

# Brain Networks and Topology

Matilde Marcolli

Caltech, Winter 2026  
Ma191b: Geometry of Neuroscience

## Some References

- Alex Fornito, Andrew Zalesky, Edward Bullmore, *Fundamentals of Brain Network Analysis*, Elsevier, 2016
- Olaf Sporns, *Networks of the Brain*, MIT Press, 2010
- Olaf Sporns, *Discovering the Human Connectome*, MIT Press, 2012
- Fan Chung, Linyuan Lu, *Complex Graphs and Networks*, American Mathematical Society, 2004
- László Lovász, *Large Networks and Graph Limits*, American Mathematical Society, 2012

## Graphs $G = (V, E, \partial)$

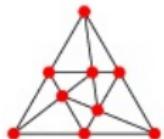
- $V = V(G)$  set of vertices (nodes)
- $E = E(G)$  set of edges (connections)
- boundary map  $\partial : E(G) \rightarrow V(G) \times V(G)$ , boundary vertices  $\partial(e) = \{v, v'\}$
- **directed graph** (oriented edges): source and target maps

$$s : E(G) \rightarrow V(G), \quad t : E(G) \rightarrow V(G), \quad \partial(e) = \{s(e), t(e)\}$$

- *looping edge*:  $s(e) = t(e)$  starts and ends at same vertex;  
*parallel edges*:  $e \neq e'$  with  $\partial(e) = \partial(e')$
- **simplifying assumption**: graphs  $G$  with no parallel edges and no looping edges (sometimes assume one or the other)
- additional data: **label** functions  $f_V : V(G) \rightarrow L_V$  and  $f_E : E(G) \rightarrow L_E$  to sets of vertex and edge labels  $L_V$  and  $L_E$

## Examples of Graphs

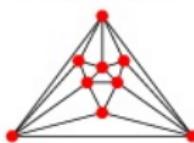
$(9,3)$ -configuration  
graph 2



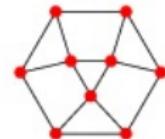
$(2,7)$ -fan graph



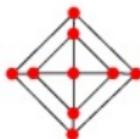
Fritsch graph



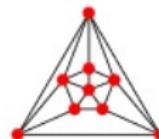
Johnson solid  
skeleton 3



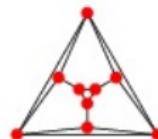
Johnson solid  
skeleton 8



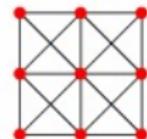
Johnson solid  
skeleton 10



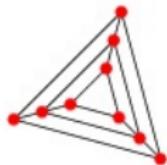
Johnson solid  
skeleton 63



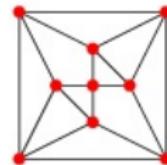
$(3,3)$ -king's tour  
graph



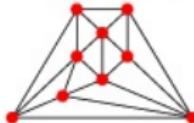
prism graph  $(3,3)$



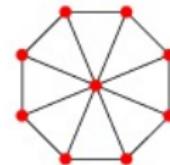
9-quartic graph 5



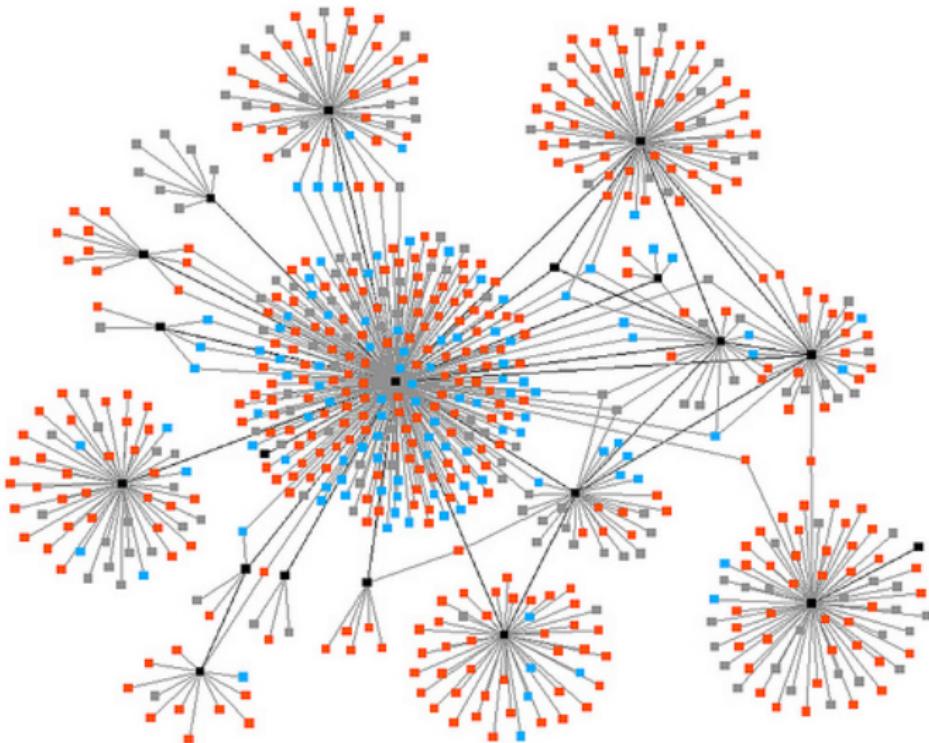
Soifer graph



9-wheel graph



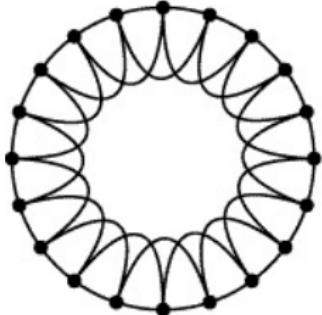
## Network Graphs



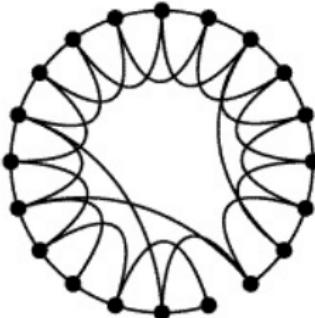
(Example from Facebook)

## Increasing Randomness

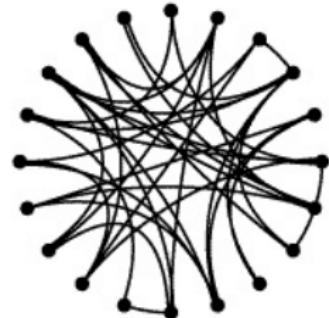
Regular



Small-world



Random



$p = 0$



$p = 1$

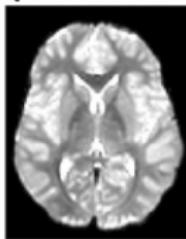
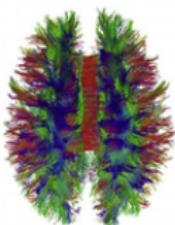
Increasing randomness

rewiring probability  $p$

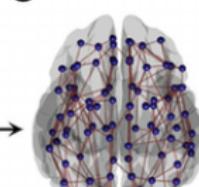
with probability  $p$  edges are disconnected and attached to a randomly chosen other vertex (Watts and Strogatz 1998)

# Brain Networks: Macroscopic Scale (brain areas)

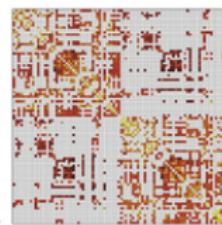
**A** Network Edge from DTI and Tractography



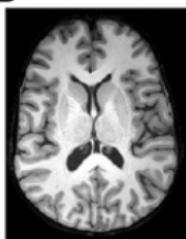
**C** Structural Network



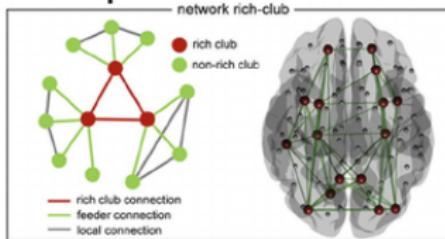
**D** Connectivity Matrix



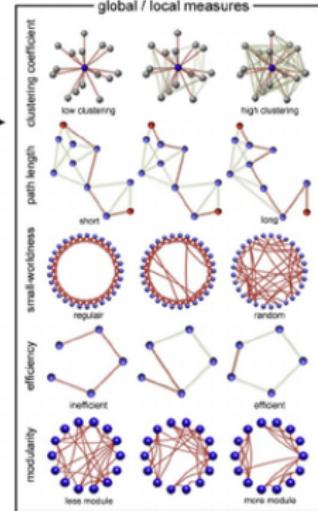
**B** Network Node from Structural Parcellation



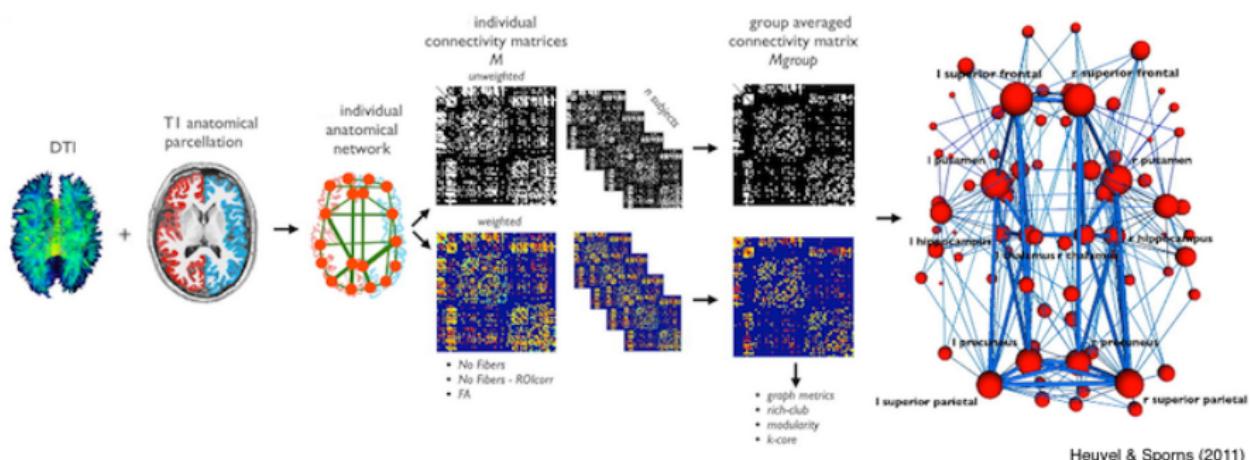
**F** Network Characteristics  
network rich-club



