J. reine angew. Math. 429 (1992), 91—106 Journal fiir die reine und
angewandte Mathematik

(© Walter de Gruyter
Berlin - New York 1992

Density theorems for sampling and interpolation
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1. Introduction

Our work is based on Beurling’s lectures on balayage of Fourier-Stieltjes transforms
and interpolation for an interval on R [4]. We observe that Beurling’s problems concerning
functions of exponential type have natural counterparts for functions of order two, finite
type, and find that indeed so have his main results. The most interesting part is however that
Beurling’s ideas are applicable also in the Hilbert space setting, yielding a complete
description of sampling and interpolation in the Bargmann-Fock space. The simplicity of
these results is quite remarkable when compared to the situation in the Paley-Wiener space
(the corresponding Hilbert space of functions of exponential type) and to the extensive
literature on nonharmonic Fourier series and in particular Riesz bases of complex
exponentials [24].

This research is motivated by a recent development in signal analysis and applied
mathematics, which was initiated by Daubechies, Grossmann and Meyer [7], [6]. Their
work inspired us to search for a general characterization of the information needed to
represent signals, as functions in the Bargmann-Fock space. Our results can be seen as sharp
statements about the Nyquist density and its meaning in this context.

We remark that the results to be presented were announced in [21]. It is the purpose of
the present papers to give detailed proofs of those results.

2. Main results

For a>0, let du,(z) = Ee"“"lzdxaly, z = x+iy, and define the Bargmann-Fock
n

space F? to be the collection of entire functions f(z) for which

Il =Sz =[] 1f@Pdp,(2) < 0.
€
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F? is a Hilbert space with reproducing kernel K(z, {) = €%, i.e. for every fe F,> we have

(1 F@O=LL K@ »=[[fOK(E)du ).

The normalized reproducing kernels, k,(z) = K({, {)~ 2 K((, z), can be viewed as the natural
(well-localized) building blocks of F,2. They correspond, via the Bargmann transform, to the
canonical coherent states of quantum mechanics, and to Gabor wavelets in signal analysis.
This relation is the reason for the importance of the Bargmann-Fock space; see [10] for
general information, and [7] for more background on the problems treated here.

We say that a discrete set I' of complex numbers is a set of sampling for F? if there exist
positive numbers 4 and B such that

(2) AIfI3 = Y eI f @1 < Bl

zel

forall fe F2 If to every /*-sequence {a;} of complex numbers there exists an /'€ F,? such that

e %"J“Zf(zj) = a;forallj, I' = {z;} is said to be a set of interpolation for 2. A set of sampling
corresponds, in the terminology of [9], to a frame of coherent states. A set of both sampling
and interpolation would correspond to a Riesz basis of coherent states; we will prove below
that such a set does not exist.

With a view to applications in physic and signal analysis, Daubechies and Grossmann
posed the problem of finding those lattices z,,,, m, n € Z that are sets of sampling [7]. They
proved that a lattice could be a set of sampling only if ab < n/« and conjectured this
condition also to be sufficient. For ab = /(2 N), N an integer = 2, they found (2) to hold by
providing explicit expressions for the optimal constants 4, B. Daubechies was later able to
show that a lattice is a set of sampling whenever N ~' < 0.996 [6].

We prove that the density criterion of the Daubechies-Grossmann conjecture applies
not only to lattices, but to arbitrary discrete sets. We should add here that the conjecture itself
was proved independently by Lyubarskii [16], and by Wallstén and the author [23].

For the description to be given of sets of sampling and interpolation, we need
Beurling’s density concept as generalized by Landau [15]. We consider then uniformly
discrete sets, i.e. discrete sets I' = {z;} for which ¢(I') = inf |z; — z,| > 0. We fix a compact

j*k

set 7 of measure 1 in the complex ﬁlane, whose boundary has measure 0. Let n~ (r) and n7 (r)
denote respectively the smallest and largest number of points from I' to be found in a
translate of r/. We define the lower and upper uniform densities of I' to be

s

— +
D‘(F)=liminfn () and D*([')zlimsupn ()

r—=a rz r—*aw rz
respectively. It was proved by Landau that these limits are independent of 1.

