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models of matter, J. High Energy Physics, 07 (2017) 076

Michael F. Atiyah, Matilde Marcolli Anyon networks from
geometric models of matter, unfinished preprint
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Geometric Models of Matter (Atiyah, Manton, Schroers, et al.)

certain 4-dim Riemannian manifolds with self-dual Weyl
tensor behave “like” elementary particles

gravitational instantons: Taub-NUT, Atiyah–Hitchin,
gravitational instantons of types Ak and Dk

dynamical models: (4 + 1)-dimensional Ricci-flat spacetimes
describing evolving Taub-NUT geometries
(Atiyah–Franchetti–Manton)

other more general classes of 4-manifold with “particle
properties”: algebraic surfaces with c2 and c21 as
“lepton/baryon numbers”, Enriques-Kodaira classification as
“valley of stability” (Atiyah–Manton)

geometrization of the skyrmion model of particles (topological
solitons in non-linear sigma models with pion fields π
combined with a field σ to SU(2)-valued scalar field, proposed
as models of nucleons)
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Skyrmions
• N.S. Manton, Classical Skyrmions – Static Solutions and
Dynamics, Mathematical Methods in the Applied Sciences, Vol.35
(2012) N.10, 1188–1204

baryon number B integer-valued topological charge: degree of a
map U : R3 → SU(2); skyrmions with B = 6 in figure
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Skyrmions
• in magnetic skyrmions knotted magnetic field lines
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Gravitational Instantons (recent examples)
• Snigdh Sabharwal and Jan Willem Dalhuisen, Anti-self-dual
spacetimes, gravitational instantons and knotted zeros of the Weyl
tensor, Journal of High Energy Physics, 07 (2019) 004

Gravitational instantons with anti-self-dual Kerr-Schild metrics
with knotted zeros of the Weyl tensor
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Quantum numbers of geometric models of matter

Atiyah–Manton–Schroers: the signature τ(M) is interpreted
as a baryon number; the electric charge is determined by the
self-intersection number of the surface at infinity

Atiyah–Manton: baryon and lepton numbers are expressed in
terms of both signature and Euler characteristic (signature
measuring difference between number of protons and number
of neutrons)

General principle: quantum numbers of “particle-like” manifolds
should be topological quantities computed by an index theorem
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Composite systems

• merging operations on geometries that can be seen as composite
systems of particles or quasi-particles

• connected sum operation: existence of self-dual metric on a
connected sum of two self-dual 4-manifolds depends on a twistor
space argument (Donaldson–Friedman)

• twistor space Z = Z (M) of a self-dual 4-manifold is a
3-dimensional complex manifold that fibers over M with CP1 fibers

• singular complex 3-manifold Z̃ = Z̃1 ∪E1'E2 Z̃2 by blowup of
twistor spaces Zi = Z (Mi ) along a CP1 fiber and gluing
exceptional divisors

• Donaldson–Friedman: if ∃ smooth Kodaira–Spencer–Kuranishi
deformation Z of Z̃ then Z is twistor space Z (M) of a self-dual
structure on the connected sum M = M1#M2

• Constraints on the formation of composite systems of geometric
models of matter (relaxing the self-duality hypothesis? suggested
in more recent Atiyah–Manton)
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Dynamical models

• 4-dim gravitational instanton (self-dual Riemannian manifolds
with an Einstein metric) is seen in these geometric models of
matter as a static “particle-like” object

• made dynamical by embedding in a (4 + 1)-dimensional Ricci-flat
geometry (Atiyah–Franchetti–Schroers)

• example: Taub-NUT geometry as 4-dim section of the 5-dim
Sorkin solution of the Kaluza–Klein monopole equations

• Campbell–Magaard embedding: an arbitrary analytic Riemannian
manifold M of dimension dimM = n can be locally embedded in a
Ricci-flat Riemannian manifold of dimension n + 1, but embedding
may only exist locally
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Building geometric models of systems of quasi-particles

