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This talk is based on:

@ Michael F. Atiyah, Matilde Marcolli Anyons in geometric
models of matter, J. High Energy Physics, 07 (2017) 076

@ Michael F. Atiyah, Matilde Marcolli Anyon networks from
geometric models of matter, unfinished preprint

Matilde Marcolli -



Geometric Models of Matter (Atiyah, Manton, Schroers, et al.)

@ certain 4-dim Riemannian manifolds with self-dual Weyl
tensor behave “like” elementary particles

@ gravitational instantons: Taub-NUT, Atiyah—Hitchin,
gravitational instantons of types A, and Dy

@ dynamical models: (4 4 1)-dimensional Ricci-flat spacetimes
describing evolving Taub-NUT geometries
(Atiyah—Franchetti-Manton)

@ other more general classes of 4-manifold with “particle
properties”: algebraic surfaces with ¢, and C12 as
“lepton /baryon numbers”, Enriques-Kodaira classification as
“valley of stability” (Atiyah—Manton)

@ geometrization of the skyrmion model of particles (topological
solitons in non-linear sigma models with pion fields 7
combined with a field o to SU(2)-valued scalar field, proposed
as models of nucleons)
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Skyrmions

e N.S. Manton, Classical Skyrmions — Static Solutions and
Dynamics, Mathematical Methods in the Applied Sciences, Vol.35
(2012) N.10, 1188-1204

baryon number B integer-valued topological charge: degree of a
map U : R3 — SU(2); skyrmions with B = 6 in figure
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Skyrmions
e in magnetic skyrmions knotted magnetic field lines
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Gravitational Instantons (recent examples)

e Snigdh Sabharwal and Jan Willem Dalhuisen, Anti-self-dual
spacetimes, gravitational instantons and knotted zeros of the Weyl!
tensor, Journal of High Energy Physics, 07 (2019) 004

Gravitational instantons with anti-self-dual Kerr-Schild metrics
with knotted zeros of the Weyl tensor
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Quantum numbers of geometric models of matter

e Atiyah—Manton—Schroers: the signature 7(M) is interpreted
as a baryon number; the electric charge is determined by the
self-intersection number of the surface at infinity

@ Atiyah—Manton: baryon and lepton numbers are expressed in
terms of both signature and Euler characteristic (signature
measuring difference between number of protons and number
of neutrons)

General principle: quantum numbers of “particle-like” manifolds
should be topological quantities computed by an index theorem
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Composite systems

e merging operations on geometries that can be seen as composite
systems of particles or quasi-particles

e connected sum operation: existence of self-dual metric on a
connected sum of two self-dual 4-manifolds depends on a twistor
space argument (Donaldson—Friedman)

e twistor space Z = Z(M) of a self-dual 4-manifold is a
3-dimensional complex manifold that fibers over M with CP! fibers
e singular complex 3-manifold 7= 21 UE ~E, 22 by blowup of
twistor spaces Z; = Z(M;) along a CP! fiber and gluing
exceptional divisors

e Donaldson—Friedman: if 3 smooth Kodaira—Spencer—Kuranishi
deformation Z of Z then Z is twistor space Z(M) of a self-dual
structure on the connected sum M = My #M,

e Constraints on the formation of composite systems of geometric

models of matter (relaxing the self-duality hypothesis? suggested
in more recent Atiyah—Manton)
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Dynamical models

e 4-dim gravitational instanton (self-dual Riemannian manifolds
with an Einstein metric) is seen in these geometric models of
matter as a static “particle-like” object

e made dynamical by embedding in a (4 4 1)-dimensional Ricci-flat
geometry (Atiyah—Franchetti—Schroers)

e example: Taub-NUT geometry as 4-dim section of the 5-dim
Sorkin solution of the Kaluza—Klein monopole equations

e Campbell-Magaard embedding: an arbitrary analytic Riemannian
manifold M of dimension dim M = n can be locally embedded in a
Ricci-flat Riemannian manifold of dimension n+ 1, but embedding
may only exist locally
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Building geometric models of systems of quasi-particles

