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Disclaimer: this is a largely speculative talk, meant for an informal
discussion session at the workshop “Novel approaches to the finite
simple groups” in Banff
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Quantum Statistical Mechanics and Class Field Theory

QSM approach to Class Field Theory: number field K

• QSM system (A, σt)
• partition function Z (β) is Dedekind zeta function ζK(β).
• phase transition spontaneous symmetry breaking at pole β = 1
• unique equilibrium state above critical temperature
• quotient CK/DK (idèle class group by connected component)
acts by symmetries
• subalgebra A0 of A: values of extremal ground states on A0 are
algebraic numbers and generate K ab

• Galois action by CK/DK via CFT isom
θ : CK/DK → Gal(K ab/K )
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Quantum Statistical Mechanics
A = algebra of observables (C∗-algebra)

State: ϕ : A → C linear

ϕ(1) = 1, ϕ(a∗a) ≥ 0

Time evolution σt ∈ Aut(A)
rep π : A → B(H) on Hilbert space H

Hamiltonian H =
d

dt
σt |t=0

π(σt(a)) = e itHπ(a)e−itH

Symmetries
• Automorphisms: G ⊂ Aut(A), gσt = σtg ; inner: a 7→ uau∗ with
u = unitary, σt(u) = u,
• Endomorphisms: ρσt = σtρ e = ρ(1) (need ϕ(e) 6= 0)

ρ∗(ϕ) =
1

ϕ(e)
ϕ ◦ ρ

inner: u = isometry with σt(u) = λitu
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Equilibrium states (inverse temperature β = 1/kT )

1

Z (β)
Tr
(
a e−βH

)
Z (β) = Tr

(
e−βH

)
More general: KMS states ϕ ∈ KMSβ (0 < β <∞)
∀a, b ∈ A ∃ holom function Fa,b(z) on strip: ∀t ∈ R

Fa,b(t) = ϕ(aσt(b)) Fa,b(t + iβ) = ϕ(σt(b)a)

At T > 0 simplex KMSβ ; extremal Eβ (points of NC space)
At T = 0: KMS∞ = weak limits of KMSβ

ϕ∞(a) = lim
β→∞

ϕβ(a)
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The Bost–Connes system
Algebra AQ,BC = Q[Q/Z] oN generators and relations

µnµm = µnm
µnµ

∗
m = µ∗mµn when (n,m) = 1

µ∗nµn = 1

e(r + s) = e(r)e(s), e(0) = 1

ρn(e(r)) = µne(r)µ∗n =
1

n

∑
ns=r

e(s)

C ∗-algebra C ∗(Q/Z) oN = C (Ẑ) oN with time evolution

σt(e(r)) = e(r), σt(µn) = nitµn

Rep on `2(N), partition function Tr(e−βH) = ζ(β)

• J.B. Bost, A. Connes, Hecke algebras, Type III factors and phase
transitions with spontaneous symmetry breaking in number theory,
Selecta Math. (1995)
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KMS states of the BC system
• Representations πρ on `2(N):

µnεm = εnm, πρ(e(r))εm = ζmr εm

ζr = ρ(e(r)) root of 1, for ρ ∈ Ẑ∗
• Low temperature extremal KMS (β > 1) Gibbs states

ϕβ,ρ(a) =
Tr(πρ(a)e−βH)

Tr(e−βH)
, ρ ∈ Ẑ∗

• phase transition at β = 1; high temperature: unique KMS state
• Zero temperature: evaluations ϕ∞,ρ(e(r)) = ζr

ϕ∞,ρ(a) = 〈ε1, πρ(a)ε1〉

Intertwining: a ∈ AQ,BC , γ ∈ Ẑ∗

ϕ∞,ρ(γa) = θγ(ϕ∞,ρ(a))

θ : Ẑ∗ '→ Gal(Qab/Q)

Class field theory isomorphism
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Gibbs states near the phase transition
• Gibbs states of BC system are polylogs at roots of unity

ϕβ,ρ(e(r)) = ζ(β)−1
∑
n≥1

ζnr
nβ

= ζ(β)−1Liβ(ζr )

Lis(z) =
∞∑
n=1

zn

ns

• The zeta function ζ(β) has a pole at β = 1
• Behavior of these KMS states as β → 1: near criticality behavior
of expectation values

Matilde Marcolli From CFT to CFT?



