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Graphs G = (V ,E , ∂)

• V = V (G ) set of vertices (nodes)

• E = E (G ) set of edges (connections)

• boundary map ∂ : E (G )→ V (G )× V (G ), boundary vertices
∂(e) = {v , v ′}
• directed graph (oriented edges): source and target maps

s : E (G )→ V (G ), t : E (G )→ V (G ), ∂(e) = {s(e), t(e)}

• looping edge: s(e) = t(e) starts and ends at same vertex;
parallel edges: e 6= e ′ with ∂(e) = ∂(e ′)

• simplifying assumption: graphs G with no parallel edges and no
looping edges (sometimes assume one or the other)

• additional data: label functions fV : V (G )→ LV and
fE : E (G )→ LE to sets of vertex and edge labels LV and LE
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Examples of Graphs
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Network Graphs

(Example from Facebook)
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Increasing Randomness

rewiring probability p

with probability p edges are disconnected and attached to a randomly

chosen other vertex (Watts and Strogatz 1998)
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Brain Networks: Macroscopic Scale (brain areas)
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Brain Networks: Macroscopic Scale (brain areas)
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Brain Networks: Microscopic Scale (individual neurons)

(Clay Reid, Allen Institute; Wei-Chung Lee, Harvard Medical School;

Sam Ingersoll, graphic artist; largest mapped network of individual

cortical neurons, 2016)
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Modeling Brain Networks with Graphs

1 Spatial embeddings (embedded graphs G ⊂ S3, knotting and
linking, topological invariants of embedded graphs)

2 Vertex labels (heterogeneity of node types): distinguish
different kinds of neurons/different areas

3 Edge labels (heterogeneity of edge types)

4 Orientations (directionality of connections): directed graphs

5 Weights (connection strengths)

6 Dynamical changes of network topology
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Connectivity and Adjacency Matrix

• connectivity matrix C = (Cij) matrix size N × N with
N = #V (G ), with Cij ∈ R connectivity strength for oriented edge
from vi to vj

• sign of Cij : excitatory/inhibitory connection

• Cij = 0 no oriented connecting edges between these vertices

• in general Cij 6= Cji for directed graphs, while Cij = Cji for
non-oriented

• can use Cij ∈ Z for counting multiple parallel edges

• Cii = 0 if no looping edges

• adjacency matrix A = (Aij) also N × N with Aij = 1 if there is
(at least) an edge from vi to vj and zero otherwise

• Aij = 1 if Cij 6= 0 and Aij = 0 if Cij = 0

• if no parallel (oriented) edges: can reconstruct G from A = (Aij)
matrix
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Connectivity and Adjacency Matrix

Matilde Marcolli Brain Networks



Filtering the Connectivity Matrix

various methods, for example pruning weaker connections:
threshold
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• connection density

κ =

∑
ij Aij

N(N − 1)

density of edges over choices of pairs of vertices

• total weight W± = 1
2

∑
ij w
±
ij (for instance strength of

connection positive/negative C±ij )

• how connectivity varies across nodes: valence of vertices (node
degree), distribution of values of vertex valence over graph (e.g.
most vertices with few connections, a few hubs with many
connections: airplane travel, math collaborations)

• in/out degree ι(v) = #{e : v ∈ ∂(e)} vertex valence; for
oriented graph in-degree ι+(v) = #{e : t(e) = v} and out-degree
ι−(v) = #{e : s(e) = v}

#E =
∑
v

ι+(v) =
∑
v

ι−(v)

• mean in/out degree
〈ι+〉 = 1

N

∑
v ι

+(v) = #E
N = 1

N

∑
v ι
−(v) = 〈ι−〉
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Degree Distribution

• P(deg(v) = k) fraction of vertices (nodes) of valence (degree) k

Erdös–Rényi graphs: generate random graphs by connecting
vertices randomly with equal probability p: all graphs with N
vertices and M edges have equal probability

pM(1− p)(N2)−M

• for Erdös–Rényi graphs degree distribution

P(deg(v) = k) =

(
N − 1

k

)
pk(1− p)N−1−k

second exponent N − 1− k remaining possible connection from a
chosen vertex (no looping edges) after removing a choice of k
edges

• p = connection density of the graph (network)
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An Erdös–Rényi graph generated with p = 0.001
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• the Erdös–Rényi degree distribution satisfies for n→∞

P(deg(v) = k) =

(
N − 1

k

)
pk(1− p)N−1−k ∼ (np)ke−np

k!

