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Graphs G = (V,E,0)

e V = V(G) set of vertices (nodes)

e E = E(G) set of edges (connections)

e boundary map 9 : E(G) — V(G) x V(G), boundary vertices
d(e) = {v,v'}

e directed graph (oriented edges): source and target maps
s:E(G) — V(G), t:E(G)— V(G), 0J(e)={s(e), t(e)}

e looping edge: s(e) = t(e) starts and ends at same vertex;
parallel edges: e # €' with 9(e) = 0(€')

e simplifying assumption: graphs G with no parallel edges and no
looping edges (sometimes assume one or the other)

e additional data: label functions fy : V(G) — Ly and
fe : E(G) — Lg to sets of vertex and edge labels Ly and Lg
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Examples of Graphs

(9.3 )-configuration (2 7)-fan graph i Johnson solid
graph 2 Fritsch graph skeleton 3

Johnson solid Johnson solid Johnson solid (3,3)-king's tour
skeleton 8 skeleton 1) skeleton 63 graph
prism graph (3,3)  Y-quartic graph 5 Y-wheel graph
Soifer graph
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Network Graphs
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Increasing Randomness

Regular Small-world Random

Increasing randomness

rewiring probability p

with probability p edges are disconnected and attached to a randomly
chosen other vertex (Watts and Strogatz 1998)
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Brain Networks: Macroscopic Scale (brain areas)

A Network Edge from DTiana Tractography (. StrucuraiNework [ Gonnectivity Matrix E network Characteristics

global ! local measures

network rich-club

B Network Node from Structural Parceliation / F Network Characteristics
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Brain Networks: Macroscopic Scale (brain areas)

group averaged
connectivity matrix
Myroup

T1 anatomical
om parcellition

Heuvel & Spams (2011)
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Brain Networks: Microscopic Scale (individual neurons)
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(Clay Reid, Allen Institute; Wei-Chu
Sam Ingersoll, graphic artist; largest mapped network of individual

ng Lee, Harvard Medical School;

cortical neurons, 2016)
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Modeling Brain Networks with Graphs

@ Spatial embeddings (embedded graphs G C S3, knotting and
linking, topological invariants of embedded graphs)

@ Vertex labels (heterogeneity of node types): distinguish
different kinds of neurons/different areas

© Edge labels (heterogeneity of edge types)
© Orientations (directionality of connections): directed graphs
@ Weights (connection strengths)

@ Dynamical changes of network topology
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Connectivity and Adjacency Matrix

e connectivity matrix C = (Cj;) matrix size N x N with
N = #V(G), with Cjj € R connectivity strength for oriented edge
from v; to v;

e sign of Cjj: excitatory/inhibitory connection
e C;ji = 0 no oriented connecting edges between these vertices

e in general Cjj # Cj; for directed graphs, while C;j = Cj; for
non-oriented

e can use Cj € Z for counting multiple parallel edges

e C;i = 0 if no looping edges

e adjacency matrix A = (Aj) also N x N with Ajj = 1 if there is
(at least) an edge from v; to v; and zero otherwise

OA,'j:].ifC,'j#OandA,'j:OifC;j:O

e if no parallel (oriented) edges: can reconstruct G from A = (Aj;)
matrix
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Connectivity and Adjacency Matrix

Average matrix of EEg sensors Binary adjacency matrix

‘ . l ThrEShOIding . ‘

EEG Signals Topology of the brain network
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Weighted undirected network Unweighted undirected network
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Filtering the Connectivity Matrix

various methods, for example pruning weaker connections:
threshold
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e connection density
Zij Ajj
N(N —1)
density of edges over choices of pairs of vertices

K =

e total weight W* = 13" WU (for instance strength of
connection positive/negative Cj[)

e how connectivity varies across nodes: valence of vertices (node
degree), distribution of values of vertex valence over graph (e.g.
most vertices with few connections, a few hubs with many
connections: airplane travel, math collaborations)

e in/out degree t(v) = #{e: v € 9(e)} vertex valence; for
oriented graph in-degree 1" (v) = #{e : t(e) = v} and out-degree
(V) = #He  s(e) = v}