Want fractional quantum numbers and anyon statistics
Main ideas:

@ consider pairs (M, X) with M a smooth compact
4-dimensional manifold and ¥ a smoothly embedded compact
2-dimensional surface

@ consider metrics (edge-cone metrics) on M with X as set of
orbifold points

@ obtain fractional quantum numbers from Kawasaki index
theorem for orbifolds

@ get anyons and braid representations from surface braids

determined by multisections of the orbifold normal bundle
N(X)of Xin M
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Edge-cone metrics (Atiyah—Le Brun)
e edge-cone metric on (M, X) cone angle 2753, 3 € R,
g2 22 o2 i i 1 Al
g =dp° + B°p°(d0 + ujdx! ) + wijdx'dx) + p"“h

h symmetric tensor with continuous derivatives all orders for vector
fields with vanishing normal component along ¥

e modelled on a 2-dimensional cone in directions transversal to X,
smooth in the directions parallel to &
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Example: edge cone metric on the sphere (S7,5"72) n >3

$"—(5"2uS)=(0,3) x S x $" 25 (r,0,x)
gs = dr? +sin® r d6? + cos? r - ggn—2=: h, : standard round metric

hg := dr? + (3 sin? rdf? + cos?r-ggi—2a = hy : loc. isom. (8>0)
edge-cone Einstein metric of cone angle 23 on (S", S"2)

Kazuo Akutagawa, Computations of the orbifold Yamabe invariant,
Math. Z. 271 (2012), 611-625
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Atiyah—Le Brun manifold

e (5% 52) with edge-cone metric of angle 27 /v
o complement S* \. S? conformally equivalent to H3 x S?
(hyperbolic H3)
o standard round metric on S* becomes sech?§ (h + df?) with
h hyperbolic metric and ¢ : H3 — R distance from a point

o ds? = sech?®s (h+ 2d#?) family of edge-cone metrics with
cone angle 273
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Atiyah—Le Brun manifold: connected sums of projective planes
(#"CP?, ¥) with ¥ = #"CP! ~ S2
o U C H3 open, V : U — R™ harmonic for metric h

e closed form xdV/; class [xdV /27] = c1(P) € H?(U, R); line
bundle P

@ O connection on P with curvature df = xdV

@ Riemannian metric on total space of P
go = Vh+ V192

e potential V =371 + > 1 Gp, points p; € H3 and Green
functions Gp,
o edge-cone metrics g = ((sech?d)gy

@ metric completion of g on P gives #"CP? with edge-cone
angle 273 along *

@ generalization of Abreu family of edge-cone metrics on
(CP2,CP?)
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Orbifolds and edge-cone metrics (Atiyah—Le Brun)

e compact 4-dimensional M with atlas of local uniformizing charts
U, homeomorphic U, ~ V, /G, to quotients of open sets

V,, C R* by finite groups G,

® M = Mgjng U M,eg singular (orbifold) points and regular points
with Mgjpe = ¥ embedded surface

e good orbifold: global quotient M = X /G smooth 4-manifold X
and finite group G

e near ¥ local chart C?/G, with G, = Z/vZ and

(w,¢) = (w, &*™77¢)

e edge-cone metrics with 3 = 1/v, represented in local chart as a
Z/vZ-invariant metric
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Orbifolds as geometric models of systems of quasi-particles

e quantum numbers from Kawasaki index theorem for orbifolds

e Atiyah—Le Brun orbifold Euler characteristic and an orbifold
signature

_ 1 2 1 2 1 2
XaM) = 5oy [ (1WF = J1E7 + 3,87 dvle)

— (M) - (1~ 1)

[ WP = 1W-P) de) = r(m)- 51 I
M

with [X]? self-intersection number (Euler number of normal bundle
of ¥ in M), W Weyl tensor, W¥ self-dual and anti-self-dual part,
E traceless part of Ricci tensor, R scalar curvature

