊕e∈A,e′∈BTee′

Σ
(2)
E(C)(G ) equalizer of s, t : Σ

(2)
E(C)(E ) ⇒ Σ

(2)
E(C)(V )

equation

Xe(n + 1) = Xe(n)⊕ (⊕e′∈ETee′(Xe′(n))⊕Θe)+

or variant Xe(n + 1) = (⊕e′∈ETee′(Xe′(n))⊕Θe)+ (leaking
term or not)

initial condition Φ0 ∈ Σeq
C (G ) with Xe(0) := Φ0(e)

fixed summing functor Ψ ∈ Σeq
C (G ) with Θe = Ψ(e)

for case of Σprop
C (G ) better use equation at vertices (where

operad/properad composition happens)

Xv (n + 1) = Xv (n)⊕ (⊕v ′∈VTvv ′(Xv ′(n))⊕Θv )+

or Xv (n + 1) = (⊕v ′∈ETvv ′(Xv ′(n))⊕Θv )+
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Some properties of the dynamics

XA(n) =: Φn(A) sequence of summing functors in ΣC(G )

assignment T : Φn 7→ Φn+1 defined by solution defines
endofunctor T : ΣC(G )→ ΣC(G )

induced discrete topological dynamical system τ on realization
|N (ΣC(G ))| = BΣC(G ) (Segal’s Gamma space)

for C a category of weighted codes, categorical Hopfield
dynamics induces usual (finite difference) Hopfield equation
on the weights

Question: general results in categorical setting about
existence of solutions and behavior?
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Example N.1: modeling neurons (nodes of network) with DNNs

• D. Beniaguev, I. Segev, M. London, Single cortical neurons as
deep artificial neural networks, Neuron 109 (2021) 2727–2739.

L5 cortical pyramidal neuron and L5PC neuron modeled by DNNs
(seven hidden layers and one hidden layer of 128 nodes)
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Category of DNNs (deep neural networks)

interfaces directed acyclic graphs (IDAGs): finite acyclic
graphs G = (V ,E ) with vertex set V = I t H t O (inputs,
hidden nodes, outputs) source and target maps s : E → I t H
and t : E → H t O
category IDAG: objects IDAGs G = (I ,H,O,E ) and
morphisms ϕ : G → G ′ of directed graphs (mapping inputs to
inputs, outputs to outputs)
properad structure: P(n,m) = IDAG(n,m) full subcategory
with n inputs and m outputs: composition rules ◦i1,...,i`j1,...,j`

graft
set of outputs {i1, . . . , i`} to set of inputs {j1, . . . , j`}
operad: single output case (case revelant for model)
O(n) = IDAGo(n) = IDAG(n, 1)
monoidal structure on IDAGo : grafting at the output
G = (I ,H, {o},E ), G ′ = (I ′,H ′, {o ′},E ′)
G⊕G ′ = (I×{o ′}t{o}×I ′,H×{o ′}t{o}×H ′, {(o, o ′)},EtE ′)
this is the underlying graph architecture of the DNNs, then
need weights
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category WIDAGo of weighted single-output IDAGs

objects pairs (G ,W ) with G = (I ,H, {o},E ) an IDAG with
single output and W (weight matrix) function
W : V × V → R with V = I t H t {o} vertices, satisfying
W (u, v) = 0 if {e ∈ E | s(e) = u, , t(e) = v} = ∅ (no looping
edges so W (v , v) = 0 for all v ∈ V )

ϕ ∈ MorWIDAGo ((G ,W ), (G ′,W ′)) morphisms ϕ : G → G ′ of
directed graphs with W ′ = ϕ∗(W ), pushforward of weight
matrix

ϕ∗(W )(u′, v ′) =
∑

u :ϕ(u)=u′

v :ϕ(v)=v ′

W (u, v)
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monoidal structure (G ,W )⊕ (G ′,W ′) = (G ⊕ G ′,W ⊕W ′)
with (W ⊕W ′)((u, o ′), (v , o ′)) = W (u, v) and
(W ⊕W ′)((o, u′), (o, v ′)) = W ′(u′, v ′)

unit (0,W0) = ((∅, ∅, {o}, ∅),W0(o, o) = 0)

operad structure as in IDAGo with composition on weights
(W ◦j W ′)(u, v) = W (u, v) when u, v ∈ V ,
(W ◦j W ′)(u′, v ′) = W ′(u′, v ′) when u′, v ′ ∈ V ′, and if output
o grafted to input v ′j weights (W ◦j W ′)(u, v ′j ) = W (u, o) and
(W ◦j W ′)(o, v ′) = W ′(v ′j , v