HE = 1M (v)=> 1 (v)

e mean in/out degree
E _
<L+>=NE L*(V)—# NZ () {2)



Degree Distribution
e P(deg(v) = k) fraction of vertices (nodes) of valence (degree) k

Erdos—Rényi graphs: generate random graphs by connecting
vertices randomly with equal probability p: all graphs with N
vertices and M edges have equal probability

pM(1 - p)(2)~M
o for Erdos—Rényi graphs degree distribution

P(deg(v) = k) = <’V; 1> pH(1— p)N-1k

second exponent N — 1 — k remaining possible connection from a
chosen vertex (no looping edges) after removing a choice of k
edges

e p = connection density of the graph (network)
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An Erdos—Rényi graph generated with p = 0.001

Matilde Marcolli Brain Networks



e the Erdos—Rényi degree distribution satisfies for n — oo
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e .... but Erdos—Rényi graphs not a good model for brain networks

Matilde Marcolli Brain Networks



Scale-free networks ... power laws

P(deg(v) = k) ~ k=7 for some v > 0

e slower decay rate than in binomial case: fat tail ... higher
probability than in Erdos—Rényi case of highly connected large k
nodes

e Erdos—Rényi case has a peak in the distribution: a characteristic
scale of the network

e power law distribution has no peak: no characteristic scale...
scale free (typical behavior of self-similar and fractal systems)
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Poisson versus Power Law degree distributions

-
2 Maost nodes. .E“
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E 3 mary links
E § i
2 2 o
Number of links (k) S Number of links (k)
| Normal (Poisson) Distribution | | Power-Law Distribution |

(nodes = vertices, links = edges, number of links = valence)
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(a) Random network

(b) Scale-free network
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Broad Scale Networks
e intermediate class: more realistic to model brain networks

e exponentially truncated power law

P(deg(v) = k) ~ k™Y e k/k

e cutoff degree k.: for small k. quicker transition to an
exponential distribution

e range of scales over which power law behavior is dominant

e so far measurements of human and animal brain networks
consistent with scale free and broad scale networks
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For weighted vertices with weights w € R

e weight distribution: best fitting for brain networks log-normal
distribution

: 1 —(log w — u)2>
P ht(v) = =
(weight(v) = w) gy exp < 52

Gaussian in log coordimates

e why log-normal? model based on properties:

@ geometry of embedded graph with distribution of interregional
distances ~ Gaussian

@ distance dependent cost of long distance connections

drop in probability of long distance connections with strong weights
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Centrality

e a node is more “central” to a network the more
e it is highly connected (large valence) — degree

@ it is located on the shortest path between other nodes —
betweenness

@ it is close to a large number of other nodes (eg via highly
connected neighbors) — closeness

e valence deg(v) is a measure of centrality (but not so good
because it does not distinguish between highly or sparsely
connected neighbors)
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In each of the following networks, X has higher centrality than Y according to
a particular measure

Y
X X o—0—0—0—=0
X Y
Y Y %

indegree outdegree betweenness closeness
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Perron—Frobenius centrality
e Perron—Frobenius theorem (version for non-negative matrices)

e A= (Aj) non-negative N x N matrix: A; >0, Vi,
o A is primitive if 3k € N such that A¥ is positive

A irreducible iff Vi, j, 3k € N such that A% > 0 (implies / + A
primitive)

@ Directed graph G with N vertices and edge from v; to v; iff
Ajj > 0: matrix A irreducible iff G4 strongly connected (every
vertex is reachable through an oriented path from every other
vertex)

@ Period hp: greatest common divisor of lengths of all closed
directed paths in Gy
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Assume A non-negative and irreducible with period hy and spectral
radius p4, then:

@ pa > 0 and eigenvalue of A (Perron—Frobenius eigenvalue);
simple

O Left eigenvector V4 and right eigenvector W, with all positive
components (Perron—Frobenius eigenvector): only
eigenvectors with all positive components

© ha complex eigenvectors with eigenvalues on circle |A\| = pa

@ spectrum invariant under multiplication by €27/

Take A = adjacency matrix of graph G
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e A = adjacency matrix of graph G

e vertex v = v;: PF centrality
1
Cre(vj) = Va,i = o ZA"J' Va
J

ith component of PF eigenvector V)

e high centrality if high degree (many neighbors), neighbors of
high degree, or both

e can use V4 or Wjy, left/right PF eigenvectors: centrality
according to in-degree or out-degree
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Page Rank Centrality (google)
e D = diagonal matrix D;; = max{deg(v;)°"*,1}

e «, 8 adjustable parameters
Crr(vi) = ((I — aAD™H)71B1);

with 1 vector of N entries 1

e this scales contributions of neighbors of node v; by their degree:
dampens potential bias of nodes connected to nodes of high degree
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Delta Centrality

e measure of how much a topological property of the graph
changes if a vertex is removed

e graph G and vertex v € V(G): remove v and star S(v) of edges

adjacent to v
G, =G~ 5(v)

e topological invariants of (embedded) graph M(G) (with integer
or real values)

e delta centrality with respect to M
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(A) betweenness; (B) closeness; (C) eigenvector (PF); (D) degree
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Eigenvalue and PageRank centrality in brain networks

22220208

X.N.Zuo, R.Ehmke, M.Mennes, D.Imperati, F.X.Castellanos, O.Sporns,
M.P.Milham, Network Centrality in the Human Functional Connectome,
Cereb Cortex (2012) 22 (8): 1862-1875.
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Connected Components

e what is the right notion of “connectedness” for a large graph?
small components breaking off should not matter, but large
components becoming separated should

e is there one large component?

e Erdos—Rényi graphs: size of largest component (N = #V/(G))
@ sharp increase at p ~ 1/N

log N
N

o for p < % fragmented graph: many connected components of
comparable (small) size

@ graph tends to be connected for p >

1 log N : .
e for ; < p < =F— emergence of one giant component; other
components still exist of smaller size
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Figure: Emergence of connectedness: a random network on 50 nodes with
p = 0.10.

(from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)
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How to prove the emergence of connectedness?

(Argument from Daron Acemoglu and Asu Ozdaglar, Lecture
Notes on Networks)

e threshold function 7(N) for a property P(G) of a random graph
G with N = #V/(G), with probability p = p(N):
p(N)
P(P(G)) — 0 when (V) —0
PP(G) =1 whenP) o

7(N)
with P(P(G)) probability that the property is satisfied

e show that 7(N) = IO%IN is a threshold function for the property
P =connectedness
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e for P =connectedness show that for p(N) = )\'°/gVN:

P(P(G)) =1 forA>1
P(P(G)) -0 forA<1

e to prove graph disconnected for A < 1 show growing number of
single node components

e in an Erdos—Rényi graph probability of a given node being a
connected component is (1 — p)N~=; so typical number of single
node components is N - (1 — p)N—1

e for large N this (1 — p)V=1 ~ e=PN

o if p=p(N)= )\IO%,N this gives

efp(N)N — ef)\logN — Nf)\
e for A < 1 typical number of single node components
N-1=p)N T N-N? = o0



e for A > 1 typical number of single vertex components goes to
zero, but not enough to know graph becomes connected (larger
size components may remain)

e probability of a set Sy of k vertices having no connection to the

rest of the graph (but possible connections between them) is
(1 - PR

e typical number of sets of k nodes not connected to the rest of
the graph
N
1 — p)k(N—k)
( k>( P)