B 1
1272

Torb(M)
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® Xorb(M) and 7o(M) fractional quantum numbers for the
orbifold (M, ¥), viewed as modeling a system of quasi-particles

e surface ¥ of orbifold points plays role of surface at infinity that
contributes the electric charge to the matter content in the
Atiyah—Manton—Schroers model

e normal bundle N (X) of the inclusion of X in M is an orbifold
vector bundle

e fibers of A(X) are quotients R?/G, where G, = Z/VZ is the
stabilizer of X

e role of self-intersection number becomes orbifold Euler number
Xorb(N (X)) of the normal bundle N(X)

e fractional electric charge of the system of quasi-particles

Matilde Marcolli -



Constraints on composite systems

e possible obstructions existence of self-dual structures on
connected sums (obstructions to smooth deformation giving
twistor space as above)
e possible obstructions to Einstein condition (topological
obstructions or differentiable obstructions)

e topological obstructions (Atiyah-Le Brun): inequalities

2A(M) £ 37(M) > (1 - 2)(2x() + (1+ DITP)

need to hold for (M, X) to admit an Einstein edge-cone metric
of cone angle 27 /v
e differentiable obstructions (Le Brun): from Seiberg—Witten

if symplectic form w on M with ¥ symplectic submanifold with
(aa(M)—(1—=1/v)[X]) - [w] < O then for any
¢ > (ci(M) — (1 —1/v)[Z])?/3 the pair (M’, X) with
M’ = M#LCP? has no Einstein edge-cone metric

e relax self-dual Einstein conditions for composite systems? require

only for “elementary constituents”?
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Anyons

@ bosons/fermions statistics [1)192) = £[121)1)
@ abelian anyons |Y112) = ei9\¢2w1>
@ nonabelian anyons: braid representations

@ anyons and quantum computing: unitary braid representations
that span densely SU(2V) are universal for quantum
computing, approximate arbitrary quantum gates for system
of N-gbits
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Kareljan Schoutens and Nick Bonesteel, illustration of non-abelian anyons
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Anyons are 2-dimensional systems of quasi-particles

unitary representations of braid groups B,(X)

@ not reducible to representations of symmetric S,
(fermions/bosons)

not reducible to wreath products of m1(X) and S,
(generalized parastatistics)

@ can happen only for X 2D surface
Question: can anyon systems of quasi-particles be realized within

the 4-dimensional geometric models of matter? can they be
universal for quantum computing?
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Braid groups and Anyons
Relation between braid groups, fractional statistics, and anyons

Configuration spaces: X smooth manifold, F,(X) = X"\ A
complement of diagonals

Fo(X) ={(x1,....xn) € X" |x; #x;, Yi # j, i,j=1,...,n}
free action of symmetric group S, on F,(X)
Confn(X) := Fn(X)/Sn
Braid groups: B,(X) := m1(Conf,(X))
1 — mi(Fa(X)) = Ba(X) = Sy — 1
for dim X > 2 one has m1(Fn(X)) = m1(X)" so wreath product

Bh(X) = m1(X)" % S,
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e for a system of n identical particles on a smooth manifold X,
with configuration space Conf,(X) the set of irreducible unitary
representations of the braid group B,(X) labels inequivalent
quantizations of the classical system

e these can have different possible statistics including bosons and
fermions, parastatistics, generalized parastatistics, and anyons

e parastatistics are higher dimensional representations of symmetric
groups (fermions and bosons are one-dimensional representations)

e Example: X simply connected with dim X > 3, then just
fermions, bosons, and parastatistics as B,(X) are symmetric groups

e generalized parastatistics: case of dim X > 3 but m1(X) # 1, so
representations of wreath product B,(X) = m1(X)"” x S,

e anyons: only in the case where B,(X) is not a wreath product,
so for dim X =2
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Anyons when dim(X) = 2
e for X = D? Artin braid group

5 0i0i110j = 0410011
Bn(D):Bn: O']_’...,O'n—]_’ o= gio: F : il > 2
oioj = ojoj for |i — j| >

e for X = ¥ a Riemann surface also have explicit presentations of
B,(X) (Birman) Note: these groups B,(X) not wreath products