′), zero otherwise
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inhibitory-excitatory balance

unit 0 := (0,W0) neither initial nor final

condition ∃ morphism ψ : (0,W0)→ (G ,W ) implies
W : V × V → R is the trivial map (zero weights)

condition ∃ morphism ϕ : (G ,W )→ (0,W0): the map
collapsing graph G single output vertex o satisfies
ϕ∗(W )(o, o) = W0(o, o) = 0 so∑

(u,v)∈V×V

W (u, v) = 0

inhibitory-excitatory balance condition over whole network G
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Dynamics case with leak term

endofunctor T of the category ΣWIDAGo (G ) that maps
T : Φ 7→ (T (Φ)⊕ Φ̃)+ with Φ̃ a summing functor defined by
local data (G̃v , W̃v ) and T endofunctor with local data Tvv ′

stationary solutions Φv = (Gv ,Wv ) fixed points of
endofunctor T objects with isomorphism

ηv : (Gv ,Wv )
'→ (Gv ,Wv )⊕

(⊕
v ′

Tvv ′(Gv ′ ,Wv ′)⊕ (G̃v , W̃v )

)
+

underlying directed graphs with isomorphism

ηv : Gv
'→ Gv ⊕Gv

for (Gv ,Wv ) := ⊕v ′∈V (G)Tvv ′(Gv ′(n),Wv ′(n))⊕ (G̃v , W̃v )

by ⊕ in WIDAGo ⇒ GV = {o ′} and (Gv ,Wv ) = (0,W0)

regardless of endofunctors Tvv ′ , solutions converge to a fixed
point (in finite time) iff inhibitory-excitatory balance on
(Gv ,Wv ) violated at some step; otherwise #V →∞ no limit
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Dynamics case without leak term (more interesting)

evolution equation

(Gv (n+1),Wv (n+1)) =
(
⊕v ′∈V (G)Tvv ′(Gv ′(n),Wv ′(n))⊕ (G̃v , W̃v )

)
+

stationary solutions pairs (Gv ,Wv ) where the right-hand-side
satisfies balance condition and

(Gv ,Wv ) = ⊕v ′∈V (G)Tvv ′(Gv ′ ,Wv ′)⊕ (G̃v , W̃v )

if balanced condition is violated at some step solution
stabilizes at (0,W0)

now behavior depends on specific choice of endofunctors Tvv ′

example Tvv ′ = Tvδv ,v ′ with Tv (Gv ,Wv ) = (Gv ,Tv (Wv ))

functor Tv as implementing a backpropagation mechanism on
the DNN machine (Gv ,Wv )
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example: updating weights by gradient descent

Tv (Wv ) := Wv − ε∇WvFv

some cost function Fv for the specific DNN (Gv ,Wv ) and a
scale ε > 0 (learning rate)

then fixed point T (Wv ) = Wv is critical point of the cost
function (minimum, depending on Fv shape)

consistency condition T (W ′) = ϕ∗ T (W ) holds since

(ϕ∗ T (W ))(a, b) =
∑

u :ϕ(u)=a
v :ϕ(v)=b

T (W )(u, v) =
∑
u,v

W (u, v)− ε
∑
u,v

∇W (u,v)F

gives W ′(a, b)− ε∇W ′(a,b)F = T (W ′)(a, b)
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• Note: oversimplistic toy model as it assumes updating
mechanism of weights of each DNN machine (Gv ,Wv ) uncoupled
to the other machines at other nodes

• these just consistency checks: get usual Hopfield equations, get
DNN backpropagation

• other related cases: more general automata (transition systems,
models of concurrent and distributed computing) in our paper
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Example N.2: a game of invisible varieties

inspired by some ideas discussed in our recent paper:

Yuri I. Manin, Matilde Marcolli, Homotopy Spectra and Diophantine
Equations, arXiv:2101.00197

invisible varieties: number field K , varieties X ,Y ovr K , say
X is Y -invisible if HomVarK (Y ,X ) = ∅
Spec(K )-invisible: K -varieties with no K -points, X (K ) = ∅
local-to-global principle and Brauer-Manin obstruction:
X (K ) ⊆ X (AK )Br ⊆ X (AK ), ring of adèles AK of K

more general obstruction data (Corwin–Schlank 2020): very
strong approximation X (K ) = X (AK ,S)ω, conditions under
which it holds for a finite affine open cover of X
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Spec(K )-invisibility gives an example of the threshold
dynamics:

(X )+ :=

{
X HomVarK (Spec(K ),X ) 6= ∅
Spec(K ) HomVarK (Spec(K ),X ) = ∅ .