Want fractional quantum numbers and anyon statistics

Main ideas:

consider pairs (M,Σ) with M a smooth compact
4-dimensional manifold and Σ a smoothly embedded compact
2-dimensional surface

consider metrics (edge-cone metrics) on M with Σ as set of
orbifold points

obtain fractional quantum numbers from Kawasaki index
theorem for orbifolds

get anyons and braid representations from surface braids
determined by multisections of the orbifold normal bundle
N (Σ) of Σ in M
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Edge-cone metrics (Atiyah–Le Brun)

• edge-cone metric on (M,Σ) cone angle 2πβ, β ∈ R∗+

g = dρ2 + β2ρ2(dθ + ujdx
j)2 + wijdx

idx j + ρ1+εh

h symmetric tensor with continuous derivatives all orders for vector
fields with vanishing normal component along Σ

• modelled on a 2-dimensional cone in directions transversal to Σ,
smooth in the directions parallel to Σ
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Example: edge cone metric on the sphere (Sn,Sn−2) n ≥ 3

Kazuo Akutagawa, Computations of the orbifold Yamabe invariant,

Math. Z. 271 (2012), 611–625
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Atiyah–Le Brun manifold

• (S4,S2) with edge-cone metric of angle 2π/ν

complement S4 r S2 conformally equivalent to H3 × S1

(hyperbolic H3)

standard round metric on S4 becomes sech2δ (h + dθ2) with
h hyperbolic metric and δ : H3 → R distance from a point

ds2 = sech2δ (h + β2dθ2) family of edge-cone metrics with
cone angle 2πβ
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Atiyah–Le Brun manifold: connected sums of projective planes
(#nCP2,Σ) with Σ = #nCP1 ' S2

U ⊂ H3 open, V : U → R+ harmonic for metric h

closed form ?dV ; class [?dV /2π] = c1(P) ∈ H2(U ,R); line
bundle P
θ connection on P with curvature dθ = ?dV

Riemannian metric on total space of P

g0 = Vh + V−1θ2

potential V = β−1 +
∑n

i=1 Gpi points pi ∈ H3 and Green
functions Gpi

edge-cone metrics g = β(sech2δ)g0

metric completion of g on P gives #nCP2 with edge-cone
angle 2πβ along Σ

generalization of Abreu family of edge-cone metrics on
(CP2,CP1)
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Orbifolds and edge-cone metrics (Atiyah–Le Brun)

• compact 4-dimensional M with atlas of local uniformizing charts
Uα homeomorphic Uα ' Vα/Gα to quotients of open sets
Vα ⊂ R4 by finite groups Gα

• M = Msing ∪Mreg singular (orbifold) points and regular points
with Msing = Σ embedded surface

• good orbifold: global quotient M = X/G smooth 4-manifold X
and finite group G

• near Σ local chart C2/Gν with Gν = Z/νZ and
(w , ζ) 7→ (w , e2πi/νζ)

• edge-cone metrics with β = 1/ν, represented in local chart as a
Z/νZ-invariant metric
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Orbifolds as geometric models of systems of quasi-particles

• quantum numbers from Kawasaki index theorem for orbifolds

• Atiyah–Le Brun orbifold Euler characteristic and an orbifold
signature

χorb(M) =
1

8π2

∫
M

(
|W |2 − 1

2
|E |2 +

1

24
R2

)
dv(g)

= χ(M)− (1− 1

ν
)χ(Σ)

τorb(M) =
1

12π2

∫
M

(
|W+|2 − |W−|2

)
dv(g) = τ(M)−1

3
(1− 1

ν2
)[Σ]2

with [Σ]2 self-intersection number (Euler number of normal bundle
of Σ in M), W Weyl tensor, W± self-dual and anti-self-dual part,
E traceless part of Ricci tensor, R scalar curvature
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• χorb(M) and τorb(M) fractional quantum numbers for the
orbifold (M,Σ), viewed as modeling a system of quasi-particles

• surface Σ of orbifold points plays role of surface at infinity that
contributes the electric charge to the matter content in the
Atiyah–Manton–Schroers model

