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Graphs G = (V ,E , ∂)

• V = V (G ) set of vertices (nodes)

• E = E (G ) set of edges (connections)

• boundary map ∂ : E (G )→ V (G )× V (G ), boundary vertices
∂(e) = {v , v ′}
• directed graph (oriented edges): source and target maps

s : E (G )→ V (G ), t : E (G )→ V (G ), ∂(e) = {s(e), t(e)}

• looping edge: s(e) = t(e) starts and ends at same vertex;
parallel edges: e 6= e ′ with ∂(e) = ∂(e ′)

• simplifying assumption: graphs G with no parallel edges and no
looping edges (sometimes assume one or the other)

• additional data: label functions fV : V (G )→ LV and
fE : E (G )→ LE to sets of vertex and edge labels LV and LE
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Examples of Graphs
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Network Graphs

(Example from Facebook)
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Increasing Randomness

rewiring probability p

with probability p edges are disconnected and attached to a randomly

chosen other vertex (Watts and Strogatz 1998)
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Brain Networks: Macroscopic Scale (brain areas)
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Brain Networks: Macroscopic Scale (brain areas)
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Brain Networks: Microscopic Scale (individual neurons)

(Clay Reid, Allen Institute; Wei-Chung Lee, Harvard Medical School;

Sam Ingersoll, graphic artist; largest mapped network of individual

cortical neurons, 2016)
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Modeling Brain Networks with Graphs

1 Spatial embeddings (embedded graphs G ⊂ S3, knotting and
linking, topological invariants of embedded graphs)

2 Vertex labels (heterogeneity of node types): distinguish
different kinds of neurons/different areas

3 Edge labels (heterogeneity of edge types)

4 Orientations (directionality of connections): directed graphs

5 Weights (connection strengths)

6 Dynamical changes of network topology
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Connectivity and Adjacency Matrix

• connectivity matrix C = (Cij) matrix size N × N with
N = #V (G ), with Cij ∈ R connectivity strength for oriented edge
from vi to vj

• sign of Cij : excitatory/inhibitory connection

• Cij = 0 no oriented connecting edges between these vertices

• in general Cij 6= Cji for directed graphs, while Cij = Cji for
non-oriented

• can use Cij ∈ Z for counting multiple parallel edges

• Cii = 0 if no looping edges

• adjacency matrix A = (Aij) also N × N with Aij = 1 if there is
(at least) an edge from vi to vj and zero otherwise

• Aij = 1 if Cij 6= 0 and Aij = 0 if Cij = 0

• if no parallel (oriented) edges: can reconstruct G from A = (Aij)
matrix
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Connectivity and Adjacency Matrix
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Filtering the Connectivity Matrix

various methods, for example pruning weaker connections:
threshold

Matilde Marcolli and Doris Tsao Brain Networks



• connection density

κ =

∑
ij Aij

N(N − 1)

density of edges over choices of pairs of vertices

• total weight W± = 1
2

∑
ij w
±
ij (for instance strength of

connection positive/negative C±ij )

• how connectivity varies across nodes: valence of vertices (node
degree), distribution of values of vertex valence over graph (e.g.
most vertices with few connections, a few hubs with many
connections: airplane travel, math collaborations)

• in/out degree ι(v) = #{e : v ∈ ∂(e)} vertex valence; for
oriented graph in-degree ι+(v) = #{e : t(e) = v} and out-degree
ι−(v) = #{e : s(e) = v}

#E =
∑
v

ι+(v) =
∑
v

ι−(v)

• mean in/out degree
〈ι+〉 = 1

N

∑
v ι

+(v) = #E
N = 1

N

∑
v ι
−(v) = 〈ι−〉
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Degree Distribution

• P(deg(v) = k) fraction of vertices (nodes) of valence (degree) k

Erdös–Rényi graphs: generate random graphs by connecting
vertices randomly with equal probability p: all graphs with N
vertices and M edges have equal probability

pM(1− p)(N2)−M

• for Erdös–Rényi graphs degree distribution

P(deg(v) = k) =

(
N − 1

k

)
pk(1− p)N−1−k

second exponent N − 1− k remaining possible connection from a
chosen vertex (no looping edges) after removing a choice of k
edges

• p = connection density of the graph (network)
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An Erdös–Rényi graph generated with p = 0.001
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• the Erdös–Rényi degree distribution satisfies for n→∞

P(deg(v) = k) =

(
N − 1

k

)
pk(1− p)N−1−k ∼ (np)ke−np

k!

