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Abstract We consider representations of Cuntz—Krieger algebras on the Hilbert
space of square integrable functions on the limit set, identified with a Cantor set in the
unit interval. We use these representations and the associated Perron—-Frobenius and
Ruelle operators to construct families of wavelets on these Cantor sets.
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1 Introduction

A class of representations of the Cuntz algebra Oy called permutative representations
were studied and classified in [3,4,10]. Besides interest in their own right within the
field of operator algebras, Cuntz algebras representations have very interesting appli-
cations to wavelets, fractals, and dynamical systems, see [3,4]. Some of these results
have been extended to the more general class of Cuntz—Krieger algebras (see [20-22]),
where representations of these algebras are related to Perron—-Frobenius operators of
certain measure space transformations. Similar representations of Cuntz—Krieger alge-
bras were considered in the context of limit sets of Schottky groups and actions on trees
in [5-7] for arithmetic applications to Arakelov geometry and p-adic Mumford curves.

In this paper we look at representations of the Cuntz—Krieger algebra having a
underlying self-similarity structure. The concept of self-similarity has proved to be
fundamental in mathematics as well as in diverse applications, related to the renormal-
ization of structures on nested families of scales. In the theory of wavelets, the scales
may be represented in resolutions taking the form of nested systems of linear spaces,
while in C*-algebra theory it gives rise to representations of algebras on generators
and relations such as those that define the Cuntz and Cuntz—Krieger algebras.

Cuntz—Krieger algebras arise naturally from semibranching function systems on
measure spaces, where the partial inverses o; of the coding map o are not defined
everywhere. The resulting algebra is generated by partial isometries S; associated to
the maps in the semibranching function system, and the relations between these gener-
ators involve a matrix A with entries equal to zero or one, which describes the decom-
position of the domains of the o; as a union of ranges of other o in the same family.

Conversely, a Cuntz—Krieger algebra O4 defined by generators and relations in
terms of an N x N-matrix A as above determines a semibranching function system
on the limit set of infinite sequences in an alphabet on N letters with the admissibility
condition that consecutive letters i j can appear in a word if and only if the correspond-
ing entry in the matrix is A;; = 1. One can identify this limit set A4 as a Cantor set
inside the interval [0, 1] by considering points whose N-adic digital expansion satis-
fies the admissibility condition. On this Cantor set the action of the maps o; become
simple shifts in the N-adic expansion and the representation of O4 on the Hilbert
space L?(A 4, 1), with respect to the Hausdorff measure of the appropriate dimen-
sion, has an especially simple form, and so does also the Perron—-Frobenius operator
for the shift map o, which is expressed in terms of the generators of the algebra.

The Hausdorff dimension of the limit set A4 is computed using the Perron—
Frobenius theorem for the non-negative matrix A, which also shows that the com-
ponents of the Perron—Frobenius eigenvector of A give the measures of the ranges of
the maps o; in the normalized Hausdorff measure of dimension the Hausdorff dimen-
sion of A4, which is the unique probability measure satisfying the self-similarity
condition for the fractal set A 4.
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The Perron-Frobenius eigenvector of the matrix A’ determines a fixed point for the
Perron—Frobenius operator for the shift map o on the limit set A 4, which in turn gives
a KMS state for an associated time evolution on the algebra O 4 at inverse temperature
equal to the Hausdorff dimension of A 4.

One can construct as in [17] further measures on A 4, using operator valued mea-
sures and square-integrable functions of unit norm. As in the case of the Cuntz algebras,
by analyzing the Fourier transforms of these measures, one sees that one can approx-
imate them with Dirac measures supported at truncations of the N-adic expansions.

Besides the Cantor set A 4 C [0, 1], there is another fractal set that one can associ-
ate to the same matrix A, namely a Sierpinski fractal S4 inside the unit cube, given by
points (x, y) whose digits in the N-adic expansion satisfy the condition that A,,,, = 1.
The Hausdorff dimension of these sets is simply computed in terms of the number of
non-zero entries in A. The shifts in the N-adic expansion determine a semibranching
function systems on S,4, where, unlike in the case of A 4, the maps are everywhere
defined, hence they give rise to an action of a Cuntz algebra or rank depending on
the number of non-zero entries in A. There is a natural embedding of A 4 into Sy
induced by the shift map on A 4. The action of the Cuntz algebra determines via this
embedding of A 4 into S4 an action of a Cuntz—Krieger algebra.

We show how to use the representation of the algebra O 4 to construct an orthonor-
mal system of wavelets on L3(A g, dp).

We then consider the Ruelle transfer operator for the shift o on A4, with non-
negative valued potential W satisfying the Keane condition that the sum of the values
over preimages under ¢ adds up to one. We show that one can construct from these
measures on A 4, for the transpose matrix A’, in terms of random walks where the
probabilities assigned to words of a given length in the alphabet depends upon the val-
ues of the potential W. A simple example of a potential satisfying the Keane condition
is given in terms of trigonometric functions.

The example of the continued fraction expansion on the Hensley Cantor sets con-
sidered in [24,25] is described as an example where the general results of this paper
can be applied.

As an application we also show how the technique we described to construct wave-
lets on the Cantor sets A 4 can be adapted to construct families of graph wavelets, using
Cuntz—Krieger algebras associated to finite graphs with no sinks. Graph wavelets are
considered a useful tool for spatial network traffic analysis [8].

2 Representations of Cuntz—Krieger Algebras

Let A be an N x N matrix with entries in {0, 1}. For consistency with the notation we
adopt later in the paper, it is convenient to index the entries A = (A;;) with indices
i,jel{0,...,N—1}instead of {1, ..., N}.

Recall that the Cuntz—Krieger algebra 04 associated to such a matrix A is the
C*-algebra generated by N (non-zero) partial isometries Sy, ..., Sy—1 satisfying the
relations

SPSi =) AijS;S @2.1)
j
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and
N—1
Z S:SF=1. (22
i=0

The algebra O4 is uniquely determined by the relations (2.1) and (2.2) and it is line-
arly spanned by the set of S, SE with words @ and B in {0, ..., N — 1} with possibly
different lengths || and | 8], see [9].

We are especially interested here in representations of O4 as bounded operators
on Hilbert spaces of the form H = L%(X, ), for (X, ) a measure space. The repre-
sentations we are interested in, which include the cases of the arithmetic applications
mentioned above, are all constructed in terms of what we refer to as a semibran-
ching function system, which will be concretely realized in terms of a shift map on a
Cantor-like fractal set and its partial inverses.

Definition 2.1 Consider a measure space (X, i) and a finite family {o;};c;, #/ = N,
of measurable maps o; : D; — X, defined on measurable subsets D; C X. The family
{07} is a semibranching function system if the following holds.

(1) There exists a corresponding family { D; }lN: | of measurable subsets of X with the
property that

WX NUiR) =0, and w(RiNR;)=0, for i#j  (23)

where we denote by R; the range R; = o;(D;).
(2) There is a Radon—Nikodym derivative

_ d(u o oy)

D,
i du

with ®,, > 0, p-almost everywhere on D;.

A measurable mapo : X — X iscalled a coding map for the family {o;} if 0 00; (x) =
x forall x € D;.

Thus, the maps of the semibranching function system are partial inverses of the
coding map o. Notice that the reverse composition o; o o is only defined when the
image of x under ¢ lands in the domain D; of o;.

Given a semibranching function system {o; } lN: 61 with coding map o, one can con-
struct an associated family of linear operators {T,'}lN: 61 acting on the Hilbert space

L*(X, u) by setting

() () = xr (x) (D (0(x)) "> W (0 (1)), (2.4)

with ¢ € L2(X, 1), where x g; 18 the characteristic function of R; C X.
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Lemma 2.2 The adjoint of the operator T; of (2.4) is of the form
(TPE)(x) = xp, (X)(Po; (X)) /2E (07 (x)). 2.5)

Proof We have

(i, £) = / (D, (0 (1))~ Y (0 (x)E) dpu(x)
R;
_ duoo;
= / (Bo; (@)™ Y (W)E (0 (1)) ’; % dpu)
"

D;

= [ V) (®o; )" E(oi () dpn(x) = (¥, T/E),
D;

where we used the fact that the @, are positive real valued. This gives (2.5). O

We then see easily that the operators 7; and 7;* satisfy the following relation.

Proposition 2.3 The operators T; of (2.4) and their adjoints (2.5) satisfy the rela-
tions T; ;" = P;, where P; is the projection given by multiplication by xr,. This gives
> ;T = 1. Similarly, T*T; = Q;, where Q; is the projection given by multiplica-
tion by the characteristic function xp,.

Proof We write explicitly the action of the operator 7; 7;* on elements £ € L%(X,du).
We have

(TiTFE)(x) = xr, (X)X, (0 ()@, 2 (0 () DY (0 (x)E() = xR (VE(X).