Our main theorems are the following.



Seip, Sampling and interpolation 1 93

Theorem 2.1. A discrete set I' is a set of sampling for F}? if and only if it can be ex-
pressed as a finite union of uniformly discrete sets and contains a uniformly discrete subset I''
for which D™ (I'") > «/ .

Theorem 2.2. A discrete set I' is a set of interpolation for F}? if and only if it is uni-
formly discrete and D™ (') < ot/ .

Remark 1. The lattice with ab = n/« is called the von Neumann lattice since von
Neumann claimed (without proof) that it is a set of uniqueness [17]; many proofs have been
given later [2], [18], [1], [23]. The (unstable) expansion associated with the von Neumann
lattice was suggested for use in electrical engineering by Gabor [11]. See [12] for an
attempted repair of the “defect” of the von Neumann lattice that it is neither a set of
sampling nor one of interpolation.

Remark 2. Decomposition and interpolation theorems for general discrete sets were
obtained in [14], however without any indication of a critical density.

We will need to consider the analogues in our setting of the problems treated in [4]. We
introduce then the Banach space F,”, consisting of those entire functions f(z) for which

1l =1l = supe™ 25F| f(2)] < o0 .

I is said to be a set of sampling for F,* if there exists a positive number K such that

I1fll, < Ksupe 21| £(2)]

zel

forall fe F,”. If to every bounded sequence {4;} of complex numbers there exists an fe F,*
such that e~ %p,ﬁf(zj) = a;for all j, we say that I' = {z,} is a set of interpolation for F,*. We
have then the following counterparts of Beurling’s two density theorems in [4]. Note that
we are using the term sampling instead of balayage as in [4], which seems natural since we no
longer have the relation to Fourier-Stieltjes transforms.

Theorem 2.3. A discrete set I is a set of sampling for F,* if and only if it contains a
uniformly discrete subset I'' for which D~ (I'") > a/ .

Theorem 2.4. A discrete set I' is a set of interpolation for F,” if and only if it is uniformly
discrete and D (I') < a/m.

Let us remark, as Beurling did, that the problems and some of the results extend to
several variables. We would also like to mention that there are corresponding density
theorems for weighted Bergman spaces; see [20], [21].

In this part (Part I) of the paper we prove the necessity parts of the theorems, while
Part I1[23] deals with the sufficiency. The main problem of Part I consists in showing that we

7 Journal fiir Mathematik. Band 429



94 Seip, Sampling and interpolation 1
can replace the inequalities in the following statement of [19] by strict inequalities: A

uniformly discrete set I' is a set of sampling for F? only if D™(I') 2 a/n and a set of
interpolation for F? only if D*(I') £ a/n.

3. Preparation for proofs

In this section we describe some notational conventions and introduce some tools to be
used in the proofs.

We let

A N = WA Ny, = i e 21| 1 (2)],

and similarly,

WAL, = IA1T Nl,2 = (Z e“"‘zlf(Z)Iz)i-

zel

For the resf of this section, p is to be taken to be either 2 or oo (it could be any 1 < p < o0).
Foranydiscreteset I, M, (I') = M (I, ) will denote the smallest number M, such that

Al = M AT,

forall f e FF. I’ is consequently a set of sampling for F,” ifand onlyif M _ (I') < co,anditisa
set of sampling for F? if and only if M,(I') < cc and || f|I'||, < oo for all fe F2

If I' = {z;} is a set of interpolation for Ff, a standard argument based on the closed

graph theorem [13], p. 196, shows that the interpolation can be performed in a stable way.
This means that there exists a positive number N, such that for every /?-sequence {g;} we can

find a fe F? with f(z;) = €2 g, for all j, and

AN, = NI, -

The smallest such N, is denoted N,(I') = N, (I, «), and we put N,(I') = o0 if I' is not a set
of interpolation for FP.

