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Cuntz—Krieger algebras
e A= (Aij)i,j=0,...,Nfl entries in {O, 1}
e Algebra Oy4: generators partial isometries Sg, ..., Sy_1; relations

SiS = Z A;S;S;

J

N—-1
Y sisi=1
i=0

e O4 universal C*-algebra determined by this presentation

e linearly spanned by monomials 5,55: words o and 3 in
{0,..., N — 1} with possibly different lengths |a| and ||

e Oy arises in dynamical systems (topological Markov chains)
e interesting class of noncommutative spaces
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semi-branching function system

e measure space (X, )

e finite family {o;};c;, #/ = N, measurable maps o; : D; — X,
defined on measurable subsets D; C X

e ranges R; = 0i(D;)

(X NUiR) =0, and pu(RiNR;)=0, for i#j
e Radon—Nikodym derivative

o, = dWooi)
1 d/,l/

with ®,. > 0, p-ae on D;.
e 0 : X — X coding map for {o;} if 0 0 0j(x) = x, for all x € D;
(partial inverses of the coding map)
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Operators from semi-branching function systems
e Given {o; ;\/:—01 with coding map o = operators on L2(X, 1)

(TrE)() = xR () (¥, (0 3))) 2

(TFE)(x) = X, (x)(Po; (x)) /2

e relations T; T = P; (projection by xg,) with >, T; T* =1 and
T T: = Qi (projection by xp,)

o If o; defined on all of X = Cuntz algebra Oy, relations
e in general case D; C X = Cuntz—Krieger algebra O, if D; satisfy

X0 = D Aixk,
J

e construct representations of O4 on Hilbert spaces L?(X, 1)
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Fractal sets
o A ={0,...,N — 1} alphabet; {0, 1}-matrix A = (Aj)i j=o0,..N—1
e A4 set of all infinite admissible words

/\A = {W = {Xn}n:O,l,... ’X,' € Ql, AXi7Xi+1 = 1}

e Cantor set topology on Aa (by cylinder sets)

e embeds in [0, 1]: numbers whose base N expansion satisfies
admissibility condition

e 04 =dimy(Aa) and pa: da-Hausdorff measure on Ay
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subshift of finite type
e one-sided shift on Ay

o :Na—Na, o(xox1x2...Xp...) =X1X2...Xp ...
e coding map for semi-branching function system
oi:Di = Ri, oi(w)=iw
Di={w={x} €NalAix=1}= Uj: a;=1R;

R,' = {W = {Xk} S /\A |X0 = i} = /\A(i)
e representation of Oa on L2(Aa, pa) by T; and T
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Perron—Frobenius operator
e composition with coding map T, : L2(X, u) — L?(X, 1)

(To9)(x) = ¥(a(x))

e Perron—Frobenius operator P, adjoint
[oPadn= [T edu
e semi-branching function system {0}, with coding map
oc: X=X
i

o if the ®,, constant over D;, then P, belongs to the algebra Ox
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e when non-constant: Hilbert space of half-densities 1(d/d)\)!/?

for 1 € L2(X, du): representation of O with

Si(¥\/dp) = xg, (o 0)

e Perron—Frobenius operator (half-densities case)
Po=Y 5
i

e Example: Schottky group I' C PSL,(C) free group rk g;
symmetric set of generators A = {71, ... ,'yg,'yfl, Vg 1} CK
algebra with Aj; =1 for |i — j| # g;

Pr=5,+8 4 +5, +5

Perron—Frobenius is Harper operator of the group '
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projection valued measures and space partitions

e (X, d) compact metric space

e partition P of X: (finite) family of subsets {A(/)}ies:

U; A(i) = X; and A(I)NA(j) =0, for i # j

e N-adic system of partitions of X: partitions Py for k € N with
subsets Ax(a) indexed by elements of 2% with alphabet

2 ={0,..., N — 1} such that |A.(a)] = O(N~=K), some ¢ > 0
and every Ax 1(b), b € AKFL, contained in some A(a), a € AK

e H be a complex separable Hilbert space: partition collection
{P(i)}ies of projections P(i) = P(i)* = P(i)? with P(i)P(j) = 0,
fori#jand ) ;P(i)=1

e N-adic system of partitions of H: family {Px(a)} indexed by

a € AK such that for all Py,1(a), there is some b € A¥ with
Pi(b)Pis1(a) = Pisa(a)
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e 3(X) Borel subsets of X

e positive operator-valued function E : B(X) — L(H) is o additive
measure if given By, By ..., in B(X) with BN B; = () for i # j
(convergence in the strong operator topology)