Equivalently, we can write

(e, TrE) = / By, (x) (07 ()2 dpe(x)

D;
duoo
- / @ (0 @) £ 2T dp).
"
R;
Notice then that one has
duoo _
—— Ik = (@5 0007, (2.6)
n

so that we obtain

(Ty6. T6) = / E@ P du) = (PE, PE),
R;
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which gives T;T;* = P;, the range projection on L?(X, 1) realized by the multipli-
cation operator by the characteristic function of the set R;. By the assumptions (2.3)
on the semibranching function system we know that the projections P; are orthogonal
and that >, P, = 1.

We then consider the product 7;*T;.

We have

(Ti§, Ti§) =/<1>;1(0(X)) |€(o () dpu(x).

R;

If x € R; then o (x) € D; since o o 0; = id on D;. Thus, we write the above as

dp o -1
/ ;1 w) W) (Z—M“) dp(u) = / £GP di() = (xpiks xp,E),
D;

D;

where we used again (2.6). This gives T;*T; = Q;, where Q; is the domain projection
given by multiplication by the characteristic function x p, . Unlike the range projections
P;, the domain projections Q; are, in general, not orthogonal. O

When the maps o; are defined everywhere on X, one obtains from the operators 7;
and 7;* a representation of the Cuntz algebra Oy in the following way.

Proposition 2.4 Let {0;} be a semibranching function system on X, where the o; are
defined on all of X, that is, D; = X foralli =0, ..., N — 1. Then the operators T;
define a representation of the Cuntz algebra Oy on the Hilbert space H = L*(X, ).
Namely, they satisfy the relations

T, =1, > LTF =1 2.7)
i

Proof Under the assumption that the semibranching function system has D; = X for
all i € I, we obtain from Proposition 2.3 above that the operators 7; and Tl* of (2.4)
and (2.5) satisfy Tl.*T,- = 1. Moreover, we know from Proposition 2.3 that T; Tl* =P,
the range projections given by multiplication by the characteristic functions xg; . Since
these range projections are orthogonal and the union of the R; exhausts X up to sets
of measure zero, we obtain that Zi T; Tl* =1. O

In the case where the maps o; are not defined everywhere on X, but only on smaller
domains D; C X, one can then use the operators 7; and T;* of (2.4) and (2.5) to
construct representations of Cuntz—Krieger algebras, when the domains D; have the
property that

XD, = D Aijxr;- (2.8)
J

The examples considered in [5-7] are particular cases of this general procedure.
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Proposition 2.5 Let {0;} be a semibranching function system on X, where the o; are
defined on subsets D; C X satisfying (2.8) (possibly up to sets of measure zero). Also
assume that Aj; = 1 foralli =0, ..., N — 1. Then the operators T; and Tl* of (2.4)
and (2.5) satisfy the Cuntz—Krieger relations (2.1) and (2.2), namely

ZTJ;":l and Tl-*Ti=ZAijTiTi*, (2.9)
i j

hence they determine a representation of the Cuntz—Krieger algebra O 5 on the Hilbert
space H = L*(X, ).

Proof Using (2.5) and (2.8) we have

(T76)(x) = D~ Aij xr,; (x) @Y (x) &(0i (x)).

J

We then obtain

(TT6)(x) = D Aijxr; () xr; (0(x) @10 (x)) DY (0/(x) £(x)
J

=D AijXr; (DEX) = PiE(x),
J
since we have from (2.8) that
Uj:a;;=1Rij = {x € Ri|o(x) € Di} = R;.

Since the projections P; are orthogonal, we then obtain
2T =1.
i

This gives (2.2) with S; = T;. Similarly, we have
T'T; = Q;

from Proposition 2.3, where Q; is the projection given by multiplication by x p,. Using
again (2.8) this then gives

TiT =Y AijPj= > T},
j j

which gives (2.1) with S; = T;. O

We describe below an important special case of semibranching function system,
which gives rise to representations of Cuntz—Krieger algebras of the type described in
Proposition 2.5.
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2.1 Cantor Sets and Subshifts of Finite Type

Let 2 be an alphabetin N letters, which we can identify with the set {0, ..., N —1}. Let
A 4 be the set of all infinite admissible words in the alphabet 2, where the admissibility
condition is specified by an N x N matrix A with entries in {0, 1}. Namely,

Ap={w={xuln=01,.. |%i €A Ay v, =1} (2.10)
We assume further that the matrix A has the property that A;; = 1 for each
i =0,..., N — 1, that is, that arbitrarily long strings made of the same letters are

allowed in the words of A 4.

The set A 4 can be topologized as a Cantor set, for example by identifying it with
the subset of the interval [0, 1] of numbers whose base N expansion satisfies the
admissibility condition. However, notice that, when we choose to view A 4 as a subset
of the interval [0, 1], which is convenient in what follows, we identify the rational
numbers with infinite periodic sequences rather than with a finite N-adic expansion,
so as to be able to act with the shift map o on all of A 4. More precisely, the map
between the abstract set A 4 and its image inside the interval [0, 1] is two-to-one on
the periodic sequences. These are of measure zero in the interval, so for our measure
theoretic argument we ignore the distinction and use the same notation for both sets.

Let 4 be the Hausdorff dimension of the set A 4, realized as a subset of the interval
[0, 1] in this way. We can then consider the Hilbert space LZ(A 4, t4), where 4 is
the Hausdorff measure in the dimension 4.

We consider on A 4 the self-map given by the one-sided shift

0:Ag— Ay, o(XX1X2 ... Xp o) =X[1XD ... Xpp oo (2.11)

Proposition 2.6 The shift o is the coding map of the semibranching function system

o; : Di > R;, oj(w)=iw, (2.12)
where
Di ={w={xx} € Apx|Aix, =1} (2.13)
and
Ri ={w={xx} € Aalxo =1} =: Aa(i). (2.14)

Proof We show that the maps of (2.12) form a semibranching function system. We
have

Ag =U;R;, with RiﬂRjZQj, i # ],

hence the condition (2.3) of a semibranching function system is satisfied. Moreover,
the Radon-Nikodym derivative
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dus oo
D, = apa o oi
dpa

is well defined and positive, since the map o; on A4 C [0, 1]isrealized by contractions
and translations. In fact, we can write the domain D; of the map o; as

D; :Uj:A,-/-=1Rj' (2.15)
On each R; the map o; is the restriction of the map of the I; C [0, 1],
I[; ={w € [0, 1]x0 = j},

where x is the first digit in the N-adic expansion of w = 0.xpx1x2 ..., that maps it
to the subset /;; of elements with first and second digit equal to j composed with a
translation that maps isometrically /;; — I;; to the interval of all numbers with first
digit i and second digit j. It is then clear that the shift map (2.11) is a coding map for
this semibranching function system, since on each D; we have ¢ o 0;(w) = w. O

One then sees easily that this gives a representation of the Cuntz—Krieger algebra
04 of the type described in Proposition 2.5 above.

Proposition 2.7 The operators T; and T of (2.4) and (2.5) acting on Hp =
L2(AA, W) define a representation of O 4 with generators S; = T;.

Proof The result immediately follows from Proposition 2.5, upon noticing that the
condition (2.15) is the needed relation (2.8). We are assuming A;; = 1 for all i, so the
hypothesis of Proposition 2.5 are satisfied. O

It is well known (see [9]) that the abelian C*-algebra C (A 4) sits naturally inside the
Cuntz—Krieger algebra O 4 as the C*-subalgebra generated by the range projections
Sy oSy, SE .- S

Xn™xp, X1’

for arbitrary x; € 2 and arbitrary n.

2.2 Perron—Frobenius Operator

Consider the operator T, : L2(X L) — L2(X , ) that composes with the coding
mapo : X = X,

(To ) (x) = Y (o (x)). (2.16)
It is well known in the theory of dynamical systems that one can associate to a self

map o : X — X of ameasure space its Perron—Frobenius operator P, . This is defined
as the adjoint of the composition (2.16) by

/ TPy (E)du = / T, du. 2.17)
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Proposition 2.8 Let {Gi},N: | be a semibranching function system with coding map
o : X — X. Then the Perron—Frobenius operator Py is of the form

(Po&)(x) = D XD, (x) P, () £ (03 (X)). (2.18)

Proof In the inner product of H = L?(X, ) we find

(Ty, £) = / T GNER du(x)
X

S d( o o;
= Z/ w(u)s(ai(u»% dp(u) = <w, > X ®; £ 0 ol->.
i D; i

m}

Notice the similarity of the Perron-Frobenius operator P, to the operators 7;* of
(2.5) above. In fact, using (2.5) and Proposition 2.8, we easily get the following, which
was observed already in [20].