• so for large n the distribution is Poisson

P(k) =
λke−λ

k!

• .... but Erdös–Rényi graphs not a good model for brain networks
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Scale-free networks ... power laws

P(deg(v) = k) ∼ k−γ for some γ > 0

• slower decay rate than in binomial case: fat tail ... higher
probability than in Erdös–Rényi case of highly connected large k
nodes

• Erdös–Rényi case has a peak in the distribution: a characteristic
scale of the network

• power law distribution has no peak: no characteristic scale...
scale free (typical behavior of self-similar and fractal systems)
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Poisson versus Power Law degree distributions

(nodes = vertices, links = edges, number of links = valence)
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Broad Scale Networks

• intermediate class: more realistic to model brain networks

• exponentially truncated power law

P(deg(v) = k) ∼ k−γe−k/kc

• cutoff degree kc : for small kc quicker transition to an
exponential distribution

• range of scales over which power law behavior is dominant

• so far measurements of human and animal brain networks
consistent with scale free and broad scale networks
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For weighted vertices with weights w ∈ R∗+
• weight distribution: best fitting for brain networks log-normal
distribution

P(weight(v) = w) =
1

wσ
√

2π
exp

(
−(logw − µ)2

2σ2

)
Gaussian in log coordimates

• why log-normal? model based on properties:

1 geometry of embedded graph with distribution of interregional
distances ∼ Gaussian

2 distance dependent cost of long distance connections

drop in probability of long distance connections with strong weights
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Centrality

• a node is more “central” to a network the more

it is highly connected (large valence) – degree

it is located on the shortest path between other nodes –
betweenness

it is close to a large number of other nodes (eg via highly
connected neighbors) – closeness

• valence deg(v) is a measure of centrality (but not so good
because it does not distinguish between highly or sparsely
connected neighbors)
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Perron–Frobenius centrality
• Perron–Frobenius theorem (version for non-negative matrices)

A = (Aij) non-negative N × N matrix: Aij ≥ 0, ∀i , j
A is primitive if ∃k ∈ N such that Ak is positive

A irreducible iff ∀i , j ,∃k ∈ N such that Ak
ij > 0 (implies I + A

primitive)

Directed graph GA with N vertices and edge from vi to vj iff
Aij > 0: matrix A irreducible iff GA strongly connected (every
vertex is reachable through an oriented path from every other
vertex)

Period hA: greatest common divisor of lengths of all closed
directed paths in GA
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Assume A non-negative and irreducible with period hA and spectral
radius ρA, then:

1 ρA > 0 and eigenvalue of A (Perron–Frobenius eigenvalue);
simple

2 Left eigenvector VA and right eigenvector WA with all positive
components (Perron–Frobenius eigenvector): only
eigenvectors with all positive components

3 hA complex eigenvectors with eigenvalues on circle |λ| = ρA
4 spectrum invariant under multiplication by e2πi/hA

Take A = adjacency matrix of graph G
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• A = adjacency matrix of graph G

• vertex v = vi : PF centrality

CPF (vi ) = VA,i =
1

ρA

∑
j

AijVA,j

ith component of PF eigenvector VA

• high centrality if high degree (many neighbors), neighbors of
high degree, or both

• can use VA or WA, left/right PF eigenvectors: centrality
according to in-degree or out-degree
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Page Rank Centrality (google)

• D = diagonal matrix Dii = max{deg(vi )
out , 1}

• α, β adjustable parameters

CPR(vi ) = ((I − αAD−1)−1β1)i

with 1 vector of N entries 1

• this scales contributions of neighbors of node vi by their degree:
dampens potential bias of nodes connected to nodes of high degree
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Delta Centrality

• measure of how much a topological property of the graph
changes if a vertex is removed

• graph G and vertex v ∈ V (G ): remove v and star S(v) of edges
adjacent to v

Gv = G r S(v)

• topological invariants of (embedded) graph M(G ) (with integer
or real values)

• delta centrality with respect to M

CM(v) =
M(G )−M(Gv )

M(G )
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(A) betweenness; (B) closeness; (C) eigenvector (PF); (D) degree
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Eigenvalue and PageRank centrality in brain networks

X.N.Zuo, R.Ehmke, M.Mennes, D.Imperati, F.X.Castellanos, O.Sporns,

M.P.Milham, Network Centrality in the Human Functional Connectome,

Cereb Cortex (2012) 22 (8): 1862-1875.