VarK with monoidal structure given by fibered product
X ⊕ Y = X ×Spec(K) Y

building varieties along graphs: G finite directed graph,
Φ(e) = Xe assignment of K -varieties Xe ∈ VarK at edges of G

“Kirchhoff conservation law” at vertices:

⊕s(e)=vXe = ⊕t(e′)=vXe′

Note this balance condition has “cancellation” subtleties like
Zariski cancellation (for char(K ) > 0 and n ≥ 3 ∃ X with
X × A1 ' An+1 but X 6' An, N.Gupta, 2014)
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Where to get endofunctors?

Example that does not stabilize the dynamics:

Denef-Loeser arc spaces Lm(X ) algebraic variety whose
K -points are Lm(X )(K ) = X (K [u]/um+1)

Intuition: points of L1(X ) are points x of X and tangent
vectors v in Tx(X )

for each pair e, e ′ ∈ E (G ) assign a choice of endofunctor
Tee′ = Lmee′ (can take all L1 for example)

Dynamics (example without leak and forcing terms)

Xe(n + 1) = (⊕e′Tee′(Xe′(n)))+

if initialized Xe(0) = X with X (K ) 6= ∅ dynamics just keeps
building products of iterated arc spaces

Example that does stabilize the dynamics:

use relation between torsors and K -points

Matilde Marcolli Categorical dynamics: from Hopfield to Pareto



Torsors (see Poonen’s Rational Points book)

G-torsor over K : a K -variety X with a right action of an
algebraic group G with XK̄ with GK̄ action isomorphic to
trivial torsor

these torsors classified by H1(K ,G)

G-torsor over base scheme S : S-scheme X with right action
X ×S G→ X of a group scheme G→ S such that (after a
base change S ′ → S) XS ′ isom to GS ′ with action on itself by
translations, and

X ×S G→ X ×S X (x , g) 7→ (x , xg) isomorphism

classification (via torsor sheaves and descent) by appropriate
cohomology H1(S ,G)
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Torsors and K -points (see Skorobogatov’s book)

X ∈ VarK and G smooth alg group over K ; G -torsor
f : Z → X with class ζ ∈ H1(X ,G)

rational points x ∈ X (K ) give G-torsor over K taking fiber
Zx → {x}, class ζ(x) ∈ H1(K ,G)

x : Spec(K )→ X , x∗ : H1(X ,G)→ H1(K ,G), ζ 7→ ζ(x)

evaluation X (K )→ H1(K ,G), x 7→ ζ(x)

Partition of K -points

X (K ) =
⊔

τ∈H1(K ,G)

{x ∈ X (K ) | ζ(x) = τ} =
⊔

τ∈H1(K ,G)

f τ (Z τ (K ))

f τ : Z τ → X twisted torsor: Z ×G
K T with T → Spec(K ) with

class τ

a G-torsor over X determines a partition of the K -points of X
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back to our game of invisible varieties

network G with single output at each node

Fix a choice of a group scheme G over a base S

initialize the dynamics by assigning to egdes objects Xe in
VarS given by G -torsors he : Xe → S over S with balance
condition

Xe =
∏

e′ : t(e′)=s(e)

Xe′

with corresponding classes ζe =
∑

e′ ζe′

transform Xe by taking Tee′ supported on e ′ with t(e ′) = s(e)
(just write Te′ as unique output e)

Te(Xe) = Z τe (Xe)

with f τe : Z τe → Xe is twisted G-torsor, with τe still satisfying
same balance condition

equation: Xe(n + 1) = (⊕e′Tee′(Xe′(n)))+ with threshold
given by visibility
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above threshold (existence of K -points) have dynamics

Xe(n+1) = ⊕e′Tee′(Xe′(n) =
∏

e′:t(e′)=s(e)

Z τe′ (Xe′(n)) = Z τe (Xe(n))

if Z τe (Xe(n)) has no more K -points dynamics collapses to a
point Xe(n + 1) = Spec(K ) contributing trivially to product
at following vertex

initialize with Xe ’s with finite sets of K -points

function
∑

e L(Xe) =
∑

e #he(Xe(K )) is a Lyapunov function
of the dynamics

∑
e L(Xe(n + 1)) ≤

∑
e L(Xe(n)) because of

partition of K -points Xe(K ) by f τe (Z τe (Xe)(K ))

fixed points occur when dynamics collapses to a point (when
the Z τe (Xe) are K -invisible), as otherwise fixed point
condition would require X ' Z τ (X )
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Some questions

can more interesting examples of categorical Hopfield
dynamics be constructed in categories of varieties and
schemes?