Useful polylogs identities
• Fourier sums: ζ(s, a) = Hurwitz zeta function

Lis(e2πim/p) = p−s
p∑

k=1

e2πimk/pζ(s,
k

p
)

• multiplication formula:

p−1∑
m=0

Lis(ze2πim/p) = p1−s Lis(zp)

• Fermi–Dirac distribution −Lis+1(e−µ)
• − log(−µ) limit as s → 1:

Lis(eµ) = Γ(1− s)(−µ)s−1 +
∞∑
k=0

ζ(s − k)

k!
µk

lim
s→k+1

(
ζ(s − k)

k!
µk + Γ(1− s)(−µ)s−1

)
=
µk

k!
(Hk − log(−µ))

Hn =
∑n

k=1 1/k harmonic numbers
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QSM systems and complex multiplication
(Connes–Marcolli–Ramachandran)

K = Q(
√
−D) imaginary quadratic field

• 1-dimensional K-lattice (Λ, φ): fin gen O-submod Λ ⊂ C with
Λ⊗O K ∼= K and O-mod morphism φ : K/O → KΛ/Λ (invertible
is φ isom)

• (Λ1, φ1) and (Λ2, φ2) are commensurable if KΛ1 = KΛ2 and
φ1 = φ2 modulo Λ1 + Λ2

• space of 1-dim K-lattices Ô ×Ô∗ (A∗K/K∗): adelic description of

lattices (Λ, φ) as (ρ, s), ρ ∈ Ô and s ∈ A∗K/K∗, mod
(ρ, s) 7→ (x−1ρ, xs), x ∈ Ô∗

• commensurability classes: A·K/K∗ with A·K = AK,f × C∗
(nontrivial archimedean component)
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• Groupoid algebra of commensurability of 1-dim K-lattices
C0(A·K) oK∗, up to scaling: Ô ×Ô∗ (A∗K/K∗) mod C∗ is

Ô ×Ô∗ (A∗K,f /K∗) and commensurability by (ρ, s) 7→ (sJρ, s
−1
J s),

J ⊂ O ideal adelically J = sJÔ ∩K

C (Ô ×Ô∗ (A∗K,f /K∗)) o J+
K

• Class number from A∗K,f /(K∗ × Ô∗) = Cl(O)

• Ô∗ acts by automorphisms, semigroup Ô ∩ A∗K,f by

endomorphisms, O× by inner

• time evolution

σt(f )((Λ, φ), (Λ′, φ′)) =

∣∣∣∣Covol(Λ′)

Covol(Λ)

∣∣∣∣it f ((Λ, φ), (Λ′, φ′))

by n(J)it on commens class of invertible (positive energy)
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• Arithmetic subalgebra from modular functions evaluated at CM
points in H (using restriction from GL2-system of Connes–Marcolli)

• Partition function ζK(β) Dedekind zeta function

• Gibbs states low temperature; phase transition at β = 1; unique
KMS above

• At zero temperature intertwining of symmetries and Galois
action (Class Field Theory)

1 // K∗ // GL1(AK,f )

��

' // Gal(Kab/K) // 1

1 // Q∗ // GL2(Af )
' // Aut(F ) // 1.

using Shimura reciprocity and GL2-system
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General systems for number fields (Ha–Paugam)

AK := C (XK) o J+
K , with XK := G ab

K ×Ô∗K ÔK,

ÔK = ring of finite integral adeles, J+
K = is the semigroup of

ideals, acting on XK by Artin reciprocity

• Crossed product algebra AK := C (XK) o J+
K , generators and

relations: f ∈ C (XK) and µn, n ∈ J+
K

µnµ
∗
n = en; µ∗nµn = 1; ρn(f ) = µnf µ

∗
n;

σn(f )en = µ∗nf µn; σn(ρn(f )) = f ; ρn(σn(f )) = fen
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• Artin reciprocity map ϑK : A∗K → G ab
K , write ϑK(n) for ideal n

seen as idele by non-canonical section s of

A∗K,f // // JK
s

]]
: (xp)p 7→

∏
p finite

pvp(xp)

• semigroup action: n ∈ J+
K acting on f ∈ C (XK) as

ρn(f )(γ, ρ) = f (ϑK(n)γ, s(n)−1ρ)en,

en = µnµ
∗
n projector onto [(γ, ρ)] with s(n)−1ρ ∈ ÔK

• partial inverse of semigroup action:

σn(f )(x) = f (n ∗ x) with n ∗ [(γ, ρ)] = [(ϑK(n)−1γ, nρ)]

• time evolution on J+
K as phase factor N(n)it

σK,t(f ) = f and σK,t(µn) = N(n)it µn

for f ∈ C (G ab
K ×Ô∗K ÔK) and for n ∈ J+

K
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Properties of QSM systems for number fields

• Partition function Dedekind ζK(β); symmetry action of G ab
K

• Complete classification of KMS states (Laca–Larsen–Neshveyev):
low temperature Gibbs states; phase transition at β = 1; unique
high temperature state

• Reconstrution (Cornelissen–Marcolli): isomorphism of QSM
systems (AK, σK) ' (AK′ , σK′) preserving suitable algebraic
subalgebra determines field isomorphism K ' K′

• Arithmetic subalgebra for Class Field Theory via endomotives
(Yalkinoglu)
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Gibbs states near the phase transition:
• Partition function = Dedekind zeta function has pole at β = 1

• Residue given by class number formula

lim
s→1

(s − 1)ζK(s) =
2r1(2π)r2hKRegK

wK
√
|DK|

with [K : Q] = n = r1 + 2r2 (r1 real and r2 pairs of complex
embeddings), hK = #Cl(O) class number; RegK regulator; wK
numer of roots of unity in K; DK discriminant

