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classical Chern—Simons actions on spaces of Galois representations. In the subse-
quent sections, we give formulas for computation in a small class of cases and point
towards some arithmetic applications.

1 The Arithmetic Chern—-Simons Action: Introduction and
Definition

The purpose of this paper is to cast in concrete mathematical form the ideas presented
in the preprint [17]. The reader is referred to that paper for motivation and specu-
lation. Since there is no plan to submit it for separate publication, we repeat here
the basic constructions before going on to a family of examples. This paper adheres,
however, to a rather strict mathematical presentation. As we remind the reader below,
the analogies in the background have come to be somewhat well-known under the
heading of ‘arithmetic topology.” The emphasis of this paper, however, will be less
on analogies, and more on the possibility that specific technical tools of topology
and physics can be imported into number theory.

Let X = Spec(Or), the spectrum of the ring of integers in a number field F. We
assume that F' is totally imaginary. Denote by G, the étale sheaf that associates to a
scheme the units in the global sections of its coordinate ring. We have the following
canonical isomorphism [20, p. 538]:

inv: H3(X, Gp) ~ Q/Z. (%)
This map is deduced from the ‘invariant’ map of local class field theory. We will
therefore use the same name for a range of isomorphisms having the same essential
nature, for example,

inv: H*(X,Z,(1)) ~ Z,, ()

where Z,(1) = l(igli tipi, and g, C Gy, is the sheaf of nth roots of 1. This follows
from the exact sequence

0= fty — Gm 3 Gm = Gm/(Gm)" — 0.
That is, according to loc. cit.,
H*(X,Gy) =0,
while by op. cit., p. 551, we have
H'(X.Gn/(Gm)") =0

for i > 1. If we break up the above into two short exact sequences,
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0= iy — Gm & %K, — 0,

and
0—> X, > Gy —> Gy/(Gy)" — 0,

we deduce
H*(X,%K,) =0,

from which it follows that |
H(X, ) ~ =7/,
n

the n-torsion inside Q/Z. Taking the inverse limit over n = p’ gives the second
isomorphism above. The pro-sheaf Z,(1) is a very familiar coefficient system for
étale cohomology and (**) is reminiscent of the fundamental class of a compact
oriented three manifold for singular cohomology. Such an analogy was noted by
Mazur around 50years ago [21] and has been developed rather systematically by a
number of mathematicians, notably, Masanori Morishita [23]. Within this circle of
ideas is included the analogy between knots and primes, whereby the map

Spec(Or/Pu) — X

from the residue field of a prime %3, should be similar to the inclusion of a knot. Let
F, be the completion of F' at the prime v and Op, its valuation ring. If one takes this
analogy seriously (as did Morishita), the map

Spec(OF,) — X,
should be similar to the inclusion of a handle-body around the knot, whereas
Spec(F,) — X

resembles the inclusion of its boundary torus.! Given a finite set S of primes, we
consider the scheme

Xs = Spec(Or[1/5]) = X \ {Po}ves.

Since a link complement is homotopic to the complement of a tubular neighbourhood,
the analogy is then forced on us between Xy and a three manifold with boundary
given by a union of tori, one for each ‘knot’ in S. These of course are basic morphisms
in 3 dimensional topological quantum field theory [1]. From this perspective, perhaps

't is not clear to us that the topology of the boundary should really be a torus. This is reasonable
if one thinks of the ambient space as a three-manifold. On the other hand, perhaps it’s possible to
have a notion of a knot in a homology three-manifold that has an exotic tubular neighbourhood?
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the coefficient system Gy, of the first isomorphism should have reminded us of the
S!-coefficient important in Chern—Simons theory [6, 32]. A more direct analogue of
G is the sheaf O}, of invertible analytic functions on a complex variety M. However,
for compact Kihler manifolds, the comparison isomorphism

H' (M, S" ~ H' (M, 0},

where the subscript refers to the line bundles with trivial topological Chern class,
is a consequence of Hodge theory. This indicates that in the étale setting with no
natural constant sheaf of S'’s, the familiar G,, has a topological nature, and can be
regarded as a substitute.? One problem, however, is that the G,-coefficient computed
directly gives divisible torsion cohomology, whence the need for considering coef-
ficients like Z, (1) in order to get functions of geometric objects having an analytic
nature as arise, for example, in the theory of torsors for motivic fundamental groups
[4, 13-16].
We now move to the definition of the arithmetic Chern—Simons action. Let

= m (X, b),
be the profinite étale fundamental group of X, where we take
b: Spec(F) — X
to be the geometric point coming from an algebraic closure of F'. Assume now that

the group 1, (F) of nth roots of unity is in F and fix a trivialisation ¢, : Z/nZ = .
This induces the isomorphism

1
inv: H3 (X, Z/nZ) ~ H3*(X, ji,) ~ ;Z/Z.