Matilde Marcolli Brain Networks



Connected Components

• what is the right notion of “connectedness” for a large graph?
small components breaking off should not matter, but large
components becoming separated should

• is there one large component?

• Erdös–Rényi graphs: size of largest component (N = #V (G ))

sharp increase at p ∼ 1/N

graph tends to be connected for p > log N
N

for p < 1
N fragmented graph: many connected components of

comparable (small) size

for 1
N ≤ p ≤ log N

N emergence of one giant component; other
components still exist of smaller size
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(from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)
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How to prove the emergence of connectedness?

(Argument from Daron Acemoglu and Asu Ozdaglar, Lecture
Notes on Networks)

• threshold function τ(N) for a property P(G ) of a random graph
G with N = #V (G ), with probability p = p(N):

P(P(G ))→ 0 when
p(N)

τ(N)
→ 0

P(P(G ))→ 1 when
p(N)

τ(N)
→∞

with P(P(G )) probability that the property is satisfied

• show that τ(N) = log N
N is a threshold function for the property

P =connectedness
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• for P =connectedness show that for p(N) = λ log N
N :

P(P(G ))→ 1 for λ > 1

P(P(G ))→ 0 for λ < 1

• to prove graph disconnected for λ < 1 show growing number of
single node components

• in an Erdös–Rényi graph probability of a given node being a
connected component is (1− p)N−1; so typical number of single
node components is N · (1− p)N−1

• for large N this (1− p)N−1 ∼ e−pN

• if p = p(N) = λ log N
N this gives

e−p(N)N = e−λ log N = N−λ

• for λ < 1 typical number of single node components

N · (1− p)N−1 ∼ N · N−λ →∞
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• for λ > 1 typical number of single vertex components goes to
zero, but not enough to know graph becomes connected (larger
size components may remain)

• probability of a set Sk of k vertices having no connection to the
rest of the graph (but possible connections between them) is
(1− p)k(N−k)

• typical number of sets of k nodes not connected to the rest of
the graph (

N

k

)
(1− p)k(N−k)

• Stirling’s formula k! ∼ kke−k gives for large N and k(
N

k

)
(1− p)k(N−k) ∼ (

N

k
)keke−kλ log N = NkN−λkek(1−log k) → 0

for p = p(N) = λ log N
N with λ > 1
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Phase transitions:

at p = log N
N : graph becomes connected

at p = 1
N : emergence of one giant component

• use similar method: threshold function τ(N) = 1
N and

probabilities p(N) = λ
N with either λ > 1 or λ < 1

Case λ < 1:

• starting at a vertex approximate counting of connected vertices
in an Erdös–Rényi graph with a branching process B(N, λN )

• replaces graph by a tree (overcounting of vertices) with typical
number of descendants N × λ

N so in k steps from starting vertex
expected number of connections λk

• so typical size of the component connected to first vertex is
bounded above by size obtained from branching process∑

k

λk =
1

1− λ

small sized components
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Branching process approximation to an Erdös–Rényi graph process
(from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)

Matilde Marcolli Brain Networks



Case λ > 1:

• process B(N, λN ) asymptotically Poisson with probability (k
steps)

e−λ
λk

k!

• probability ρ that tree obtained via this process is finite:
recursive structure (overall tree finite if each tree starting from
next vertices finite)

ρ =
∑
k

e−λ
λk

k!
ρk

fixed point equation ρ = eλ(ρ−1)

• one solution ρ = 1 but another solution inside interval 0 < ρ < 1
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• however... the branching process B(n, p) produces trees, but on
the graph G fewer vertices...