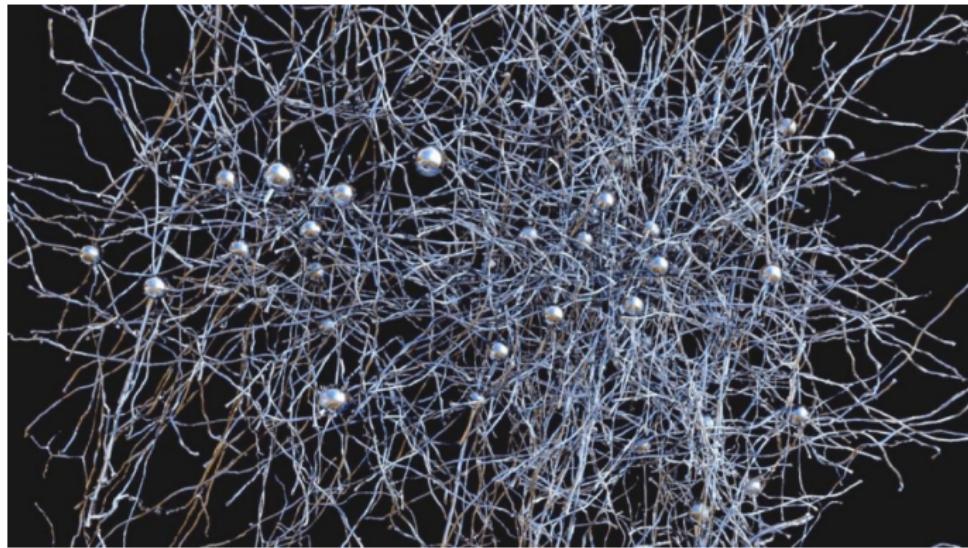
**E** Network Characteristics  
global / local measures



## Brain Networks: Macroscopic Scale (brain areas)



## Brain Networks: Microscopic Scale (individual neurons)



(Clay Reid, Allen Institute; Wei-Chung Lee, Harvard Medical School;  
Sam Ingersoll, graphic artist; largest mapped network of individual  
cortical neurons, 2016)

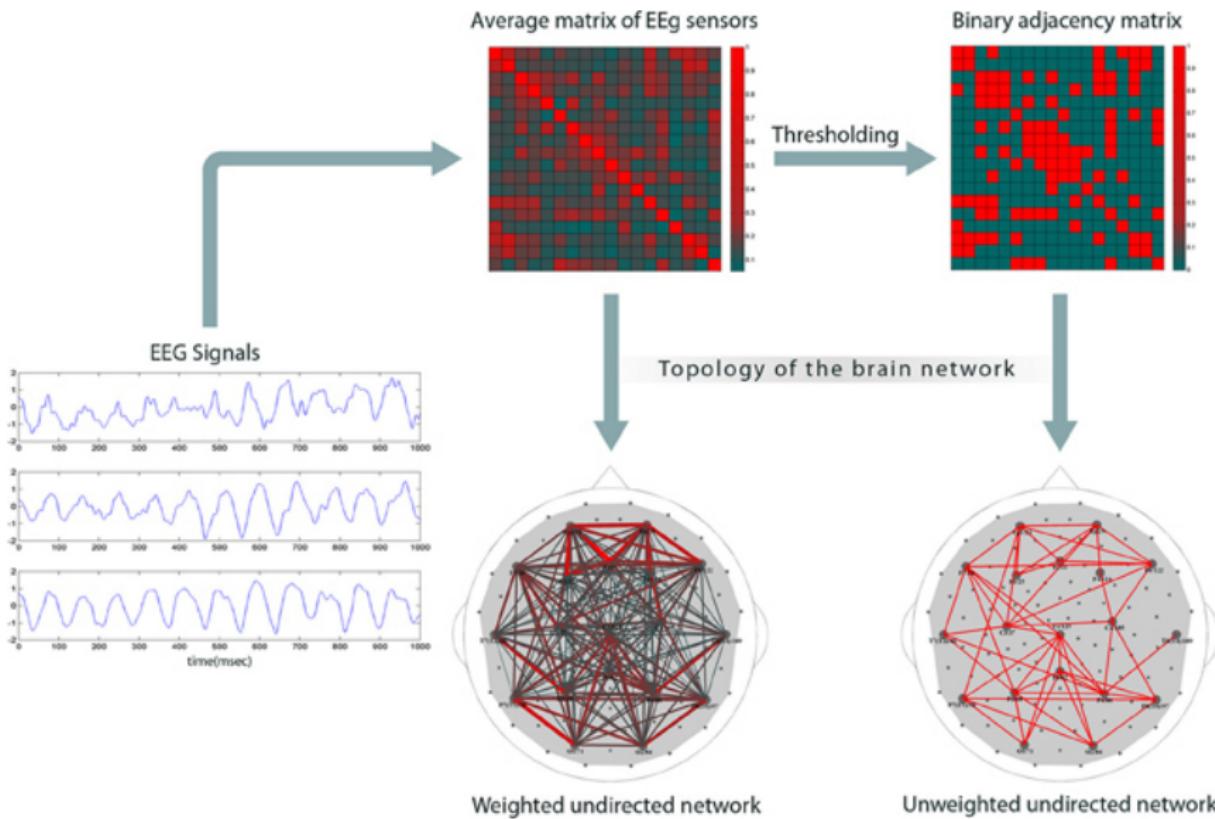
## Modeling Brain Networks with Graphs

- ❶ Spatial embeddings (embedded graphs  $G \subset S^3$ , knotting and linking, topological invariants of embedded graphs)
- ❷ Vertex labels (heterogeneity of node types): distinguish different kinds of neurons/different areas
- ❸ Edge labels (heterogeneity of edge types)
- ❹ Orientations (directionality of connections): directed graphs
- ❺ Weights (connection strengths)
- ❻ **Dynamical** changes of network topology

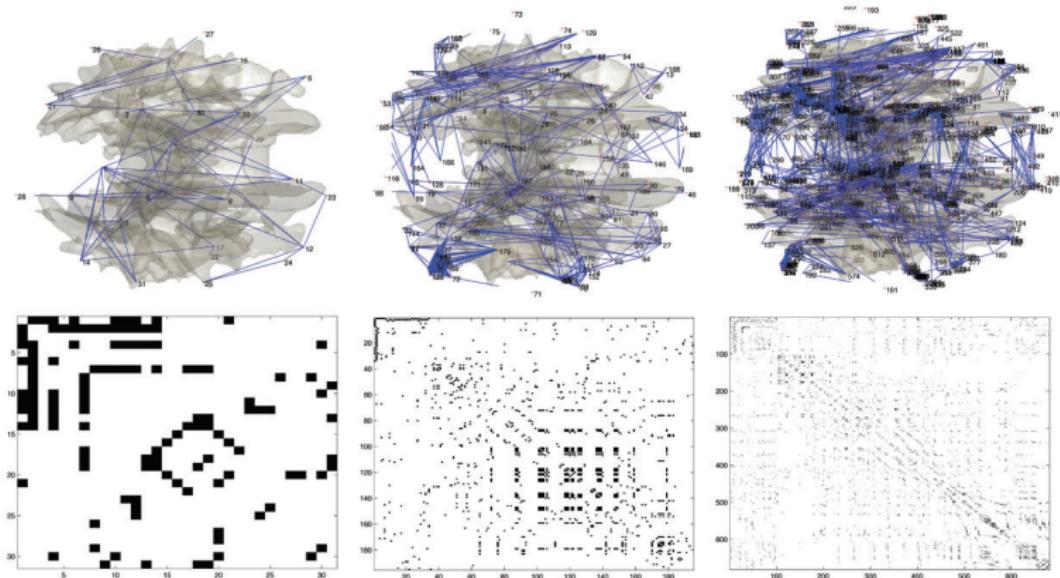
## Connectivity and Adjacency Matrix

- **connectivity matrix**  $C = (C_{ij})$  matrix size  $N \times N$  with  $N = \#V(G)$ , with  $C_{ij} \in \mathbb{R}$  connectivity strength for oriented edge from  $v_i$  to  $v_j$
- sign of  $C_{ij}$ : excitatory/inhibitory connection
- $C_{ij} = 0$  no oriented connecting edges between these vertices
- in general  $C_{ij} \neq C_{ji}$  for directed graphs, while  $C_{ij} = C_{ji}$  for non-oriented
- can use  $C_{ij} \in \mathbb{Z}$  for counting multiple parallel edges
- $C_{ii} = 0$  if no looping edges
- **adjacency matrix**  $A = (A_{ij})$  also  $N \times N$  with  $A_{ij} = 1$  if there is (at least) an edge from  $v_i$  to  $v_j$  and zero otherwise
- $A_{ij} = 1$  if  $C_{ij} \neq 0$  and  $A_{ij} = 0$  if  $C_{ij} = 0$
- if no parallel (oriented) edges: can reconstruct  $G$  from  $A = (A_{ij})$  matrix

# Connectivity and Adjacency Matrix



## Filtering the Connectivity Matrix



various methods, for example pruning weaker connections:  
threshold

- **connection density**

$$\kappa = \frac{\sum_{ij} A_{ij}}{N(N-1)}$$

density of edges over choices of pairs of vertices

- **total weight**  $W^\pm = \frac{1}{2} \sum_{ij} w_{ij}^\pm$  (for instance strength of connection positive/negative  $C_{ij}^\pm$ )
- how connectivity varies across nodes: **valence of vertices** (node degree), distribution of values of vertex valence over graph (e.g. most vertices with few connections, a few hubs with many connections: airplane travel, math collaborations)
- **in/out degree**  $\iota(v) = \#\{e : v \in \partial(e)\}$  vertex valence; for oriented graph in-degree  $\iota^+(v) = \#\{e : t(e) = v\}$  and out-degree  $\iota^-(v) = \#\{e : s(e) = v\}$

$$\#E = \sum_v \iota^+(v) = \sum_v \iota^-(v)$$

- **mean in/out degree**

$$\langle \iota^+ \rangle = \frac{1}{N} \sum_v \iota^+(v) = \frac{\#E}{N} = \frac{1}{N} \sum_v \iota^-(v) = \langle \iota^- \rangle$$