Now let A be a finite group and fix a class ¢ € H*(A, Z/nZ). Let
M(A) := Hom,,, (7, A)/A
be the set of isomorphism classes of principal A-bundles over X. Here, the subscript
refers to continuous homomorphisms, on which A is acting by conjugation. For
[p] € M(A), we get a class
p*(c) € H*(m, Z/n7Z)

that depends only on the isomorphism class [p]; if p, = Ad, o p; for some a € A,
then p3(c) = pj(Ad;(c)), but c and Ad’ (c) are cohomologous by Lemma 7.2. Denote

2Recall, however, that it is of significance in Chern—Simons theory that one side of this isomorphism
is purely topological while the other has an analytic structure.
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by inv also the composed map
H3(r, Z/nZ) — H3(X, Z/nZ) —2 17,7,
We get thereby a function

. 1 .
CSe: M(A) — 2] Z;
[p] +———inv(p*(c)).
This is the basic and easy case of the classical Chern—Simons action?® in the arithmetic
setting.

Section 2 sets down some definitions for ‘manifolds with boundary,” that is, X as
above. In fact, it turns out that the Chern—Simons action with boundaries is necessary
for the computation of the action even in the ‘compact’ case, in a manner strongly
reminiscent of computations in topology (see [7, Theorem 1.7 (d)], for example).

That is, we will compute the Chern—Simons invariant of a representation p of 7
using a suitable decomposition

X“="XgU[U,Spec(OF,)]
and restrictions of 7 to X g and the Spec(Op, ).
To describe the construction, we need more notations. We assume that all primes
of F dividing n are in the finite set of primes S. Let

mg = m(Xs, b)

and .
my := Gal(F,/Fy)

equipped with maps
Iy i Ty —> Tg

given by choices of embeddings F < F,. The collection
{i v }v €S
will be denoted by is. There is a natural quotient map

KRs . TTg —> T.

3The authors realise that this terminology is likely to be unfamiliar, and maybe even appears pre-
tentious to number-theorists. However, it does seem to encourage the reasonable view that concepts
and structures from geometry and physics can be specifically useful in number theory.



86 H.-J. Chung et al.

Let
Ys(A) := Hom o (75, A)

and denote by M (A) the action groupoid whose objects are the elements of Ys(A)
with morphisms given by the conjugation action of A. We also have the local version

Y& (A) = [ [ Homeon (,, A)

ves

as well as the action groupoid J\/[ZS""(A) with objects Y é”"(A) and morphisms given
by the action of AS := [1,cs A conjugating the separate components in the obvious
sense. Thus, we have the restriction functor

rs : Mg(A) — MY“(A),
where a homomorphism p : mg — A is restricted to the collection
rs(p) = igp = (poiy)es-

We will construct, in Sect.2, a functor L from MZS""(A) to the %Z/Z-torsors as a
finite arithmetic version of the Chern—Simons line bundle [7] over M’S"C (A). To a
global representation p € Mgs(A), the Chern—Simons action will then associate an
element (Eq. (2.3))

CSc([pD) € L(rs(p)).

Now, given [p] € M(A), we pull it back to [p o ks] € Ms(A) and apply the Chern—
Simons action with boundary to get an element

CSc([poks)) € L([rs(po ks)]).

On the other hand, for each v € S, we can pull back p to a local unramified repre-
sentation
ol > —> A,

where 7" is the unramified quotient of 7,. The extra structure of the unramified
representation will then allow us to canonically associate an element

D (B € Llrs(p o k5))),

vesS
which can be interpreted as the Chern—Simons action of (p})"),es on U,esSpec(OF, ).

Theorem 1.1 (The Decomposition Formula) Let A be a finite group and fix a class
c e H¥(A,Z/nZ). Then
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CSe(lph) = Y (B)) — CSc(lp o kis])

vesS
for [p] € M(A).

Section4 is devoted to a proof of Theorem 1.1. The key point of this formula is
that CS.([p]) can be computed as the difference between two trivialisations of the
torsor, a ramified global trivialisation and an unramified local trivialisation.

In Sect. 5, we use this theorem to compute the Chern—Simons action for a class of
examples. It is amusing to note the form of the action when A is finite cyclic. That is,
let A=7Z/nZ,« € H' (A, Z/nZ) the class of the identity, and 3 € H*(A, Z/nZ)
the class of the extension

0 707 —"— 7/n*7 —— A — 0.