The translations
(L)@ = e~ 314 f(z — q)
act isometrically in F?. This translation invariance implies immediately that
M,(I'+z)=M,(I') and N,(I'+z) =N,(I),

and it will permit us to translate our analysis around an arbitrary point z to 0.
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An important feature of F7 is the following compactness property: If { £,} is a sequence
in the ball

{fe Fr:Ifll, = R},

then there is a subsequence { f, } converging pointwise and uniformly on compact sets to
some function in the ball. This is immediate from the definition of F? and a normal family
argument.

A sequence Q; of closed sets converges strongly to Q, denoted Q; — O, if [Q, Q;]1 = 0;
here [-, -] denotes the Fréchet distance between two closed sets. Q; converges weakly to Q,
denoted Q; — Q if for every compact set D,Q;nD — 0N D.

Following Beurling, for a closed set I', we let W (I') denote the collection of weak limits
of translates I" + z. The compactness property and the translation invariance of F make
W (I') a crucial tool in our analysis. Indeed, it turns out that all of Beurling’s arguments
concerning W (I") can be carried over to our situation.

Note that by the reproducing formula (1) and the Cauchy-Schwarz inequality, we have
[If1l. £IfIl,. By translation invariance and subharmonicity of | f |?, we have moreover

3) IfQPe < C() [§ 1f@)1Pdr(2),

DE.n

where (here and in the sequel) D({, r) denotes the disk of radius r centered at .

Bernstein’s theorem plays an essential role in Beurling’s analysis. We shall find that the
following estimate is a sufficiently good substitute.

Lemma 3.1. For fe F* we have for S(w) = e~ 2/ f(w),
ISC+2|=1SOI=00zDIfll
where the bound in O(|z|) depends only on a.
Proof. We consider
S;(w) = e" 3T ))(w)
and find that

ISC+ 21— SOOI = 15, = SOl £ |(e™ 2" = 1) £,2) + £;(2) = (O]
< (@ = DIfll, +1z| sup W)l

Iwl<lz|

An application of Cauchy’s formula to the last term yields the desired result. O
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We describe finally some special properties of the normalized monomials in F?,

fHie) = (%)2 =

k=0,1,2,..., which are the images of the Hermite functions under the Bargmann
transform [10], p.39. They constitute an orthonormal basis for F2. They are in fact
orthogonal over any disk centered at 0, i.e.

[ £ @f@du,(2) = 24 () 6,

D(0,r)
for any r > 0. This implies that the f, are the eigenfunctions, and the numbers
ar?

1
/’.,‘(r)=F j the 'dt
* 0

are the eigenvalues of the Toeplitz operator with symbol equal to the characteristic function
of D(0, r). Such a relation was first described by Bergman [3], pp. 14—18, and this inter-
esting special operator and the behavior of its eigenvalues 4, (r) were studied in [5], see [19]
for a remark on the connection to Bergman’s work. Such operators were first used in
problems on sampling and interpolation by Landau [15].

We note that, by translation invariance, the sequence {T; f,} also constitutes an ortho-
normal basis, relating in the same way to the disks D((, r).

4. Proof of the necessity part of Theorem 2.3

We start by checking that various auxiliary results in Beurling’s notes can be carried
over to our situation.

Lemma 4.1. If I is a set of sampling for F.°, then I' contains a uniformly discrete set
that is also a set of sampling for F°.

Proof. As the proof of Theorem 2 in [4], p.344, with Lemma 3.1 in place of
Bernstein’s theorem. O

Lemma 4.2. I, —~ I implies M, (I') < lim inf M, (I).

Proof. For any &> 0, let fe F be such that |f||, =1 and ||f|T|, <M ' +e¢,
M = M_ (I') (which may be infinite). We may assume that | /(0)| = 1 — &. Now consider the
function f(az), a <1. We find that

e 31| f(az)| = e 1| f (az)| "3 "L
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In view of Lemma 3.1, we have for |z — az| < Ce (C depending only on «),

e~ 21| f(az)| — e~ 21| f(z)]] < .