• so for large n the distribution is Poisson

P(k) =
λke−λ

k!

• .... but Erdös–Rényi graphs not a good model for brain networks
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Scale-free networks ... power laws

P(deg(v) = k) ∼ k−γ for some γ > 0

• slower decay rate than in binomial case: fat tail ... higher
probability than in Erdös–Rényi case of highly connected large k
nodes

• Erdös–Rényi case has a peak in the distribution: a characteristic
scale of the network

• power law distribution has no peak: no characteristic scale...
scale free (typical behavior of self-similar and fractal systems)
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Poisson versus Power Law degree distributions

(nodes = vertices, links = edges, number of links = valence)
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Broad Scale Networks

• intermediate class: more realistic to model brain networks

• exponentially truncated power law

P(deg(v) = k) ∼ k−γe−k/kc

• cutoff degree kc : for small kc quicker transition to an
exponential distribution

• range of scales over which power law behavior is dominant

• so far measurements of human and animal brain networks
consistent with scale free and broad scale networks
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For weighted vertices with weights w ∈ R∗+
• weight distribution: best fitting for brain networks log-normal
distribution

P(weight(v) = w) =
1

wσ
√

2π
exp

(
−(logw − µ)2

2σ2

)
Gaussian in log coordimates

• why log-normal? model based on properties:

1 geometry of embedded graph with distribution of interregional
distances ∼ Gaussian

2 distance dependent cost of long distance connections

drop in probability of long distance connections with strong weights
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Centrality

• a node is more “central” to a network the more

it is highly connected (large valence) – degree

it is located on the shortest path between other nodes –
betweenness

it is close to a large number of other nodes (eg via highly
connected neighbors) – closeness

• valence deg(v) is a measure of centrality (but not so good
because it does not distinguish between highly or sparsely
connected neighbors)
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Perron–Frobenius centrality
• Perron–Frobenius theorem (version for non-negative matrices)

A = (Aij) non-negative N × N matrix: Aij ≥ 0, ∀i , j
A is primitive if ∃k ∈ N such that Ak is positive

A irreducible iff ∀i , j , ∃k ∈ N such that Ak
ij > 0 (implies I + A

primitive)

Directed graph GA with N vertices and edge from vi to vj iff
Aij > 0: matrix A irreducible iff GA strongly connected (every
vertex is reachable through an oriented path from every other
vertex)

Period hA: greatest common divisor of lengths of all closed
directed paths in GA
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Assume A non-negative and irreducible with period hA and spectral
radius ρA, then:

1 ρA > 0 and eigenvalue of A (Perron–Frobenius eigenvalue);
simple

2 Left eigenvector VA and right eigenvector WA with all positive
components (Perron–Frobenius eigenvector): only
eigenvectors with all positive components

3 hA complex eigenvectors with eigenvalues on circle |λ| = ρA
4 spectrum invariant under multiplication by e2πi/hA

Take A = adjacency matrix of graph G
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• A = adjacency matrix of graph G

• vertex v = vi : PF centrality

CPF (vi ) = VA,i =
1

ρA

∑
j

AijVA,j

ith component of PF eigenvector VA

• high centrality if high degree (many neighbors), neighbors of
high degree, or both

• can use VA or WA, left/right PF eigenvectors: centrality
according to in-degree or out-degree
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Page Rank Centrality (google)

• D = diagonal matrix Dii = max{deg(vi )
out , 1}

• α, β adjustable parameters

CPR(vi ) = ((I − αAD−1)−1β1)i

with 1 vector of N entries 1

• this scales contributions of neighbors of node vi by their degree:
dampens potential bias of nodes connected to nodes of high degree
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Delta Centrality

• measure of how much a topological property of the graph
changes if a vertex is removed

• graph G and vertex v ∈ V (G ): remove v and star S(v) of edges
adjacent to v

Gv = G r S(v)

• topological invariants of (embedded) graph M(G ) (with integer
or real values)

• delta centrality with respect to M

CM(v) =
M(G )−M(Gv )

M(G )
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(A) betweenness; (B) closeness; (C) eigenvector (PF); (D) degree
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Eigenvalue and PageRank centrality in brain networks

X.N.Zuo, R.Ehmke, M.Mennes, D.Imperati, F.X.Castellanos, O.Sporns,

M.P.Milham, Network Centrality in the Human Functional Connectome,

Cereb Cortex (2012) 22 (8): 1862-1875.
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Connected Components

• what is the right notion of “connectedness” for a large graph?
small components breaking off should not matter, but large
components becoming separated should

• is there one large component?