Then 3 = do, where § : H' (A, Z/nZ) = H' (A, A) — H*(A, Z/nZ) is the bound-
ary map arising from the extension. Put

c:=aUf=aUdac H*(A,Z/nZ).

Then
CS:([p)) = inv[p*(a) U dp* ()],

in close analogy to the* formulas of abelian Chern—Simons theory.

However, our computations are not limited to the case where A is an abelian
cyclic group. Along similar lines, we will provide an infinite family of number fields
F and representations p such that CS.([p]) is non-vanishing for [p] € M (A) with
a different class ¢ € H3(A, 7./27) and both abelian A (see Propositions 5.14, 5.16,
and 5.19) and non-abelian A (see Proposition 5.23).

In Sect.6, we provide arithmetic applications to a class of Galois embedding
problems using the fact that the existence of an unramified extension forces a Chern—
Simons invariant to be zero.

In this paper, we do not develop a p-adic theory in the case where the bound-
ary is empty. In future papers, we hope to apply local trivialisations using Selmer
complexes to remedy this omission and complete the theory begun in Sect.3. To
get actual p-adic functions, one needs of course to come to an understanding of
explicit cohomology classes on p-adic Lie groups, possibly by way of the theory of
Lazard [18]. Suitable quantisations of the theory of this paper in a manner amenable
to arithmetic applications will be explored as well in future work, as in [3], where a
precise arithmetic analogue of a ‘path-integral formula’ for arithmetic linking num-
bers is proved. In that preprint, a connection is made also to the class invariant
homomorphism from additive Galois module structure theory. A pro-p version of
this homomorphism is related to p-adic L-functions and heights, providing some
evidence for the speculation from [17].

4In fact, every cohomology class in H 3(A, 7Z/nZ) can be written as this form (cf. [25, Sect. 1.7]).
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2 The Arithmetic Chern—-Simons Action: Boundaries

We keep the notations as in the introduction. We will now employ a cocycle
c e Z3(A, Z/nZ) to associate a %Z/Z-torsor to each point of Yé""(A) in an AS-
equivariant manner. We use the notation

Cy=[]C (m. 2/nZ)

ves

for the continuous cochains,

zi=[]2'(m. 2/nZ) C C§

veS

for the cocycles, and

By =[] B'(m.Z/nZ) C Z§ C C§

vesS

for the coboundaries. In particular, we have the coboundary map (see Appendix
“Appendix 1: Conjugation on Group Cochains” for the sign convention)

d: Cé — Z;.
Let ps := (py)ves € Y{*(A) and put
¢ o ps = (c o py)es,
coAd, :=(coAd,)yes

for a = (ay)pes € AS, where Ad,, refers to the conjugation action. To define the
arithmetic Chern—Simons line associated to pg, we need the intermediate object

H(ps) := d~'(c o ps)/B; C C§/Bg.

This is a torsor for

1
H?:= 2 ~]1-
= [[H*(m. 2/n2) HnZ/Z
veS ves
([25, Theorem (7.1.8)]). We then use the sum map

1 1
2] ~Z/Z— ~L]Z

ves
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to push this out to a %Z/Z—torsor. That is, define

L(ps) := Z.[H (ps)]. @1
The natural map H (ps) — L(ps) will also be denoted by the sum symbol X.

In fact, L extends to a functor from M’S”C(A) to the category of %Z /Z-torsors. To
carry out this extension, we just need to extend H to a functor to H g-torsors. Accord-
ing to Appendices “Appendix 1: Conjugation on Group Cochains” and “Appendix 2:
Conjugation Action on Group Cochains: Categorical Approach”, for a = (ay)yes €
AS and each v, there is an element h,, € C*(A, Z/nZ)/B*(A, Z/nZ) such that

coAd,, =c+dh,,.

Also,
haubv = hal, o Adbu + hbv-

Hence, given a : ps — pf, so that py = Ad, o ps, we define
H(a) : H(ps) — H(p)
to be the map induced by
x> x' =x+ (hg, 0 pu)ves-
Then
dx’ = dx + (d(ha, © pv))ves = (¢ © pv)yes + (dha,) © pp)ves = (¢ 0 Adg, © py)yes-

So
x' ed ' (copy)/BE,

and by the formula above, it is clear that H is a functor.” That is, ab will send x to
X+ hap o ps,
while if we apply b first, we get
X+ hp o ps € H(Ad, o ps),

which then goes via a to

SWhile the functor H does depend on the choices of &, they are intrinsic to A, in that they are
cochains on A, not a priori related to the Galois representations. So we may regard them as part of
the data defining the field theory, similar to c.
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x—i—hbops—i—haoAdl,ops.