e Stirling's formula k! ~ kKe™k gives for large N and k

<IZ> (1 _ p)k(N—k) ~ (%)keke—k)\ log N _ NkN—)\kek(l—Iog k) =0

for p=p(N) = AIO%,N with A > 1
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Phase transitions:
@ at p= %: graph becomes connected
e atp= %: emergence of one giant component

e use similar method: threshold function 7(N) = % and

probabilities p(N) = #; with either A > 1 or A < 1
Case X < 1:

e starting at a vertex approximate counting of connected vertices
in an Erdés—Rényi graph with a branching process B(N, %)

e replaces graph by a tree (overcounting of vertices) with typical
number of descendants N x % so in k steps from starting vertex

expected number of connections A\¥

e so typical size of the component connected to first vertex is
bounded above by size obtained from branching process

1
k __
;A—M

small sized components
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(a) Erdos-Renyi graph process. (b) Branching Process Approx.

Branching process approximation to an Erdos—Rényi graph process
(from Daron Acemoglu and Asu Ozdaglar, Lecture Notes on Networks)
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Case \ > 1:

e process B(N, %) asymptotically Poisson with probability (k
steps)
e*)‘)\—k
k!

e probability p that tree obtained via this process is finite:
recursive structure (overall tree finite if each tree starting from

next vertices finite)
A
p=) e g
p !

fixed point equation p = e*P—1)

e one solution p = 1 but another solution inside interval 0 < p <1
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e however... the branching process B(n, p) produces trees, but on
the graph G fewer vertices...

e after 0V vertices have been added to a component via the
branching process starting from one vertex, to continue the process
one has B(N(1 —9), p) correspondingly changing A — A(1 — ) (to
continue to approximate same p of Erdos—Rényi process)

e progressively decreases A(1 — d) as ¢ increases so branching
process becomes more likely to stop quickly

e typical size of the big component becomes (1 — p)N where
p = p(\) as above probability of finite tree, solution of p = e*r—1)
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Robustness to lesions
e Remove a vertex v € V(G) with its star of edges
S(v)={e€ E(G): vedle)}

G, =G\ 5(v)

measure change: e.g. change in size of largest component

e when keep removing more S(v)'s at various vertices, reach a
threshold at which graph becomes fragmented

e in opposite way, keep adding edges with a certain probability,
critical threshold where giant component arises, as discussed
previously
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Core/Periphery
e core: subset of vertices highly connected to each other (hubs)

e periphery: nodes connected to core vertices but not with each
other

e maximal cliques: maximally connected subsets of nodes

k-core decomposition: remove all S(v) with deg(v) < k, remaining
graph G() k-core

e core index of v € V(G): largest k such that v € V(G()

s-core G(): remove all S(v) of vertices with weight w(v) < s
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scan 1 scan 2
participant A participant B participant D participant E

_ participant A-E o IPCUN | - =0 m:’f’

participant A
@ 40r5 participants © participant B —
© 3 participants participant C 15 o o
© 2 participants participantD " TENTEERS
* Oor participant = participant E core number (LH) *

5 10 15
core number (RH)

k-core decomposition, from P.Hagmann, L.Cammoun, X.Gigandet,
R.Meuli, C.J.Honey, V.J.Wedeen, O.Sporns, “Mapping the Structural
Core of Human Cerebral Cortex”, PLOS bio 2008
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Topology and flow of information along directed graphs

e networks with characteristic path length (close to min in a
random graph)

e path length = min number of oriented edges or minimum total
weight of these edges
walks, trails, paths

e walk: sequence of oriented edges (target of one source of
next): revisiting vertices and edges allowed

e trail: same but no edge repetitions (edges visited only once)

@ path: no edge and no vertex repetitions (both vertices and
edges visited only once)

Warning: terminology varies in the literature
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W

two paths from U to V and a trail from U to V

e shortest path = geodesics (with edge weights as metric)

e average of path length over all shortest path in the graph

@ at vertex v; average ¢; of lengths £;; = {(v;, v;) of shortest
paths starting at v; (and ending at any other vertex v;)