We choose 1 —a = Ce* so that for |z — az| = Ce,

e 21| f(az)| S e %

Then by the assumption on the sequence, we have for sufficiently small & and large j,
lf@)NGl, = M~ ' +3g0r M, (I';) = (1 —)/(M ™~ + 3¢). Since ¢ is arbitrary, the result
follows. O

Lemma 4.3. M_(I') < o if and only if every Iy € W(I') is a set of uniqueness for F,”.
Proof. As the proof of Theorem 3 in [4], p.345. O

The preceding lemma is not used directly in the proof of Theorem 2.3, but it is needed
in the proof of the next lemma, and it will also be needed at a later stage.

Lemma 4.4 [f M_(I, o) < oo, then M_ (I, x4+ €) < oo for all sufficiently small ¢.
Proof. As the proof of Theorem 4 in [4], p.345. O

We turn to the proof of the necessity part of Theorem 2.1. In view of Lemma 4.1 and
Lemma 4.4, it is clear that we are done if we can prove that D™ (I') = a/x for every uni-
formly discrete set I' being a set of sampling. So suppose to the contrary that I' is a set of
sampling and that D™ (I') < a/n. Writing

o

D~(I') = m,

we can then find arbitrarily large R so that there are n < « R? points from I in some disk of

area m(1 + ¢) R?. By translation invariance, we assume this disk is Dy = D (0, (1 + s)% R).

Let pg(z) be the polynomial with I n Dy as its zero-set, normalized so that || pg|l, = 1.
Writing

pr(2) = Z a f,(2),

k=0

we have then ) |4, |* = 1. We find that

(4) | pell, = sup e~ 2| pp(z)| = CR™!

ZEDR

since

1
[11Pr@Fdp,(2) 2 4, (1 + 02 R)lIpall3 2 5.
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The last estimate is a consequence of Stirling’s formula; see below, and also [5].

On the other hand, for |z =(1+)R*= (1 +¢&)R* k<n,

k
o —
e—alzlzlﬂ(z)iZ ' (1 } t)kRZke a(l +1)R?

(xR?)
k!

i 2 == 2
e aR e atR +klog(1+t)§ CR(? a2c(a,e)R

by Stirling’s formula, with ¢(a, &) > 0. Thus by the Cauchy-Schwarz inequality and the fact
that ) |a,|* =1, we have

”pnlr”m =C nR,g‘t(c!.s)R2 )

Combining this with (4) we see that

“pklr”m é CR%E_C(E'a)RZ =0
”pR”w

as R — o0. We have reached a contradiction, so D™ (I") = a/n, and the proof of Theorem 2.3
is complete.
5. Proof of the necessity part of Theorem 1.4
We follow Beurling’s proof of Theorem 1 in [4], p. 351.
Lemma 5.1. Every set of interpolation for F* is uniformly discrete.

Proof. Let {a;} be a sequence with |a;| <1, and | ¢, | — |a,,| = 1 for some arbitrary k
and m. Then the inequality

1=lla] —la.ll =18 = 1SE = No ({202 — zal) 5
deduced from Lemma 3.1, yields the result. O
Lemma 5.2. [;— I implies N, (I') < liminf N, (I).
Proof. We may assume that tlhe right-hand side is bounded, and even that
sup| M, (I;)| < oo by picking an appropriate subsequence. The result then follows by the

compactness property. 0O

We introduce now a key notion in the proof. For ze C, let
0.(z. 1) = sup e 2| £ (7)],
f

where f ranges over those functions f for which f({) =0, (eI, and || f]|, = 1.



Seip, Sampling and interpolation | 99

Lemma 5.3. N_(I') < oo implies ¢, (z,I')> 0 when z ¢ T.
Proof. As the proof of Lemma 3 in [4], p.352. O

Lemma 5.4. For z, ¢ I, we have

142N,

Na) (FU {ZO}) é 0. (Zo, I,)

Proof. We assume, by translation invariance, that z, = 0, and proceed as in the
proof of Lemma 4 [4], p.353. O

In the next lemma, d(-, -) denotes Euclidean distance.