• normal bundle N (Σ) of the inclusion of Σ in M is an orbifold
vector bundle

• fibers of N (Σ) are quotients R2/Gν where Gν = Z/νZ is the
stabilizer of Σ

• role of self-intersection number becomes orbifold Euler number
χorb(N (Σ)) of the normal bundle N (Σ)

• fractional electric charge of the system of quasi-particles
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Constraints on composite systems

• possible obstructions existence of self-dual structures on
connected sums (obstructions to smooth deformation giving
twistor space as above)

• possible obstructions to Einstein condition (topological
obstructions or differentiable obstructions)

topological obstructions (Atiyah-Le Brun): inequalities

2χ(M)± 3τ(M) ≥ (1− 1

ν
)(2χ(Σ)± (1 +

1

ν
)[Σ]2)

need to hold for (M,Σ) to admit an Einstein edge-cone metric
of cone angle 2π/ν
differentiable obstructions (Le Brun): from Seiberg–Witten
if symplectic form ω on M with Σ symplectic submanifold with

(c1(M)− (1− 1/ν)[Σ]) · [ω] < 0 then for any

` ≥ (c1(M)− (1− 1/ν)[Σ])2/3 the pair (M ′,Σ) with

M ′ = M#`CP2 has no Einstein edge-cone metric

• relax self-dual Einstein conditions for composite systems? require
only for “elementary constituents”?
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Anyons

bosons/fermions statistics |ψ1ψ2〉 = ±|ψ2ψ1〉
abelian anyons |ψ1ψ2〉 = e iθ|ψ2ψ1〉
nonabelian anyons: braid representations

anyons and quantum computing: unitary braid representations
that span densely SU(2N) are universal for quantum
computing, approximate arbitrary quantum gates for system
of N-qbits
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Anyons

Kareljan Schoutens and Nick Bonesteel, illustration of non-abelian anyons
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Anyons are 2-dimensional systems of quasi-particles

unitary representations of braid groups Bn(X )

not reducible to representations of symmetric Sn
(fermions/bosons)

not reducible to wreath products of π1(X ) and Sn
(generalized parastatistics)

can happen only for X 2D surface

Question: can anyon systems of quasi-particles be realized within
the 4-dimensional geometric models of matter? can they be
universal for quantum computing?
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Braid groups and Anyons
Relation between braid groups, fractional statistics, and anyons

Configuration spaces: X smooth manifold, Fn(X ) = X n r ∆
complement of diagonals

Fn(X ) = {(x1, . . . , xn) ∈ X n | xi 6= xj , ∀i 6= j , i , j = 1, . . . , n}

free action of symmetric group Sn on Fn(X )

Confn(X ) := Fn(X )/Sn

Braid groups: Bn(X ) := π1(Confn(X ))

1→ π1(Fn(X ))→ Bn(X )→ Sn → 1

for dimX > 2 one has π1(Fn(X )) = π1(X )n so wreath product

Bn(X ) = π1(X )n o Sn
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• for a system of n identical particles on a smooth manifold X,
with configuration space Confn(X ) the set of irreducible unitary
representations of the braid group Bn(X ) labels inequivalent
quantizations of the classical system

• these can have different possible statistics including bosons and
fermions, parastatistics, generalized parastatistics, and anyons

• parastatistics are higher dimensional representations of symmetric
groups (fermions and bosons are one-dimensional representations)

• Example: X simply connected with dimX ≥ 3, then just
fermions, bosons, and parastatistics as Bn(X ) are symmetric groups

• generalized parastatistics: case of dimX ≥ 3 but π1(X ) 6= 1, so
representations of wreath product Bn(X ) = π1(X )n o Sn

• anyons: only in the case where Bn(X ) is not a wreath product,
so for dimX = 2

Matilde Marcolli
Anyons, networks, and codes in geometric models of matter



Anyons when dim(X ) = 2

• for X = D2 Artin braid group

Bn(D2) = Bn =

〈
σ1, . . . , σn−1 |

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi for |i − j | ≥ 2

〉
• for X = Σ a Riemann surface also have explicit presentations of
Bn(Σ) (Birman) Note: these groups Bn(Σ) not wreath products