Thus,
H(ab) = H(a)H (b).

Defining
L(a) = X, 0o H(a)

turns L into a functor from M’S"C to %Z /Z-torsors. Even though we are not explic-
itly laying down geometric foundations, it is clear that L defines thereby an AS-
equivariant 1Z/Z-torsor on Y{**(A), or a 1Z/Z-torsor on the stack M (A).

We can compose the functor L with the restriction rg : Mg(A) — M’S”C (A) to get
an A-equivariant functor L#/® from Ys(A) to 1Z/Z-torsors.
Lemma 2.1 Let p € Ys(A) and a € Aut(p). Then L8 (q) = 0.

Proof By assumption, Ad,p = p, and hence, dh, o p = 0. Thatis, h, o p € H?(mg,
7./nZ). Hence, by the reciprocity law for H*(rg, Z/nZ) ([25, Theorem (8.1.17)]),
we get

Z.(hgop) =0.
By the argument of [7, p. 439], we see that there is a %Z/Z-torsor

L™ ([p])
of invariant sections for the functor L&°® depending only on the orbit [p]. This is the
set of families of elements
xp/ c Lg]()b(p/)
as p runs over [p] with the property that every morphism a : p; — p, takes x,, to
x,,. Alternatively, L™ ([p]) is the inverse limit of the L&'°(p') with respect to the
indexing category [p].
Since

H3(mg, Z/n7Z) =0

([25, Proposition (8.3.18)]), the cocycle ¢ o p is a coboundary
cop=dp (2.2)

for 3 € C*(rg, Z/nZ). This element defines a class

CS(lp)) == Z(Lis(B)D € L™ ([pD). (2.3)

A different choice 8’ will be related by

B =0+z
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for a 2-cocycle z € Z% (7, Z/nZ), which vanishes when mapped to L((p o i,)yes)
because of the reciprocity sequence

>, inv,

0 —— H*(ns, Z/n7Z) H? iz 0.

Thus, the class C S, ([p]) is independent of the choice of 3 and defines a global section
CS. € I'(Mg(A), L8Py,

Within the context of this paper, a ‘global section’ should just be interpreted as an
assignment of CS.([p]) as above for each orbit [p].

3 The Arithmetic Chern-Simons Action: The p-adic Case

Now fix a prime p and assume all primes of F' dividing p are contained in S. Fix a
compatible system ((,»), of p-power roots of unity, giving us an isomorphism

C:7Zy,=7,(1):= l(ir_n,upn.

n

In this section, we will be somewhat more careful with this isomorphism. Also, it
will be necessary to make some assumptions on the representations that are allowed.
Let A be a p-adic Lie group, e.g., GL,(Z,). Assume A is equipped with an open
homomorphism® ¢ : A — I' := Z:, and define A" to be the kernel of the composite
map
A—Z; — (Z/p"L)* =:T,.

Let
A® =N, A" = Ker(¢).

In this section, we denote by Ys(A) the continuous homomorphisms
p:ms —> A

suchthat? o pisapower x° of the p-adic cyclotomic character x of 7wy by a p-adic unit
s. (We note that s itself is allowed to vary.) Of course this condition will be satisfied
by any geometric Galois representations or natural p-adic families containing one.
As before, A acts on Yg(A) by conjugation. But in this section, we will restrict
the action to A* and use the notation Mg(A) for the corresponding action groupoid.
Similarly, we denote by Yé”“ the collections of continuous homomorphisms

For example, one may choose  to be the determinant when A = G L, (Z p)-
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ps = (py i Ty = A)yes

for which there exists a p-adic unit s such that f o p, = (x|r,)® for all v. Mls"”(A)
then denotes the action groupoid defined by the product (A®)S of the conjugation
action on the pg.

‘We now fix a continuous cohomology class

ce H (A, Z,II),
where
Zp[IM] = im Z,[1,].

n

We represent ¢ by a cocycle in Z3(A, Z,[[I"]]), which we will also denote by c.
Given p € Ys(A), we can view Z,[[I"]] as a continuous representation of g, where
the action is left multiplication via # o p. We denote this representation by Z,[[I"]],,.
The isomorphism ¢ : Z, ~ Z,(1), even though it’s not wg-equivariant, does induce
a Tg-equivariant isomorphism

G Tl = A =M ® Z,y(1).