## Degree Distribution

- $\mathbb{P}(\deg(v) = k)$  fraction of vertices (nodes) of valence (degree)  $k$

**Erdös–Rényi graphs:** generate random graphs by connecting vertices randomly with equal probability  $p$ : all graphs with  $N$  vertices and  $M$  edges have equal probability

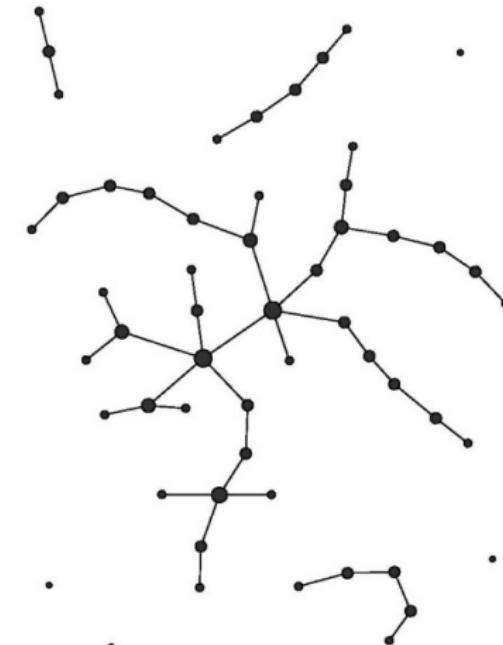
$$p^M(1-p)^{\binom{N}{2}-M}$$

- for Erdös–Rényi graphs degree distribution

$$\mathbb{P}(\deg(v) = k) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$$

second exponent  $N - 1 - k$  remaining possible connection from a chosen vertex (no looping edges) after removing a choice of  $k$  edges

- $p$  = connection density of the graph (network)



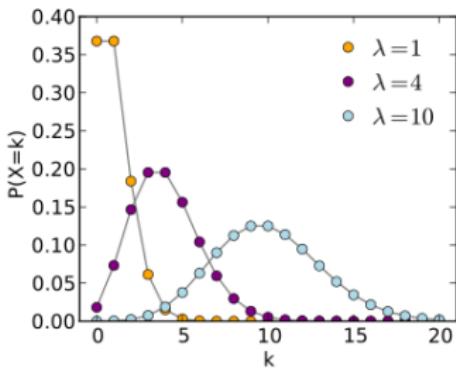
An Erdős–Rényi graph generated with  $p = 0.001$

- the Erdős–Rényi degree distribution satisfies for  $n \rightarrow \infty$

$$\mathbb{P}(\deg(v) = k) = \binom{N-1}{k} p^k (1-p)^{N-1-k} \sim \frac{(np)^k e^{-np}}{k!}$$

- so for large  $n$  the distribution is **Poisson**

$$\mathbb{P}(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$



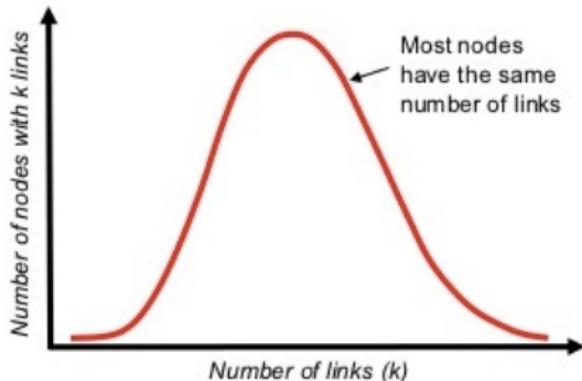
- .... but Erdős–Rényi graphs **not** a good model for brain networks

## Scale-free networks ... power laws

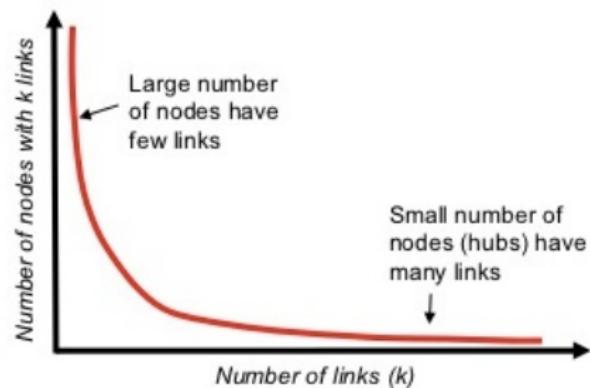
$$\mathbb{P}(\deg(v) = k) \sim k^{-\gamma} \quad \text{for some } \gamma > 0$$

- slower decay rate than in binomial case: **fat tail** ... higher probability than in Erdős–Rényi case of highly connected large  $k$  nodes
- Erdős–Rényi case has a peak in the distribution: a **characteristic scale** of the network
- power law distribution has no peak: no characteristic scale... **scale free** (typical behavior of self-similar and fractal systems)

## Poisson versus Power Law degree distributions

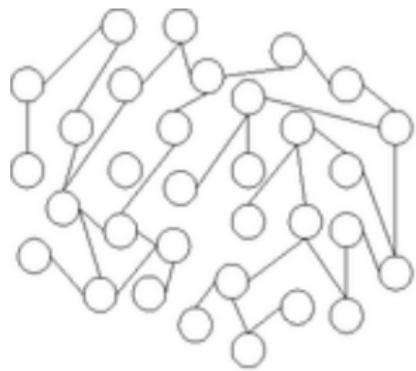


Normal (Poisson) Distribution

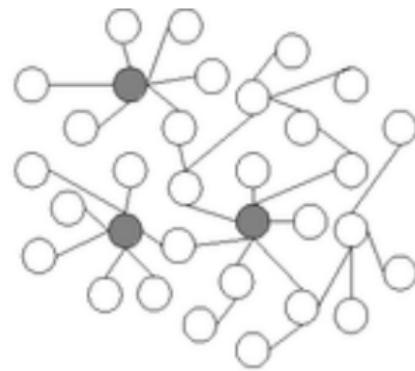


Power-Law Distribution

(nodes = vertices, links = edges, number of links = valence)



(a) Random network



(b) Scale-free network

## Broad Scale Networks

- intermediate class: more realistic to model brain networks
- exponentially truncated power law

$$\mathbb{P}(\deg(v) = k) \sim k^{-\gamma} e^{-k/k_c}$$

- **cutoff degree**  $k_c$ : for small  $k_c$  quicker transition to an exponential distribution
- range of scales over which power law behavior is dominant
- so far measurements of human and animal brain networks consistent with scale free and broad scale networks

For weighted vertices with weights  $w \in \mathbb{R}_+^*$

- weight distribution: best fitting for brain networks **log-normal distribution**

$$\mathbb{P}(\text{weight}(v) = w) = \frac{1}{w\sigma\sqrt{2\pi}} \exp\left(\frac{-(\log w - \mu)^2}{2\sigma^2}\right)$$

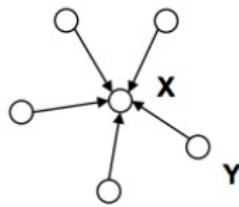
Gaussian in log coordinates

- why log-normal? model based on properties:
  - ❶ geometry of embedded graph with distribution of interregional distances  $\sim$  Gaussian
  - ❷ distance dependent cost of long distance connectionsdrop in probability of long distance connections with strong weights

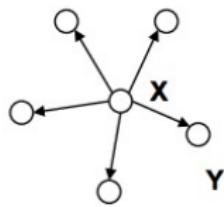
## Centrality

- a node is more “central” to a network the more
  - it is highly connected (large valence) – degree
  - it is located on the shortest path between other nodes – betweenness
  - it is close to a large number of other nodes (eg via highly connected neighbors) – closeness
- **valence**  $\deg(v)$  is a measure of centrality (but not so good because it does not distinguish between highly or sparsely connected neighbors)

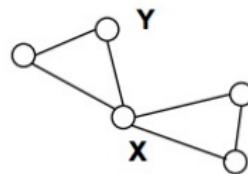
In each of the following networks, X has higher centrality than Y according to a particular measure



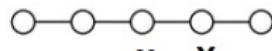
indegree



outdegree



betweenness



closeness

## Perron–Frobenius centrality

- **Perron–Frobenius theorem** (version for non-negative matrices)
  - $A = (A_{ij})$  non-negative  $N \times N$  matrix:  $A_{ij} \geq 0, \forall i, j$
  - $A$  is primitive if  $\exists k \in \mathbb{N}$  such that  $A^k$  is positive
  - $A$  irreducible iff  $\forall i, j, \exists k \in \mathbb{N}$  such that  $A_{ij}^k > 0$  (implies  $I + A$  primitive)
  - Directed graph  $G_A$  with  $N$  vertices and edge from  $v_i$  to  $v_j$  iff  $A_{ij} > 0$ : matrix  $A$  irreducible iff  $G_A$  strongly connected (every vertex is reachable through an oriented path from every other vertex)
  - Period  $h_A$ : greatest common divisor of lengths of all closed directed paths in  $G_A$

Assume  $A$  non-negative and irreducible with period  $h_A$  and spectral radius  $\rho_A$ , then:

- ①  $\rho_A > 0$  and eigenvalue of  $A$  (Perron–Frobenius eigenvalue); simple
- ② Left eigenvector  $V_A$  and right eigenvector  $W_A$  with all positive components (Perron–Frobenius eigenvector): only eigenvectors with all positive components
- ③  $h_A$  complex eigenvectors with eigenvalues on circle  $|\lambda| = \rho_A$
- ④ spectrum invariant under multiplication by  $e^{2\pi i/h_A}$

Take  $A =$  adjacency matrix of graph  $G$

- $A$  = adjacency matrix of graph  $G$
- vertex  $v = v_i$ : **PF centrality**

$$\mathcal{C}_{PF}(v_i) = V_{A,i} = \frac{1}{\rho_A} \sum_j A_{ij} V_{A,j}$$

$i$ th component of PF eigenvector  $V_A$

- high centrality if high degree (many neighbors), neighbors of high degree, or both
- can use  $V_A$  or  $W_A$ , left/right PF eigenvectors: centrality according to in-degree or out-degree

