Cuntz-Krieger algebras and wavelets on fractals

Matilde Marcolli

UC Riverside, June 2012

joint work with Anna Maria Paolucci

• Matilde Marcolli, Anna Maria Paolucci *Cuntz–Krieger algebras and wavelets on fractals*, Complex Analysis and Operator Theory, Vol.5 (2011) N.1, 41–81.

Cuntz-Krieger algebras

- $A = (A_{ij})_{i,j=0,...,N-1}$ entries in $\{0,1\}$
- Algebra O_A : generators partial isometries S_0, \ldots, S_{N-1} ; relations

$$S_i^* S_i = \sum_j A_{ij} S_j S_j^*$$

$$\sum_{i=0}^{N-1} S_i S_i^* = 1$$

- O_A universal C^* -algebra determined by this presentation
- linearly spanned by monomials $S_{\alpha}S_{\beta}^{\star}$: words α and β in $\{0,\ldots,N-1\}$ with possibly different lengths $|\alpha|$ and $|\beta|$
- \bullet O_A arises in dynamical systems (topological Markov chains)
- interesting class of noncommutative spaces

semi-branching function system

- measure space (X, μ)
- finite family $\{\sigma_i\}_{i\in I}$, #I=N, measurable maps $\sigma_i:D_i\to X$, defined on measurable subsets $D_i\subset X$
- ranges $R_i = \sigma_i(D_i)$

$$\mu(X \setminus \bigcup_i R_i) = 0$$
, and $\mu(R_i \cap R_j) = 0$, for $i \neq j$

• Radon-Nikodym derivative

$$\Phi_{\sigma_i} = \frac{d(\mu \circ \sigma_i)}{d\mu}$$

with $\Phi_{\sigma_i} > 0$, μ -ae on D_i .

• $\sigma: X \to X$ coding map for $\{\sigma_i\}$ if $\sigma \circ \sigma_i(x) = x$, for all $x \in D_i$ (partial inverses of the coding map)

Operators from semi-branching function systems

• Given $\{\sigma_i\}_{i=0}^{N-1}$ with coding map $\sigma \Rightarrow$ operators on $L^2(X,\mu)$

$$(T_i\psi)(x) = \chi_{R_i}(x) \left(\Phi_{\sigma_i}(\sigma(x))\right)^{-1/2}$$
$$(T_i^*\xi)(x) = \chi_{D_i}(x) (\Phi_{\sigma_i}(x))^{1/2}$$

- relations $T_i T_i^* = P_i$ (projection by χ_{R_i}) with $\sum_i T_i T_i^* = 1$ and $T_i^* T_i = Q_i$ (projection by χ_{D_i})
- If σ_i defined on all of $X\Rightarrow$ Cuntz algebra O_N , relations $T_i^*T_i=1$ and $\sum_i T_iT_i^*=1$
- in general case $D_i \subset X \Rightarrow \text{Cuntz-Krieger algebra } O_A$ if D_i satisfy

$$\chi_{D_i} = \sum_j A_{ij} \chi_{R_j}$$

ullet construct representations of O_A on Hilbert spaces $L^2(X,\mu)$

Fractal sets

- $\mathfrak{A} = \{0, ..., N-1\}$ alphabet; $\{0, 1\}$ -matrix $A = (A_{ij})_{i,j=0,...,N-1}$
- Λ_A set of all infinite admissible words

$$\Lambda_A := \{ w = \{ x_n \}_{n=0,1,\dots} \, | \, x_i \in \mathfrak{A}, \, A_{x_i, x_{i+1}} = 1 \}$$

- Cantor set topology on Λ_A (by cylinder sets)
- \bullet embeds in [0,1]: numbers whose base N expansion satisfies admissibility condition
- $\delta_A = \dim_H(\Lambda_A)$ and μ_A : δ_A -Hausdorff measure on Λ_A

subshift of finite type

• one-sided shift on Λ_A

$$\sigma: \Lambda_A \to \Lambda_A, \quad \sigma(x_0 x_1 x_2 \dots x_n \dots) = x_1 x_2 \dots x_n \dots$$