@ average over vertices

1
L=y 2= N(N Zﬁ’f

I
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e main idea: brain networks with the shortest average path length
integrate information better

e in case of a graph with several connected components, for v; and
vj not in the same component usually take /; = oo, then better to
use harmonic mean

-1

NN =1) | ) e
i#]

or its inverse, the global efficiency:

1
- 1
NV = 1) 2=
i#]
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The Graph Laplacian measuring flow of information in a graph
e § = (0;;) diagonal matrix of valencies §;; = deg(v;)

e adjacency matrix A (weighted with w;;)

e Laplacian Ag =6 — A

e normalized Laplacian Ag =1 — A5~ or symmetrized form
Ay =1 571245712

e wjj/d;i = probability of reaching vertex v; after v; along a
random walk search

e dimension of KerA¢ counts connected components

e eigenvalues and eigenvectors give decomposition of the graph
into “modules”
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Dynamics

e in brain networks fast dynamics ~ 100 millisecond timescale:
variability in functional coupling of neurons and brain regions,
underlying functional anatomy unchanged; also slow dynamics:
long lasting changes in neuron interaction due to plasticity...
growth, rewiring

e types of dynamics: diffusion processes, random walks,
synchronization, information flow, energy flow

e topology of the graph plays a role in the spontaneous emergence
of global (collective) dynamical states

e multiscale dynamics: dynamics at a scale influenced by states
and dynamics on larger and smaller scales

e mean field model: dynamics at a scale averaging over effects at
all smaller scales
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e synchronization of a system of coupled oscillators at vertices with
coupling along edges

e if graph very regular (eg lattice) difficult to achieve synchronized
states

e small-world networks are easier to synchronize

e fully random graphs synchronize more easily but synchronized
state also very easily disrupted: difficult to maintain
synchronization

e more complex types of behavior when non-identical oscillators
(different weights at different vertices) and additional presence of
noise

e still open question: what is the role of topology and topology
changes in the graph in supporting self-organized-criticality
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Return to discuss expander Graphs: heuristic properties

@ spectral property: like Ramanujan graphs if M matrix
associated to G then Spec(M) contained in spectrum of
analogous operator on covering tree

@ pseudo-random behavior: G behaves in some sense like a
random graph

@ information is passed easily through the network
@ random walk: a random walker on the graph gets lost quickly

@ boundary: every subset of the vertices that is not “too large”
has a “large” boundary

o different ways of formalizing these: edge expanders, vertex
expanders, spectral expanders

@ how to detect good expander property? via other data
(especially spectral and zeta function)
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Expansion Constant
@ sets of vertices S, T of G
e E(S, T) = edges of G with one vertex in S and the other in T
@ 0S=E(5,G\YS)
@ expansion constant of G
#0S

h(G) = i
() SCVI::;Elggnp #S

@ analog of the Cheeger constant for differentiable manifolds
e relation to the spectral gap (Chung)

2h(G) > Ag > h(G)?/2
with A\g = min{A\1,2 — \,_1} for
Spec(1 = DVPADT2) = {0 =g < A1 <o < A}

@ various other Cheeger-type inequalities in terms of spectral
data

@ similar notion of edge expansion
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@ expander graph has large expansion parameter and low degree

@ bipartite expander graphs

N(S)

@ (7,1 — €)-expander: all sets S with deg = z and #S <N
(fraction of total number of vertices) have
#N(S) = #0S > (1 — €)z#S

@ bipartite expander graphs are good for constructing codes

with good error-correcting properties (number of errors
corrected > BN with 5 = ~(1 — 2¢)N
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Expander Graphs in Neuroscience
(work of Rishidev Chaudhuri and lla Fiete)

@ bipartite expander Hopfield networks
@ Hopfield networks: models for neural memory