• after δN vertices have been added to a component via the
branching process starting from one vertex, to continue the process
one has B(N(1− δ), p) correspondingly changing λ 7→ λ(1− δ) (to
continue to approximate same p of Erdös–Rényi process)

• progressively decreases λ(1− δ) as δ increases so branching
process becomes more likely to stop quickly

• typical size of the big component becomes (1− ρ)N where
ρ = ρ(λ) as above probability of finite tree, solution of ρ = eλ(ρ−1)
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Robustness to lesions

• Remove a vertex v ∈ V (G ) with its star of edges
S(v) = {e ∈ E (G ) : v ∈ ∂(e)}

Gv = G r S(v)

measure change: e.g. change in size of largest component

• when keep removing more S(v)’s at various vertices, reach a
threshold at which graph becomes fragmented

• in opposite way, keep adding edges with a certain probability,
critical threshold where giant component arises, as discussed
previously

Matilde Marcolli Brain Networks



Core/Periphery

• core: subset of vertices highly connected to each other (hubs)

• periphery: nodes connected to core vertices but not with each
other

• maximal cliques: maximally connected subsets of nodes

k-core decomposition: remove all S(v) with deg(v) < k, remaining
graph G (k) k-core

• core index of v ∈ V (G ): largest k such that v ∈ V (G (k))

s-core G (s): remove all S(v) of vertices with weight w(v) < s
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k-core decomposition, from P.Hagmann, L.Cammoun, X.Gigandet,

R.Meuli, C.J.Honey, V.J.Wedeen, O.Sporns, “Mapping the Structural

Core of Human Cerebral Cortex”, PLOS bio 2008
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Topology and flow of information along directed graphs

• networks with characteristic path length (close to min in a
random graph)

• path length = min number of oriented edges or minimum total
weight of these edges

walks, trails, paths

walk: sequence of oriented edges (target of one source of
next): revisiting vertices and edges allowed

trail: same but no edge repetitions (edges visited only once)

path: no edge and no vertex repetitions (both vertices and
edges visited only once)

Warning: terminology varies in the literature
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two paths from U to V and a trail from U to V

• shortest path = geodesics (with edge weights as metric)

• average of path length over all shortest path in the graph

at vertex vi average `i of lengths `ij = `(vi , vj) of shortest
paths starting at vi (and ending at any other vertex vj)

average over vertices

L =
1

N

∑
i

`i =
1

N(N − 1)

∑
i 6=j

`ij
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• main idea: brain networks with the shortest average path length
integrate information better

• in case of a graph with several connected components, for vi and
vj not in the same component usually take `ij =∞, then better to
use harmonic mean

N(N − 1)

∑
i 6=j

`−1
ij

−1

or its inverse, the global efficiency:

1

N(N − 1)

∑
i 6=j

`−1
ij
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The Graph Laplacian measuring flow of information in a graph

• δ = (δij) diagonal matrix of valencies δii = deg(vi )

• adjacency matrix A (weighted with wij)

• Laplacian ∆G = δ − A

• normalized Laplacian ∆̂G = I − Aδ−1 or symmetrized form
∆̂s

G = I − δ−1/2Aδ−1/2

• wij/δii = probability of reaching vertex vj after vi along a
random walk search

• dimension of Ker∆̂G counts connected components

• eigenvalues and eigenvectors give decomposition of the graph
into “modules”
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Dynamics

• in brain networks fast dynamics ∼ 100 millisecond timescale:
variability in functional coupling of neurons and brain regions,
underlying functional anatomy unchanged; also slow dynamics:
long lasting changes in neuron interaction due to plasticity...
growth, rewiring

• types of dynamics: diffusion processes, random walks,
synchronization, information flow, energy flow

• topology of the graph plays a role in the spontaneous emergence
of global (collective) dynamical states

• multiscale dynamics: dynamics at a scale influenced by states
and dynamics on larger and smaller scales

• mean field model: dynamics at a scale averaging over effects at
all smaller scales
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• synchronization of a system of coupled oscillators at vertices with
coupling along edges

• if graph very regular (eg lattice) difficult to achieve synchronized
states

• small-world networks are easier to synchronize

• fully random graphs synchronize more easily but synchronized
state also very easily disrupted: difficult to maintain
synchronization

• more complex types of behavior when non-identical oscillators
(different weights at different vertices) and additional presence of
noise