Case of geometric models: (M,Σ) with dimM = 4 and Σ ⊂ M
with dim Σ = 2 locus of orbifold points

• Cannot use Bn(M r Σ) or Bn(M) or Borb
n (M,Σ) (orbifold braid

groups) because those only give generalized parastatistics

• still possible to obtain anyons
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Surface Braids (Viro, Kamada)

• J. Scott Carter, Seiichi Kamada, Masahico Saito, Alexander Numbering

of Knotted Surface Diagrams, Proc. Amer. Math. Soc. 128 (2000), no.

12, 3761–3771
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Surface Braids (Viro, Kamada)

• surface m-braid: smooth 2-dimensional S , smoothly embedded in
D2 × D2 with second projection P2 : D2 × D2 → D2 restricting to
S as an m-fold branched cover P : S → D2

• preimage β := P−12 (∂D2) ∩ S ⊂ D2 × S1 ordinary closed m-braid

• Note: sometimes assumed that β trivial braid

• b(S) ⊂ D2 set of branch points of the m-fold brached cover
P : S → D2

• Braid representation: fundamental group π1(D2 r b(S))

ρS : π1(D2 r b(S))→ π1(Confm(D2)) = Bm(D2)

• Construction: paths γ(t) in D2 r b(S)

ρS(γ)(t) := P1(S ∩ P−12 (γ(t)))

seen as a path in Confm(D2)
(with Pi : D2 × D2 → D2 projections)
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Variants of Surface Braids

• closed surface braids: S smoothly embedded in D2 × S2 with
P = P2|S : S → S2 an m-fold branched covering

• more general version: fixed surface Σ (possibly of genus
g(Σ) > 0) and S smoothly embedded in D2 × Σ with projection
P = P2|S : S → Σ an m-fold branched covering

• braid representation: ρS(γ)(t) := P1(S ∩ P−12 (γ(t))

ρS : π1(Σ r b(S))→ π1(Confm(D2)) = Bm(D2)

• further case: F a disc-bundle over closed surface Σ and S
smoothly embedded in F with π : F → Σ restricting to m-fold
branched cover π|S : S → Σ
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Sections and multisections of the orbifold unit normal bundle

• (M,Σ) orbifold geometry, dimM = 4 and dim Σ = 2, good
orbifold M = X/G some finite group G (assume Σ connected and
G = Z/νZ)

• normal bundle N (Σ) of Σ ↪→ M is an orbifold bundle, orbifold
covered by normal bundle N (Σ̃) of preimage Σ̃ in X

• lift to N (Σ̃) of a generic section σ of N (Σ) gives ν-fold
branched covering S of Σ branched at finitely many points b(S)

• multisections of N (Σ̃) are maps to Sym`(F ) = F `/S` of fiber F ;
`-fold branched covers of Σ̃ branched at intersections with
diagonals (for unit normal bundle F = D2)

• combining these: taking mutisection of unit normal N1(Σ) get
ν`-fold branched coverings S of Σ, hence `ν-surface braids
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Focus on the Atiyah-LeBrun manifold (S4, S2) with 2π/ν edge
cone metric

• multisections of N (S2) give ν`-surface braids S (closed surface
braids in D2 × S2)

• associated braid representation ρS : π1(S2 r b(S))→ Bn(D2)

• given a closed surface braid S obtained from a multisection of
N (S2) and a branch point x0 ∈ b(S), take a disc D2

b ⊂ S2 that is
the complement of a small neighborhood of x0

• restriction of branched cover P : S → S2 to D2
b ⊂ S2 is also a

ν`-fold branched cover P : Ŝ → D2
b and Ŝ ⊂ D2

f × D2
b is a surface

braid, so Ŝ ∩ (D2
f × ∂D2

b) is an ordinary closed braid β, in general
non-trivial in Bν` = Bν`(D

2)