@ stored states recovered from noisy/partial input

Partial input Memory

Network dynamics

@ good error correcting properties of expander bipartite graphs
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Expander Graphs in Neuroscience
(work of Rishidev Chaudhuri and lla Fiete)
@ Hopfield networks with stable states determined by sparse
constraints with expander structure

SRS S

e modelling of neural codes: higher order correlations (better
coding properties) unlike neural code with many neurons that
are rarely activated and pairwise decorrelated

Sparse transient activation

00.000.0000 ;
o © o © o o ce
o %0 e 50

Dense stable coding core
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Quantum Chaos: the basic idea

o Classical (continuous) dynamical systems: regular and chaotic
behavior

Chaotic billiard: irregular motion.

Matilde Marcolli in Networks



@ Properties of Schrodinger equation associated to chaotic
classical systems

Pictures Arnd Bicker: http://www.physik.tu-dresden.de/~baecker/
@ spectral properties related to counting of periodic orbits for
chaotic classical system and to Random Matrix Theory

@ quantum version of classical integrable systems have Poisson
distribution of eigenvalues

@ quantum version of chaotic classical systems follow eigenvalue
distribution of Random Matrix Theory (Dyson's circular
ensemble)
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Quantum Chaos on Graphs

@ Tsampikos Kottos and Uzy Smilansky, Periodic orbit theory and
spectral statistics for quantum graphs, Annals of Physics 274 (1999)
76-124

@ Uzy Smilansky, Quantum chaos on discrete graphs, J. Phys. A 40
(2007) no. 27, F621-F630

e Summary

@ quantum (metric) graphs versus discrete graphs

@ Schrodinger operator on quantum graphs spectral statistics
similar to Random Matrix Theory (which describes generic
quantum Hamiltonians)

@ similarity with chaotic Hamiltonian dynamical systems: a
similar trace formula describing spectral densities in terms of
sums over periodic orbits

@ zeta function for a Perron—Frobenius operator on the graph:
same expression in terms of periodic orbits (like Ruelle
dynamical zeta function for Hamiltonian dynamical systems)

@ discrete graphs: spectral properties from lhara zeta function
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e Quantum graphs case: quick overview

@ Schrodinger equation on quantum graphs good for modelling
traveling waves in networks

@ assign a coordinate x. to each oriented edge of a graph, from
0 to £, length

o Hilbert space H = ®.L2([0, ¢c]) and wave functions
V= (we(Xe))eEE

@ Schrodinger equation (with magnetic vector potential
A= (Ae)

d
dxe

(—i—— — Ae)*We(xe) = k2 We(xe)

with matching boundary conditions at vertices

@ self-adjoint with unbounded discrete spectrum
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@ spectrum from (g(k) = det(/ — Sg(k)) = 0 with edge
scattering matrix Sg(k) (unitary 2#E x 2#E matrix)

@ Fredholm determinant

—

S

log det(/ — Sg(k Z =Tr(S,
n=1

o traces Tr(SZ(k)) in terms of a sum over n-periodic orbits on
the graph of a "magnetic flux" along that orbit (depending on
magnetic potential A)

@ symbolic dynamics: subshift of finite type with
Markov/Bernoulli measure (chaotic dynamical system)
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Case of discrete graphs

@ Laplacian L of the discrete graph: (weighted) connectivity
matrix and diagonal matrix of vertex valencies

@ zeta functions and trace formulae for discrete graphs

@ eigenvalues of the graph Laplacian related to nontrivial poles
of the lhara zeta function of the graph

@ again zeta function related to counting of periodic orbits of a
subshift of finite type dynamics
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Zeta Functions of Graphs and Chaos Theory

@ Audrey Terras, Zeta functions and Chaos, A Window Into Zeta
and Modular Physics, MSRI Publications, Volume 57, 2010

@ Model zeta function: Riemann Zeta Function

WA I[N
n>1 P
sum over n € N or Euler product over primes
@ What plays the role of primes for a graph?
@ another model example: Selberg Zeta Function