Corollary 2.9 Let {o,-}lN: | be a semibranching function system with coding map o :
X — X. Then the Perron—Frobenius operator Py is of the form

P =S 0121 (2.19)

i

Notice that, in some particular cases, the functions ®,, may be constant, in which
case (2.19) gives just a linear combination of the operators 7;*. For example, in the
cases considered in [6,7] the functions ®,, are locally constant, while they are not in
the case considered in [5].

In the case of representations as in Proposition 2.5, we can express the Perron—
Frobenius operator in terms of the partial isometries S; in the following way.

Proposition 2.10 Let {0;} be a semibranching function system on X, where the o; are
defined on subsets D; C X satisfying (2.8) (possibly up to sets of measure zero). Then
the Perron—Frobenius operator Py is a function of the adjoints S} of the generators
of the Cuntz—Krieger algebra O 4 and the multiplication operators by the functions

CD(l,l/ 2 by

Py = 0}, (220)
i

In the case where the CD},l/ 2 are constant over D;, the operator Py belongs to the
algebra Oy.
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Proof The hypothesis are the same as in Proposition 2.5, hence we know that the
generators S; of the Cuntz—Krieger algebra O 4 in the representation on L%(X, ) are
given by the 7; of (2.4). Then (2.19) gives (2.20). The case where the @/ / are constant
over D; then follows immediately from (2.20), since P, is then a hnear combination
of the S O

To avoid having to assume that the ®,, are constant in the result above (although
this will in fact be the case in the main example we will be considering later), one can
more conveniently work with representations of the Cuntz—Krieger algebras on the
Hilbert space of half-densities, analogous to the representations of the Cuntz algebra
considered in [16].

Recall that the Hilbert space H of half densities consists of elements of the form
V(du/dM)Y?, where € L*(X, dp) and p << A with dpu/d the Radon-Nikodym
derivative, which A-a.e. positive. Elements are considered modulo A-a.e. equivalence
and the inner product is given by

dp\ ' dv\ /2 [ (du 1/2 dv\ /2
<¢ (ﬁ) h (ﬁ) _/f (ﬁ) h (ﬁ) dr. (21
X

One often writes elements of  with the notation ¥ /d.

Given a semibranching function system on X satisfying (2.8), we can construct
representations of the Cuntz—Krieger algebra O4 on the space of half-densities of X,
in much the same way as we did in Proposition 2.7 on the space L2(X, du).

Proposition 2.11 Let {0;} be a semibranching function system on X, where the o; are

defined on subsets D; C X satisfying (2.8), possibly up to sets of measure zero. Let H
be the Hilbert space of half-densities on X. Consider the operators

Si(U/dp) = xr, (f00) Jduoo. (2.22)

These operators define a representation of the Cuntz—Krieger algebra Oy4.

Proof To compute the adjoints ST we check

d 12 /4 1/2
(S (U/dp), £/v) = /w(a(x»a )( plo (x))) ( ”(")) da(x)

di di
@) \'? (dv(o; @)\"'* di o o;(u)
/ x/f(u>5(o,(u>>( ,-) ( dkom) 21

12 . 12
/ TG0E (01 () (d“(”)) (M) )

di
= 1p\/ MﬂXD,‘éOGi VdVOO'i),
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which gives
S¥(EVdv) = xp, (E0ai) Jdvoo. (2.23)

We then check that the operators S; and Sl* satisfy the Cuntz—Krieger relations (2.1)
and (2.2). We have

(SF(ENAY), $;(EVdv)) = / £GP 2% g x)

d dMlo
/|§( AT gy /Iélz—dx

l

which shows that S; S’l* = P;, the range projection given by multiplication by the
characteristic function of R;, so that the relation (2.2) is satisfied by the orthogonality
of the projections P;

ZSZS‘Z* =1.
i
We also have

(Si(Wy/dw), $;(W/dp)) = /|w(o(x))|2 E2T dax)

du  dxoo;
/W( P2 ) /Itﬁ(u)l = dhw),

i

l

which shows that Sl* S; = Q;, where Q; is the domain projection given by multipli-
cation by the characteristic function of D;. Using the relation (2.8) this then gives

S:kgl = ZA,’jSiS;k,
J
which shows that (2.1) is satisfied. ]

We then compute explicitly the Perron—Frobenius operator of the coding map o :
X — X acting on the space of half-densities.

Proposition 2.12 Leto : X — X be the coding map of a semibranching function sys-
tem as in Proposition 2.11 above. The Perron—Frobenius operator Py on the Hilbert
space of half-densities is given by

Po = > S (2.24)
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where Sl; are the generators (2.22) of the representation of the Cuntz—Krieger algebra
Oy on'H.

Proof The translation operator associated to the shift map o : X — X is acting on
the space of half-densities by

YN"J(I//\/dp,) =Y oo+duoo.
The Perron—Frobenius operator Py on H is the adjoint

(T, (W/dp), ENdv) =( Yy/dp, Py (EN/dV)).

This gives

— _(duoo\'? dv\'?
/lﬁ(G(X))( I ) &(x) (d_k) dX(x)
X

=X [ (5 )1/2 (6:0) (d”""")l/zd)‘”"du)
£ v dA oo §(i(u di o o dx !
iR

1

—(du 172 dv o o; 172
=Z / ‘”(”)(dT) s<o,~(u)>( - ) d(u),
iR

which gives

Po(Ev/dv) =D xr, (E00i) Vdvoay,

which is (2.24). o

For example, in the case of the Cuntz—Krieger algebras considered in [5-7], where
the representation comes from the action of a Schottky group I" on its limit set, the gen-
erators S; are associated to a symmetric set of generators 24 = {y1, ..., g, yl_l, el
yg_l} of a Schottky group of genus g, and the matrix A of the Cuntz—Krieger algebra
has A;; = 1 for |i — j| # g and zero otherwise, corresponding to the admissibility
of the infinite sequences w = apaja; - - - of elements of A parameterizing points in
the limit set Ar, namely that a;1 # af]. In this particular class of examples, the
Perron—Frobenius operator of Proposition 2.12 has the form

D __ X IR e ok
Ps =S, +Sy171 +---+Syg +Syg1-
This resembles closely a Harper operator for the group I', save for the important dif-

ference that the operators associated to the symmetric set of generators of I here are
partial isometries and not unitaries as in the usual Harper operator.
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2.3 Projection Valued Measures

We recall how one constructs projection-valued measures using subdivions of com-
pact metric spaces and subdivisions of projections in Hilbert spaces. (We follow the
notation and terminology of [18] for the standard material we recall.) We then show
how this technique applies to the representations of Cuntz—Krieger algebras described
above.

We begin by recalling the notion of partitions and N-adic systems of partitions of
a metric space.

Definition 2.13 Let (X, d) be a compact metric space. For subsets A C X, define the
diameter as

|A] := sup{d(x, y) | x, y € A}. (2.25)

A partition P of X is a family {A(i)}ies, for a (finite) index set I, with the property
that

(M U, AG) = X.
(2) AG)NA() =9, fori # j.

Foragiven N > 2, an N-adic system of partitions of X is a family (indexed by k € N)
of partitions P of X into Borel subsets Ay (a), indexed by elements of ¥, where
A ={0,..., N — 1} is the given alphabet on N letters, with the properties:

(1) |Ax(a)] = O(N—), for some ¢ > 0.
(2) Every Ay4+1(b), with b € Ak+1 s contained in some Ay (a), for some a € Ak,

We then recall the equally well known notion of partitions of projections in Hilbert
spaces.

Definition 2.14 Let H be acomplex separable Hilbert space. A partition of projections
in 7H is a collection { P (i)};e; of projections P(i) = P(i)* = P(i)? such that

(1) P@)P(j) =0, fori # ;.
@ X, PG) =1

An N-adic system of partitions of H into projections is a family of partitions into
projections {Px(a)} indexed by a € A% such that, for every Pry1(a), there is some
b € A* with Py(b) Pyy1(a) = Pryi(a).

We also recall the notion of operator valued measure.

Definition 2.15 Denote by B(X) the collection of Borel subsets of a compact metric
space X. A positive operator-valued function E : B(X) — L(H) defined on B(X)
with values in bounded linear operators on a Hilbert space H is called a o additive
measure if, given a sequence By, B> ..., in B(X), such that B; N B; = ¥ for i # j,
one has

E (U Bi) = Z E(B;). (2.26)
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An orthogonal projection valued measure is a positive operator-valued measure as
above satisfying:

(1) E(B) = E(B)* = E(B)?, forall B € B(X).
(2) E(B1)E(B2) =0when By N By = 0.
(3) E(X) =1, the identity on H.

Note that the values E (B;) in (2.26) are positive operators, so we take the summation
on the right hand side of (2.26) to be convergent in the strong operator topology.