Case of geometric models: (M, X) with dmM =4and X C M
with dim X~ = 2 locus of orbifold points

e Cannot use B,(M ~ X) or B,(M) or BS*(M, X) (orbifold braid
groups) because those only give generalized parastatistics

e still possible to obtain anyons
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Surface Braids (Viro, Kamada)

e J. Scott Carter, Seiichi Kamada, Masahico Saito, Alexander Numbering
of Knotted Surface Diagrams, Proc. Amer. Math. Soc. 128 (2000), no.
12, 3761-3771
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Surface Braids (Viro, Kamada)

e surface m-braid: smooth 2-dimensional S, smoothly embedded in
D? x D? with second projection P, : D> x D? — D? restricting to
S as an m-fold branched cover P : S — D?

e preimage 3 := P, 1(9D?)N'S ¢ D? x S* ordinary closed m-braid
e Note: sometimes assumed that § trivial braid

e b(S) C D? set of branch points of the m-fold brached cover
P:S— D?

e Braid representation: fundamental group 71(D? \ b(S))
ps : m1(D? \ b(S)) — m1(Conf ,(D?)) = Bm(D?)
e Construction: paths y(t) in D2\ b(S)

ps(1)(t) = P1(S N Py (4(1)))

seen as a path in Conf,,(D?)
(with P; : D? x D? — D? projections)
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Variants of Surface Braids

e closed surface braids: S smoothly embedded in D? x S? with
P = P,|s : S — S? an m-fold branched covering

e more general version: fixed surface X (possibly of genus
g(X) > 0) and S smoothly embedded in D? x ¥ with projection
P = P,|s : S — X an m-fold branched covering

e braid representation: ps(7)(t) := P1(S N Py (y(t))

ps - (X~ b(S)) = m1(Confm(D?)) = By(D?)

e further case: F a disc-bundle over closed surface ¥ and S
smoothly embedded in F with 7 : F — X restricting to m-fold
branched cover m|s: S — &
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Sections and multisections of the orbifold unit normal bundle

e (M, X) orbifold geometry, dim M = 4 and dimX = 2, good
orbifold M = X /G some finite group G (assume ¥ connected and
G=7Z/vZ)

e normal bundle N'(¥) of £ < M is an orbifold bundle, orbifold
covered by normal bundle N/ (X) of preimage ¥ in X

e lift to N(X) of a generic section o of N'(X) gives v-fold
branched covering S of ¥ branched at finitely many points b(S)

e multisections of N/(%) are maps to Sym®(F) = F*/S, of fiber F;
¢-fold branched covers of X branched at intersections with
diagonals (for unit normal bundle F = D?)

e combining these: taking mutisection of unit normal NV7(X) get
vl-fold branched coverings S of ¥, hence fv-surface braids
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Focus on the Atiyah-LeBrun manifold (S§*, $?) with 27 /v edge
cone metric

e multisections of NV(S2) give v/-surface braids S (closed surface
braids in D? x S2)

e associated braid representation ps : 71(S% \ b(S)) — Bn(D?)
e given a closed surface braid S obtained from a multisection of

N(5?) and a branch point xo € b(S), take a disc D7 C S? that is
the complement of a small neighborhood of xg

e restriction of branched cover P : S — S2 to DZ C S%is also a
vl-fold branched cover P : § — Dg and § C D% X Dg is a surface
braid, so Sn (D? X 8Dg) is an ordinary closed braid 3, in general
non-trivial in B,y = B,,(D?)

e the braid system (f1,. .. ,B,,)Aof § is the image under the braid
representation pg : w1 (D3 \ b(S)) — B,e(D?) of set of generators
Y1y 70 of (D2~ b(S) (basepoint on DF)
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Standard braid system

e characterization of braid systems such that 5N (D? x OD2) is a
fixed closed braid 3 € B,¢(D?): n-tuples (B1,...,Bs) € B,e(D?)"
such that each (j is conjugate of a standard generator o; or ai_l
of the braid group, with 81 --- 8, = B in B,(D?)