Here, Z,[[1"]] written without the subscript refers to the action via the cyclotomic
character of mg (with s = 1 in the earlier notation). The isomorphism is defined as
follows. If f o p = x*, then we have the isomorphism

ZpllI' = Z,[[I' 11,
that sends ~y to v*. On the other hand, we also have
ZpI'l = A
that sends -y to v ® v((1). Thus, ¢, can be taken as the inverse of the first followed
by the second.
Combining these considerations, we get an element

(pop‘c=(,0cope Z3 (g, A).

Similarly, if ps := (py)ves € Yle¢, we can regard Z,[[I"]],, as a representation of m,
for each v, and we get 7,-equivariant isomorphisms

Coo 2 ZpllI']]y, = A.

We also use the notation
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G []Zoltrm,, =[] 4

ves vesS

for the isomorphism given by the product of the (,, .

It will be convenient to again denote by C ls (A) the product [, C (my, A) and
use the similar notations Z(A), Bi(A) and H{(A). The element ¢, o pic is an
element in Z3(A). We then put

H(ps, A) :=d " ({y 0 pisc)/B3(A) C C3(A)/B3(A).
This is a torsor for

H(A) ~ HHQ(WU, A).

ves

The augmentation map
a:A— Zy(1)

for each v can be used to push this out to a torsor

a,(H (ps, A))

for the group
[1#*G. 2,() ~[]%,.

ves ves

which then can be pushed out with the sum map

211z, - z,

ves

to give us a Z,-torsor

L(ps, Zp) := Xy(ax(H(ps, A))).

As before, we can turn this into a functor L(-, Z,) on MIS"C (A), taking into account
the action of (A*)5. By composing with the restriction functor

rs : Ms(A) — ME(A),

we also get a Z ,-torsor L8lob (., Z,) on Mg(A).
We now choose an element 3 € C*(rg, A) such that

dB=(,0cope Z(rs, A) = B(rs, A)

to define the p-adic Chern—Simons action
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CS.([p)) == Zua.iz(B) € L ([p], Z)).

The argument that this action is independent of 3 and equivariant is also the same as
before, giving us an element

CS. € I'(Ms(A), L8 (-, Z,)).

4 Towards Computation: The Decomposition Formula

In this section, we indicate how one might go about computing the arithmetic Chern—
Simons invariant in the unramified case with finite coefficients. That is, we assume
that we are in the setting of Sect. 1. We provide a proof of Theorem 1.1 in a slightly
generalized setting.

Let X = Spec(Or) and M a continuous representation of m = 71 (X, b) regarded
as a locally constant sheaf on X. Assume M = lim M; with M; finite representations
such that there is a finite set T of primes in O containing all primes dividing the
order of any |M;|. Let U = Spec(Op, 1), 77 = m (U, b), and 7w, = Gal(fv/Fv) for
a prime v of F'. Fix natural homomorphisms

Kt .7 — 1w and K, : T, —> 7.
We denote by pr (resp. p,) the composition of k (resp. k,) with
p € Homeg, (7, M).

Finally, we write 3, for the maximal ideal of OF corresponding to the prime v and
ry for the restriction map of cochains or cohomology classes from 7 to 7.
Denote by C (7, M) the complex defined as a mapping fiber

CX(rwr, M) := Fiber[C* (77, M) — l_[ C*(my, M)].

veT

So
Cl(r, M) = C"(r, M) x [ [ €"(my, M),

veT

and
d(a, (by)ver) = (da, (ry(a) — dby)yer)

for (a, (by)ver) € CX(mr, M). As in [10, p. 18—-19], since there are no real places in
F, there is a quasi-isomorphism

Ci(mr, M) =~ RI(X, jij*(M)),
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where j : U — X is the inclusion. But there is also an exact sequence
00— jij*(M) — M — i, i* (M) —0,

wherei : T — X is the closed immersion complementary to j. Thus, we get an exact
sequence

[T H?(ky, i*(M)) — H3(CX(mr, M)) — H*(X, M) — ] H?(k,,i*(M)),

veTl veTl
where k, := Spec(Or/,), from which we get an isomorphism
H}(U, M) := H*(C} (7, M)) ~ H (X, M),

since k, has cohomological dimension 1.
We interpret this as a statement that the cohomology of X

H3 (X, M)

can be identified with cohomology of a ‘compactification’ of U with respect to
the ‘boundary, that is, the union of the Spec(F,) for v € T. This means that a
class z € H3(X, M) is represented by (a, (b,)yer), Where a € Z3(ny, M) and b, €
C?(m,, M) in such a way that

db, = ry(a).