• the braid system (β1, . . . , βn) of Ŝ is the image under the braid
representation ρŜ : π1(D2

b r b(Ŝ))→ Bν`(D
2) of set of generators

γ1, . . . , γn of π1(D2
b r b(Ŝ) (basepoint on ∂D2

b)
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Standard braid system
• characterization of braid systems such that Ŝ ∩ (D2

f × ∂D2
b) is a

fixed closed braid β ∈ Bν`(D
2): n-tuples (β1, . . . , βn) ∈ Bν`(D

2)n

such that each βk is conjugate of a standard generator σi or σ−1i

of the braid group, with β1 · · ·βn = β in Bν`(D
2)

• equivalent braided surfaces (related by a fiber preserving
diffeomorphism of D2

f × D2
b relative to D2

f × ∂D2
b) correspond to

braid systems (β1, . . . , βn) related by Hurwitz action of Bn on Bn
ν`

σi : (β1, . . . , βn) 7→ (β1, . . . , βi−1, βiβi+1β
−1
i , βi , βi+2, . . . , βn)

• for n = ν`− 1 consider surface braid with n = #b(Ŝ) such that
braid system is standard set of generators (σ1, . . . , σn) of Bν`(D

2)

• for such choice of Ŝ braid representation obtains all Bν`(D
2)
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How good are anyon systems constructed through geometric
models (M,Σ)?

• What makes an anyon system good?
Properties for quantum computation

• quantum computation from anyon systems:

anyon system =⇒ an associated braid group

a braid group =⇒ unitary representations

does unitary representation span densely the group SU(2N)?

SU(2N) =⇒ quantum gates for a system of N qbits

• if density in SU(2N) holds: anyon system is universal for
quantum computing
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Examples of anyon systems universal for quantum computing

• Fibonacci anyons

• Jones unitary representations of Bn = Bn(D2)

• TQFT: Chern–Simons theory at 5-th root of unity
(Jones representation at q = e±2πi/5)

• general fact about quantum gates: arbitary gates in SU(2N) can
be decomposed into tensor product of 1-qbit gates and CNOTs

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Fibonacci anyons (simpler case)

two types of particles, denoted 1 and τ

fusion rules

1⊗ τ = τ, τ ⊗ 1 = τ, τ ⊗ τ = 1⊕ τ

fusion trees

ground state degeneracies for n τ -anyons from counting
number of fusion paths: Fibonacci numbers Fn+1 = Fn + Fn−1

• Simon Trebst, Matthias Troyer, Zhenghan Wang, Andreas W.W.
Ludwig, A short introduction to Fibonacci anyon models, Prog.
Theor. Phys. Supp. 176, 384 (2008)
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three τ -anyons fusion trees simulate a single qbit; six
τ -anyons simulate two qbits

braiding these anyons simulates unitary transformation on this
simulated qubit

F and R matrices
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associativity: pentagon and hexagon relations, solve for F , R
for Fibonacci

R = ρ(σ1) and FRF−1 = ρ(σ2) give the braid representation
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Chern-Simons (Freedman–Larsen–Wang)

• topological modular functor of a TQFT:

2D surface Σ ⇒ complex (hermitian) vector space V (Σ)

diffeomorphisms ⇒ (projective) unitary maps on V (Σ)

• consider Σ = (D2, 3`) disc with 3` marked points

S` = (C2)⊗` state space of ` qbits

construct a map S` ↪→ V (D2, 3`)

embedding intertwines action of B3` on V (D2, 3`) by diffeos
of D2 preserving set of marked points and action of unitary
operators on S`

B3 action on V (D2, 3) = C2 (single qbit) gives the 1-qbit
quantum gates

the 2-qbit CNOT gate is obtained via an approximation
algorithm
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Jones representation

• Temperley–Lieb algebra TLn(A)

relations: far commutativity, braid relations, Hecke relations

multiplication by d = −A2 − A−2 when a loop removed in composition

(vertical stacking of diagrams)