## Page Rank Centrality (google)

- $D$  = diagonal matrix  $D_{ii} = \max\{\deg(v_i)^{out}, 1\}$
- $\alpha, \beta$  adjustable parameters

$$\mathcal{C}_{PR}(v_i) = ((I - \alpha A D^{-1})^{-1} \beta \mathbf{1})_i$$

with  $\mathbf{1}$  vector of  $N$  entries  $1$

- this scales contributions of neighbors of node  $v_i$  by their degree: dampens potential bias of nodes connected to nodes of high degree

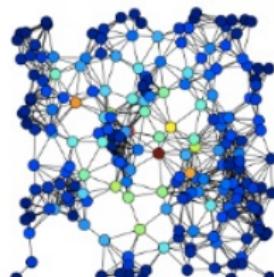
## Delta Centrality

- measure of how much a topological property of the graph changes if a vertex is removed
- graph  $G$  and vertex  $v \in V(G)$ : remove  $v$  and star  $S(v)$  of edges adjacent to  $v$

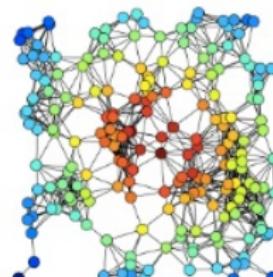
$$G_v = G \setminus S(v)$$

- topological invariants of (embedded) graph  $M(G)$  (with integer or real values)
- delta centrality with respect to  $M$

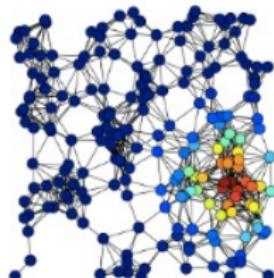
$$\mathcal{C}_M(v) = \frac{M(G) - M(G_v)}{M(G)}$$



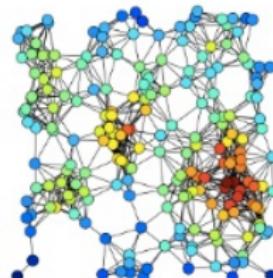
A



B

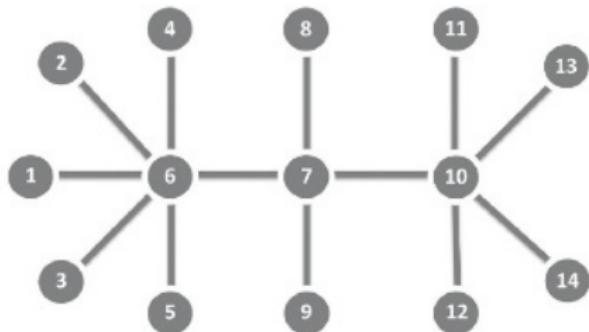
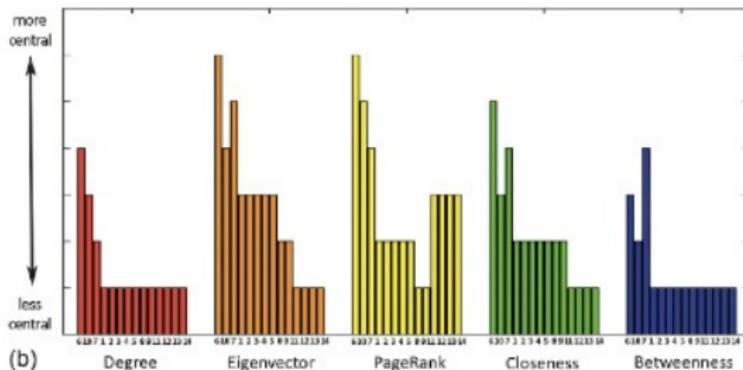


C

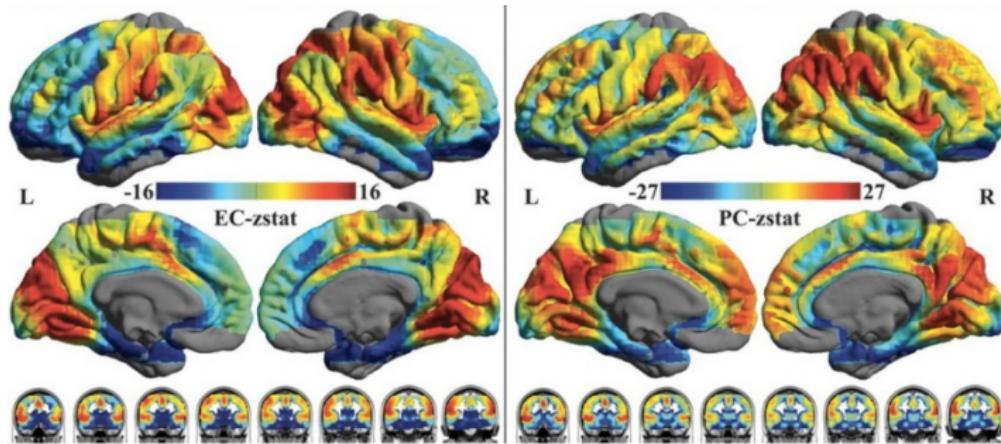


D

(A) betweenness; (B) closeness; (C) eigenvector (PF); (D) degree



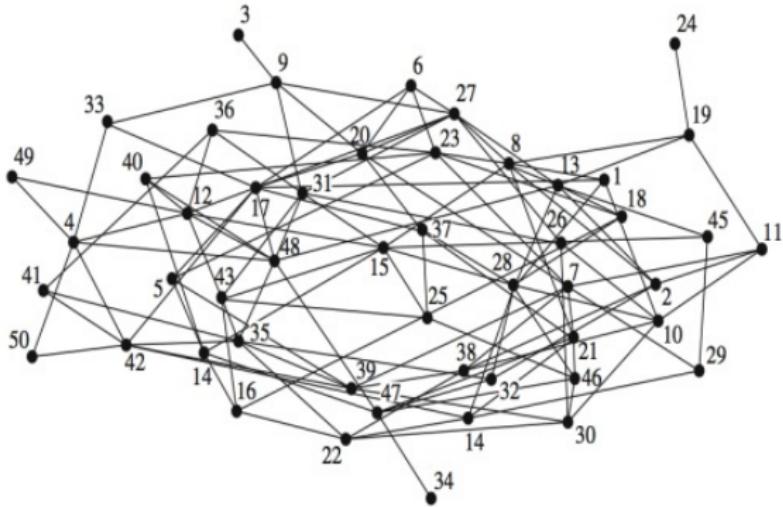
## Eigenvalue and PageRank centrality in brain networks



X.N.Zuo, R.Ehmke, M.Mennes, D.Imperati, F.X.Castellanos, O.Sporns,  
M.P.Milham, *Network Centrality in the Human Functional Connectome*,  
Cereb Cortex (2012) 22 (8): 1862-1875.

## Connected Components

- what is the right notion of “connectedness” for a large graph?  
small components breaking off should not matter, but large components becoming separated should
- is there **one large component?**
- Erdős–Rényi graphs: size of largest component ( $N = \#V(G)$ )
  - sharp increase at  $p \sim 1/N$
  - graph tends to be connected for  $p > \frac{\log N}{N}$
  - for  $p < \frac{1}{N}$  fragmented graph: many connected components of comparable (small) size
  - for  $\frac{1}{N} \leq p \leq \frac{\log N}{N}$  emergence of one giant component; other components still exist of smaller size



**Figure: Emergence of connectedness: a random network on 50 nodes with  $p = 0.10$ .**

(from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)

## How to prove the emergence of connectedness?

(Argument from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)

- **threshold function**  $\tau(N)$  for a property  $\mathcal{P}(G)$  of a random graph  $G$  with  $N = \#V(G)$ , with probability  $p = p(N)$ :

$$\mathbb{P}(\mathcal{P}(G)) \rightarrow 0 \quad \text{when } \frac{p(N)}{\tau(N)} \rightarrow 0$$

$$\mathbb{P}(\mathcal{P}(G)) \rightarrow 1 \quad \text{when } \frac{p(N)}{\tau(N)} \rightarrow \infty$$

with  $\mathbb{P}(\mathcal{P}(G))$  probability that the property is satisfied

- show that  $\tau(N) = \frac{\log N}{N}$  is a threshold function for the property  $\mathcal{P} = \text{connectedness}$

- for  $\mathcal{P}$  =connectedness show that for  $p(N) = \lambda \frac{\log N}{N}$ :

$$\mathbb{P}(\mathcal{P}(G)) \rightarrow 1 \quad \text{for } \lambda > 1$$

$$\mathbb{P}(\mathcal{P}(G)) \rightarrow 0 \quad \text{for } \lambda < 1$$

- to prove graph disconnected for  $\lambda < 1$  show growing number of single node components
- in an Erdős–Rényi graph probability of a given node being a connected component is  $(1 - p)^{N-1}$ ; so typical number of single node components is  $N \cdot (1 - p)^{N-1}$
- for large  $N$  this  $(1 - p)^{N-1} \sim e^{-pN}$
- if  $p = p(N) = \lambda \frac{\log N}{N}$  this gives

$$e^{-p(N)N} = e^{-\lambda \log N} = N^{-\lambda}$$

- for  $\lambda < 1$  typical number of single node components

$$N \cdot (1 - p)^{N-1} \sim N \cdot N^{-\lambda} \rightarrow \infty$$

- for  $\lambda > 1$  typical number of single vertex components goes to zero, but not enough to know graph becomes connected (larger size components may remain)
- probability of a set  $S_k$  of  $k$  vertices having no connection to the rest of the graph (but possible connections between them) is  $(1 - p)^{k(N-k)}$
- typical number of sets of  $k$  nodes not connected to the rest of the graph

$$\binom{N}{k} (1 - p)^{k(N-k)}$$

- Stirling's formula  $k! \sim k^k e^{-k}$  gives for large  $N$  and  $k$

$$\binom{N}{k} (1 - p)^{k(N-k)} \sim \left(\frac{N}{k}\right)^k e^k e^{-k\lambda \log N} = N^k N^{-\lambda k} e^{k(1-\log k)} \rightarrow 0$$

for  $p = p(N) = \lambda \frac{\log N}{N}$  with  $\lambda > 1$

## Phase transitions:

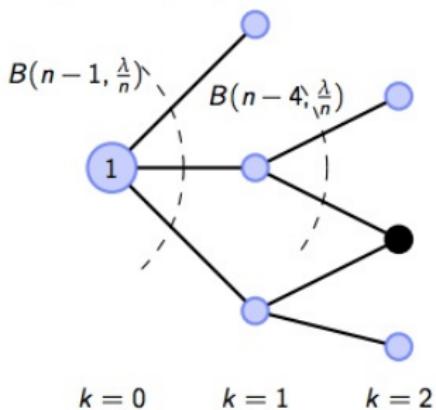
- at  $p = \frac{\log N}{N}$ : graph becomes connected
- at  $p = \frac{1}{N}$ : emergence of one giant component
- use similar method: threshold function  $\tau(N) = \frac{1}{N}$  and probabilities  $p(N) = \frac{\lambda}{N}$  with either  $\lambda > 1$  or  $\lambda < 1$