There is also the exact sequence

— H*(rp, M) —— [ H* (7, M) —— HC3(U, M) ——0,
veT

the last zero being H3(U, M) := H*(wr, M) = 0. We can use this to compute the
invariant of z when M = p,,. (Note that F contains u, and hence it is in fact iso-
morphic to the constant sheaf Z/nZ.) We have to lift z to a collection of classes
x, € H*(m,, ;) and then take the sum

inv(z) = Zinvu(xv).

This is independent of the choice of the x, by the reciprocity law (cf. [20, p. 541]).
The lifting process may be described as follows. The map

[1H?Gros ) — HZ(U. i)

veTl
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just takes a tuple of 2-cocycles (x,)yer to (0, (xy)yer). But by the vanishing of
H3(U, ), given z = (a, (b_ ,)yer), we can find a global cochain b € C%*(nr, L)
such that db, = a. We then put

Xy 1= b*,v - ru(b+)~

Note that (0, (x,)yer) is cohomologous to z = (a, (b— ) yer)-
As before, we start with a class ¢ € H*(A, p,) ~ H3(A, Z/nZ). Then, we get a
class
z=jop"(c) € H¥ (X, ),

where j' : H (7, u,) — H'(X, p1,) is the natural map from group cohomology to
étale cohomology (cf. [22, Theorem 5.3 of Chap. I]). Let w be a cocycle representing
p*(c) € H3(rm, p,). Let I, C , be the inertia subgroup. We now can trivialise K (w)
by first doing it over 7, /I, to which it factors. That is, the b_ ,, as above can be chosen
as cochains factoring through m,/1I,. This is possible because H3(m,/I,, it,) = 0.
The class (k% (w), (b—,,)ver) chosen in this way is independent of the choice of the
b_ . Thisisbecause H 2 (my/ Iy, p,) is also zero. The point is that the representation of
zas (K} (w), (b— y)ver) withunramified b_ , is essentially canonical. More precisely,
given K3 (W)|(x,/1,) € Z3(my/1,, ), there is a canonical

b—,v € Cz(ﬂ'v/lv, Mn)/Bz(ﬂ'v/IUv fhn)

such that db_ , = K} (w)|(,,1,)- This can then be lifted to a canonical class in

C*(Ty, tin)/ B> (7o, in).

Now we trivialise k7 (w) globally as above, that is, by the choice of b, € C%(rr, L)
such that db, = s} (w). Then (b_, — b, ,)ver Will be cocycles, where b, , :=
ry(b4), and we compute

inv(z) = D invy(boy = ba).

veT

Thus, for a given homomorphism p : m — A, it suffices to find various trivialisations
of p*(c) after restriction to 7 and to 7, forv € T.

e We are free to choose a finite set 7 of primes in a convenient way as long as 7'
contains all primes dividing n. And then, for any v € T, solve

db_ ., = p}(c) € Z*(my, fin)-

In fact, b_, comes from an element in C*(my/ 1, 1t,) by inflation, so b_ , is
unramified.
e For chosen T, solve
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db, = pi(c) € Z(mr, ),

and we set by, = r,(by) € C*(my, n)-

Then, we have the decomposition formula

CSe(lph) = Y invy([b_y — by]). ()

veT

In the case M = p,, and S = T, a finite set of primes in O containing all primes
dividing n, a simple inspection implies that

D invy(lb-y — by =Y (By) = CSellpo ks)).

veTl ves

Thus, the formula () provides a proof of Theorem 1.1. In general, b_ , and b, ,

are not cocycles but their difference is. This corresponds to the fact that ) (/3,) and
vesS

CS.([p o ks]) are not an element of %Z /7 but their difference is.
A few remarks about this method:

1. Underlying this is the fact that the compact support cohomology H? (U, 1,,) can
be computed relative to the somewhat fictitious boundary of U or as relative coho-
mology H3(X, T; j1,). Choosing the unramified local trivialisations corresponds to
this latter representation.

2. To summarise the main idea again, starting from a cocycle z € Z3(r, p,) we
have canonical unramified trivialisations at each v and a non-canonical global rami-
fied trivialisation.

The invariant of z measures the discrepancy between the unramified local trivial-
isations and a ramified global trivialisation.

The fact that the non-canonicality of the global trivialisation is unimportant fol-
lows from the reciprocity law (cf. [20, p. 541]).

3. The description above that computes the invariant by comparing the local
unramified trivialisation with the global ramified one is a precise analogue of the
so-called ‘gluing formula’ for Chern—Simons invariants when applied to p*(c) for a
representation p : m — Z/nZ and a 3-cocycle c on Z/nZ.