what about other categories of resources?

what about other models of categorical dynamics (related to
Hopfield network dynamics)?

about this last question: searching for equilibria of Hopfield
networks is related to searching for Pareto optimization
solutions

Next question: is there a categorical Pareto optimization?
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A background story of my ongoing Pareto musings
Yuri sent me last November a copy of his new book
(by the way, read it: it’s great!)
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first thought: I agree completely with this! ...

second thought: what if objectives and values incompatible
and irreducible to a single real variable would be imagined
instead like objects in categories?
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Note: categories and universal properties are naturally expressing
constraints and optimization

Example: limits and colimits in categories

diagram F : J → C and cone N, limit is “optimal cone” (dual
version for colimits)

special cases of limits and colimits: equalizers, coequalizers

Example: thin categories (S ,≤) set of objects S and one
morphism s → s ′ when s ≤ s ′

diagram in (S ,≤) is selection of a subet A ⊂ S
limits and colimits greatest lower bounds and least upper
bounds for subsets A ⊆ S

functors compatible with limits and colimits describe
constrained optimization

Matilde Marcolli Categorical dynamics: from Hopfield to Pareto



Pareto optimization problem (multi-objective programming)

several simultaneous objective functions, valued in cones inside a
real Euclidean space Rn need to be optimized

subject to constraints: cannot individually maximize each function

Pareto optimal solution (non-unique): none of the objective
functions can be improved without worsening some of the others

Pareto frontier: set of Pareto optimal solutions

possible solution S1 Pareto dominates S2 if all objective valuations fi
satisfy fi (S1) ≥ fi (S2) and for at least one of strict inequality

Pareto optimal solutions: not Pareto dominated by any other

Matilde Marcolli Categorical dynamics: from Hopfield to Pareto



Swarm Intelligence and the Pareto frontier

swarm intelligence approach: find solutions as close as
possible to the Pareto frontier and as diverse as possible (map
out different regions of the Pareto frontier)

virtual swarm of “particles” that moves according to some
dynamical rules across the landscape of possibilities (the
configuration space)

structure of the swarm intelligence algorithm:
1 initializes the swarm by random distribution of positions and

momenta with uniform measure over configuration space
2 each individual particle in the swarm can memorize its best

solution up to the present time
3 each particle in the swarm tends to search near its best

position obtained so far
4 each particle can see the positions of the other particles of the

swarm at the same time and evaluate the best position
achieved by the swarm at that moment;

5 each individual particle tends to move towards the best
position achieved within the swarm at that time
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Swarm Intelligence dynamics

swarm of particle flowing towards energy minimum

(image by Alex Thevenot)
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Update rules of the swarm dynamics (discrete time)

Update velocities:

Vi (n+1) = λ3 Vi (n)+λ1 G1(Xi (n)−Xi,best(n))+λ2G2(Xi (n)−Xbest(n))

Gi Gaussians, λi tunable parameters; Xi ,best(n) best position
among {Xi (0), . . . ,Xi (n)} and Xbest(n) best position among
{X1(n), . . . ,XN(n)} (swarm of N particles)
Update positions:

Xi (n + 1) = Xi (n) + Vi (n + 1)

Known results: general conditions under which for large swarm size
N and many iterations n positions of the swarm draw out the
Pareto frontier

role of parameters in swarm dynamics (image by A.Thevenot)
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Next step: instead of being optimization of functions in cones in
Euclidean spaces imagine the desirable objectives are just objects
in categories, no direct convertibility to real valued evaluations

1 need a notion of objective valuations in the setting of
categories of resources

2 need the appropriate notion of Pareto frontier

3 need an analog of the swarm intelligence dynamics

4 categories need to be enriched with probabilistic data since
the swarm intelligence approach is intrinsically probabilistic

• as before want to think of this as a problem of optimization of
resources assigned to a network
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Objective valuation functors

G a network, ΣC(G ) a category of summing functors (say
Σeq
C (G ) or Σprop

C (G )

a finite family Vα of categories that describes possible
objectives for optimization with functors Fα : ΣC(G )→ Vα
(valuations) and Xα ∈ Obj(Vα) (goals)