• For a quadratic field ζK(s) = ζ(s)L(χ, s) with L(χ, s) Dirichlet
L-series with character χ(n) = (DK

n ) Legendre symbol

(
a

p
) =


1 a square mod p (a 6= 0 mod p)
−1 a not square mod p

0 a = 0 mod p
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• KMS states at low temperature

ϕγ,β(f ) =
1

ζK(β)

∑
n∈J+

K

f (n ∗ γ)

NK(n)β

• Also know (Cornelissen–Marcolli) L-functions with
Grossencharacters related to values of KMS states:
character χ ∈ Ĝ ab

K gives function

fχ(γ, ρ) :=

{
χ−1(γϑK(ρ′)) if ∀v | fχ, ρv ∈ Ô∗K,v
0 otherwise,

with ρ′ ∈ Ô∗K such that ρ′v = ρv for all v | fχ

ϕβ,γ(fχ) =
1

ζK(β)χ(γ)
· LK(χ, β)

• Case of CM field: values at s = 1 of L-functions with
Grossencharacter (see Birch and Swinnerton–Dyer conjecture for
CM elliptic curves)
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From Class Field Theory to Conformal Field Theory

• Can one construct a (Rational) Conformal Field Theory from the
data of the behavior near the phase transition of the KMS states
of the QSM system for an imaginary quadratic field?

• There are RCFTs associated to imaginary quadratic fields
(Gukov–Vafa)

• Near critical behavior of statistical systems often determines a
conformal field theory (Ising model)

• Natural question: are the RCFT of imaginary quadratic fields
related to the QSM systems of imaginary quadratic fields near
criticality?

• All information about K is encoded in (AK, σK) and in its low
temperature KMS states, and the RCFTs are determined by data
of K
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The Gukov–Vafa RCFTs

Z (q, q̄) =
1

η2η̄2

∑
(p,p̄)∈Γ(2,2)

qp
2/2q̄p̄

2/2

sum over momentum lattice

Γ(2,2) =
i√

2τ2ρ2
Z
(

1
1

)
⊕ Z

(
ρ̄
ρ

)
⊕ Z

(
τ
τ

)
⊕ Z

(
ρ̄τ
ρτ

)
τ = τ1 + iτ2 ∈ H, ρ = ρ1 + iρ2 ∈ H (complex and Kähler
parameter), E = C/(Z + τZ) and Dedekind η-function

η = q1/24
∞∏
n=1

(1− qn)
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Properties of these CFTs

• Rational: Γ0 ⊂ ΓL finite index sublattice

Γ0 = {p |
(

p
0

)
∈ Γ(2,2)} ΓL = {p |

(
p
?

)
∈ Γ(2,2)}

• Rational ⇔ τ, ρ ∈ Q(
√
D) (D < 0) imaginary quadratic field

(both the elliptic curve Eτ and its mirror are CM same field)

• diagonal form of partition function

Z (q, q̄) =
∑
ω

χω(q)χ̄ω(q̄)

when τ solution of aτ2 + bτ + c = 0 discriminant D = b2 − 4ac
and ρ = faτ (ρ ∈ Of order with conductor f)

• dim of chiral algebra f2D, where f coeff of intersection form of Γ0

χω(q) =
1

η2

∑
v∈Γ0

q
1
2

(v+ω)2

ω = reps of chiral algebra (ω ∈ ΓL/Γ0)
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Data that classify diagonal c = 2 RCFTs:

• D < 0 square free discriminant: K = Q(
√
D)

• f > 0 conductor of order Of

f = {α ∈ O |αO ⊂ Of}: for imaginary quadratic gen over Z by
multiple of discriminant (f2D discriminant of order)

• an element in the class group Cl(O) (equiv class of integral
binary quadratic form discriminant D); Cl(O) = Gal(K(j(τ))/K)
acts transitively on the j(τ)

⇒ extract these data from low temperature KMS states of QSM
system for imaginary quadratic field
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Gukov–Vafa RCFTs and the QSM system for CM fields

• Elements of Cl(O) from action by symmetries

1→ Ô∗/O∗ → A∗K,f /K∗ → Cl(O)→ 1

where Ô∗/O∗ automorphisms

θs(f )((Λ, φ), (Λ′, φ′)) =

{
f ((Λ, s−1φ), (Λ′, s−1φ′)) both divisible by J

0 otherwise

for s ∈ Ô ∩ A∗K,f and J = sÔ ∩K; divisibility by J: φ well defined
modulo JΛ

• Also Λ (as O-module) determines a class in K0(O); for invertible
K-lattice invariant of commensurability; K0(O) = Z + Cl(O) (here
rank ∈ Z is one so just Cl(O))

• low temperature KMS states ⇔ invertible K-lattices
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Orders

• Of ⊂ O subring and Z-module rank [K : Q]

• an order Of in an imaginary quadratic field K determines an
abelian extension L of K, unramified over the conductor f with
Gal(L/K) = Cl(Of) (ring class field of Of)

• see abelian extensions and ramification from KMS states

• can describe ramification through ranges of projectors
eK,n = µnµ

∗
n and abelian extensions through the L-functions
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