S Examples

In this section, we provide several explicit examples of computation of C S.([p]). We
still assume that we are in the setting of Sect. 1.
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5.1 General Strategy

To compute the arithmetic Chern—Simons invariants, we essentially use the decom-
position formula () in Sect. 4. The most difficult part in the above method is finding
an element b, € C?(nr, 1) that gives a global trivialisation.
To simplify our problem, we assume that a cocycle ¢ € Z3(A, u,) is defined by
the cup product:
c=aUe,

where a € Z'(A, 1) = Hom(A, y,,) and € € Z>(A, Z/nZ) is a cocycle represent-
ing an extension

E:0 Z/n7Z r——A 1.

We note that if we take a section o of ¢ that sends e4 to e, then
ex,y)=c(x)-0(y)-oxy) e Kerp =Z/nZ
(cf. [30, p. 183]). As discussed in Sect. 1, this assumption is vacuous if A = Z/nZ.

To find b_ , and b, , in the decomposition formula (), we first trivialise € in ,
and 77, respectively. Namely, let

dy_, =pj(e) and dvy, = pr(e).
Here, the precise choice of y_ ,, will be unimportant, except it should be unramified

and normalised so that v_ ,(e4) = 0. Hence, we will be inexplicit below about this
choice. Again, let v, , = r,(74). Then, we have

d(py () Uy_y) = —py(a) Udy_, = —p,(aUe) = —p;(c)

and
d(pr () Ury) = —pp() Udyy = —pp(aUe) = —p7 (o).

Therefore, we can find
b_y=—py(@Uv—y and by, =ry(by) = rv(—Pﬂ;"(Oé) Urg) = —pp (@) Urg v,

In summary, we get the following formula.

Theorem 5.1 For p and c as above, we have

CSelpl) := CSiey(lph) = Y _ invy(p} (@) Uthy), GRY;

veTl

where ¥, = V1., — Y- € Z'(my, Z/nZ) = H'(r,, Z/n7Z) = Hom(r,, Z/nZ).
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So, to evaluate the arithmetic Chern—Simons action, we need to study

e atrivialisation of certain pullback of a 2-cocycle ¢, and
e the local invariant of a cup product of two characters on .

In the following two subsections, we will see how this idea can be realised.

5.2 Trivialisation of a Pullback of €

As before, let € € Z>(A, Z/nZ) denote a 2-cocycle representing an extension

E: 0 Z/n7. r A 1

with a section o such that o(ey) = er.
Suppose that we have the following commutative diagram of group homomor-
phisms:

~

Ker(f) &—— A
f\l(er(f) - 7 lf %)
Z/nZ % A

Then, we can easily trivialise f*(e) € Z2 (Z , Z/nZ) using the following lemma.

Lemma 5.2 Forany g € A, let

v(g) == 0o(f(g) - fle)~".

Then, v(g) € Ker(p) = Z/nZ and dvy = f*(e) € ZZ(AV, Z./nZ). Furthermore, we
have y(ez) = 0 and (g - h) = v(g) + ~y(h) for any g, h € Ker(f).

Proof First, we note thaty(g) € Ker(y) because ¢ o o is the identity and ¢ o f = f.
By definition and the fact that Ker(¢) is in the center of I,

dy(x,y) =) vy v = () v x) -y xy) !
={o(fO) - FO Ao (f @) - FO T} {o(fGy) - Fam ™!
={o(fO) - fOM - o(f@) - FOO)™ f@) - ) - o(fay) ™!
=o(f@) {a(f O - O FO) - a(fy)™

a(f(x) - a(f) - a(fx-y)~"

@@, y).
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Therefore the first claim follows. Also, v(ez) = 0 because o (f (e5)) = o (ea) = er
and f(eA) = er. Finally, for any g € Ker(f), v(g) = —f(g) so it is a homomor-
phism because f is a homomorphism and the image of f |Ker( r)» Which is contained
in Z/nZ, is abelian.

Remark 5.3 In Diagram (x), we can take A=T, f =pand fis the identity. For
the rest of this section, we always fix such a choice.

5.3 Local Invariant Computation

In this subsection, we investigate several conditions to ensure
. 1
inv, (6 U ) #0 € ~Z/Z,
n

where ¢ € H'(my, pt,)=Hom(my, 1) and ¢ € Z'(n,, Z/nZ) = Hom(n,, Z/nZ).

Lemma 5.4 Suppose that ¢ is unramified, i.e., ¢ factors through m,/I,. Then,
invy(pUy) =0

if one of the following holds.