• coding map for semi-branching function system

$$\sigma_{i}: D_{i} \to R_{i}, \quad \sigma_{i}(w) = iw$$

$$D_{i} = \{w = \{x_{k}\} \in \Lambda_{A} \mid A_{i,x_{0}} = 1\} = \cup_{j: A_{ij} = 1} R_{j}$$

$$R_{i} = \{w = \{x_{k}\} \in \Lambda_{A} \mid x_{0} = i\} =: \Lambda_{A}(i)$$

• representation of O_A on $L^2(\Lambda_A, \mu_A)$ by T_i and T_i^*

Perron-Frobenius operator

ullet composition with coding map $T_\sigma:L^2(X,\mu) o L^2(X,\mu)$

$$(T_{\sigma}\psi)(x) = \psi(\sigma(x))$$

• Perron–Frobenius operator \mathcal{P}_{σ} adjoint

$$\int \overline{\psi} \, \mathcal{P}_{\sigma}(\xi) d\mu = \int \overline{\mathcal{T}_{\sigma}(\psi)} \, \xi \, d\mu$$

• semi-branching function system $\{\sigma_i\}_{i=1}^N$ with coding map $\sigma: X \to X$

$$\mathcal{P}_{\sigma} = \sum_i \Phi_{\sigma_i}^{1/2} \, \mathcal{T}_i^*$$

• if the Φ_{σ_i} constant over D_i , then \mathcal{P}_{σ} belongs to the algebra O_A

• when non-constant: Hilbert space of half-densities $\psi(d\mu/d\lambda)^{1/2}$ for $\psi \in L^2(X, d\mu)$: representation of O_A with

$$\tilde{S}_i(\psi\sqrt{d\mu}) = \chi_{R_i} \ (\psi \circ \sigma)$$

Perron–Frobenius operator (half-densities case)

$$ilde{\mathcal{P}}_{\sigma} = \sum_{i} ilde{\mathcal{S}}_{i}^{*}$$

• Example: Schottky group $\Gamma \subset \mathrm{PSL}_2(\mathbb{C})$ free group rk g; symmetric set of generators $\mathfrak{A} = \{\gamma_1, \ldots, \gamma_g, \gamma_1^{-1}, \ldots, \gamma_g^{-1}\}$; CK algebra with $A_{ij} = 1$ for $|i-j| \neq g$;

$$ilde{\mathcal{P}}_{\sigma} = ilde{\mathcal{S}}_{\gamma_1}^* + ilde{\mathcal{S}}_{\gamma_1^{-1}}^* + \cdots + ilde{\mathcal{S}}_{\gamma_g}^* + ilde{\mathcal{S}}_{\gamma_g^{-1}}^*$$

Perron–Frobenius is Harper operator of the group Γ

projection valued measures and space partitions

- \bullet (X, d) compact metric space
- partition \mathcal{P} of X: (finite) family of subsets $\{A(i)\}_{i \in I}$: $\bigcup_i A(i) = X$; and $A(i) \cap A(j) = \emptyset$, for $i \neq j$
- *N*-adic system of partitions of *X*: partitions \mathcal{P}_k for $k \in \mathbb{N}$ with subsets $A_k(a)$ indexed by elements of \mathfrak{A}^k with alphabet
- $\mathfrak{A} = \{0, \dots, N-1\}$ such that $|A_k(a)| = O(N^{-ck})$, some c > 0 and every $A_{k+1}(b)$, $b \in \mathfrak{A}^{k+1}$, contained in some $A_k(a)$, $a \in \mathfrak{A}^k$
- \mathcal{H} be a complex separable Hilbert space: partition collection $\{P(i)\}_{i\in I}$ of projections $P(i)=P(i)^*=P(i)^2$ with P(i)P(j)=0, for $i\neq j$ and $\sum_i P(i)=1$
- N-adic system of partitions of \mathcal{H} : family $\{P_k(a)\}$ indexed by $a \in \mathfrak{A}^k$ such that for all $P_{k+1}(a)$, there is some $b \in \mathfrak{A}^k$ with $P_k(b)P_{k+1}(a) = P_{k+1}(a)$

- $\mathcal{B}(X)$ Borel subsets of X
- positive operator-valued function $E: \mathcal{B}(X) \to \mathcal{L}(\mathcal{H})$ is σ additive measure if given $B_1, B_2 \ldots$, in $\mathcal{B}(X)$ with $B_i \cap B_j = \emptyset$ for $i \neq j$ (convergence in the strong operator topology)

$$E\left(\bigcup_i B_i\right) = \sum_i E(B_i)$$

• orthogonal projection valued measure if also $E(B)=E(B)^*=E(B)^2$, for all $B\in\mathcal{B}(X)$ and $E(B_1)E(B_2)=0$ when $B_1\cap B_2=\emptyset$, with E(X)=1 identity on \mathcal{H}