We are interested here in a particular construction of N-adic partitions, for the
metric Cantor set A4 defined in (2.10) above. As above, we consider the alphabet
A =1{0,..., N — 1}. For any k € N, we denote by Wy 4 C Ak the finite set of all
admissible words of length k in the alphabet 2,

Wia=la= (@, ....ar) €W Ay 0, =1, i=1,... k) (2.27)

sai+1

We also denote by Ay, 4(a) the clopen subset of the Cantor set A 4 given by all words
that start with a given a € W 4,

A ata) ={w=(wi, w2, ..., wp,...) € Aa|(wy,...,wx) =a}. (2.28)

We then have the following partition and corresponding operator valued measure.

Proposition 2.16 The subsets Ay a(a) of (2.28) define an N -adic system of partitions
for A 4. There is a corresponding N-adic system of projections Px(a) on the Hilbert
space H = L%(A 4, ua) and an orthogonal projection valued measure E on B(A 4)
satisfying

E(Ar,a(a)) = Pi(a), (2.29)

forall k € N and for all a € W 4.

Proof To see that the Ay 4(a) form an N-adic system of partitions, notice that, when
we identify A 4 with the subset of [0, 1] of numbers with admissible N-adic digital
expansion and we measure diameters in the Euclidean distance on [0, 1], we see that
the set A, 4(a), which consists of such numbers with fixed first k digits in the N-adic
expansion have

|Ak.a(a) < N7F, (2.30)

since the sets of all numbers with fixed k digits in the N-adic expansion are intervals
of length N . Moreover, by construction we have inclusions

Apalar, ..., ax) C Ag—1,a(ar, ..., ar—1). (2.31)
We also have, for fixed k,

Ak.a(@) N A ab) =0, fora #beWga,
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and

UMGWk.A Ak,A ((1) =

Thus, we have an N-adic system of partitions.

One knows from [9] that there is an *-isomorphism between the C*-algebra of con-
tinuous functions C(A 4) and the maximal abelian subalgebra of the Cuntz—Krieger
algebra O4 generated by all the range projections

Pr(a) = Sa; -+ Sqy S;‘k - Sy, (2.32)
We show that the Py (a) define an N-adic system of projections on the Hilbert space
H = L>(Aa, ta). In the representation of O 4 described in Proposition 2.5, the oper-
ator Py (a) acts as the projection given by multiplication by the characteristic function
of the set A 4(a).

Since the Ak 4(a) form an N-adic system of partitions, in particular, as we have
seen above, there are inclusions (2.31). These imply that the corresponding projections
satisfy

Pi_i(ar,...,ak—1) Pc(ar, ..., a) = Pr(ay, ..., ax).

More precisely, one can see by writing as in (2.32) and using (2.2) that

Zpk(alﬂ"‘7ak) Zsal‘ Sak S:l

are are

=S4 Su_ ZS‘lkS:k ak], S*

apeA
=84 Sa_, S} -~-S;;l=Pk_1(a1,...,ak_1).

Aak—1

For every k € Z., let us denote by U the finite dimensional subalgebra of C(A 4)
spanned by the finite linear combinations

Z Ca XAk aa)-

aeWy A

The inclusions (2.31) determine embeddings U1 — Uj and the bound (2.30) on the
diameters implies that every function in C(A 4) can be uniformly approximated with
a sequence of functions in i/ = li_n)lk Uk Thus, the homomorphism

Z Ca XAk,ala) > Z ¢q Pr(a) (2.33)

aeW a aeWk,a

extends, by a standard argument from function theory, from C(A4) to all the Baire
functions on A 4.
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It makes sense then to define an operator valued measure by setting
E(B) = m(xB), (2.34)

where we still denote as 7w the extension above. It follows that E () satisfies the proper-
ties of Definition 2.15 and is countably additive. It also satisfies E(Ak, 4 (a)) = Px(a),
forevery k € Z and foralla € Wi 4. O

2.4 Hausdorff Dimension

We consider again the space A4 of numbers in the interval [0, 1] whose N-adic
expansion is admissible according to the matrix A, thatis, x = 0.apaj - - - ay, - - - with
Agiaipy = 1.

We know that in this case the maps o; are defined on domains D; C A4 satisfy-
ing D; = Uj:a,;=1R;, where Rj C A, is the range of o, with Ay = U;R; and
R; N R; =@ wheni # j. We then have the following properties.

Theorem 2.17 Assume that the non-negative matrix A is irreducible, that is, there
exists a power A" for which all entries are positive. Let 4 be the Hausdorff dimen-
sion of A and pa = s, the corresponding Hausdorff measure.

(1) Onthe sets D; C A 4, the Radon—Nikodym derivatives are constant and equal to

du o oj

= N, 235
P (2.35)

Dy, =

(2) The Hausdorff measure i = 4 on A 4 satisfies
w(Ri) = pi, (2.36)

where p = (p;i)i=0.....N—1 is the Perron—Frobenius eigenvector of the matrix A,

> Aijpj=r(A) pi, (2.37)
J

with eigenvalue the spectral radius r (A), and normalized to have ) ; p; = 1.
(3) The Hausdorff dimension of A 4 is given by

1 A
54 = dimy (A ) = 287A) (2.38)
log N
with r (A) the spectral radius of the matrix A.
(4) The measure | satisfies the self-similarity condition
n—1
w= N z pooy !, (2.39)

k=0

where (o ' (E)) = p({x € Ax|ox(x) € E)).
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Proof (1) The maps o; act as the restrictions to the set D; of the linear maps

x+i
N

oi(x) = (2.40)

defined on the interval [0, 1]. Thus, we see directly that the Radon—Nikodym derivative
of the Hausdorff measure ¢ ¢ will give

dpy,s o 0i
dun,s

=N""%.

In particular for s = §4 = dimpy (A 4) this gives (2.35).
(2) We first show that setting

v(R;) = pi, (2.41)

with p the normalized Perron—Frobenius eigenvector of A, defines a probability mea-
sure on A 4.

The Perron—Frobenius theorem for the matrix A shows that, if r(A) denotes the
spectral radius of A, then r(A) is an eigenvalue which has an eigenvector p = (p;)
with non-negative entries. We can normalize it so that ) ; p; = 1. Setting v(R;) = p;
defines a measure on A 4. In fact, it suffices to see that we can define v(Ag 4(a))
compatibly, for all a € Wi 4. We set

V(A a@) =r(A)  pa,, (2.42)
where a = (ay, ..., ax) € Wk, a. To see that (2.42) consistently defines a measure on
A 4 we need to check that

N—1
V(AA@) = D Agj v(Ars1,a(aj). (2.43)
j=0

We have

D Aaj v(Akp1.4@) = D Agr (A pj = r(A) Fpy, = v(Arala),
J J

where we used the Perron—Frobenius relation

Pay = r(A)7! ZAakjpj.
J

The measure v thus satisfies the self-similarity property

n—1

" =r(A)_IZvoafl. (2.44)

j=0
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Indeed, it suffices to check it on sets of the form £ = A 4(a),for whicho ;1 (Ak,a(a))
is non-empty for a; = j, in which case it is Ax_1 4(0(a)). Then we have

V(A A(b) = r(A) (A py, = r(A) " W(Ak—1,4(0 (@),

which gives (2.44).
We then compare this with the Hausdorff measure i« = 4. This satisfies

W(R) = N4> Ayji(R)). (2.45)
J

In fact, this follows simply from the fact shown in (1) that the Radon—Nikodym deriv-
atives are constant,

which gives

du o oj _ _
pR) = [ L2 = N D) = N7 Y ARy
D; Y

Note that it then follows that the measure u also satisfies

W(Ag.a@) = N84 (Ry), (2.46)

fora = (ay, ..., ax). This follows directly from (2.45) and the fact that

1(Aa@) =D Agg (Mg ala).
J

Notice then that (2.45) is saying that the vector g = (g;) with ¢; = p(R;) is also an
eigenvector of the matrix A, with eigenvalue N -0 < r(A), with the normalization
2.iqi =1

Under the assumption that the non-negative matrix A is irreducible, the Perron—
Frobenius theorem for A ensures that the eigenvalue r (A) is simple and thatif ¢ = (g;)
is another eigenvector, Ag = Ag withg; > 0, then . = r(A) and q is a scalar multiple
of p. Since both vectors are normalized, this implies that

N°* =r(A) and v(R) = p; = q;i = u(R;). (2.47)
By (2.46) and (2.42), this implies that the measures u and v agree.

(3) then follows immediately from r(A) = N %4 and (4) is just the self-similarity
(2.44). O
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As a particular case, if the matrix A has the property that the value @ = > jAij is
the same foralli = 0, ..., N — 1, then one has uniform probability for all the R;, equal
to w(R;) = 1/N, and the set A 4 has then Hausdorff dimension §4 = log(a)/log(N).

We return to consider now in particular the representation of the Cuntz—Krieger
algebra O4 on the space Lz(AA, diLy) asin Sect. 2.1.