### Case $\lambda < 1$ :

- starting at a vertex approximate counting of connected vertices in an Erdős–Rényi graph with a branching process  $B(N, \frac{\lambda}{N})$
- replaces graph by a tree (overcounting of vertices) with typical number of descendants  $N \times \frac{\lambda}{N}$  so in  $k$  steps from starting vertex expected number of connections  $\lambda^k$
- so typical size of the component connected to first vertex is bounded above by size obtained from branching process

$$\sum_k \lambda^k = \frac{1}{1 - \lambda}$$

small sized components



(a) Erdos-Renyi graph process.



(b) Branching Process Approx.

Branching process approximation to an Erdös–Rényi graph process  
 (from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)

## Case $\lambda > 1$ :

- process  $B(N, \frac{\lambda}{N})$  asymptotically Poisson with probability ( $k$  steps)

$$e^{-\lambda} \frac{\lambda^k}{k!}$$

- probability  $\rho$  that tree obtained via this process is finite: recursive structure (overall tree finite if each tree starting from next vertices finite)

$$\rho = \sum_k e^{-\lambda} \frac{\lambda^k}{k!} \rho^k$$

fixed point equation  $\rho = e^{\lambda(\rho-1)}$

- one solution  $\rho = 1$  but another solution inside interval  $0 < \rho < 1$

- however... the branching process  $B(n, p)$  produces trees, but on the graph  $G$  fewer vertices...
- after  $\delta N$  vertices have been added to a component via the branching process starting from one vertex, to continue the process one has  $B(N(1 - \delta), p)$  correspondingly changing  $\lambda \mapsto \lambda(1 - \delta)$  (to continue to approximate same  $p$  of Erdős–Rényi process)
- progressively decreases  $\lambda(1 - \delta)$  as  $\delta$  increases so branching process becomes more likely to stop quickly
- typical size of the big component becomes  $(1 - \rho)N$  where  $\rho = \rho(\lambda)$  as above probability of finite tree, solution of  $\rho = e^{\lambda(\rho-1)}$

## Robustness to lesions

- Remove a vertex  $v \in V(G)$  with its star of edges

$$S(v) = \{e \in E(G) : v \in \partial(e)\}$$

$$G_v = G \setminus S(v)$$

measure change: e.g. change in size of largest component

- when keep removing more  $S(v)$ 's at various vertices, reach a threshold at which graph becomes fragmented
- in opposite way, keep adding edges with a certain probability, critical threshold where giant component arises, as discussed previously

## Core/Periphery

- *core*: subset of vertices highly connected to each other (hubs)
- *periphery*: nodes connected to core vertices but not with each other
- *maximal cliques*: maximally connected subsets of nodes

**k-core decomposition**: remove all  $S(v)$  with  $\deg(v) < k$ , remaining graph  $G^{(k)}$  *k-core*

- *core index* of  $v \in V(G)$ : largest  $k$  such that  $v \in V(G^{(k)})$

**s-core**  $G^{(s)}$ : remove all  $S(v)$  of vertices with weight  $w(v) < s$



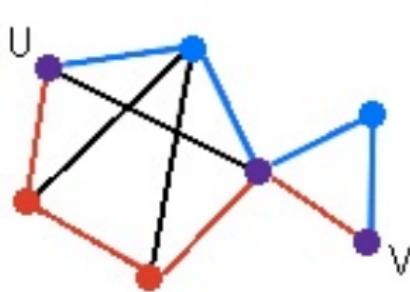
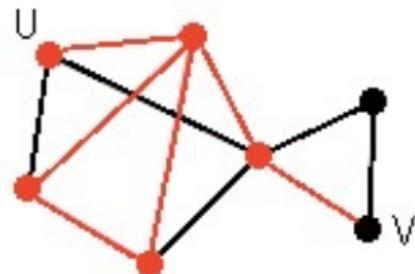
## Topology and flow of information along directed graphs

- networks with characteristic **path length** (close to min in a random graph)
- path length = min number of oriented edges or minimum total weight of these edges

### walks, trails, paths

- *walk*: sequence of oriented edges (target of one source of next): revisiting vertices and edges allowed
- *trail*: same but no edge repetitions (edges visited only once)
- *path*: no edge and no vertex repetitions (both vertices and edges visited only once)

Warning: terminology varies in the literature



two paths from  $U$  to  $V$  and a trail from  $U$  to  $V$

- shortest path = geodesics (with edge weights as metric)
- average of path length over all shortest path in the graph
  - at vertex  $v_i$  average  $\ell_i$  of lengths  $\ell_{ij} = \ell(v_i, v_j)$  of shortest paths starting at  $v_i$  (and ending at any other vertex  $v_j$ )
  - average over vertices

$$L = \frac{1}{N} \sum_i \ell_i = \frac{1}{N(N-1)} \sum_{i \neq j} \ell_{ij}$$

- **main idea:** brain networks with the shortest average path length integrate information better
- in case of a graph with several connected components, for  $v_i$  and  $v_j$  not in the same component usually take  $\ell_{ij} = \infty$ , then better to use harmonic mean

$$N(N-1) \left( \sum_{i \neq j} \ell_{ij}^{-1} \right)^{-1}$$

or its inverse, the **global efficiency**:

$$\frac{1}{N(N-1)} \sum_{i \neq j} \ell_{ij}^{-1}$$

## The Graph Laplacian measuring flow of information in a graph

- $\delta = (\delta_{ij})$  diagonal matrix of valencies  $\delta_{ii} = \deg(v_i)$
- adjacency matrix  $A$  (weighted with  $w_{ij}$ )
- Laplacian  $\Delta_G = \delta - A$
- normalized Laplacian  $\hat{\Delta}_G = I - A\delta^{-1}$  or symmetrized form  $\hat{\Delta}_G^s = I - \delta^{-1/2}A\delta^{-1/2}$
- $w_{ij}/\delta_{ii}$  = probability of reaching vertex  $v_j$  after  $v_i$  along a random walk search
- dimension of  $\text{Ker}\hat{\Delta}_G$  counts connected components
- eigenvalues and eigenvectors give decomposition of the graph into “modules”

## Dynamics

- in brain networks fast dynamics  $\sim$  100 millisecond timescale: variability in functional coupling of neurons and brain regions, underlying functional anatomy unchanged; also slow dynamics: long lasting changes in neuron interaction due to plasticity... growth, rewiring
- **types of dynamics:** diffusion processes, random walks, synchronization, information flow, energy flow
- topology of the graph plays a role in the spontaneous emergence of global (collective) dynamical states
- **multiscale dynamics:** dynamics at a scale influenced by states and dynamics on larger and smaller scales
- **mean field model:** dynamics at a scale averaging over effects at all smaller scales

- **synchronization** of a system of coupled oscillators at vertices with coupling along edges
- if graph very regular (eg lattice) difficult to achieve synchronized states
- small-world networks are easier to synchronize
- fully random graphs synchronize more easily but synchronized state also very easily disrupted: difficult to maintain synchronization
- more complex types of behavior when non-identical oscillators (different weights at different vertices) and additional presence of noise
- still open question: what is the role of topology and topology changes in the graph in supporting self-organized-criticality

Return to discuss **expander Graphs: heuristic properties**

- **spectral property**: like Ramanujan graphs if  $M$  matrix associated to  $G$  then  $\text{Spec}(M)$  contained in spectrum of analogous operator on covering tree
- **pseudo-random behavior**:  $G$  behaves **in some sense like** a random graph
- **information** is passed easily through the network
- **random walk**: a random walker on the graph gets lost quickly
- **boundary**: every subset of the vertices that is not “too large” has a “large” boundary
- different ways of formalizing these: edge expanders, vertex expanders, spectral expanders
- **how to detect good expander property?** via other data (especially **spectral** and **zeta function**)

## Expansion Constant

- sets of vertices  $S, T$  of  $G$
- $E(S, T) =$  edges of  $G$  with one vertex in  $S$  and the other in  $T$
- $\partial S = E(S, G \setminus S)$
- **expansion constant** of  $G$

$$h(G) := \min_{S \subset V, \#S \leq n/2} \frac{\#\partial S}{\#S}$$

- analog of the Cheeger constant for differentiable manifolds
- relation to the **spectral gap** (Chung)

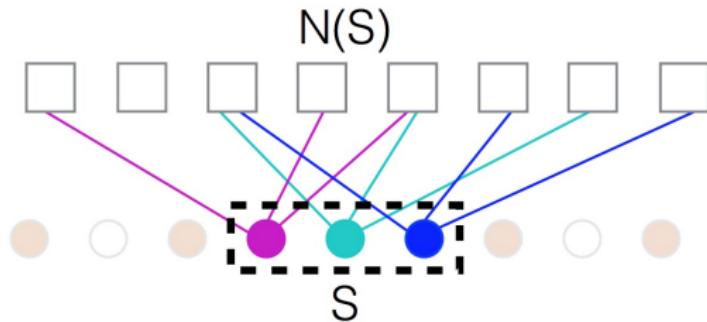
$$2h(G) \geq \lambda_G \geq h(G)^2/2$$

with  $\lambda_G = \min\{\lambda_1, 2 - \lambda_{n-1}\}$  for

$$\text{Spec}(1 - D^{-1/2}AD^{-1/2}) = \{0 = \lambda_0 \leq \lambda_1 \leq \dots \leq \lambda_n\}$$