N-adic system of partitions for the fractal Λ_A

$$W_{k,A} = \{ a = (a_1, \dots, a_k) \in \mathfrak{A}^k \mid A_{a_i, a_{i+1}} = 1, i = 1, \dots, k \}$$
$$\Lambda_{k,A}(a) = \{ w = (w_1, w_2, \dots, w_n, \dots) \in \Lambda_A \mid (w_1, \dots, w_k) = a \}$$

- subsets $\Lambda_{k,A}(a)$ define an N-adic system of partitions of Λ_A
- projections $P_k(a)$ by characteristic function $\chi_{\Lambda_{k,A}(a)}$

$$P_{k-1}(a_1,\ldots,a_{k-1})P_k(a_1,\ldots,a_k)=P_k(a_1,\ldots,a_k)$$

ullet operator valued measure $E(B):=\pi(\chi_B)$

$$\pi: \sum_{\mathbf{a} \in \mathcal{W}_{k,A}} c_{\mathbf{a}} \, \chi_{\Lambda_{k,A}(\mathbf{a})} \mapsto \sum_{\mathbf{a} \in \mathcal{W}_{k,A}} c_{\mathbf{a}} \, P_k(\mathbf{a})$$

Hausdorff dimension and Hausdorff measure

- assume matrix A irreducible ($\exists A^n$ with all entries positive)
- ullet then Radon-Nikodym derivatives constant on $D_i\subset \Lambda_{\mathcal{A}}$

$$\Phi_{\sigma_i} = \frac{d\mu \circ \sigma_i}{d\mu} = N^{-\delta_A}$$

• Hausdorff measure $\mu = \mu_A$ on Λ_A satisfies $\mu(R_i) = p_i$, where $p = (p_i)_{i=0,\dots,N-1}$ Perron–Frobenius eigenvector of A

$$\sum_{j} A_{ij} p_j = r(A) p_i$$

• Hausdorff dimension of Λ_A

$$\delta_A = \dim_H(\Lambda_A) = \frac{\log r(A)}{\log N}$$

with r(A) spectral radius (Perron-Frobenius eigenvalue)

• Self–similarity, for $\mu(\sigma_k^{-1}(E)) = \mu(\{x \in \Lambda_A \mid \sigma_k(x) \in E\})$

$$\mu = N^{-\delta_A} \sum_{k=0}^{n-1} \mu \circ \sigma_k^{-1}$$

Perron–Frobenius operator on Λ_A

• \mathcal{P}_{σ} on $L^{2}(\Lambda_{A}, d\mu_{A})$ satisfies

$$\mathcal{P}_{\sigma} = N^{-\delta_A/2} \sum_{i} S_{i}^{*}$$

with S_i generators of O_A representation

• A irreducible and ω Perron–Frobenius eigenvector:

$$f = \sum_{i} \omega_{i} \chi_{R_{i}}$$

fixed point of the Perron–Frobenius operator: $\mathcal{P}_{\sigma}f=f$

time evolution on O_A and KMS state

- time evolution on a C^* -algebra: $\sigma: \mathbb{R} \to \operatorname{Aut}(\mathcal{A})$ one-parameter group of automorphisms
- on O_A time evolution

$$\sigma_t(S_k) = N^{it}S_k$$

• KMS equilibrium states for time evolution: $\varphi \in \text{KMS}_{\beta}$ $(0 < \beta < \infty)$: $\forall a, b \in \mathcal{A} \exists$ holom function $F_{a,b}(z)$ on strip: $\forall t \in \mathbb{R}$

$$F_{a,b}(t) = \varphi(a\sigma_t(b))$$
 $F_{a,b}(t+i\beta) = \varphi(\sigma_t(b)a)$