Corollary 2.18 The Perron—Frobenius operator Py on the Hilbert space L*(A,
dia), with g = w5, the Hausdorff measure with 84 = dimpg (A 4), satisfies

Py = N"23 s (2.48)
i

Proof Aswe have seen in Proposition 2.17, in this case the @, are locally constant and
equalto N =4 with § 4 the Hausdorff dimension, which in turn is given in terms of the
spectral radius of A. Then we have from Proposition 2.10 that the Perron—Frobenius
operator P, on L?(A 4, dju4) is simply given by (2.48), where the S; generate the
representation of the Cuntz—Krieger algebra on L?(A 4, dita). O

We then see that one can use the result of Theorem 2.17 to construct a fixed point
for the Perron—Frobenius operator P, .

Proposition 2.19 Assume that the matrix A is irreducible, and let w be the Perron—
Frobenius eigenvector for A'. Then f = Y, wixr, is a fixed point of the Perron—
Frobenius operator Py.

Proof Let w be the Perron—Frobenius eigenvector
Ao =r(Adw.

The Perron—Frobenius operator P, acting on the function f = Zi ; XR; gives
Po(f)=N""D" xn,fooi,
i

by Corollary 2.18. We have

XRe © 0i = 8ik XD;»

which gives

Po(f)=N"2D " wixp, = N4> wAijxr,
i ij

from (2.8). Using then A’w = r(A)w we obtain

Po(f) = N4 (A) D wixg, = D oixg = -

where we used the fact that r(A) = N°%4 as in (2.47). O
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There is a well known relation for Cuntz—Krieger algebras between the fixed points
of the dual Perron—Frobenius (or Ruelle transfer operator) acting on measures and
KMS states with respect to associated time evolutions, see [22]. We discuss the more
general case of the Ruelle transfer operators later, but we comment here on the case
that follows directly from Theorem 2.17.

Corollary 2.20 On the Cuntz—Krieger algebra O 4 consider the time evolution defined
by setting

or(S;) = N''5;. (2.49)
The measure 1 = g on A 4 defines a KMS state for the system (O 4, 0;) at inverse
temperature B = §4.
Proof We define a state ¢ on O 4 associated to the measure i by setting

0 a#b,

¢(SaSp) = { W(hea(@) a=beWen. (2.50)

We use here the fact that all elements in O 4 can be approximated by linear combina-
tions of elements of the form S, S;;. We then need to check that the state ¢ satisfies the
KMS condition at inverse temperature § = §4 for the time evolution (2.49). Because
of the form of the state (2.50), and the fact that the measure u satisfies (2.46), it suffices
to check that

9(S;S) = NPo(S:S).
This follows since we have

(SIS = D Aije(S;S)) = D Aiji(R)) = N u(Ry) = N4 g(S:S}),
J J

using the fact that p = (p;) with p; = w(R;) is the Perron—Frobenius eigenvector of
the matrix A. O

2.5 Real Valued Measures and Fourier Transforms

Given an element f € H with norm || || = 1, one can define a real valued measure
on A4 C [0, 1] by setting

wr(B) == (f, E(B)f), (2.51)
with E(B) an operator valued measure as in Sect. 2.3.

Since each such ¢ is a compactly supported measure on the real line, it makes
sense to consider its Fourier transform

iy (1) :=/e”x d g (x). (2.52)
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We then have the following result, which is analogous to the case of the Cuntz
algebras O, discussed in [17].

Proposition 2.21 For every function f € H = L2(A 4, duy) with Ifll = 1, the
measure |y (E) = (f, P(E) f) satisfies

b / Voordus = / vy, 2.53)

k=04

The Fourier transform [L ¢ (t) satisfies

N—
i) = Z Vg7 ( ) (2.54)
k=0
Proof We have
S [ woodis s = XSt v o 00Si ), (2.55)
k

kAA

where 7 denotes the embedding m : C(A4) — Oy, as in (2.33), which realizes
C(A4) as an abelian *-subalgebra of O4, with (XA, 4@)) = SaSy. In the algebra
04 we have the relations

T(f)Sk = Sk w(xpy f 0 o),
Sk (f) =7 (f oo) Sk,
m(f)S; = S n(f oo),
Sin(f) =n(xp, f oon) i

(2.56)

Thus, we have 7 (xp, ¥ o ox)S; = S{m(¥) and we write (2.55) as

S SSEf) = S lfn ) = [vdng @)

k k k Ry

which gives (2.53). We then proceed as in [17], and observe that (2.53), applied to
P (x) = e''¥, gives

Z/en Nodpsr p(x) =/€”Xduf(x),
X

which gives (2.54). O
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We can equivalently see (2.53) as an immediate consequence of (2.39), since we
have

/ Vdus = (for(p) f) = / VIfPdu
=N~° Z(XDJ‘ fooj,m(Yoaj)xp; foaj)
J

= > (S; W 00)SEf) =/1/f o ajdiss; 1.
J

with S}kf = N_B/z)([)jf 0aj.
Iterating the relation (2.54) one obtains

~ i ~ t
p= S M Opg, (W) , (2.58)
a€Wk. a
where fora = (ay, ..., ax) € Wi a we denote by x(a) the expression
ai a ay
x(a):ﬁ—i_m—‘_“'_‘_m' (2.59)

As in [17], we then obtain an approximation of the measure u y with a family of
combinations of Dirac measures in the following way.

Corollary 2.22 Let Mgf) denote the measure

wWOE) = > 1S FIP8a(E), (2.60)

aeWk.a

where 38, is the Dirac measure supported at the rational point x(a) in A4 whose
terminating N-adic expansion is of the form (2.59), for

a = (al,...,ak) EWk,A.

The measures ugc) weakly converge to jy, when considered as functionals on the

space of integrable functions v on the real line whose Fourier transform satisfies

/|m/}(t)|dt < o0. (2.61)

Proof We show that, for all functions ¢ with (2.61), we have
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Passing to Fourier transforms, we have
® _ _ [ dna® Aot
Vvduy Vduy = [ YOy (t)—Mf(t))E.
The Fourier transform of ,u f ) is clearly of the form

~ (k j
AP = > s,

a€Wk. A

with x(a) as in (2.59), and one can estimate as in [17]

A A~ (k _
g0y = 2P @ <l (N

This gives
<—— [ty oldr,

‘/wdu(k) [wans <3

which gives the weak convergence ;1, f — Ly O

2.6 Sierpinski Fractals

There is another fractal object, besides the limit set A 4, that is naturally associated to
an N x N-matrix A with entries in {0, 1}. This is a Sierpinksi fractal constructed in
the following way. Consider the square S = [0, 1] x[ 0, 1] and write points (x, y) € S
in terms of the N-adic expansion

x| X
G =(FH35+Fart o gt t).

with (x;, i) € {0, ..., N=1}x{0,...,N—1} = A2, foralli > 1. We then consider
the subset S4 C S given by

Sa={x,y)eS|Ay,y, =1, Vi>1} (2.62)

This is a Sierpinski fractal whose iterative construction starts by subdividing the unit
square S into the N subsquares of size N ~2 consisting of points (x, y) with first digits
of the N-adic expansion equal to given (i, j) € A>. One then keeps among these only
those for which A;; = 1. The procedure is then iterated by subdividing each of the
remaining squares into N subsquares of size N ~* and keeping only those for which
the same condition A;; = 1 is satisfied, and so on. At each step a square is of size
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N2 is replaced by D squares of size N ~2**D where

=z

—1
D=>"d, with d =#{j|A;=1}. (2.63)

i

Il
S

These satisfy d; < Nand D < N 2. Thus, the Hausdorff dimension of the Sierpinski
fractal S, is simply

log D

di Sa) = .
imp (Sa) 2log N

(2.64)

One can then consider maps 7, j) : Sq4 — Sy, for (i, j) satisfying A;; = 1, given
by

x+i x+j

76, )X, ¥) = (1 (x), 1;(y) = (T T) . (2.65)

Notice how, unlike the o; acting on A4 that we considered before, here the z(;,

are everywhere defined on S,. Since we are only considering such maps for pairs

(i, j) with A;; = 1, it is clear that the image (7; (x), 7;(y)) is still a point in S4. The
corresponding coding map 7 : Sq — Sy is given by

‘[(x,y) :(‘[(x),t(y)): (O.XQ"'.Xk"' ’O'yz...yk...),

for (x,y) = (O.xx2 -~ xg -+, 0.y1y2 -y -+ ).

Lemma 2.23 The semibranching function system {z(; j)}for (i, j) € A2 with Ajj =1
determines a representation of the Cuntz algebra Op on the Hilbert space L*>(S4, ),
with u the Hausdorff measure of dimension § = dimg (S4) as in (2.64).