(F ,X ) = (Fα,Xα)α∈I a choice of valuation functors and
target objects

Note: valuation functors may factor through the target
category of resources C (not necessarily)

a summing functor Φ ∈ ΣC(G ) is F -minorized by another
Ψ ∈ ΣC(G ) if

HomVα(Fα(Φ),Fα(Ψ)) 6= ∅ ∀α

strictly F -minorized if also ∃α with Fα(Φ) and Fα(Ψ) not
isomorphic in Vα (majorization similarly defined)

this means Fα(Ψ) is obtainable from Fα(Φ) by an admissible
“conversion of resources” in Vα
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Pareto frontier

a summing functor Φ ∈ ΣC(G ) is (F ,X )-minorized by another
Ψ ∈ ΣC(G ) if

HomVα(Fα(Φ),Fα(Ψ)) 6= ∅ ∀α

HomVα(Fα(Φ),Xα) 6= ∅ ∀α
HomVα(Fα(Ψ),Xα) 6= ∅ ∀α

that is, Fα(Ψ) is obtainable from Fα(Φ), while both are good
enough to achieve the goals Xα
Φ ∈ ΣC(G ) is on the (F ,X )-Pareto upper frontier if

HomVα(Fα(Φ),Xα) 6= ∅ ∀α

but there is no Ψ ∈ ΣC(G ) not isomorphic to Φ that is a strict
(F ,X )-minorization of Φ

“upper frontier” as “above the goals”: case of lower frontier is
analogous with HomVα(Xα,Fα(Φ)) 6= ∅ conditions and
majorizations (visibility conditions for varieties, for instance)
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valuation functors Fα : ΣC(G )→ Vα are in general not fully
faithful (not faithful, also not full)

Dα full subcategory of Vα on Fα(Φ) objects

can think of (F ,X )-minorizations as a subcategory C(Dα,Xα)
of co-cones with tip Xα (and Dα diagrams)

Fα(Φ) //

""

Fα(Ψ)

||
Xα

if Vα has colimits Lα = colim C(Dα,Xα) and valuations Fα
are essentially surjective then Ψ on Pareto frontier iff
Fα(Ψ) ' Lα for some α

so can get Pareto frontier as subcategory

Question: is there a swarm dynamics associated to it?
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Preliminaries: probabilistic categories

category C ⇒ probabilistic version PC: like a wreath product
FP o C of the category C with the category FP of finite
probabilities

FP finite probabilities: objects (X ,P) of a finite set X with a
probability measure P, morphisms
S ∈ HomFP((X ,P), (Y ,Q)) given by stochastic
(#Y ×#X )-matrices S with

Syx ≥ 0, for all x ∈ X , y ∈ Y ;∑
y∈Y Syx = 1 for all x ∈ X ;

the probability measures are related by Q = S P.
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objects of PC: formal finite convex combinations

ΛC =
∑
i

λiCi

with Λ = (λi ) finite probability and Ci ∈ Obj(C)

morphisms HomPC(ΛC ,Λ′C ′) are pairs (S , f ) : ΛC → Λ′C ′

with

S stochastic matrix with SΛ = Λ′;
f = {fab,r} finite collection of morphisms fab,r : Cb → C ′

a with
assigned probabilities µab

r ;
probabilities satisfy

∑
r µ

ab
r = Sab.

interpret morphism (S , f ) as mapping Cb to C ′a by randomly
choosing a morphism from the set {fab,r}, with probability µabr
of choosing fab,r
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Observations

objects ΛX =
∑

i λ
n
i=1Xi and Λ′X ′ =

∑m
j=1 λ

′
jX
′
j in a

probabilistic category PC are isomorphic if and only if n = m
with Xi ' X ′σ(i) (isomorphic in C) for some permutation σ and

λi = λ′σ(i) (stochastic matrices with stochastic inverse are

permutations)

sequence Λ(n)X (n) =
∑rn

k=1 λ
(n)
k X

(n)
k of objects in PC

converges to ΛX =
∑r

k=1 λrXr if for all n ≥ n0, have rn ≥ r
and a subset In ⊂ {1, . . . , rn} of size #In = r

X
(n)
σn(k) ' Xk for some permutation σn ∈ Sr

σn(Λn|In)→ Λ in ∆r , and Λn|Icn → 0
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Other probabilistic conditions

category C or resources is a small category with a probability
distribution P on the set Obj(C) (can represent relative
abundance or scarcity of resources)

identification of summing functors with objects in Ĉn ⇒
induced probability P on Obj(ΣC(G ))