• Construction of the Jones unitary representation:

braid group Bn, group algebra F[Bn]

mapping F[Bn] to Temperley-Lieb algebra TLn(A) (using
Kauffman bracket)

inner product on TLn(A) given by Markov trace (closing
diagram and counting loops)

identify TLn(A) with a sum of matrix algebras
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Chern-Simons and Jones representation
(Freedman–Larsen–Wang)

Chern-Simons modular functor (at level r) constructed using
irreducible representations of quantum groups
(Reshetikhin–Turaev)

construction of hermitian inner products that make CS
modular functor unitary

expression in terms of Jones representation q = A4 = e2πi/r

at fifth root of unity r = 5

Case of Geometric Models of Matter (Atiyah–LeBrun manifold)
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Tensor networks

finite or countable collection of tensors connected by leg
contractions (tensor Ti1,...,ik with k-legs; index contraction
corresponds to glueing legs)

graphical calculus diagrammatic methods (Roger Penrose)

quantum circuits as tensor networks

useful method for computing entangled quantum states

holographic bulk/boundary correspondence with bulk space
discretized by tensor networks: entanglement entropy of
boundary state and geometry (minimal curves/surfaces) in
bulk space, Ryu–Takayanagi conjectures
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Anyon Tensor Networks

states |Ψ〉 weighted superposition of anyon fusion/splitting
trees with assigned anyon charge at the root

operators: anyonic tensors
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Recent work on anyon tensor networks

J. Berger, T.J. Osborne, Perfect tangles, arXiv:1804.03199

J.C. Bridgeman, S.D. Bartlett, A.C. Doherty, Tensor Networks
with a Twist: Anyon-permuting domain walls and defects in
PEPS, arXiv:1708.08930

B.M. Ayeni, Studies of braided non-Abelian anyons using
anyonic tensor networks, arXiv:1708.06476

• Question: can realize anyon tensor networks in geometric models
of matter? Main idea/strategy:

use building blocks given by geometric models of matter that
realize good anyon systems (Atiyah-LeBrun manifolds)

identify network models that can be realized via
non-obstructed gluing

effect on the anyon systems of gluing via anyonic tensors

geometric construction of anyonic tensors
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Network structure in geometric models of matter

tree-shaped networks: use as geometric model the connected
sums of projective planes #TCP2 along a tree T with
Atiyah–LeBrun edge-cone metrics

non-tree networks: more subtle case: self-connected sum

self-connected sum: delete two points on a 4-manifold M,
with small disjoint 4-balls B1 and B2 around them, identify S3

boundaries ∂B1 and ∂B2 in M r (B1 ∪ B2)

(M, g) self-dual with Z twistor space, variant of the
Donaldson-Friedman construction gives condition for existence
of smooth twistor space Z̃ of a self-connected sum of M

example: Inoué surfaces

general problem: existence of unobstructed structures on
(self-)connected sums along a specified non-tree network
(e.g. of CP2’s or S4’s)

• twistor space construction for self-connected sums

A. Fujiki, Anti-self-dual Hermitian structures on Inoue surfaces via
twistor method, preprint
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Anyonic tensors in geometric models of matter (Sketch)

anyonic matrix operators

produce via anyon networks anyonic matrix product states

gluing along connected sums of multisections of orbifold
normal bundles: braid representations

π1(D2 r b(S)) ?Z π1(D2 r b(S ′))→ Bm(D2)

effect of inserting anyonic matrix operators achieved
geometrically by gluing multisections of orbifold normal
bundle via a non-trivial transformation
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Further questions

what kind of anyon tensor networks are realizable in geometric
models of matter

what kind of matrix product states or other quantum states
do they compute?

are there universal examples? (can simulate tensor networks)

Conclusion: geometric models of matter are 4-dimensional
geometries that “behave like” particle systems; they also can be
adapted to behave like systems of quasi-particles like anyons,
including capturing some quantum computational properties

Matilde Marcolli
Anyons, networks, and codes in geometric models of matter