Lemma 5.5. Given d,, l,, and a, there exists a positive constant C = C(d, ly, o) such
that if N,(I') £ 1, and d(z,I') = J,, then

e:EN=C.
Proof. As the proof of Lemma 5 in [4], p.353. O

The estimate in the following lemma is not sharp, but sufficiently good for our
purposes.

Lemma 5.6. For given l, and a, there exists a positive constant C = C(l,, o) so that
if N (I'a) £ 1,, then for every square Q with |Q| =1,

Ijloggm(zs Ndxdy = —C|Q|*.
Q

Proof. By the proof of Lemma 5.1, we can find a point z, in Q so that
d(zy, ) 2 C(a, ly) .

We may assume, by translation invariance, that z, = 0. The preceding lemma shows that
there exists a function f with | f(0)| = C(a, /,) and || ]|, =< 1. Since clearly

0. (2, 1) 2 e 21| £ (7)),
we have by the subharmonicity of log| f(z)|,

2n

~Cla,ly) = o fO)I S 57+ 5 [ loge. (re®, 1) db.
0
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We multiply by r, integrate the inequality with respect to r from 0 to |/2|Q]|, and obtain
the desired estimate. O

We may now prove the necessity part of Theorem 2.2. We consider then an arbitrary
large square of side length R. We divide it into [R] x [R] squares, each of side length
s = R/[R].[R] denoting the integer part of R. For each such smaller square, say Q,;,
we choose a point z; with d(z;, I') 2 8, = 6, (N,.(I'), «). We put I; = I'U {z;}, and note
that

N, (I) =1,
independent of j by Lemma 5.5. Thus

) ffloge, (z I)dxdy 2 —C(l.q)
Q;

by Lemma 5.6. For given z € Q;, we construct an f vanishing on I'; — z, with || /||, <1 and
f(©)=10,(0,I;—z)=g,(z,I;). Then by Jensen’s formula applied to the disk |{| <r,

1 2n ) il 2
lOgan(Zs[})gﬂ j log|f(z +re'®)|d6 + z ]oglfgl_plogl/is
0

el |z—C| <r F

r

1A

ar?
2

2
Y log* log —,
r

{eln Q- |z—{I

where Q7 is the square of side length R — 2r, consisting of those points whose distance to
the complement of Q exceeds r. We integrate this inequality with respect to area measure over
Q. Using (5) and the fact that ({ = & + in)

we then find that
T o
n(Q )5r2 < (irz—longrC(l, a))Rz,
n(Q ") denoting the number of points from I" contained in Q. Hence

n(Q") o 2iogr C(l,a) . g
©) mé(r;r—z*’ 2 )(I'E) -

By first choosing r so large that

_glogr+C(I,a)<g’
T r? r? T

NI R

and then letting R — oo, we see from (6) that D*(I') < /.
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6. A key lemma for the L? problem

In this section we prove an auxiliary result that will enable us to employ Beurling’s
ideas also to the L? problem.

We need first the following simple observation.
Lemma 6.1. Every set of interpolation for E? is uniformly discrete.

Proof. Let {a;} be a sequence with g, = 1 for some arbitrary &, and a; = 0 otherwise.
Then, since || f]|, < || fll,, we have

1= lla| =~ |a,ll = 1S@)| = [SEl £ N ({21))/2 0z~ 2D
by an application of Lemma 3.1. O

Lemma 6.2. There is no discrete subset of C that is both a set of sampling and a set of
interpolation for F}.

Proof. Suppose that such a I' exists. By the preceding lemma it is uniformly discrete,
and by the result from [19] quoted in Section 2, we have D™ (I') = D*(I') = a/n. Pick an
arbitrary {, € I', and consider the unique function g, € F? with

202
ez[sol g z=§0’

gﬁﬂzz{o, zeI\{l,}.