H H —(s+£)v(C)

>1

primitive closed geodesics C in X = SLy(Z)\H? modular
curve with length v(C)

@ expect closed paths to play role of geodesics on a graph with
length the number of oriented edges
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Paths on Graphs and “Primes”
@ start from an undirected graph and assign arbitrary

orientations
(5]
—_—

€y

@ path in directed graph has backtrack if C = e; ... es with
some €11 = ej_1

@ path in directed graph has tail if C = e;...es with es = efl

@ equivalence class of a closed path C = ¢; ... e, consists of all
cyclically permuted ordering of the oriented edges in the path:
€,...,€epn, €1 etc.

o closed path primitive if no backtracking and C # D¥

“primes”: equiv classes of taill-less primitive closed paths
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lhara Zeta Function

@ lhara Zeta:

¢u,6) =[] - v

P

@ P ranges over primes, equiv classes of tail-less primitive closed
paths in G

@ v(P) is the length (number of edges) in the path
@ Bass Determinant Formula

C(u,G) ™t = (1 — v?) " Ldet(l — Au+ Qu?)

r=#E — #V + 1 rank of fundamental group m1(G)
@ A = vertex adjacency matrix: #V X #V matrix with
(i,j)-entry # directed edges from v; to v;
e Q = diagonal matrix with j-th entry val(v;) — 1
o tetrahedron graph K,

C(u, K=4) =1 -u®?(1 - u)(1+ v +20°)1 - v? - 20°)
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An example of a bad graph for zeta functions.

valence one vertices are not good for zeta function because of tails
(but loops and multiple edges are OK)
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Riemann Hypothesis for the Ihara Zeta Function
(Lubotzky, Phillips and Sarnak)

@ case of (g + 1)-regular graphs

@ lhara Riemann Hypothesis {(¢°, G) has no poles with
0 < R(s) <1 unless R(s) =1/2

e for a graph equivalent to being a Ramanujan graph

@ this property means that nontrivial spectrum of adjacency
matrix of the graph contained in spectrum of adjacency
operator on universal covering tree, which is interval
[-2v49,2y/4]

@ Ramanujan graphs provide efficient communication networks:
best expander properties
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Pole locations for regular graphs
@ using the determinant formula for the lhara zeta function

@ possible location of poles for a (q + 1)-regular graph

. o

poles on the circles: those that satisfy Riemann Hypothesis
non-trivial poles (# +1,+q~1) on other lines: non-RH poles
1/q always the closest pole to 0 for (g + 1)-regular graph

Alon conjecture: RH approximately true for most regular
graphs (and asymptotically 27% of regular graphs satisfy
exactly)
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Spectra of random real symmetric matrices

@ similar behavior of statistics of spectra of random real
symmetric matrices and statistics of imaginary parts of s at
poles of lhara zeta ((¢~°, G) for a (g + 1)-regular graph G

@ pseudo-random regular graph deg=53 and 2000 vertices: top
row distrib of eigenvalues of adjacency matrix (left) and
imaginary part of lhara poles (right); level spacings on second
row

@ red line: Wigner law for GOE random matrices
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Beyond regular case

@ R¢ = radius of largest circle of convergence of lhara zeta
function (conv abs for |u| < Rg, pole order 1 at u = Rg for G
connected)

@ 1/Rg is spectral radius of edge adjacency matrix (Wj; = 1 if
t(e;) = s(ej))

@ poles of lhara zeta = reciprocals of eigenvalues of edge
adjacency matrix

e for (g + 1)-regular G have Rg =1/q

@ lhara Riemann Hypothesis for irregular graphs
no poles of {(u, G) in region Rg < |u| < v/Rg

@ no good functional equation for lhara in this case, so u = R
and 0 < R(s) < 1 too large and only half-strip for RH

o still a way of detecting good expander properties
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Ruelle zeta function