• measure $\mu = \mu_A$ on Λ_A gives KMS state for (O_A, σ_t) at inverse temperature $\beta = \delta_A$

$$\varphi(S_aS_b^*) =
\begin{cases}
0 & a \neq b \\
\mu(\Lambda_{k,A}(a)) & a = b \in W_{k,A}.
\end{cases}$$

real valued measures and Fourier transforms

- $f \in \mathcal{H}$ of norm $||f|| = 1 \Rightarrow$ real valued measure $\mu_f(B) := \langle f, E(B)f \rangle$ from operator valued measure
- ullet Fourier transform $\widehat{\mu_f}(t) := \int e^{itx} \, d\mu_f(x)$
- $f \in \mathcal{H} = L^2(\Lambda_A, d\mu_A)$ with ||f|| = 1 gives $\mu_f(E) = \langle f, P(E)f \rangle$ with

$$\sum_{k=0}^{N-1} \int_{\Lambda_A} \psi \circ \sigma_k \, d\mu_{S_k^* f} = \int_{\Lambda_A} \psi d\mu_f$$

and Fourier transform

$$\widehat{\mu}_f(t) = \sum_{k=0}^{N-1} e^{\frac{itk}{N}} \widehat{\mu_{S_k^*f}}(\frac{t}{N})$$

• iteration:

$$\hat{\mu}_f(t) = \sum_{a \in \mathcal{W}_{k,A}} e^{itx(a)} \hat{\mu}_{S_a^* f}(\frac{t}{N^k})$$

with

$$x(a) = \frac{a_1}{N} + \frac{a_2}{N^2} + \cdots + \frac{a_k}{N^k}$$

• good approximation by Dirac measures (weak convergence)

$$\mu_f^{(k)}(E) = \sum_{a \in \mathcal{W}_{k,a}} \|S_a^* f\|^2 \delta_a(E)$$

 $\delta_a=$ Dirac measure supported at the rational point x(a) in Λ_A

other fractal objects associated to O_A : Sierpinski fractals

• square $\mathbb{S} = [0,1] \times [0,1]$ points $(x,y) \in \mathbb{S}$ with N-adic expansion

$$(x,y) = (\frac{x_1}{N} + \frac{x_2}{N^2} + \dots + \frac{x_k}{N^k} + \dots, \frac{y_1}{N} + \frac{y_2}{N^2} + \dots + \frac{y_k}{N^k} + \dots)$$

$$(x_i, y_i) \in \{0, \dots, N-1\} \times \{0, \dots, N-1\} = \mathfrak{A}^2$$

• subset $\mathbb{S}_A \subset \mathbb{S}$ given by

$$\mathbb{S}_{A} = \{(x, y) \in S \mid A_{x_{i}, y_{i}} = 1, \ \forall i \geq 1\}$$

• iterative construction: k-th step square of size N^{-2k} replaced by D squares of size $N^{-2(k+1)}$

$$D = \sum_{i=0}^{N-1} d_i, \quad \text{with} \quad d_i = \#\{j \mid A_{ij} = 1\}$$

• Hausdorff dimension $\dim_H(\mathbb{S}_A) = \frac{\log D}{2 \log N}$

semi-branching function system on \mathbb{S}_A

ullet maps $au_{(i,j)}: \mathbb{S}_{\mathcal{A}}
ightarrow \mathbb{S}_{\mathcal{A}}$, for (i,j) with $A_{ij}=1$

$$\tau_{(i,j)}(x,y) = (\tau_i(x),\tau_j(y)) = (\frac{x+i}{N},\frac{x+j}{N})$$

the $\tau_{(i,j)}$ are everywhere defined on \mathbb{S}_A

Radon–Nikodym derivatives

$$\Phi_{(i,j)}(x,y) = \frac{d\mu \circ \tau_{(i,j)}}{d\mu} = N^{-2\delta} = \frac{1}{D}$$

• representation of Cuntz algebra O_D on $L^2(\mathbb{S}_A, \mu)$, Hausdorff measure of dimension $\delta = \dim_H(\mathbb{S}_A)$

$$S_{(i,j)}f = \chi_{R_{(i,j)}} \cdot (\Phi_{(i,j)} \circ au)^{-1/2} \cdot f \circ au$$
 $S_{(i,j)}^*S_{(i,j)} = 1$, and $\sum_{(i,j):A_{ii}=1} S_{(i,j)}S_{(i,j)}^* = 1$