“(Us) e

e orthogonal projection valued measure if also
E(B) = E(B)* = E(B)?, for all B € B(X) and E(B1)E(By) =0
when B; N By = 0, with E(X) =1 identity on H
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N-adic system of partitions for the fractal Ay

Wia={a=(a1,...,a) €A Az o, =1,i=1,... k}

/\k’A(a) = {W: (W1,W2,...,Wn,...) E/\A‘(Wl,...,Wk) :a}
e subsets Ay a(a) define an N-adic system of partitions of Ay

e projections Py (a) by characteristic function X, ,(a)
Pk_l(al, ceey ak_l)Pk(al, ceey ak) = Pk(al, N ak)

e operator valued measure E(B) := 7(xB)

! Z CaX/\k’A(a)’_> Z CaPk(a)

aEWk,A QGWk,A
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Hausdorff dimension and Hausdorff measure
e assume matrix A irreducible (3 A” with all entries positive)
e then Radon-Nikodym derivatives constant on D; C Ay
_dpoo;
o — d,u
e Hausdorff measure ;1 = pp on A4 satisfies p(R;) = p;, where
p = (pi)i=0,...,n—1 Perron—Frobenius eigenvector of A

> Ajpi=r(A)pi
j

= N0

e Hausdorff dimension of Ay
log r(A)
log N
with r(A) spectral radius (Perron—Frobenius eigenvalue)
o Self-similarity, for (o, *(E)) = u({x € Aa|ok(x) € E})
n—1

= N—(SAZMoo_;l
k=0
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Perron—Frobenius operator on Ay
e P, on L2(A4,dup) satisfies

Py = N"423"5;

with S; generators of Op representation
e A irreducible and w Perron—Frobenius eigenvector:

f= ZWIXR,'
i

fixed point of the Perron—-Frobenius operator: P,f = f
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time evolution on O4 and KMS state

e time evolution on a C*-algebra: ¢ : R — Aut(.A) one-parameter
group of automorphisms
e on O4 time evolution

o:(SK) = NS,

e KMS equilibrium states for time evolution: ¢ € KMSg
(0 < B < 00): Va, b € A 3 holom function F, p(z) on strip: Vt € R

Fa,b(t) = Qp(agt(b)) Fa,b(t + Iﬁ) = @(Ut(b)a)

e measure = p1a on Ay gives KMS state for (Oa,0¢) at inverse
temperature 5 = da

0 a#£hb

S.5;) =
(P( b) { M(/\k,A(a)) a=>bc W/QA.
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real valued measures and Fourier transforms
o f € H of norm ||f|| =1 = real valued measure
wur(B) := (f, E(B)f) from operator valued measure

e Fourier transform 117(t) := [ €™ dps(x)
o f € H =L%(Aa,dua) with ||f|| =1 gives us(E) = (f, P(E)f)

with
N—1
Z/ ?l)Odeﬁés;f:/ dpg
k=0 7 Na Aa

and Fourier transform
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e iteration:

aEWk’A
with ; R ;
_ 91, ‘2 “k
x(a) N + N2 + et Wk

e good approximation by Dirac measures (weak convergence)

WOE) = S IS:FI%6.(E)

aEWkﬁA

9, = Dirac measure supported at the rational point x(a) in Aa
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other fractal objects associated to Op: Sierpinski fractals
e square S = [0, 1] x [0, 1] points (x,y) € S with N-adic expansion

S G T, ST < ST £ A ST
)=yttt oy Tttt )

(xi,yi) €{0,...,N -1} x {0,...,N — 1} = 22
e subset Sp C S given by

Sa={(x,y) € S|Aqy, =1, Vi>1}

e iterative construction: k-th step square of size N~2k replaced by
D squares of size N~2(k+1)

N—1
D= d, with d=#{j|A;=1}
i=0
e Hausdorff dimension dimy(Sa) = 2'?55\,
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semi-branching function system on Sy
e maps 7(; ) : Sa — Sa, for (i,j) with A; =1

i y) = (000 = (LX)

the 7(; j) are everywhere defined on S

e Radon—Nikodym derivatives

dpotijy a5 _ 1

e representation of Cuntz algebra Op on L2(Sa, i), Hausdorff
measure of dimension § = dimy(Sa)
S(iJ)f = XR;j - ((D(i,j) o 7')71/2 -for
SinSin =1 and Y SipSiy =1
(id):Aj=1
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/\A and SA
e embedding = : Ag — S with =(x) = (x, o(x))

e maps 7; j restricts to maps defined on D;; C =(A4)
Diijy = {(x,0(x)) € Z(Aa) | oo (x) = 003(x)} = =(R))

e semi-branching function system that gives representation of CK
algebra Oy, with D x D-matrix A