• still open question: what is the role of topology and topology
changes in the graph in supporting self-organized-criticality
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Return to discuss expander Graphs: heuristic properties

spectral property: like Ramanujan graphs if M matrix
associated to G then Spec(M) contained in spectrum of
analogous operator on covering tree

pseudo-random behavior: G behaves in some sense like a
random graph

information is passed easily through the network

random walk: a random walker on the graph gets lost quickly

boundary: every subset of the vertices that is not “too large”
has a “large” boundary

different ways of formalizing these: edge expanders, vertex
expanders, spectral expanders

how to detect good expander property? via other data
(especially spectral and zeta function)
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Expansion Constant

sets of vertices S ,T of G

E (S ,T ) = edges of G with one vertex in S and the other in T

∂S = E (S ,G r S)

expansion constant of G

h(G ) := min
S⊂V ,#S≤n/2

# ∂S

# S

analog of the Cheeger constant for differentiable manifolds

relation to the spectral gap (Chung)

2h(G ) ≥ λG ≥ h(G )2/2

with λG = min{λ1, 2− λn−1} for
Spec(1− D−1/2AD−1/2) = {0 = λ0 ≤ λ1 ≤ · · · ≤ λn}
various other Cheeger-type inequalities in terms of spectral
data

similar notion of edge expansion
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expander graph has large expansion parameter and low degree

bipartite expander graphs

(γ, 1− ε)-expander: all sets S with deg = z and #S ≤ γN
(fraction of total number of vertices) have
#N(S) = #∂S > (1− ε)z#S

bipartite expander graphs are good for constructing codes
with good error-correcting properties (number of errors
corrected > βN with β = γ(1− 2ε)N
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Expander Graphs in Neuroscience
(work of Rishidev Chaudhuri and Ila Fiete)

bipartite expander Hopfield networks

Hopfield networks: models for neural memory

stored states recovered from noisy/partial input

good error correcting properties of expander bipartite graphs
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Expander Graphs in Neuroscience
(work of Rishidev Chaudhuri and Ila Fiete)

Hopfield networks with stable states determined by sparse
constraints with expander structure

modelling of neural codes: higher order correlations (better
coding properties) unlike neural code with many neurons that
are rarely activated and pairwise decorrelated
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Quantum Chaos: the basic idea

Classical (continuous) dynamical systems: regular and chaotic
behavior
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Properties of Schrödinger equation associated to chaotic
classical systems

spectral properties related to counting of periodic orbits for
chaotic classical system and to Random Matrix Theory

quantum version of classical integrable systems have Poisson
distribution of eigenvalues

quantum version of chaotic classical systems follow eigenvalue
distribution of Random Matrix Theory (Dyson’s circular
ensemble)
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Quantum Chaos on Graphs

Tsampikos Kottos and Uzy Smilansky, Periodic orbit theory and
spectral statistics for quantum graphs, Annals of Physics 274 (1999)
76–124

Uzy Smilansky, Quantum chaos on discrete graphs, J. Phys. A 40
(2007) no. 27, F621–F630

• Summary

quantum (metric) graphs versus discrete graphs

Schrödinger operator on quantum graphs spectral statistics
similar to Random Matrix Theory (which describes generic
quantum Hamiltonians)

similarity with chaotic Hamiltonian dynamical systems: a
similar trace formula describing spectral densities in terms of
sums over periodic orbits

zeta function for a Perron–Frobenius operator on the graph:
same expression in terms of periodic orbits (like Ruelle
dynamical zeta function for Hamiltonian dynamical systems)

discrete graphs: spectral properties from Ihara zeta function
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• Quantum graphs case: quick overview

Schrödinger equation on quantum graphs good for modelling
traveling waves in networks

assign a coordinate xe to each oriented edge of a graph, from
0 to `e length

Hilbert space H = ⊕eL
2([0, `e ]) and wave functions

Ψ = (Ψe(xe))e∈E

Schrödinger equation (with magnetic vector potential
A = (Ae)

(−i d

dxe
− Ae)2Ψe(xe) = k2 Ψe(xe)

with matching boundary conditions at vertices

self-adjoint with unbounded discrete spectrum

Matilde Marcolli Brain Networks



spectrum from ζE (k) = det(I − SE (k)) = 0 with edge
scattering matrix SE (k) (unitary 2#E × 2#E matrix)

Fredholm determinant

log det(I − SE (k)) = −
∞∑
n=1

1

n
Tr(Sn

E (k))

traces Tr(Sn
E (k)) in terms of a sum over n-periodic orbits on

the graph of a “magnetic flux” along that orbit (depending on
magnetic potential A)

symbolic dynamics: subshift of finite type with
Markov/Bernoulli measure (chaotic dynamical system)
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Case of discrete graphs