Λ_A and \mathbb{S}_A

- embedding $\Xi : \Lambda_A \hookrightarrow \mathbb{S}_A$ with $\Xi(x) = (x, \sigma(x))$
- maps $\tau_{i,j}$ restricts to maps defined on $D_{i,j} \subset \Xi(\Lambda_A)$

$$D_{(i,j)} = \{(x,\sigma(x)) \in \Xi(\Lambda_A) \mid \sigma_j \sigma(x) = \sigma \sigma_i(x)\} = \Xi(R_j)$$

ullet semi-branching function system that gives representation of CK algebra $O_{\tilde{A}}$, with D imes D-matrix \tilde{A}

$$\tilde{A}_{(i,j),(\ell,k)} = \delta_{j,\ell} A_{jk}$$

• representation on $L^2(\Xi(\Lambda_A), \mu_s)$ with $s = \dim_H(\Xi(\Lambda_A))$

$$\hat{S}_{(i,j)}^*f(x) = N^s \chi_{R_{ij}}(x) f(\sigma(x))$$

wavelets on fractals (general construction: Jonsson)

- $\{\sigma_i\}$ semi-branching function system on (X, μ) with $X \subset \mathbb{R}$; \mathfrak{P}^m polynomials on \mathbb{R} of degree $\leq m$
- \mathfrak{S}_0 lin subspace of $L^2(X,d\mu)$ gen by restrictions $P|_{\Lambda_A}$ of polynomials in \mathfrak{P}^m ; $\mathfrak{S}_1 \subset L^2(X,d\mu)$ functions $f \in L^2(X,d\mu)$ restrictions $P|_{R_i}$ of $P \in \mathfrak{P}^m$, μ -ae on $R_i = \sigma_i(X)$: $\mathfrak{S}_0 \subset \mathfrak{S}_1$ and $\dim \mathfrak{S}_1 = N \dim \mathfrak{S}_0 = N(m+1)$
- ϕ^{ℓ} , for $\ell=1,\ldots,m+1$, o.n. basis for \mathfrak{S}_0 ; ψ^{ρ} , for $\rho=1,\ldots,(N-1)(m+1)$, o.n. basis of $\mathfrak{S}_1\ominus\mathfrak{S}_0$
- Iin subspaces $\mathfrak{S}_k \subset \mathfrak{S}_{k+1}$ of $L^2(X, d\mu)$ functions whose restriction to $\sigma_{i_1} \circ \cdots \circ \sigma_{i_k}(X)$ are μ -ae restrictions of polynomials in \mathfrak{P}^m
- ullet functions ϕ^{r} and $\psi^{
 ho}$ provide the mother wavelets and

$$\psi_{\mathsf{a}}^{\rho} = \mu(\sigma_{\mathsf{a}}(X))^{-1/2}\psi^{\rho} \circ \sigma_{\mathsf{a}}^{-1}$$

for $a=(i_1,\ldots,i_k)$ and $\sigma_a=\sigma_{i_1}\circ\cdots\circ\sigma_{i_k}$

wavelets on Λ_{Δ}

• in $L^2(\Lambda_A, d\mu_A)$ locally constant functions

$$\{f^{\ell,k}\}_{k=0,...,N-1;\ell=1,...,d_k}$$

with $d_k = \#\{j \,|\, A_{kj} = 1\}$ and support of $f^{\ell,k}$ in R_k

$$\int_{R_k} \overline{f^{\ell,k}} f^{\ell',k} = \delta_{\ell,\ell'} \quad \text{ and } \quad \int_{R_k} f^{\ell,k} = 0, \ \, \forall \ell = 1,\dots,d_k$$

• $f^{\ell,k}$ lin combinations of characteristic functions of $R_{kj} = \Lambda_{2,A}(kj)$

$$f^{\ell,k} = \sum_{j} A_{kj} c_j^{\ell,k} \chi_{R_{kj}}$$

• $p_{kj} = \mu(R_{kj}) = N^{-2\delta_A}p_j$ with $p = (p_0, \dots, p_{N-1})$ Perron–Frobenius eigenvector Ap = r(A)p: conditions on $f^{\ell,k}$ become

$$\sum_{j} A_{kj} \bar{c}_{j}^{\ell,k} c_{j}^{\ell',k} p_{kj} = \delta_{\ell,\ell'}$$