e equivalent braided surfaces (related by a fiber preserving
diffeomorphism of D2 x D2 relative to D? x §D2) correspond to
braid systems (1, .., 3,) related by Hurwitz action of B, on B/,

aj: (ﬁl?' . "Bn) = (ﬁb .. 'aﬂi—laﬁiﬁi+lﬁrl75ia5i+2v s 7ﬁn)

e for n = vl — 1 consider surface braid with n = #b(5) such that
braid system is standard set of generators (o1, ...,0,) of B,y(D?)

e for such choice of § braid representation obtains all B,¢(D?)
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How good are anyon systems constructed through geometric
models (M, ¥)?

e What makes an anyon system good?
Properties for quantum computation
e quantum computation from anyon systems:
@ anyon system = an associated braid group
@ a braid group = unitary representations
e does unitary representation span densely the group SU(2N)?
o SU(2N) = quantum gates for a system of N gbits

e if density in SU(2") holds: anyon system is universal for
quantum computing
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Examples of anyon systems universal for quantum computing
e Fibonacci anyons
e Jones unitary representations of B, = B,(D?)

e TQFT: Chern-Simons theory at 5-th root of unity
(Jones representation at g = ei2ﬂl/5)

e general fact about quantum gates: arbitary gates in SU(2V) can
be decomposed into tensor product of 1-gbit gates and CNOTs

O OO
O O = O
= O O O
o = OO
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Fibonacci anyons  (simpler case)

@ two types of particles, denoted 1 and 7

o fusion rules
1or=7, 7®1=7, 7®@7=1&"7

@ fusion trees

T T T T T T T T T

T T 1

@ ground state degeneracies for n 7-anyons from counting
number of fusion paths: Fibonacci numbers F,11 = F,+ Fp_1

e Simon Trebst, Matthias Troyer, Zhenghan Wang, Andreas W.W.
Ludwig, A short introduction to Fibonacci anyon models, Prog.
Theor. Phys. Supp. 176, 384 (2008)
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@ three 7-anyons fusion trees simulate a single gbit; six
T-anyons simulate two gbits

T 1 T T T T

A

Torl Tor 1

1

@ braiding these anyons simulates unitary transformation on this
simulated qubit

@ F and R matrices

b a
b
a b c a b ¢ S i 7
F = R
C
d d c
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@ associativity: pentagon and hexagon relations, solve for F, R
for Fibonacci

F < , F 2 3R2 ;l
1 2 3 4 /' V\ 1 2 3 4 F/\%/H K/\F
N z Y\R: A 1R/Y

~\
1 2 3 4 1 2 3 4 =V F
D F d 2 =, 4
—> d
b
4 4

(F‘?zp)d<F24>b Z(Fm) (Fro)j(F Py, D FuiRI(Fin)t = Riy(Fh )R,
b

o R =p(01) and FRF~! = p(02) give the braid representation
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Chern-Simons  (Freedman—Larsen—Wang)

e topological modular functor of a TQFT:
@ 2D surface ¥ = complex (hermitian) vector space V/(X)
e diffeomorphisms = (projective) unitary maps on V/(X)

e consider ¥ = (D?,3¢) disc with 3¢ marked points
o Sy = (C?)®* state space of £ gbits
e construct a map Sy — V/(D?,3/)

e embedding intertwines action of B3, on V/(D?,3/) by diffeos
of D? preserving set of marked points and action of unitary

operators on Sy
@ Bj action on V/(D?,3) = C? (single gbit) gives the 1-gbit
quantum gates

@ the 2-gbit CNOT gate is obtained via an approximation
algorithm
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Jones representation

e Temperley—Lieb algebra TL,(A)

N N\ N\ N\
Jan\ ’ /A AR Jan\ A L\
uj us Ui Up—1

relations: far commutativity, braid relations, Hecke relations
multiplication by d = —A? — A=2 when a loop removed in composition
(vertical stacking of diagrams)

e Construction of the Jones unitary representation:
@ braid group B, group algebra F[B,]
e mapping F[B,] to Temperley-Lieb algebra TL,(A) (using
Kauffman bracket)