We put g(z) = (z — {,) go(2), and observe that clearly g(z)/(z — {) € F? for arbitrary { e I'.
Hence we must have

2
dp,(z) < Clg' Q)P e,

Q) 15|29

C independent of { € I'. We note that by the subharmonicity of | g(z)/(z — {)|?, we also have

(I 12@Pd@ =<2 [ 1e@rduG.

e<|z—{]<2¢ € D(C,2¢)

®  1g@Prer s £

Let D(w, R+ 1) and D(w, R) be arbitrary concentric disks, and sum (7) over I' n D (w, R).
By the uniform discreteness and (8) with a sufficiently small ¢, this yields

If Y 18-zI?g@Pdu )= C || |g@IPdp,(2),
{el nD(w,R) D(w,R+1)

and hence

inf Y t=zl"?scC.

zeD(w,R+1) {eI'nD(w,R)
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But since I' is uniformly discrete with D™ (I') = a/n > 0, we have

inf Y [{—z|"*=ClogR

zeD(w,R+1) (el nD(w,R)

for large R, and thus a contradiction. O

By this proof, the difference between the Paley-Wiener and the Bargmann-Fock spaces
in our context seems to be that the function (1 + |z[) ™" happens to be square integrable on
the line but not in the plane.

We state two important consequences of Lemma 6.2.

Lemma 6.3. If I is a set of sampling for F?, then so is I'\{{} for any (eT.

Proof. The result follows from Lemma 6.2 by the fact that the removal of a vector
from a frame leaves either a frame or an incomplete set [9], pp. 360—361; in the latter case it
would have to be a Riesz basis. O

Lemma 6.4. If I is a set of interpolation for F?, then so is I' v {{} for any {¢T.

Proof. A set of interpolation that is also a set of uniqueness, is necessarily a set of

sampling. Thus if I' is a set of interpolation for F2, there is a function g € F;? vanishing on
I, with help of which we may interpolate on I'u {{}. O

7. Proof of Theorem 2.1

The following lemma proves, in conjunction with [23], the sufficiency of the condition
in Theorem 2.1.

Lemma 7.1. There exists a positive constant B such that

Y, e~ f )P < BIfIR

zel

for all fe F? if and only if I' can be expressed as a finite union of uniformly discrete sets.
Proof. Suppose such a B exists and that there is no bound on the number of points
from I to be found in translates of, say, a unit square /. We can then find a sequence of points
z; so that the number of points from I in 7+ z; tends to infinity, implying that
k1], = oo
This is a contradiction, and so there must be a bound on the number of points in 7+ z.

Now a simple argument shows that I can be expressed as a finite union of uniformly discrete
sets.

The opposite implication follows immediately from (3). O
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Lemma 7.2. If T isaset of sampling for F?, then I' contains a uniformly discrete set that
is also a set of sampling.

Proof. For ¢ > 0, we construct (as we may) a uniformly discrete subset I'" of I' such
that d({, I'") <e for each {eI. We have then I' = | ) (I'n D({, ¢)). By the preceding

(el
lemma, there is a uniform bound, say P, on the number of points in I'n D({’, ¢), ¢ < 1.

We make now an estimate similar to one made in the proof of Theorem 5.1 in [19].
For arbitrary fe F,? we have

I 1f@Pdp2) = AW QP e + i ADICL T AP
k=1

D(.1)

We sum over { € I and find, by the fact that I’ is a finite union of uniformly discrete sets, that
there is a positive constant C such that

) T Y LW £ CIFIE.

(el' k=1

For some {'e ", let (e ' n D({, ¢). ‘From the relation

K, 0
k({0

S = f@)+ E LT S (T £)©)

we find that

C.OO Q) _ 5
K. 0 K, )z k=1

a*\1
() <rmme-or.

We multiply and divide the k-th term in this sum by (k + 1)'%. By the Cauchy-Schwarz
inequality we get

2 L] k

KC.0HO Q) 5
= e k'(k +1)

KO koo

KA T S Z G+1)e.