$$\sum_{j} A_{kj} c_{j}^{\ell,k} p_{kj} = N^{-2\delta_{A}} \sum_{j} A_{kj} c_{j}^{\ell,k} p_{j} = 0$$

ullet $\mathbb{C}^{d_k}\subset\mathbb{C}^N$ with inner product

$$\langle v, w \rangle_k := \sum_j A_{kj} \bar{v}_j w_j p_j$$

with p Perron-Frobenius eigenvector of A

- $\mathcal{V}_k = \{u = (1,1,\ldots,1)\}^\perp \subset \mathbb{C}^{d_k}$ and $\{c^{\ell,k} = (c_i^{\ell,k})\}_{\ell=1,\ldots,d_k-1}$ o.n. basis
- then $f^{\ell,k} = \sum_j A_{kj} c_j^{\ell,k} \chi_{R_{kj}}$ gives right family:

$$\psi_{\mathsf{a}}^{\ell,\mathsf{r}} = \mathsf{S}_{\mathsf{a}}\,\mathsf{f}^{\ell,\mathsf{r}} \quad \text{ for } \ \ \mathsf{a} = (\mathsf{a}_1,\ldots,\mathsf{a}_k) \in \mathcal{W}_{k,\mathsf{A}}$$

varying $k \Rightarrow$ orthonormal basis of wavelets for $L^2(\Lambda_A, \mu_A)$

wavelet decomposition

$$f = \sum_{k=0}^{N-1} \sum_{\ell=1}^{d_k-1} \alpha_{\ell,k} f^{\ell,k} + \sum_{j=0}^{\infty} \sum_{a \in \mathcal{W}_{j,A}} \sum_{(\ell,k)} \alpha_{\ell,k,a} S_a f^{\ell,k}$$

Ruelle transfer operator

- generalizes Perron–Frobenius operator: coding map $\sigma: \Lambda_A \to \Lambda_A$
- potential function W

$$\mathcal{R}_{\sigma,W}f(x) = \sum_{y: \sigma(y)=x} W(y) f(y)$$

if W real valued: adjoint of

$$T_W f(x) = N^{\delta_A} W(x) f(\sigma(x))$$

• Keane condition: $W: \Lambda_A \to \mathbb{R}_+$ with

$$\sum_{y:\sigma(y)=x}W(y)=1$$
 that is $\sum_i A_{i\mathrm{x}_1}W(\sigma_i(x))=1$

• Example of potential satisfying the Keane condition

$$W(x) = \frac{1}{N_1} \left(1 - \cos \left(\frac{2\pi Nx}{N_1} \right) \right)$$

with $N_1 = \#\{j : A_{ix_1} = 1\}$

Random processes

- harmonic functions for Ruelle transfer operator $\mathcal{R}_{\sigma,W}h=h$ \Leftrightarrow random processes along paths under the σ_j iterates
- ullet transpose A^t , potential W with Keane condition \Rightarrow measure on Λ_{A^t} for fixed initial point x

$$P_x^W(\Lambda_{k,A^t}(a)) = A_{a_1x_1}W(\sigma_{a_1}(x))W(\sigma_{a_2}\sigma_{a_1}(x))\cdots W(\sigma_{a_k}\cdots\sigma_{a_1}(x))$$

random walk from x to $\sigma_{a_k} \cdots \sigma_{a_1}(x)$

• $E \subset \Lambda_{A^t}$ shift invariant $\sigma^{-1}(E) = E$ then $x \mapsto P_x^W(E)$ fixed point of Ruelle transfer operator and if

$$h(x) := \sum_{k \geq 1} \sum_{a \in \mathcal{W}_{k,A^{\pm}}} A_{a_1 x_1} W(\sigma_{a_1}(x)) \cdots W(\sigma_{a_k} \cdots \sigma_{a_1}(x))$$

converges then h(x) fixed point of Ruelle transfer operator

conclusions

These results are part of a broader program aimed at showing that:

- Techniques from operator algebra and noncommutative geometry can be applied to the study of the geometry of fractals
- fractals are good examples of "noncommutative spaces" (although they exist as ordinary spaces)
- dynamical systems methods (semi-branching fuction systems, subshifts of finite type, Perron–Frobenius and Ruelle operators) can be used to study noncommutative geometries
- noncommutative geometry can be useful in addressing questions in signal analysis, coding theory, and information