- various other Cheeger-type inequalities in terms of spectral data
- similar notion of edge expansion

- **expander graph** has large expansion parameter and low degree
- bipartite expander graphs



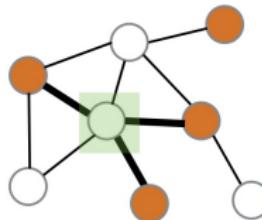
- $(\gamma, 1 - \epsilon)$ -expander: all sets  $S$  with  $\deg = z$  and  $\#S \leq \gamma N$  (fraction of total number of vertices) have  $\#N(S) = \#\partial S > (1 - \epsilon)z\#S$
- bipartite expander graphs are good for constructing codes with good error-correcting properties (number of errors corrected  $> \beta N$  with  $\beta = \gamma(1 - 2\epsilon)N$ )

## Expander Graphs in Neuroscience

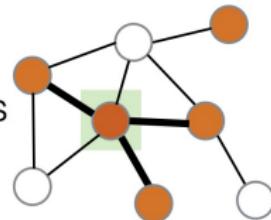
(work of Rishidev Chaudhuri and Ila Fiete)

- bipartite expander Hopfield networks
- Hopfield networks: models for neural memory
- stored states recovered from noisy/partial input

Partial input



Memory



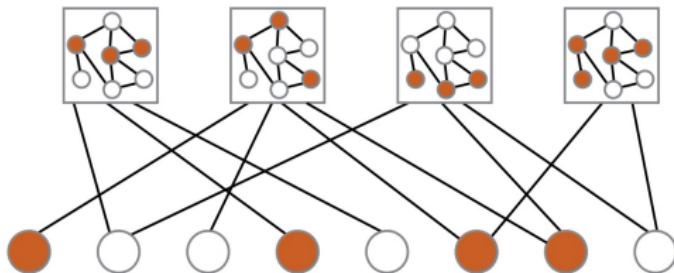
Network dynamics

- good error correcting properties of expander bipartite graphs

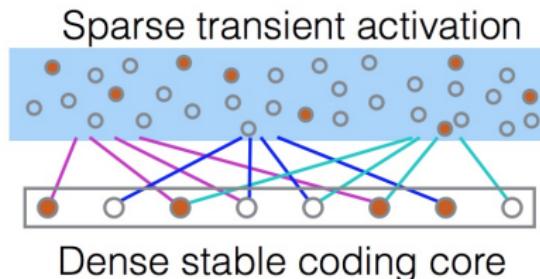
## Expander Graphs in Neuroscience

(work of Rishidev Chaudhuri and Ila Fiete)

- Hopfield networks with stable states determined by sparse constraints with expander structure

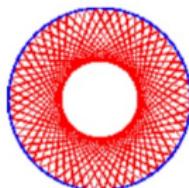
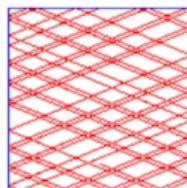
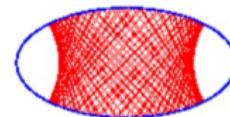


- modelling of neural codes: higher order correlations (better coding properties) unlike neural code with many neurons that are rarely activated and pairwise decorrelated

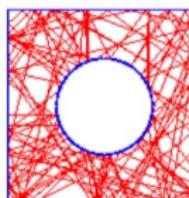
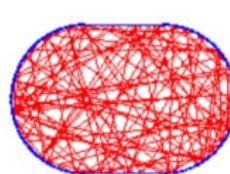
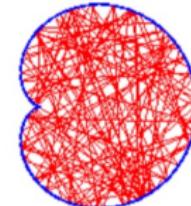


## Quantum Chaos: the basic idea

- Classical (continuous) dynamical systems: regular and chaotic behavior

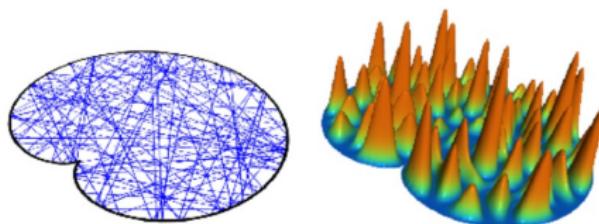


Integrable billiard: regular motion.



Chaotic billiard: irregular motion.

- Properties of Schrödinger equation associated to chaotic classical systems



Pictures Arnd Bäcker: <http://www.physik.tu-dresden.de/~baecker/>

- spectral properties related to counting of periodic orbits for chaotic classical system and to Random Matrix Theory
- quantum version of classical integrable systems have Poisson distribution of eigenvalues
- quantum version of chaotic classical systems follow eigenvalue distribution of Random Matrix Theory (Dyson's circular ensemble)

## Quantum Chaos on Graphs

- Tsampikos Kottos and Uzy Smilansky, *Periodic orbit theory and spectral statistics for quantum graphs*, Annals of Physics 274 (1999) 76–124
- Uzy Smilansky, *Quantum chaos on discrete graphs*, J. Phys. A 40 (2007) no. 27, F621–F630

- **Summary**

- quantum (metric) graphs versus discrete graphs
- Schrödinger operator on quantum graphs spectral statistics similar to Random Matrix Theory (which describes generic quantum Hamiltonians)
- similarity with chaotic Hamiltonian dynamical systems: a similar *trace formula* describing spectral densities in terms of sums over periodic orbits
- zeta function for a Perron–Frobenius operator on the graph: same expression in terms of periodic orbits (like Ruelle dynamical zeta function for Hamiltonian dynamical systems)
- **discrete graphs:** spectral properties from Ihara zeta function

- Quantum graphs case: quick overview

- Schrödinger equation on quantum graphs good for modelling traveling waves in networks
- assign a coordinate  $x_e$  to each oriented edge of a graph, from 0 to  $\ell_e$  length
- Hilbert space  $\mathcal{H} = \bigoplus_e L^2([0, \ell_e])$  and wave functions  $\Psi = (\Psi_e(x_e))_{e \in E}$
- Schrödinger equation (with magnetic vector potential  $A = (A_e)$ )

$$(-i \frac{d}{dx_e} - A_e)^2 \Psi_e(x_e) = k^2 \Psi_e(x_e)$$

with matching boundary conditions at vertices

- self-adjoint with unbounded discrete spectrum

- spectrum from  $\zeta_E(k) = \det(I - S_E(k)) = 0$  with edge scattering matrix  $S_E(k)$  (unitary  $2\#E \times 2\#E$  matrix)
- Fredholm determinant

$$\log \det(I - S_E(k)) = - \sum_{n=1}^{\infty} \frac{1}{n} \text{Tr}(S_E^n(k))$$

- traces  $\text{Tr}(S_E^n(k))$  in terms of a sum over  $n$ -periodic orbits on the graph of a “magnetic flux” along that orbit (depending on magnetic potential  $A$ )
- symbolic dynamics: subshift of finite type with Markov/Bernoulli measure (chaotic dynamical system)

## Case of discrete graphs

- Laplacian  $L$  of the discrete graph: (weighted) connectivity matrix and diagonal matrix of vertex valencies
- zeta functions and trace formulae for discrete graphs
- eigenvalues of the graph Laplacian related to nontrivial poles of the Ihara zeta function of the graph
- again zeta function related to counting of periodic orbits of a subshift of finite type dynamics

## Zeta Functions of Graphs and Chaos Theory

- Audrey Terras, *Zeta functions and Chaos*, A Window Into Zeta and Modular Physics, MSRI Publications, Volume 57, 2010
- Model zeta function: **Riemann Zeta Function**

$$\zeta(s) = \sum_{n \geq 1} n^{-s} = \prod_p (1 - p^{-s})^{-1}$$

sum over  $n \in \mathbb{N}$  or Euler product over primes

- What plays the role of **primes** for a graph?
- another model example: **Selberg Zeta Function**

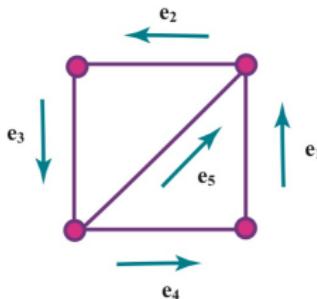
$$Z(s) = \prod_C \prod_{\ell \geq 1} (1 - e^{-(s+\ell)\nu(C)})$$

primitive closed geodesics  $C$  in  $X = \mathrm{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^2$  modular curve with length  $\nu(C)$

- expect closed paths to play role of geodesics on a graph with length the number of oriented edges

## Paths on Graphs and “Primes”

- start from an undirected graph and assign arbitrary orientations



- path in directed graph has **backtrack** if  $C = e_1 \dots e_s$  with some  $e_{j+1} = e_j^{-1}$
- path in directed graph has **tail** if  $C = e_1 \dots e_s$  with  $e_s = e_1^{-1}$
- equivalence class of a closed path  $C = e_1 \dots e_n$  consists of all cyclically permuted ordering of the oriented edges in the path:  $e_2, \dots, e_n, e_1$  etc.
- closed path primitive if no backtracking and  $C \neq D^k$
- “**primes**”: equiv classes of tail-less primitive closed paths

## Ihara Zeta Function

- Ihara Zeta:

$$\zeta(u, G) = \prod_P (1 - u^{\nu(P)})^{-1}$$

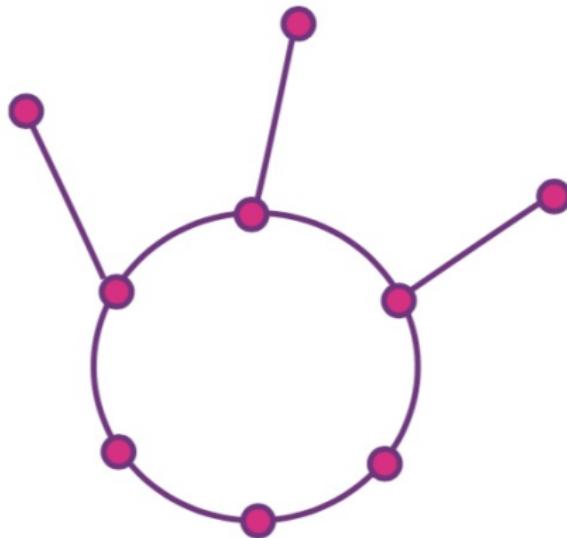
- $P$  ranges over primes, equiv classes of tail-less primitive closed paths in  $G$
- $\nu(P)$  is the length (number of edges) in the path
- Bass Determinant Formula

$$\zeta(u, G)^{-1} = (1 - u^2)^{r-1} \det(I - Au + Qu^2)$$

$r = \#E - \#V + 1$  rank of fundamental group  $\pi_1(G)$

- $A$  = vertex adjacency matrix:  $\#V \times \#V$  matrix with  $(i, j)$ -entry # directed edges from  $v_i$  to  $v_j$
- $Q$  = diagonal matrix with  $j$ -th entry  $\text{val}(v_j) - 1$
- tetrahedron graph  $K_4$

$$\zeta(u, K_4)^{-1} = (1 - u^2)^2(1 - u)(1 + u + 2u^2)(1 - u^2 - 2u^3)$$



An example of a bad graph for zeta functions.