Proof Let ®; j) denote the Radon—-Nikodym derivative of the measure u with respect
to composition by z(; ;). Since (;, j) is of the form (2.65), we have

duotip _ y-as_ L (2.66)

D hH(x,y) = M D

We consider the operators S;, ;) and SE‘} 7 defined as in the general case of a semi-
branching function system in the form

Sinf = Xrep - (@ o )2 for, (2.67)

with R; ; C S, the range of 7(; ;). The adjoint S(*l. ) in the inner product of L>(S4, )
is given by

(Si.jfoh)=N° / fothdu = N‘s/fh o 7, j) Pij du,
Ri.j) Sa
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so that we get
p h = 1/2]’1 N— =0 h .. 2
S(i,j) - (Dij oti =N O T(i,j)- (2.68)
Thus, one sees that

Se.Sap =1, and Z Sa Sty =1 (2.69)
(@, ):Aij=1
since S, j)SE"i N is the range projection given by multiplication by xg, ;. Thus, the
S, j) generate a representation of the Cuntz algebra Op on LZ(S As M) O
In particular, this means that one can apply to the Sierpinski set S4 all the tech-
niques for constructions of wavelets on fractals from representations of Cuntz algebras
developed, for instance, in [3,4,12-14,16-19,26-28], etc.

Notice then that we can embed the limit set A 4 inside the Sierpinski fractal S4 in
the following way.

Lemma 2.24 The map
E:Ap =S4, EXx) = (x,0()). (2.70)

gives an embedding Ay — Sy.

Proof A point x = (x1x3--- X, ---) in A4 satisfies Ay, = 1. This means that the

point

Xi+1

(x, ) =Ox1x2- x5+, 023+ - Xpg1 -+ +) = (x,0(x))

satisfies Ay, y, = Ay, = 1 foralli > 1, hence it is a point in S4. The map & is
clearly injective since it is the identity on the first coordinate. It is continuous since
the preimage of a clopen set S4 (i1 - - - ig, ji - - - jk) of S4, given by numbers with fixed
first k digits of the N-adic expansion, is either empty, or else, when j, = i,y for
r=1,...,k—1,itis equal to the clopen set A4 (i1, ..., ix, jr) of Ag. O

One can then use this embedding together with the representation of the algebra
Op on L2(S A, I0) to obtain an induced action of a Cuntz—Krieger algebra.

Proposition 2.25 The maps t; j restricts to maps defined on domains D; ; C BE(A ).
These determine a semibranching function system on E (A o) which gives rise to a rep-
resentation of the algebra O ;, where the D x D-matrix A is given by

Ag jy e =8j. Ajk. (2.71)

Proof The condition that 7 j)(x, o (x)) = (t;(x), 7j(0(x)) is in E(A ) determines
the domain D(; jy C E(A4) to be

D j) = {(x,0(x)) € E(Aa)|ojo(x) = 00;(x)} = E(R)). (2.72)
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In fact, the condition that A;; = 1 implies that R; C D; in A4, sothat E(D; N R;) =
E(R;). We identify the restriction of continuous functions on S4 to E(A 4) with con-
tinuous functions on A 4 and we write equivalently, with a slight abuse of notation,
f(x,0(x)) or f(x). One then sees that

@i jx, 0(x)) = floi(x) xr; (x).

This induces an isometry on the Hilbert space L2(E(Ay), Ws), where g is the Haus-
dorff measure of dimension s = dimgy (E(A4)),

S ) F () = N*xg,; (x) f (0 (x)),
since for a function f(x, o (x)) on E(A4) we have
XRq. (. 0 () f(0(x), 07(x)) = xr,; (x) f (0 (x)).
This has adjoint
Si i F ) = N5 xr, (x) f (0i (x)).
We then obtain
Sy St ) F () = xr; () xr; (@) f(010(x)) = xr;; (X) f(x)

so that we have the relation

> SanSty =1
@i,7)

We also have
8% 86 f ) = xR, () xRy (@1 (0)) f (007 () = x&, @) f ().

Using the fact that

XR; = ZAijRjk,
k

we then obtain the other relation in the form

860560 = 2 AikSG0 S k-
k

These correspond to the Cuntz—Krieger relations for the matrix A of (2.71). O
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3 Wavelets on Fractals

A general construction of wavelets on self-similar fractals was described in [15], see
also [2]. The cases considered there correspond, from the point of view of semibran-
ching function systems, to the case where the o; are defined on all of X, as in the case
of the Cuntz algebra. To adapt these constructions of wavelets to the main case we are
interested in, which is the Cantor sets A 4 introduced above, one can use the representa-
tion of the Cuntz—Krieger algebra O 4 on L2(A A, dp4) that we considered in the pre-
vious sections, and again the Perron—Frobenius theory for the non-negative matrix A.

We begin by recalling briefly how the construction of [15] works in the case of
a semibranching function system on a measure space (X, «) where the N maps o;
are defined on all of X. In this case one considers the (m 4+ 1)-dimensional linear
space ‘B of polynomials on R of degree < m, and one denotes by G the linear
subspace of L>(X,d), generated by the restrictions P|x . of polynomials in PB".
Under the condition that X preserves Markov’s inequality (see Sect. 4 of [15]), one
knows that one still has dim G9 = m + 1. One then considers the linear subspace
S ¢ L*(X, dp) of functions f € L2(X, dp) that are u-almost everywhere on
R; = 0;(X) restrictions P|g; of some polynomial P € ™. Clearly &9 C &; and
dim S| = Ndim Sy = N(m+1),and let¢£, for{ =1, ..., m+1be an orthonormal
basis for S¢. One then considers the orthogonal complement &1 © S, with a fixed
choice of an orthonormal basis ¥”,for p =1, ..., (N — 1)(m + 1). The functions ¢"
and ¢ ” provide the mother wavelets. One then considers the family of linear subspaces
Srof L3(X,d ), of functions whose restriction to each subset o;, o- - -00;, (X), agrees
u-almost everywhere with the restriction to the same set of a polynomial in 3. These
satisfy g € & C --- & C --- L>(X, d). Moreover, any function in L*(X, d )
can be approximated by elements in

So ® D(Sk+1 © ),
k>0

since in fact the polynomials of degree zero already suffice, as they give combinations
of characteristic functions of the sets 0;, o - - - 0 0, (X). The wavelets are then obtained
in [15] as

Yl = u(oa(X) "2yl oo, . 3.1

fora = (i1,...,ix) and o, =03, 0 -+ 0 0j,.

We show now how to adapt this construction to the case of the Cantor sets A 4. For
simplicity, we describe in full only the case where one only considers locally constant
functions, that is, where one starts with the 1-dimensional space 2]30. This is the case
that is closest to the classical construction based on the Haar wavelets [11].

On the space A4 C [0, 1], with the Hausdorff measure u = w4, let S denote the
linear subspaces of L2(A A, dp4) obtained as above, starting from the 1-dimensional
space P3°. Let

(Ym0, N—1i0=1...dy (3.2)



Cuntz—Krieger Algebras and Wavelets on Fractals

with
dp = #{j | Axj = 1}, (3.3)

be a family of locally constant functions on A 4 such that the support of f¢* is con-
tained in Ry and

/ﬂW”=mu (3.4)
Ry
We also require that
/f“:O, Ve=1,...,d. (3.5)
Ry

Lemma 3.1 A family of functions f* as in (3.2), satisfying (3.4) and (3.5), can be
constructed using linear combinations of characteristic functions xg,;, where Ryj =
Ao a(kj). The resulting YK give an orthonormal basis of the space G5 © &.

Proof To see that linear combinations of characteristic functions xg,; suffice to con-
struct the functions f%¥, notice first that the x Ry; give an orthogonal basis for the
space &, which is of dimension dim &> = >, di. We then write the f .k in the form

=" Akic xry (3.6)
J

where the conditions (3.4) and (3.5) translate into conditions on the coefficients of the
form

—tk €k
ZAijj ¢; Pk =der, 3.7
J
where we use the notation
- ) — NT204 .
Pkj = W(Rkj) = N~ pj, (3.8)
according to (2.46), where p = (po, - .., pn—1) is the Perron—Frobenius eigenvector

Ap = r(A)p for the non-negative matrix A. Similarly, the condition (3.5) becomes

ZAij?kij = N4 Z Akjcffkpj =0, 3.9)
j j

where we again use (3.8).
Let us introduce the following notation for convenience. Consider on C% ¢ CN
the inner product
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(v w)k = D Agjvjw;p. (3.10)
j

Let V; denote the orthogonal complement, in the inner product (3.10) on C% of the

.....

Vk, in the inner product (3.10), namely
(€ u)y =0, and (" ey =80 (3.11)

Then for ¢ as above, one sees that the functions (3.6) are an orthonormal family
satisfying the conditions (3.4) and (3.5).

The space spanned by the f% is contained in &, by construction. The condition
(3.5) ensures that the functions f* are orthogonal to all the x Ry» hence they are in
G266 6. They span a space of dimension >, (dxk —1) = D, dy — N = dim 5,6 6;.