(X ,F )-admissible objects

Objadm(X ,F )(ΣC(G )) := {Φ ∈ ΣC(G ) |HomVα(Fα(Φ),Xα) 6= ∅ ∀α}

condition that choice of goals and valuations not incompatible
with resource availability:

P(Objadm(X ,F )(ΣC(G ))) > 0
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given Φ ∈ ΣC(G ) set of all (F ,X )-minorizations

Madm
(X ,F )(Φ) = {Ψ ∈ ΣC(G ) |Ψ is an (F ,X )-minorization of Φ}

= {Ψ 6' Φ |HomVα(Fα(Φ),Fα(Ψ)) 6= ∅ ∀α}∩Objadm(X ,F )(ΣC(G ))

λ(Φ) = P(Madm
(X ,F )(Φ))

if Φ on the Pareto frontier: Madm
(X ,F )(Φ) = ∅

if P has no non-empty sets of measure zero λ(Φ) = 0 iff on
Pareto frontier
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Building a swarm intelligence algorithm

Step 1: single particle

initialize: X0 is drawn from Objadm(X ,F )(ΣC(G )) uniformly at
random with respect to P
equivalently: drawn from all Obj(ΣC(G )) and rejected if not
admissible (with new draw)
the dynamics proceeds by making new random steps and
comparing them: “velocities” are (probabilistic) jumps to a
new position,

(ΛX )n+1 = Tn+1 (ΛX )n

first step: new draw of point X1 with probability
λ0 = P(Madm

(X ,F )(X0)) improves on X0, if not keep X0:

(ΛX )1 = (1− λ0)X0 + λ0X1

second step: second draw X2 and λ1 = P(Madm
(X ,F )(X1))

(ΛX )2 = (1−λ0)((1−λ0)X0 +λ0X2) +λ0((1−λ1)X1 +λ1X2)

= (1− λ0)2X0 + λ0(1− λ1)X1 + λ0(1− (λ0 − λ1))X2
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Recursion for the single particle coefficients
(ΛX )n =

∑n
k=0 c

k
nXk ckn = ckk (1− λk)n−k 0 ≤ k ≤ n − 1

cnn =
∑n−1

k=0 λk(1− λk)n−1−kckk

probability: satisfy
∑

k c
k
n = 1

coefficients ckn are polynomials in the λi so depend on
X0, . . . ,Xn

ckn = the probability of having Xk as the “best position” of
the particle during the first n steps

Problem: this probability distribution is very spread out, it
peaks somewhere (not always at the end) but can be very
non-concentrated (inefficient search)
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Step N.2: swarm

Have N particles behaving as above, initialized as X
(i)
0 and

with (Λ(i)X (i))n =
∑n

k=0 c
k
n (i)X

(i)
k with X

(i)
k the k-th random

draw for the i-th particle, best position with probability ckn (i)

At each step, the N particles can compare positions and select
also a “best position of the swarm” at time n

(ΛsXs)n =
∑N

`=1 π
`
n X

(`)
n with coefficients the probability π`n of

X
(`)
n being the best position of the swarm at time n

new update rule for particles in the swarm

(Λ(i)X (i))n+1 = µT
(i)
n+1 (Λ(i)X (i))n + (1− µ) (ΛsXs)n

here T
(i)
n+1 differs as new draw X

(i)
n+1 compared not only to the

previous X
(i)
k but also to all the previous X

(`)
k and probabilities

ckn (i) now also functions of µ parameter and of the π`k
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swarm approaches the Pareto frontier (best particle does)

this happens when infn,i λ
(i)
n = 0

if nonzero lower bound λinf > 0 then would have uniform
nonzero lower bound for all the ckn (i), incompatible with
maintaining normalization

∑n
k=1 c

k
n (i) = 1 for n→∞

but even with the comparison terms between swarm particles
very inefficient

Optimization questions:

can limit/colimit constructions in categories be realized by
algorithms in corresponding probabilistic categories?

swarm algorithms concentrating probability around best
particle?

More general kind of question: interesting examples of threshold
dynamics in categories? what is it good for?

preview of work in progress...
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Mathematics is like a voyage of exploration: sometimes it leads to
unexpected landscapes sometimes to a mirage. What is most
important is to build somewhere a solid home to which one knows
one can return to watch the beauty of the stars in the night sky:
in the past 20 years I’ve always known where to find that place
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HAPPY 85th BIRTHDAY YURI !!

and Happy March 8 to everybody!
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