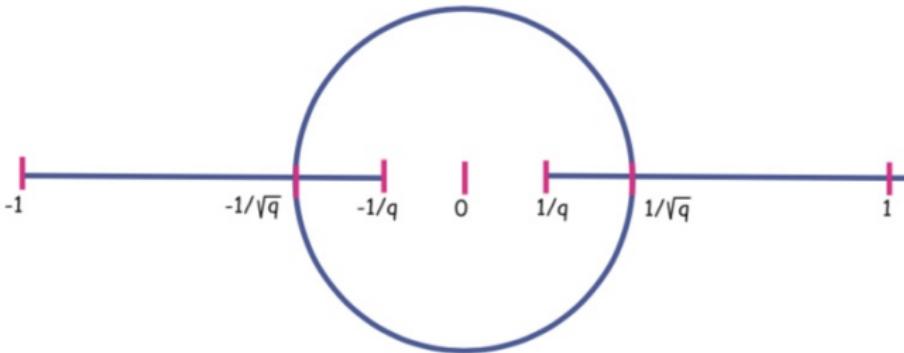
valence one vertices are not good for zeta function because of tails  
(but loops and multiple edges are OK)

## Riemann Hypothesis for the Ihara Zeta Function (Lubotzky, Phillips and Sarnak)

- case of  $(q + 1)$ -regular graphs
- Ihara Riemann Hypothesis  $\zeta(q^{-s}, G)$  has no poles with  $0 < \Re(s) < 1$  unless  $\Re(s) = 1/2$
- for a graph equivalent to being a Ramanujan graph
- this property means that nontrivial spectrum of adjacency matrix of the graph contained in spectrum of adjacency operator on universal covering tree, which is interval  $[-2\sqrt{q}, 2\sqrt{q}]$
- Ramanujan graphs provide efficient communication networks: best expander properties

## Pole locations for regular graphs

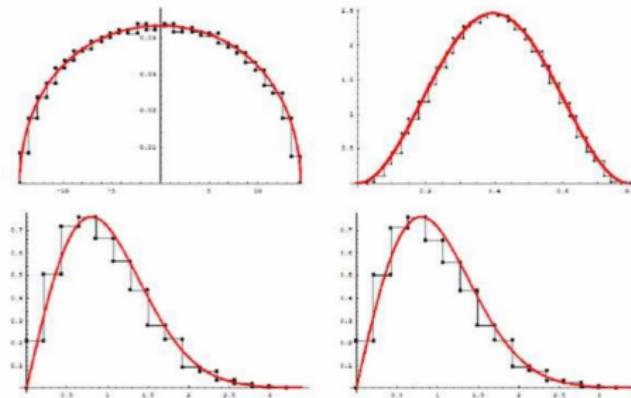
- using the determinant formula for the Ihara zeta function
- possible location of poles for a  $(q + 1)$ -regular graph



- poles on the circles: those that satisfy Riemann Hypothesis
- non-trivial poles ( $\neq \pm 1, \pm q^{-1}$ ) on other lines: non-RH poles
- $1/q$  always the closest pole to 0 for  $(q + 1)$ -regular graph
- Alon conjecture: RH *approximately* true for most regular graphs (and asymptotically 27% of regular graphs satisfy exactly)

## Spectra of random real symmetric matrices

- similar behavior of statistics of spectra of random real symmetric matrices and statistics of imaginary parts of  $s$  at poles of Ihara zeta  $\zeta(q^{-s}, G)$  for a  $(q + 1)$ -regular graph  $G$



- pseudo-random regular graph  $\text{deg}=53$  and 2000 vertices: top row distrib of eigenvalues of adjacency matrix (left) and imaginary part of Ihara poles (right); level spacings on second row
- red line: Wigner law for GOE random matrices

## Beyond regular case

- $R_G$  = radius of largest circle of convergence of Ihara zeta function (conv abs for  $|u| < R_G$ , pole order 1 at  $u = R_G$  for  $G$  connected)
- $1/R_G$  is spectral radius of edge adjacency matrix ( $W_{ij} = 1$  if  $t(e_i) = s(e_j)$ )
- poles of Ihara zeta = reciprocals of eigenvalues of edge adjacency matrix
- for  $(q + 1)$ -regular  $G$  have  $R_G = 1/q$
- **Ihara Riemann Hypothesis** for irregular graphs

no poles of  $\zeta(u, G)$  in region  $R_G < |u| < \sqrt{R_G}$

- no good functional equation for Ihara in this case, so  $u = R_G^s$  and  $0 < \Re(s) < 1$  too large and only half-strip for RH
- still a way of detecting good expander properties

## Ruelle zeta function

- dynamical system iterates of  $f : M \rightarrow M$  on a compact manifold with finite sets of fixed points  $\text{Fix}(f^m)$  for all  $m \geq 1$
- assign a weight function (matrix valued)  $\phi : M \rightarrow M_{D \times D}(\mathbb{C})$
- **Ruelle zeta function:**

$$\zeta(u) := \exp\left(\sum_{m \geq 1} \frac{u^m}{m} \sum_{x \in \text{Fix}(f^m)} \text{Tr}\left(\prod_{k=0}^{m-1} \phi(f^k(x))\right)\right)$$

- generalization of the Artin–Mazur zeta function

$$\zeta(u) = \exp\left(\sum_{m \geq 1} \frac{u^m}{m} \#\text{Fix}(f^m)\right)$$

which in turn generalizes case of the Frobenius on varieties over finite fields (counting points over finite fields as fixed points of powers of Frobenius)

## Subshift of finite type

- $\mathcal{I}$  set of directed edges of a graph  $G$  (alphabet)
- transition matrix ( $W_{ij}$ ) entries  $\{0, 1\}$  is edge adjacency matrix
- admissible words  $(a_k)_{k \in \mathbb{N}} \in \mathcal{I}^{\mathbb{N}}$  with  $W_{a_k a_{k+1}} = 1$  are (infinite) paths in  $G$  without backtracking
- shift map  $\sigma : \mathcal{I}^{\mathbb{N}} \rightarrow \mathcal{I}^{\mathbb{N}}$  mapping  $a_0 a_1 a_2 \dots$  to  $a_1 a_2 a_3 \dots$
- $\text{Fix}(\sigma^m) =$  closed paths of length  $m$  without tails or backtracking
- Ihara zeta function is a special case of Ruelle zeta function

$$\log \zeta(u, G) = \sum_{m \geq 1} \frac{N_m}{m} u^m$$

with number of closed paths of length  $m$

$$N_m = \#\text{Fix}(\sigma^m) = \text{Tr}(W^m)$$

## Matrices associated to graphs

- $A$  = vertex adjacency matrix
- $L = D - A$  Graph Laplacian (with  $D$  diagonal matrix of degrees of vertices)
- $W$  = edge adjacency matrix:  $2 \cdot \#E \times 2 \cdot \#E$  matrix with  $(i,j)$  entry 1 if  $e_i$  feeds into  $e_j$  (counting edges and their inverses)

## Hashimoto Determinant Formula

- $W$  = edge adjacency matrix
- Ihara Zeta Function

$$\zeta(u, G)^{-1} = \det(I - uW)$$

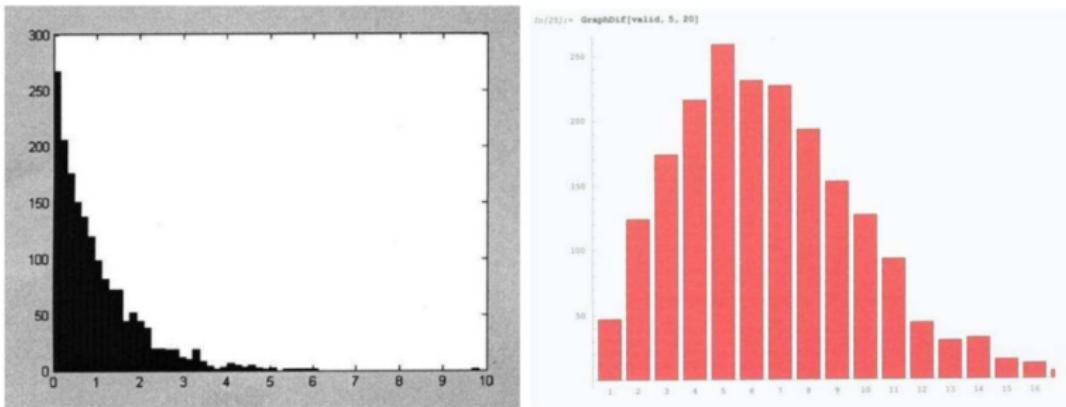
- poles of the Ihara Zeta Function are reciprocals of eigenvalues of the edge adjacency matrix  $W$

- **Kotani-Sudana:** connected graph  $G$  with  $\text{rank}\pi_1(G) > 1$ , no  $\deg = 1$  vertices, min degree  $p + 1$ , max deg  $q + 1$ : every non-real pole of Ihara zeta  $\zeta(u, G)$

$$q^{-1/2} \leq |u| \leq p^{-1/2}$$

and poles on circle  $|u| = R_G$  are  $u = R_G e^{2\pi i a / \Delta_G}$  with  $a = 1, \dots, \Delta_G$  and  $\Delta_G = \text{gcd}$  lengths of prime paths (tail-less primitive closed paths)