O

Theorem 3.2 Suppose given an orthonormal basis { f©"} for G, © &1, constructed
as in Lemma 3.1 above. Then the functions of the form

Yhr =8, 5, (3.12)

fora = (a1, ...,ar) € Wk, a, give an orthonormal basis for the space Gr4+1 © Sk
hence, for varying a € Wi a and for all k > 0, they give an orthonormal basis of
wavelets for L*>(A 4, ).

Proof We have shown in Lemma 3.1 that the functions f tr forr =0,..., N-1and
{=1,...,d,,give an orthonormal basis of G, & &. We then check that the functions
Saf Lr give an orthonormal basis for G| © Gy. Since in the representation of O 4
on L2(A4, dps) we have constant Radon-Nikodym derivatives ®,, = N —84, this
gives

Sif =Ny, foo,
so that we then have
Sy fOr = Noak/2 X Aya(a) o ook,
For a € Wk 4, we have
(Saf ™", S £y = N¥ (xg, 7 0 0%, xr, f7 0 0%)
= N(SAkaa’a//(fZ,r oak) (fZ’,r’ ook)du,
Ra

where we write R, = Ay a(a), for the range of 0, = 0y, o - - - 0 0, . Notice then that
we have, for any function f € LZ(AA, dp) and any a € Wk 4,
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d
/fOdeILZ/f MOO‘adM
du
Ry Dy,

— N—(SAk / fd“f — N—(SA]( ZAak]/fdM (313)
J R;

Dy,

Applied to the above this gives

(Safe’rv Sa’fl o’ ) = aa,u’(sr,r’Aakr / f(,rfz o’ dM = (Sa,a’ar,r’sl,é’-
R,

Thus the S, £%* form an orthonormal system.

The space spanned by these functions is contained in G4 and a counting of dimen-
sions shows that it has the dimension of Gy © Gy. To see that the S, f Lk are in fact
orthogonal to the elements of & it suffices to compute

(SafY", Xnpat) = Sap N / ferookdn
R,

= Su.b zAlllmj / fZ,r di = 84pAqr / fe’r du =0,
J R,

R;j

by (3.13) and (3.5). This shows that we obtained an orthonornal basis of G411 & G,
hence a wavelet system for LZ(A 4, dp). m]

It is useful to remark how the main difference in this case, as opposed to the similar
constructions given for instance in [15] that we mentioned above, is that here we need
to start from an orthonormal basis of &, © & instead of &1 © &. This reflects
the fact that our functions o; are not everywhere defined and, while the choice of an
orthonormal basis for &1 & G gives the needed information on the ranges R;, in order
to control both the ranges and the domains D; one needs to go one step further before
starting the induction that constructs the wavelets, and consider G, © &;. Thus, the
wavelet decomposition of a function f € L?(A 4, ) will be given by

N—1ld—1 0o
F=2 D an Ff 4D D D aka S (3.14)
k=0 (=1 J=0 aeWj a (£.k)

The more general case where one starts the wavelet construction from the linear
space of polynomials 3" with m > 1 can be done along the same lines as Lemma 3.1
and Theorem 3.2. We describe in the next section a different approach to wavelets
constructions based on the Ruelle transfer operator for the coding map o. This is
closer to the point of view developed in [12].
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4 Ruelle Transfer Operator

A more general version of the Perron—-Frobenius operator associated to the coding map
o 1 Ap — Ay is obtained by considering the Ruelle transfer operator. This depends
on the choice of a potential function W, defined on A 4, and is defined as

Rowfx)= D W fO. 4.1)

yio(y)=x

Lemma 4.1 If the function W is real valued, one can describe the operator Ry w as
the adjoint of the operator

Tw f(x) = N°A W(x) f(o(x)). 4.2)
Proof We have

(Tw f. h) Z/N‘SA W(x) f(o(x)h(x)du(x)

Aa

=> / F Q) W (o (w)h(oi u))dp(u),
i D:

using the fact that the Radon—Nikodym derivative dju 0 o; /dju = N ~%4. We then write
the above as

> Aij / F ) W (o (u))h (o7 (u))d pa(u).
ij R;

We also have

D Aijxr; )W (0i (xX)h(0i(x)) = D Aix, W(0i (x))h(0i (x)).

i,j i

Since the set of preimages of the point x under the coding map is given by

lem=xt= (J R,

i:Al‘x1 =1
we see that the above is in fact

DA Woi))h(oi(x) = D W) f().

yio(y)=x

This shows that (Ty f, h) =( f, Re.w (h)). o
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We assume that the potential W of the Ruelle transfer operator satisfies the Keane
condition, namely that it has non-negative real values W : A4 — R, and satisfies

Z W(y) = 1. 4.3)
yio(y)=x
Equivalently, this means
> A W(oi(x)) = 1. (4.4)
i

4.1 Random Processes

In the same way as described in [12], we relate here harmonic functions for the Ruelle
transfer operator, that is, functions satisfying R, wh = h to random processes defined
by transition probabilities for paths from a given point x to the image under the o;
and their iterates.

Let A" be the transpose of the matrix A. Then we have a’ = (a, ..., a;) € Wy 4 if
andonly ifa = (a1, ..., ar) € Wk, 4. We construct probability measures on the limit
set A 4 that are related to fixed points of the Ruelle transfer operator for the coding
o : Ay — Ay. Inthe following we denote by R; and D;, as before, the ranges and
domains of the maps o; in A4 and by R! and D! the corresponding sets in A 4.

For a given potential W on A 4 satisfying the Keane condition (4.3), consider a func-
tion x PXW, forx € D; C A4, where PXW :B(A s N Rf) — R, is a non-negative
function on the Borel subsets of A 4+ defined by assigning to the A 4r(a) the values

PY (Ap,ar (@) = Ay W (00, )W (043000 (X)) - - W (0 - - 0, (x)),  (4.5)

fora' = (ay,...,a;) € Wi a andforx € Dy, C Ay.
Lemma 4.2 The assignment (4.5), for x € D; C A 4, defines ameasure on le C Ay

Proof Similarly, to the case of A 4 seen in (2.43), to check that (4.5) defines a measure
one has to check the compatibility condition

PY (A ar(@) =D Al PY (Mg ata))), (4.6)
J

forall x € D,y C Aa. We have
PY (Aks1,4(aj) = Aay ) W (04, (X)) -+ W (0 -+ - 00, ()W (004, -+ - 0 (X))

Moreover, the Keane condition for W on A 4 gives

D Aja W00y 0a (X)) = 1,
J

so we obtain (4.6). O
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One can think of the values of the potential W as defining a probability of transition,
or walk, from x to oy, (x), so that (4.5) can be regarded as the probability of a random
walk from x to oy, - - - 04, (x). We then see that the random process P is related to
the fixed points of the Ruelle transfer operator.

Proposition 4.3 The random process x +— PXW introduced above is related to fixed
points of the Ruelle transfer operator in the following ways.

(1) Let E C Ayt be a shift invariant set o~ WE) = E. Then the function x +—
PXW(E ) is a fixed point of the Ruelle transfer operator with potential W on A 4.
(2) [If'the series

h(x) =D D Aq W00 (x) -+ W(og, 04 (x)  (4.7)

k>1 aGkaAt

converges, then the function h(x) is a fixed point of the Ruelle transfer operator
with potential W on A 4.

Proof (1) We check that this condition is equivalent to the fixed point condition under
the Ruelle transfer operator. For a given set Ay 4r(a), we have

Row(PY (A ar@) = D W) P (A ar(@)
yio(y)=x

=D A Woj () P (Mg a (@)
j
A shift invariant set o ~!(E) = E in A 4 satisfies

Uj.,i:A‘j[:](Tj(E NR;)=E.

By construction of the measures PXW, we know that PXW (o;(EN Rf )) is non-trivial
provides that x € Dj, so that A j; = 1. Thus, for o~ Y(E) = E, we have

Row(PY(E) = > AijPY(0;(ENRY) = PY (o~ (E)) = P}V (E),
J

which shows that PXW(E ) is a fixed point for Ry w.
(2) Assuming that the series (4.7) converges, we have

Rowh(x) = D" WEh(y) =D Ajy W(oj(x)h(o;j(x)
J

o(y)=x

=D AW (0)) DD Ay jW(04,0(x) -+ W(0g, - 04,05 (x))
J k a

=> D> A W)W (0w 0j(x) -+ W(og, - 0a,05(x)).

k b=jacW  u

This gives Ry wh(x) = h(x). O
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4.2 A Trigonometric Example

We give an example of a potential W satisfying the Keane condition, constructed using
trigonometric functions.

Lemma 4.4 The function

1 27 Nx
W) = Fl (1 — cos( N )) , 4.8)

with Ny = #{j : Ajx, = 1}, is a potential satisfying the Keane condition (4.3) on
Aa.