Laplacian L of the discrete graph: (weighted) connectivity
matrix and diagonal matrix of vertex valencies

zeta functions and trace formulae for discrete graphs

eigenvalues of the graph Laplacian related to nontrivial poles
of the Ihara zeta function of the graph

again zeta function related to counting of periodic orbits of a
subshift of finite type dynamics
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Zeta Functions of Graphs and Chaos Theory

Audrey Terras, Zeta functions and Chaos, A Window Into Zeta
and Modular Physics, MSRI Publications, Volume 57, 2010

Model zeta function: Riemann Zeta Function

ζ(s) =
∑
n≥1

n−s =
∏
p

(1− p−s)−1

sum over n ∈ N or Euler product over primes

What plays the role of primes for a graph?

another model example: Selberg Zeta Function

Z (s) =
∏
C

∏
`≥1

(1− e−(s+`)ν(C)

primitive closed geodesics C in X = SL2(Z)\H2 modular
curve with length ν(C )

expect closed paths to play role of geodesics on a graph with
length the number of oriented edges
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Paths on Graphs and “Primes”

start from an undirected graph and assign arbitrary
orientations

path in directed graph has backtrack if C = e1 . . . es with
some ej+1 = e−1

j

path in directed graph has tail if C = e1 . . . es with es = e−1
1

equivalence class of a closed path C = e1 . . . en consists of all
cyclically permuted ordering of the oriented edges in the path:
e2, . . . , en, e1 etc.

closed path primitive if no backtracking and C 6= Dk

“primes”: equiv classes of taill-less primitive closed paths
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Ihara Zeta Function

Ihara Zeta:
ζ(u,G ) =

∏
P

(1− uν(P))−1

P ranges over primes, equiv classes of tail-less primitive closed
paths in G

ν(P) is the length (number of edges) in the path

Bass Determinant Formula

ζ(u,G )−1 = (1− u2)r−1 det(I − Au + Qu2)

r = #E −#V + 1 rank of fundamental group π1(G )

A = vertex adjacency matrix: #V ×#V matrix with
(i , j)-entry # directed edges from vi to vj

Q = diagonal matrix with j-th entry val(vj)− 1

tetrahedron graph K4

ζ(u,K − 4)−1 = (1− u2)2(1− u)(1 + u + 2u2)(1− u2 − 2u3)
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valence one vertices are not good for zeta function because of tails
(but loops and multiple edges are OK)
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Riemann Hypothesis for the Ihara Zeta Function
(Lubotzky, Phillips and Sarnak)

case of (q + 1)-regular graphs

Ihara Riemann Hypothesis ζ(q−s ,G ) has no poles with
0 < <(s) < 1 unless <(s) = 1/2

for a graph equivalent to being a Ramanujan graph

this property means that nontrivial spectrum of adjacency
matrix of the graph contained in spectrum of adjacency
operator on universal covering tree, which is interval
[−2
√
q, 2
√
q]

Ramanujan graphs provide efficient communication networks:
best expander properties
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Pole locations for regular graphs

using the determinant formula for the Ihara zeta function

possible location of poles for a (q + 1)-regular graph

poles on the circles: those that satisfy Riemann Hypothesis

non-trivial poles ( 6= ±1,±q−1) on other lines: non-RH poles

1/q always the closest pole to 0 for (q + 1)-regular graph

Alon conjecture: RH approximately true for most regular
graphs (and asymptotically 27% of regular graphs satisfy
exactly)
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Spectra of random real symmetric matrices

similar behavior of statistics of spectra of random real
symmetric matrices and statistics of imaginary parts of s at
poles of Ihara zeta ζ(q−s ,G ) for a (q + 1)-regular graph G

pseudo-random regular graph deg=53 and 2000 vertices: top
row distrib of eigenvalues of adjacency matrix (left) and
imaginary part of Ihara poles (right); level spacings on second
row

red line: Wigner law for GOE random matrices
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Beyond regular case

RG = radius of largest circle of convergence of Ihara zeta
function (conv abs for |u| < RG , pole order 1 at u = RG for G
connected)