Aijyier = 95 Ak
e representation on L2(=(Aa), its) with s = dimy(Z(A4))

565 f(x) = Noxg,(x)f (o (x))
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wavelets on fractals (general construction: Jonsson)

e {0;} semi-branching function system on (X, x) with X C R; B"”
polynomials on R of degree < m

e S lin subspace of L?(X, du) gen by restrictions P|, of
polynomials in B™; &1 C L?(X, du) functions f € L?(X, du)
restrictions P|g, of P € P, p-ae on R; = 0i(X): &g C &1 and
dim &1 = Ndim&y = N(m + 1)

° (ﬁé, for/ =1,...,m+1, o.n. basis for Gg; ¥”, for
p=1,...,(N—=1)(m+ 1), o.n. basis of 51 © &g

e lin subspaces &, C &1 of L?(X, dpu) functions whose
restriction to oj, o --- o0 (X) are p-ae restrictions of polynomials

in 3™
e functions ¢" and 1 provide the mother wavelets and

W = p(oa(X)) 2P oot

fora=(i1,...,ix) and o, =0 0--- 00,
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wavelets on Ay
e in L2(Aa, dpa) locally constant functions
0,k
{F"" Y=0,...N—1:¢=1,....d\
with di = #{j | Axj = 1} and support of ok in Ry
mfel’k = 5&21 and f@,k = 07 Vﬁ = ].7 ey dk
Ry Rk

e K lin combinations of characteristic functions of Rij = N2 a(kj)

Ok PR
o= ZA’VCJ XRyj
J

o pii = 1(Ris) = N=2%4p; with p = (po, . .., pn-1)
Perron—Frobenius eigenvector Ap = r(A)p: conditions on &
become

0k 'k
D AGE S pig = Su
J

NS — 0,k
ZAkj(,:i’ Pkj = N 204 ZAijJ- pj = 0
J J
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e C%  CN with inner product

(v, W) = Agviwjp;
j

with p Perron—Frobenius eigenvector of A

e Vi={u=(1,1,...,1)} € C% and {c"* = (")} ey 41
o.n. basis

e then F&k

= Zj Aijf’kXRkj gives right family:
wﬁ” =S, f% for a= (a1, .-, ak) € Wika

varying k = orthonormal basis of wavelets for L2(Aa, 1)

e wavelet decomposition

N—1dx—1
f= Z Ekf“-l-z Z ZaekQSf’
k=0 (= J=0 aEW; a (£,k)
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Ruelle transfer operator
e generalizes Perron—Frobenius operator: coding map o : Ag — Ap

e potential function W
Rowf()= >, Wl
yio(y)=x
if W real valued: adjoint of
Twf(x) = N W(x) f(o(x))
e Keane condition: W : Ay — Ry with
> W(y)=1 thatis Y Ay W(oi(x))=1
yio(y)=x i

e Example of potential satisfying the Keane condition

v = (- (550

with Ny = #{j : Aj, =1}
Matilde Marcolli Cuntz—Krieger algebras and wavelets on fractals




Random processes
e harmonic functions for Ruelle transfer operator R, wh = h
< random processes along paths under the o; iterates

e transpose A!, potential W with Keane condition = measure on
At for fixed initial point x

P (M (2)) = Aayg W (00, (x)) W (02,00, (x)) - - W(0a, -~ 0y (%))

random walk from x to o,, - - - 04, (x)

e E C Ay shift invariant 071(E) = E then x — PY(E) fixed
point of Ruelle transfer operator and if

h(x) == Z Z Aaa W(oa, (X)) - W(oa, - 02y (X))

kZ]. aEWk,At

converges then h(x) fixed point of Ruelle transfer operator
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conclusions
These results are part of a broader program aimed at showing that:

e Techniques from operator algebra and noncommutative geometry
can be applied to the study of the geometry of fractals

e fractals are good examples of “noncommutative spaces”
(although they exist as ordinary spaces)

e dynamical systems methods (semi-branching fuction systems,
subshifts of finite type, Perron—Frobenius and Ruelle operators)
can be used to study noncommutative geometries

e noncommutative geometry can be useful in addressing questions
in signal analysis, coding theory, and information
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