We sum this inequality over {'e I'’, use (9) and the estimate

e—aak+1

A1) 2 IS

and obtain thus

5 KC.OHQ  f@) P

< C2||fI12.
cer| KW, O k.ol T el flI3
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Using the observation at the beginning of the proof, the triangle inequality and the fact that

KC.OF 1
IKC.01= k¢ o

we find that
WALl — PCell fll, = PUAIT I, -
The proof is complete since the choice of ¢ is at our disposal. O
Lemma 7.3. Suppose inf q(I;) > 0. Then I'; — I implies M ,(I', o) < lim inf M, (I}, o).
Proof. Foranye>0,let| f||, =1and ||f|T], <M '+¢ M = M,(I') (which may
be infinite). Then by the assumption on the sequence, we have for all sufficiently large

SIAIGI, E M~ +2¢, or My(I) 2 (M !4 2¢)" . This proves the lemma, since ¢ is
arbitrary. O

We may now finish the proof of Theorem 2.1. We consider, by Lemma 7.2, a uniformly
discrete set I' being a set of sampling for 2. Lemma 7.3 and the fact that all sets in W (I') are
uniformly discrete imply that W (I') consists only of sets of sampling. By Lemma 6.3 we have

that every set of sampling for F? is a set of uniqueness for F,”. For suppose I} is a set of
sampling for F,? and that g e F,* vanishes on Ij,. Then the function

_ g(@)
f(Z) == (Z—Zl)(z—zz) )

z,, z, € I, belongs to F? and vanishes on I\ {z,, z,}. This contradicts Lemma 6.3.
Thus every set in W (I') is a set of uniqueness for F,”. It follows from Lemma 4.3 that
I' is also a set of sampling for F, and thus by Theorem 2.3, D™ (I') > a/m.
8. Proof of the necessity part of Theorem 2.2

In this section we will use Beurling’s method of proof asin Section 4; this turns out to be
possible by Lemma 6.4.

Lemma 8.1. I; — I implies N,(I') < lim inf N, (I}).
Proof. As the proof of Lemma 5.2. O
For ze C, let now

0 (1) = sup e 3P| £(2)],

where f ranges over those functions f for which f({) =0, (e I'and || f]||, 1.
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Lemma 8.2. N,(I') < oo implies ¢,(z, ') >0 when z ¢ I
Proof. As the proof of Lemma 5.3, now with Lemma 6.4 as a crucial ingredient. O

Lemma 8.3. For z, ¢ I', we have

1+ 2N,(I)

Mo iz < 0,(20, )

Proof. We assume, by translation invariance, that z, = 0, and proceed as in the proof
of Lemma 4 in [4], p. 353.

Lemma 8.4. Given d,, l,, and o, there exists a constant C = C (8, l,, o) such that if
N,(I'a) = lyand d(z,T) = 3, then

25z ) 2 € -

Proof. We need only a slight modification of the proof of Lemma 5 in [4], p. 353, but
we elaborate the details for the sake of clarity.

Let us assume the lemma is false. Then there exists a sequence I of sets such that
N,(I;) <1, for all j and points z; with d(z;, I;) > &, such that

0,(z,I;) - 0.

By translation invariance we may assume that z; = 0, and also that I'; — I', where I"" may
be empty. By Lemma 8.1 we have N, (I"") < /, and 0 ¢ I"". By the preceding lemma, we can
find an fe F2, vanishing on I', with || f||, £ 1, and f(0) = r > 0. Since I—~1T"and fis
square-integrable,

g=f1Lll, - 0.
Choose g;€ F;? with g;(z) = f(2) for ze I and || g;ll, < /o¢;, and define

f(2) —g;(2)
3 Z) ) b N
5O =+ bos,
Then || £l =1 and f;(z) = 0 for z € I;. But since |g;(0)| < ¢; — 0, we have

r

A1

0,(0, ) 2| £(0)] — >0,
which is a contradiction. 0O

All we need to say now is that by the fact that || /]|, < || f]|,, the rest of the proof is
identical to the corresponding part of the proof of Theorem 2.4.
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