Proof First notice that we have
N—-1 .
2niNoj(x
Z Ajy, €Xp (—]()) =0,
N1

j=0

since 0 (x) = (x+ j)/N and the above becomes a sum over all the N;th roots of unity.
It follows directly from this that the real valued trigonometric version also satisfies

N-1
27 No;
Z ijl CcoS (ﬂ) — O’
, N
Jj=0
from which it follows that the potential of (4.8) satisfies

N-1

D A Wojx) = 1.

J=0

Moreover, the function W (x) takes non-negative real values, so it gives a potential
with the Keane condition. O

5 Examples and Applications
5.1 Hensley Cantor Sets and Continued Fraction Expansion

In [23] the coding of geodesics on the modular curves Xt = H/ T, for I' C PGL»(Z)
a finite index subgroup and H the hyperbolic upper half plane, was related to a general-
ization of the shift map of the continued fraction expansion 7" : [0, 1] xP — [0, 1] x P,

1717 (-
T(x,s):(}—c—[)—c],( [11/“ (l))s), (5.1)

where P = PGL,(Z)/ I is the finite coset set. It was then shown in [24,25], that the
restriction of this dynamical system to the Hensley Cantor sets, that is, those subsets
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Exn C [0, 1] of points that only contains digits a¢x < N in the continued fraction
expansion, gives rise to a dynamical system

o:EyxP— Ey xP, 5.2)

which can be identified with the coding map ¢ : A4 — A4 of a semibranching
function system {o;} that determines a Cuntz—Krieger algebra O4. The case where
I' = PGL,(Z) recovers the Cuntz algebra Oy .

In this setting, one considers the Ruelle transfer operator with potential (without
Keane condition)

W(x,s) =|T(x, )P
so that

Rewfe.s)= > TG0 fy.1)
T(y.t)=(x,s)
N

_ 1 1 0 1
- (x+n)2ﬂf(x+n’(1 ")s)

n=1

This can be written in the form

D A 1.9 W (00 (6, ) f (00 (X, 5)),
(n,1)

where the matrix A is defined by the condition

1 M;s =1,

A, ks) = {O otherwise,

where the matrix M, € GL,(Z), acting on the left on the coset P, is

01
n=(01)
The shift invariant measure py p on Ey x P constructed in [24] using the fixed

point of the Ruelle transfer operator can then be also seen as in [22] as KMSg state
for the time evolution on the Cuntz—Krieger algebra O4 given by

ot (Stks) = WS s,

where we identify W~ for fixed ¢, with an element in C (Eyx x IP). The KMS state
is then of the form

p(SaSy) = / fa(x,8)duy p(x,s),
EnxP
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fora = ((k1,s1), ..., (kr,sr)) € W, 4 and f, the element in C(Ey x P) that corre-
sponds to S, S;. The Ruelle operator can correspondingly be written as

Rrwf = z Sty WI S
(n,1)

in term of generators of the Cuntz—Krieger algebra.

5.2 Graph Wavelets from Cuntz—Krieger Algebras

It was recently shown, see for instance [8], that the crucial problem of spatial traf-
fic analysis on networks can be addressed using a form of wavelet analysis which is
adapted to the topology of the network graph. These graph wavelets are constructed
as families of functions W, (v) on the set of vertices V (G) of a given finite graph G,
localized with respect to certain scaling indices o, and with the property that

/ Vo (v)dpu(v) =0, and / Vo ()W (VApW) =850, (5.3)

V(G) V(G)

where p(v) is a given measure that weights the nodes of the network with assigned
probabilities. We show here how to construct families of graph wavelets using the
representations of Cuntz—Krieger algebras and the corresponding wavelets on A 4
constructed in Sect. 3.

Let G be a finite directed graph with no sinks. It is well known that one can asso-
ciate to such a graph a Cuntz—Krieger algebra in the following way. One considers a
collection of projections P, associated to the vertices v € V(G) and a collection of
partial isometries S, associated to the oriented edges e € E(G), with the relations

Py= > S.S: (5.4)

s(e)=v
for all v € V(G), and
Pr(e) = S:Se» (5.5

for all edges e € E(G). Assuming that the graph has no sinks, so that all vertices are
sources, one has ZU P, = 1 so that the isometries S, satisfy the relation (2.2),

Zsesj =1 (5.6)

Moreover, for N = #E(G), one defines the N x N-matrix A,/ by

|1 or(e) =s(e),
Ace' = [O otherwise. 5.7)
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Then the relation (5.5) reads equivalently as

SiSe=" D SuSh= AewSeS, (5.8)

e'r(e)=s(e’) e’

which gives the other Cuntz—Krieger relation (2.1).

As before, let A4 be the limit set associated to the algebra O4 of the graph G.
Letd, = #{e |r(e) = s(¢')} = #{e’ | A, = 1}. Consider as in Sect. 3 the ortho-
normal family of functions {f“} withe € E(G) and £ = 1,...,d,. As we have
seen in Sect. 3 these are the mother wavelets for the orthonormal basis of L2 (A4, 1na)
given by the functions {S, f*¢}, for varying @ € Wj_ 4 and k € N. Here an element
a = (e1,...,er) € Wx a is a path in the graph G of length k starting at the vertex
s(e1). Here we use the same mother functions to construct a family of graph wavelets.

Recall from Sect. 3 that the functions f%¢ are constructed in terms of a family
cbe = (cﬁ;e) of vectors satisfying

—Le Ue
E Ae,e’ce/ Ce/ Pee’ = 5e,e’s (59)
/

e

where Dee’ = W(Reer) = N726A Pe' and

D A pe =0. (5.10)
e/

Upon rescaling the coefficients cﬁ,’e by a factor N%4, we obtain a family satisfying
(5.10) and with (5.9) replaced by the similar

> Al pe = 8o, (5.11)

e/

where we keep the same notation for these rescaled coefficients. The p, are the com-
ponents of the Perron-Frobenius eigenvector Ap = r(A)p.

After fixing a choice of a base vertex vg € E(G), we define a measure on the set
of vertices of the graph by ¢ ., (vo) = 0 and

KG vy (V) = Pe; - - - Pey» (5.12)

where e - - - ¢ is the shortest path in the graph G starting at vy and ending at v. This
means that we are considering a random walk on the graph starting at vo, where at the
first step one has probability p, of moving to the nearby vertex r(e) and probability
zero of remaining at vy. The measure (5.12) gives the probability of reaching at time
k one of the vertices that are k steps away from vy.
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In addition to fixing the base vertex vg, we also fix a choice of an edge ep with
r(eg) = vo. We then define functions

£,e0 _ / _ _ /
0 otherwise.
These satisfy
| w06 = 3 e ®pe =0 (5.14)
V(G) ¢
and
- —leg Ue
/ V() Wy (VARG (V) = D AeerC Uy pe =800 (5.15)
V(G) ¢
We then extend this to a family Wy, ¢, (v), where we consider pathsa = (ey, ..., e;) €

Wi, a of length k in the graph starting at vp, with £; =1, ..., d,,. We set

Li,eq L2,e) Li,ek—1

C C ceeC v=r(eg), vo=s(er),
\I’(Zl,...,ik(v) — 3] e e (k) 0 (e1) (516)

0 otherwise.

These again satisfy

Ly,e0 Lo,e Li ex—1 _
= E Aeoel "'Aek_lekcgll chg ! s Cep Pey * " Dey =0. (517)

This vanishes since already >, Ae; e cﬁi‘ek‘l De;, = 0. Moreover, they satisfy

\I'fl ,,,,, Ok (v)\II(/I A W) LG v (V)
V(G)

—01.¢ —l.er—1 L.eo G
= Z Acger + Aap_1e €10 - Gl e e e pey
(e1,....ex)
=8¢0 Sy (5.18)

The functions Wy, ¢, , for k > 1, constructed in this way, are supported on concentric
regions Uy (vg) made of vertices at a distance k from a chosen base vertex vg. Unlike
other types of graph wavelets constructions where the functions are constant on such
concentric regions U (vg) and average to zero over different k, the ones we obtain
here are supported on a single U (vg) with zero average. In terms of traffic analysis on
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networks, while one type of graph wavelets may be more suitable in analyzing radial
propagation from a vertex, the other may be preferable for directional propagation
away from a chosen vertex.

In [6,7] one considered, in the setting of Mumford curves with p-adic Schottky uni-
formization, the Cuntz—Krieger algebras associated to the finite graphs with no sinks
obtained from the action of a p-adic Schottky group on the subtree of the Bruhat-Tits
tree spanned by geodesics with boundary points on the limit set in P!(Q p). In that
context it would be interesting to compare the wavelet constructions described in this
paper with the p-adic wavelet theory (see for instance [1]).
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