@ inner product on TL,(A) given by Markov trace (closing
diagram and counting loops)

e identify TL,(A) with a sum of matrix algebras



Chern-Simons and Jones representation
(Freedman—Larsen-Wang)

@ Chern-Simons modular functor (at level r) constructed using
irreducible representations of quantum groups
(Reshetikhin—Turaev)

@ construction of hermitian inner products that make CS
modular functor unitary
@ expression in terms of Jones representation g = A* = 2™/

at fifth root of unity r =5

Case of Geometric Models of Matter (Atiyah—LeBrun manifold)
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Tensor networks

@ finite or countable collection of tensors connected by leg
contractions (tensor Ti....i, with k-legs; index contraction
corresponds to glueing legs)

e graphical calculus diagrammatic methods (Roger Penrose)
@ quantum circuits as tensor networks
@ useful method for computing entangled quantum states

@ holographic bulk/boundary correspondence with bulk space
discretized by tensor networks: entanglement entropy of
boundary state and geometry (minimal curves/surfaces) in
bulk space, Ryu—Takayanagi conjectures
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Anyon Tensor Networks

@ states |W) weighted superposition of anyon fusion/splitting
trees with assigned anyon charge at the root

@ operators: anyonic tensors
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Recent work on anyon tensor networks
o J. Berger, T.J. Osborne, Perfect tangles, arXiv:1804.03199

o J.C. Bridgeman, S.D. Bartlett, A.C. Doherty, Tensor Networks
with a Twist: Anyon-permuting domain walls and defects in
PEPS, arXiv:1708.08930

e B.M. Ayeni, Studies of braided non-Abelian anyons using
anyonic tensor networks, arXiv:1708.06476

e Question: can realize anyon tensor networks in geometric models
of matter? Main idea/strategy:

@ use building blocks given by geometric models of matter that
realize good anyon systems (Atiyah-LeBrun manifolds)

@ identify network models that can be realized via
non-obstructed gluing

o effect on the anyon systems of gluing via anyonic tensors

@ geometric construction of anyonic tensors
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Network structure in geometric models of matter

@ tree-shaped networks: use as geometric model the connected
sums of projective planes #1CP? along a tree T with
Atiyah—LeBrun edge-cone metrics

@ non-tree networks: more subtle case: self-connected sum

@ self-connected sum: delete two points on a 4-manifold M,
with small disjoint 4-balls B; and B, around them, identify S3
boundaries 9B; and 0B, in M~ (B1 U By)

e (M, g) self-dual with Z twistor space, variant of the
Donaldson-Friedman construction gives condition for existence
of smooth twistor space Z of a self-connected sum of M

@ example: Inoué surfaces

@ general problem: existence of unobstructed structures on
(self-)connected sums along a specified non-tree network
(e.g. of CP?'s or S*'s)

o twistor space construction for self-connected sums

@ A. Fujiki, Anti-self-dual Hermitian structures on Inoue surfaces via
twistor method, preprint
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Anyonic tensors in geometric models of matter (Sketch)

@ anyonic matrix operators

! ’
ay  ah, ay a,

@ produce via anyon networks anyonic matrix product states
@ gluing along connected sums of multisections of orbifold
normal bundles: braid representations

71(D? ~ b(S)) xz m1(D? ~ b(S')) = Bn(D?)

@ effect of inserting anyonic matrix operators achieved
geometrically by gluing multisections of orbifold normal
bundle via a non-trivial transformation
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Further questions
@ what kind of anyon tensor networks are realizable in geometric
models of matter

@ what kind of matrix product states or other quantum states
do they compute?

@ are there universal examples? (can simulate tensor networks)

Conclusion: geometric models of matter are 4-dimensional
geometries that “behave like" particle systems; they also can be
adapted to behave like systems of quasi-particles like anyons,
including capturing some quantum computational properties
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