## Spacing of Ihara Poles



difference between Euclidean graph (Cayley graph of an abelian group) and random regular graph: the Euclidean case looks like a Poisson distribution while the random case looks like Wigner's law for GOE

$$\frac{1}{2}\pi x \exp(-\pi x^2/4)$$

when arranging eigenvalues of a symmetric matrix in decreasing order and normalize them so that mean of level spacing is 1

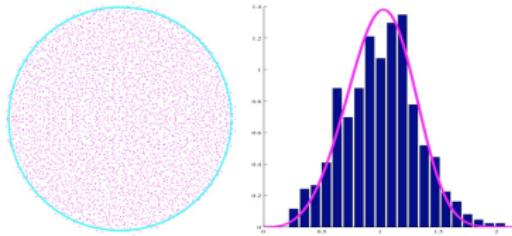
## Spectral properties of edge adjacency $W$

- **Girko circle law:** eigenvalues of a set of random  $n \times n$  real matrices with independent entries with a standard normal distribution approximately uniformly distributed in a circle of radius  $\sqrt{n}$  for large  $n$
- random matrix that, like  $W$  has form

$$W = \begin{pmatrix} A & B \\ C & A^t \end{pmatrix}$$

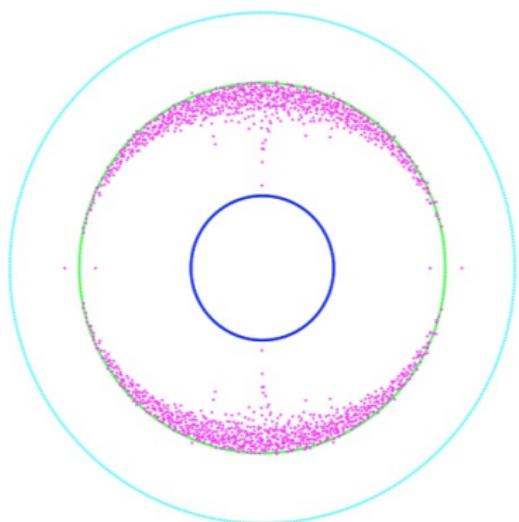
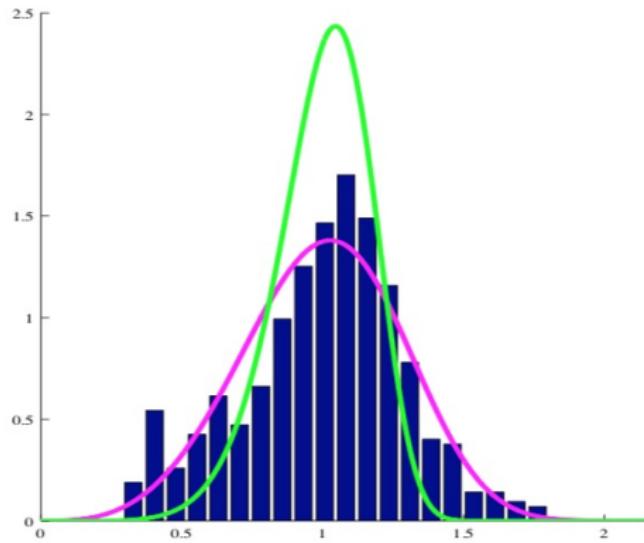
with  $B, C$  symmetric real,  $A$  real with transpose  $A^t$

- construct random matrices with this same structure: then circle radius not same as Girko's: spectrum and spacings

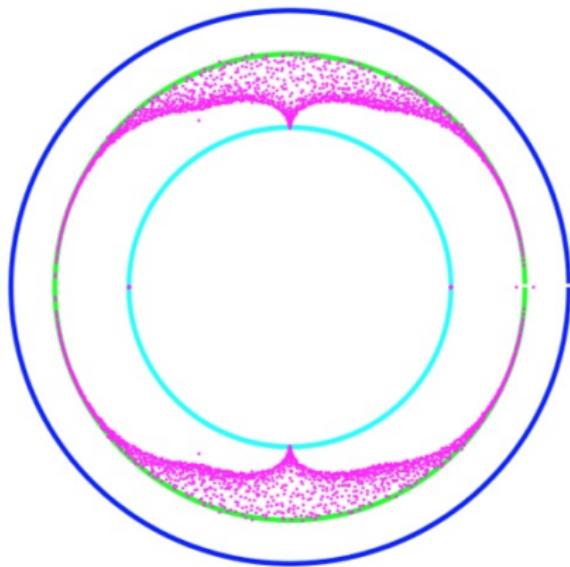
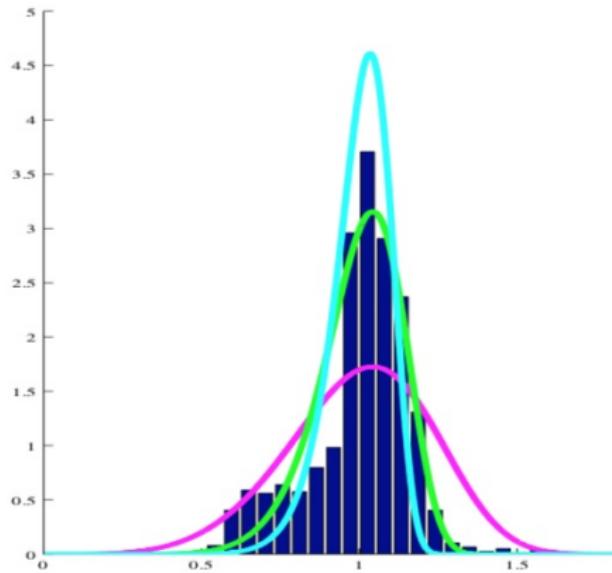


- What shape of the spectrum for actual  $W$ ?

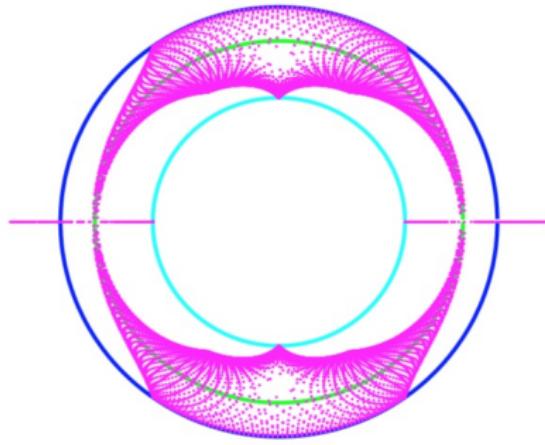
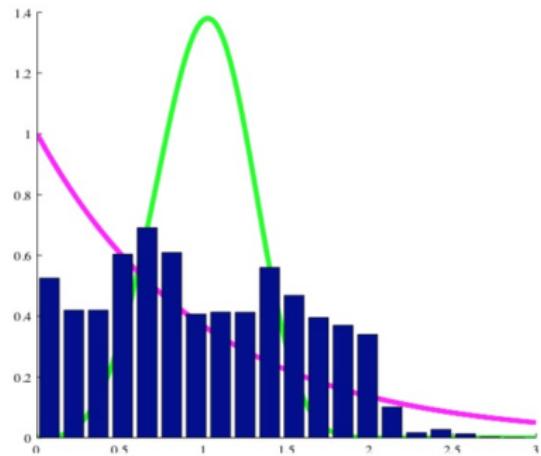
- by Kotani-Sudana spectrum cannot fill a disk: in an annulus



eigenvalues (pink points) of edge adjacency matrix  $W$  for a random graph with 800 vertices mean  $\deg 13.125$  and edge probability  $p \sim 0.0164$ ; green circle RH; histogram of nearest neighbor spacings in  $\text{Spec}(W)$

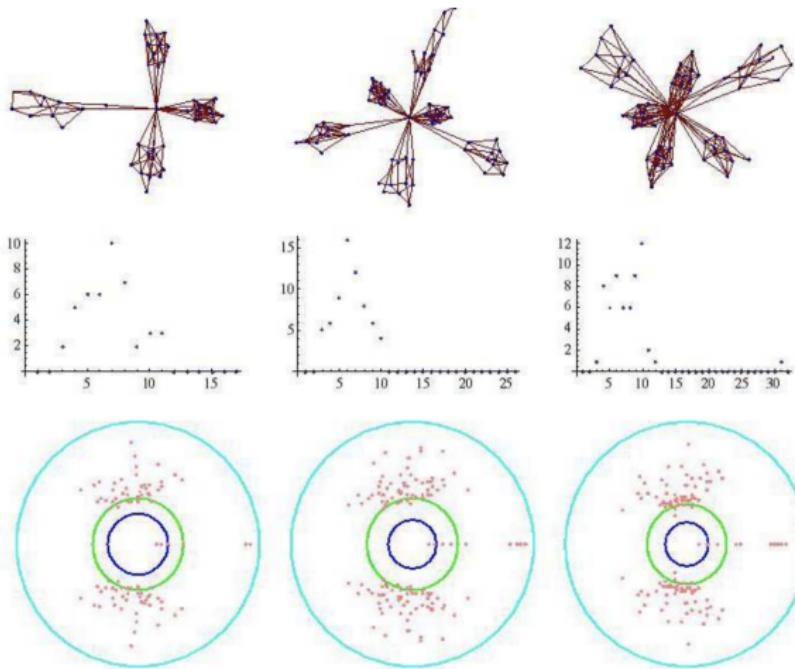


eigenvalues (pink points) and spacings of edge adjacency matrix  $W$  for a random cover of the graph with two loops and one extra vertex on one loop (801 sheets of cover, each a copy of a spanning tree)



eigenvalues (pink points) and spacings of edge adjacency matrix  $W$  for an abelian covering of same graph (Galois group  $\mathbb{Z}/163 \times \mathbb{Z}/45$ )

## detecting poor or good expander properties



graphs, histogram of degrees, poles of Ihara zetas (green RH circle, and outer/inner Kotani-Sudana circles