1/RG is spectral radius of edge adjacency matrix (Wij = 1 if
t(ei ) = s(ej))

poles of Ihara zeta = reciprocals of eigenvalues of edge
adjacency matrix

for (q + 1)-regular G have RG = 1/q

Ihara Riemann Hypothesis for irregular graphs

no poles of ζ(u,G ) in region RG < |u| <
√
RG

no good functional equation for Ihara in this case, so u = Rs
G

and 0 < <(s) < 1 too large and only half-strip for RH

still a way of detecting good expander properties
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Ruelle zeta function

dynamical system iterates of f : M → M on a compact
manifold with finite sets of fixed points Fix(f m) for all m ≥ 1

assign a weight function (matrix valued) φ : M → MD×D(C)

Ruelle zeta function:

ζ(u) := exp(
∑
m≥1

um

m

∑
x∈Fix(f m)

Tr(
m−1∏
k=0

φ(f k(x))) )

generalization of the Artin–Mazur zeta function

ζ(u) = exp(
∑
m≥1

um

m
#Fix(f m) )

which in turn generalizes case of the Frobenius on varieties
over finite fields (counting points over finite fields as fixed
points of powers of Frobenius)
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Subshift of finite type

I set of directed edges of a graph G (alphabet)

transition matrix (Wij) entries {0, 1} is edge adjacency matrix

admissible words (ak)k∈N ∈ IN with Wakak+1
= 1 are (infinite)

paths in G without backtracking

shift map σ : IN → IN mapping a0a1a2 · · · to a1a2a3 · · ·
Fix(σm) = closed paths of length m without tails or
backtracking

Ihara zeta function is a special case of Ruelle zeta function

log ζ(u,G ) =
∑
m≥1

Nm

m
um

with number of closed paths of length m

Nm = #Fix(σm) = Tr(Wm)
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Matrices associated to graphs

A = vertex adjacency matrix

L = D − A Graph Laplacian (with D diagonal matrix of
degrees of vertices)

W = edge adjacency matrix: 2 ·#E × 2 ·#E matrix with (i , j)
entry 1 if ei feeds into ej (counting edges and their inverses)

Hashimoto Determinant Formula

W = edge adjacency matrix

Ihara Zeta Function

ζ(u,G )−1 = det(I − uW )

poles of the Ihara Zeta Function are reciprocals of eigenvalues
of the edge adjacency matrix W
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Kotani-Sudana: connected graph G with rankπ1(G ) > 1, no
deg = 1 vertices, min degree p + 1, max deg q + 1: every
non-real pole of Ihara zeta ζ(u,G )

q−1/2 ≤ |u| ≤ p−1/2

and poles on circle |u| = RG are u = RGe
2πia/∆G with

a = 1, . . . ,∆G and ∆G = gcd lengths of prime paths (tail-less
primitive closed paths)
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Spacing of Ihara Poles

difference between Euclidean graph (Cayley graph of an abelian
group) and random regular graph: the Euclidean case looks like a
Poisson distribution while the random case looks like Wigner’s law
for GOE

1

2
πx exp(−πx2/4)

when arranging eigenvalues of a symmetric matrix in decreasing
order and normalize them so that mean of level spacing is 1
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Spectral properties of edge adjacency W

Girko circle law: eigenvalues of a set of random n × n real
matrices with independent entries with a standard normal
distribution approximately uniformly distributed in a circle of
radius

√
n for large n

random matrix that, like W has form

W =

(
A B
C At

)
with B,C symmetric real, A real with transpose At

construct random matrices with this same structure: then
circle radius not same as Girko’s: spectrum and spacings

What shape of the spectrum for actual W ?
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• by Kotani-Sudana spectrum cannot fill a disk: in an annulus

eigenvalues (pink points) of edge adjacency matrix W for a
random graph with 800 vertices mean deg 13.125 and edge
probability p ∼ 0.0164; green circle RH; histogram of nearest
neighbor spacings in Spec(W )
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eigenvalues (pink points) and spacings of edge adjacency matrix
W for a random cover of the graph with two loops and one extra
vertex on one loop (801 sheets of cover, each a copy of a spanning
tree)
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eigenvalues (pink points) and spacings of edge adjacency matrix W
for an abelian covering of same graph (Galois group Z/163×Z/45)
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detecting poor or good expander properties

graphs, histogram of degrees, poles of Ihara zetas (green RH circle,
and outer/inner Kotani-Sudana circles
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