• Erdös–Rényi graphs: size of largest component (N = #V (G ))

sharp increase at p ∼ 1/N

graph tends to be connected for p > logN
N

for p < 1
N fragmented graph: many connected components of

comparable (small) size

for 1
N ≤ p ≤ logN

N emergence of one giant component; other
components still exist of smaller size
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(from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)
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How to prove the emergence of connectedness?

(Argument from Daron Acemoglu and Asu Ozdaglar, Lecture
Notes on Networks)

• threshold function τ(N) for a property P(G ) of a random graph
G with N = #V (G ), with probability p = p(N):

P(P(G ))→ 0 when
p(N)

τ(N)
→ 0

P(P(G ))→ 1 when
p(N)

τ(N)
→∞

with P(P(G )) probability that the property is satisfied

• show that τ(N) = logN
N is a threshold function for the property

P =connectedness

Matilde Marcolli and Doris Tsao Brain Networks



• for P =connectedness show that for p(N) = λ logN
N :

P(P(G ))→ 1 for λ > 1

P(P(G ))→ 0 for λ < 1

• to prove graph disconnected for λ < 1 show growing number of
single node components

• in an Erdös–Rényi graph probability of a given node being a
connected component is (1− p)N−1; so typical number of single
node components is N · (1− p)N−1

• for large N this (1− p)N−1 ∼ e−pN

• if p = p(N) = λ logN
N this gives

e−p(N)N = e−λ logN = N−λ

• for λ < 1 typical number of single node components

N · (1− p)N−1 ∼ N · N−λ →∞
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• for λ > 1 typical number of single vertex components goes to
zero, but not enough to know graph becomes connected (larger
size components may remain)

• probability of a set Sk of k vertices having no connection to the
rest of the graph (but possible connections between them) is
(1− p)k(N−k)

• typical number of sets of k nodes not connected to the rest of
the graph (

N

k

)
(1− p)k(N−k)

• Stirling’s formula k! ∼ kke−k gives for large N and k(
N

k

)
(1− p)k(N−k) ∼ (

N

k
)keke−kλ logN = NkN−λkek(1−log k) → 0

for p = p(N) = λ logN
N with λ > 1
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Phase transitions:

at p = logN
N : graph becomes connected

at p = 1
N : emergence of one giant component

• use similar method: threshold function τ(N) = 1
N and

probabilities p(N) = λ
N with either λ > 1 or λ < 1

Case λ < 1:

• starting at a vertex approximate counting of connected vertices
in an Erdös–Rényi graph with a branching process B(N, λN )

• replaces graph by a tree (overcounting of vertices) with typical
number of descendants N × λ

N so in k steps from starting vertex
expected number of connections λk

• so typical size of the component connected to first vertex is
bounded above by size obtained from branching process∑

k

λk =
1

1− λ

small sized components
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Branching process approximation to an Erdös–Rényi graph process
(from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)
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Case λ > 1:

• process B(N, λN ) asymptotically Poisson with probability (k
steps)

e−λ
λk

k!

• probability ρ that tree obtained via this process is finite:
recursive structure (overall tree finite if each tree starting from
next vertices finite)

ρ =
∑
k

e−λ
λk

k!
ρk

fixed point equation ρ = eλ(ρ−1)

• one solution ρ = 1 but another solution inside interval 0 < ρ < 1
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• however... the branching process B(n, p) produces trees, but on
the graph G fewer vertices...