@ dynamical system iterates of f : M — M on a compact
manifold with finite sets of fixed points Fix(f™) for all m > 1

@ assign a weight function (matrix valued) ¢ : M — Mpyp(C)

@ Ruelle zeta function:
= exp(z > Ix( H (FX)))
m>1 x€Fix(fm) k=0
@ generalization of the Artin—Mazur zeta function
um . em
C(u) = exp(D_ ——#Fix(f"))
m>1

which in turn generalizes case of the Frobenius on varieties
over finite fields (counting points over finite fields as fixed
points of powers of Frobenius)
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Subshift of finite type
o 7 set of directed edges of a graph G (alphabet)
e transition matrix (Wj;) entries {0,1} is edge adjacency matrix

o admissible words (ax)ken € ZV with W, =1 are (infinite)

paths in G without backtracking

kdk+1

@ shift map o : N 7N mapping apaiay - -- to ajazaz---

e Fix(c™) = closed paths of length m without tails or
backtracking

@ |hara zeta function is a special case of Ruelle zeta function
Nm
log ((u, G) =) _ "

m>1

with number of closed paths of length m

Ny = #Fix(c™) = Tr(W™)
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Matrices associated to graphs
@ A = vertex adjacency matrix

@ L =D — A Graph Laplacian (with D diagonal matrix of
degrees of vertices)

e W = edge adjacency matrix: 2-#E x 2-#E matrix with (/, )
entry 1 if e; feeds into e; (counting edges and their inverses)

Hashimoto Determinant Formula
o W = edge adjacency matrix

@ lhara Zeta Function
C(u, G)™ = det(/ — uW)

@ poles of the lhara Zeta Function are reciprocals of eigenvalues
of the edge adjacency matrix W
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e Kotani-Sudana: connected graph G with rankmi(G) > 1, no
deg = 1 vertices, min degree p + 1, max deg g + 1: every
non-real pole of lhara zeta ((u, G)

and poles on circle |u| = Rg are u = Rge®™/A¢ with
a=1,...,A¢ and Ag = gcd lengths of prime paths (tail-less
primitive closed paths)
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Spacing of Ihara Poles

20
.'sn

100

. I

o ‘hs DRy v u I Ill--x

difference between Euclidean graph (Cayley graph of an abelian
group) and random regular graph: the Euclidean case looks like a
Poisson distribution while the random case looks like Wigner's law
for GOE

1
57X exp(—mx?/4)

when arranging eigenvalues of a symmetric matrix in decreasing
order and normalize them so that mean of level spacing is 1
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Spectral properties of edge adjacency W
@ Girko circle law: eigenvalues of a set of random n x n real
matrices with independent entries with a standard normal
distribution approximately uniformly distributed in a circle of
radius /n for large n
@ random matrix that, like W has form

A B
v-(e )
with B, C symmetric real, A real with transpose A!

@ construct random matrices with this same structure: then
circle radius not same as Girko's: spectrum and spacings

@ What shape of the spectrum for actual W?
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e by Kotani-Sudana spectrum cannot fill a disk: in an annulus

15

eigenvalues (pink points) of edge adjacency matrix W for a
random graph with 800 vertices mean deg 13.125 and edge
probability p ~ 0.0164; green circle RH; histogram of nearest
neighbor spacings in Spec(W)
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eigenvalues (pink points) and spacings of edge adjacency matrix
W for a random cover of the graph with two loops and one extra
vertex on one loop (801 sheets of cover, each a copy of a spanning
tree)
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eigenvalues (pink points) and spacings of edge adjacency matrix W
for an abelian covering of same graph (Galois group Z/163 x Z/45)
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detecting poor or good expander properties

10 15

%

S 10 15 20 25 30

O) O O

graphs, histogram of degrees, poles of Ihara zetas (green RH circle,
and outer/inner Kotani-Sudana circles
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