• after δN vertices have been added to a component via the
branching process starting from one vertex, to continue the process
one has B(N(1− δ), p) correspondingly changing λ 7→ λ(1− δ) (to
continue to approximate same p of Erdös–Rényi process)

• progressively decreases λ(1− δ) as δ increases so branching
process becomes more likely to stop quickly

• typical size of the big component becomes (1− ρ)N where
ρ = ρ(λ) as above probability of finite tree, solution of ρ = eλ(ρ−1)
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Robustness to lesions

• Remove a vertex v ∈ V (G ) with its star of edges
S(v) = {e ∈ E (G ) : v ∈ ∂(e)}

Gv = G r S(v)

measure change: e.g. change in size of largest component

• when keep removing more S(v)’s at various vertices, reach a
threshold at which graph becomes fragmented

• in opposite way, keep adding edges with a certain probability,
critical threshold where giant component arises, as discussed
previously
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Core/Periphery

• core: subset of vertices highly connected to each other (hubs)

• periphery: nodes connected to core vertices but not with each
other

• maximal cliques: maximally connected subsets of nodes

k-core decomposition: remove all S(v) with deg(v) < k, remaining
graph G (k) k-core

• core index of v ∈ V (G ): largest k such that v ∈ V (G (k))

s-core G (s): remove all S(v) of vertices with weight w(v) < s
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k-core decomposition, from P.Hagmann, L.Cammoun, X.Gigandet,

R.Meuli, C.J.Honey, V.J.Wedeen, O.Sporns, “Mapping the Structural

Core of Human Cerebral Cortex”, PLOS bio 2008
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Topology and flow of information along directed graphs

• networks with characteristic path length (close to min in a
random graph)

• path length = min number of oriented edges or minimum total
weight of these edges

walks, trails, paths

walk: sequence of oriented edges (target of one source of
next): revisiting vertices and edges allowed

trail: same but no edge repetitions (edges visited only once)

path: no edge and no vertex repetitions (both vertices and
edges visited only once)

Warning: terminology varies in the literature
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two paths from U to V and a trail from U to V

• shortest path = geodesics (with edge weights as metric)

• average of path length over all shortest path in the graph

at vertex vi average `i of lengths `ij = `(vi , vj) of shortest
paths starting at vi (and ending at any other vertex vj)

average over vertices

L =
1

N

∑
i

`i =
1

N(N − 1)

∑
i 6=j

`ij
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• main idea: brain networks with the shortest average path length
integrate information better

• in case of a graph with several connected components, for vi and
vj not in the same component usually take `ij =∞, then better to
use harmonic mean

N(N − 1)

∑
i 6=j

`−1ij

−1

or its inverse, the global efficiency:

1

N(N − 1)

∑
i 6=j

`−1ij
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The Graph Laplacian measuring flow of information in a graph

• δ = (δij) diagonal matrix of valencies δii = deg(vi )

• adjacency matrix A (weighted with wij)

• Laplacian ∆G = δ − A

• normalized Laplacian ∆̂G = I − Aδ−1 or symmetrized form
∆̂s

G = I − δ−1/2Aδ−1/2

• wij/δii = probability of reaching vertex vj after vi along a
random walk search

• dimension of Ker∆̂G counts connected components

• eigenvalues and eigenvectors give decomposition of the graph
into “modules”
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Dynamics

• in brain networks fast dynamics ∼ 100 millisecond timescale:
variability in functional coupling of neurons and brain regions,
underlying functional anatomy unchanged; also slow dynamics:
long lasting changes in neuron interaction due to plasticity...
growth, rewiring

• types of dynamics: diffusion processes, random walks,
synchronization, information flow, energy flow

• topology of the graph plays a role in the spontaneous emergence
of global (collective) dynamical states

• multiscale dynamics: dynamics at a scale influenced by states
and dynamics on larger and smaller scales

• mean field model: dynamics at a scale averaging over effects at
all smaller scales
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• synchronization of a system of coupled oscillators at vertices with
coupling along edges

• if graph very regular (eg lattice) difficult to achieve synchronized
states

• small-world networks are easier to synchronize

• fully random graphs synchronize more easily but synchronized
state also very easily disrupted: difficult to maintain
synchronization

• more complex types of behavior when non-identical oscillators
(different weights at different vertices) and additional presence of
noise

• still open question: what is the role of topology and topology
changes in the graph in supporting self-organized-criticality
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