1. ¢ =1, the trivial character.
2. 1) is unramified.

Proof 1f ¢ = 1,then ¢ Uy =0 € H*(m,, ). Thus, inv, (¢ U 1)) = 0. Also, if 9 is
unramified, then ¢ U ) arises from H 2(m, /1, ) by inflation, which is 0. Therefore,
dU =0 e H*(m,, jtp) and the result follows.

If v does not divide n, then we can prove more.

Lemma 5.5 Assume that v does not divide n. And assume that ¢ is an unramified
generator of Hom(m,, u,), i.e., a generator of Hom(m, /1, ). Then,

inv, (¢ Uy) # 0 < v is ramified.
Proof Using a fixed primitive nth root ¢ of unity, we fix an isomorphism

n:L/nl ——

a ——

and using 7, we get natural isomorphisms
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no(=)
e - =
Hom(m,, 1Z/Z) +—— Hom(r,, Z/nZ) Hom (7, fin).
-

nto(—)

In this proof, we will regard ¢ as an element of Hom(,, %Z/Z) and ) as one of
Hom(m,, pt,) using the above isomorphisms.

If v is unramified, inv,(¢ U 1) = 0 by the above lemma. Since pu, C F,, by
the Kummer theory we can find an element a € F;' such that d(a) = ¢, where 0 :
F:/(F:)n = Hl(ﬂ—vv ,U/n) = Hom(m,, Nn) Let

ord, : F} — Z
be the normalized valuation on F that sends a uniformiser w of Op, to 1. Then,
1 is ramified <= ord,(a) #0 (mod n).

Since ¢ is an unramified’ generator, ¢(Frob) = % for some t € (Z/nZ)*, where
Frob is a lift of the Frobenius in 7, /I, to 7,. Then,

t-ord,(a)
" .

inv, (¢ U ) = invy(¢ U d(a)) = ¢(Frob”®@) =
Combining the above two results, we obtain

1 is ramified <= inv,(¢ U ) # 0

as desired.

Remark 5.6 When n = 2, the above lemmas are enough for the computation of
local invariants.
5.4 Construction of Examples

From now on, we assume that n = 2.
As a corollary of Sect.5.2, if we have the following commutative diagrams

This is where our assumption that v {  is used.
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P+

T r

P
—
and l \ lv (%)

’

3
A
1AL

then we get
Y+ = (P (M and y_, = (5 ().

Thus we can explicitly compute CS.([p]) using the previous strategy when we
are in the following situation:

Assumption 5.7

1. F is atotally imaginary field.
2. c=aUewitha: A — pup surjective, and € representing an extension

E: 0 7./27 r A 1.
3. There are Galois extensions of F:
FCF*CF"cF*

such that

e Gal(F""/F) is isomorphic to A and F""/F is unramified everywhere.

e Gal(F*/F) is isomorphic to I" and F*/F is unramified at the primes above
2.

e F“is the fixed field of the kernel of the composition

Gal(FY/F) —> A — 11,
and hence we get a commutative diagram
/ }\
7 Gal(F"/F) — Gal(F*/F) — 11,.
Suppose we are in the above assumption. Let S be the set of primes of O ramified
in F*,and S, the set of primes of O dividing 2. Then by our assumption, S N S, = ¢.

Let T = SUS,. Then, we can find a global trivialisation v of pj.(e) from the
following commutative diagram
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7,27 ~ Ker(¢) = Gal(F*+/F) —— Gal(F*/F)

Blker(o) =Ld e ¢=Id lqﬁ

—
—
—

72— I ~Gal(F*/F) — % A ~ Gal(F"/F).

For each v € T, let D(v) be the decomposition group of Gal(F*/F) at v. In other
words,
D(v) ={g € Gal(F"/F) : gv = v} >~ Gal(F,} / F,),

where v is a prime of FT lying above v. And let I (v) be the inertia subgroup of
D(v). Then, I (v) = 0 if and only if v divides 2. Thus,

Y4,y 1 unramified <= v € S,.
Since 1, := v+, — 7-.» and we always take y_ , unramified,
1, 18 unramified <= v € S.

Furthermore,
Py () is trivial <= f(D(v)) =0,

where f is the natural projection from Gal(F*/F) to Gal(F*/F). And f(D(v)) =0
exactly occurs when v splits in /. Note that p} («) is always an unramified generator
of Hom(,, p,) if it is not trivial.

Now we are ready to compute the arithmetic Chern—Simons invariants.

Theorem 5.8 Suppose we are in Assumption 5.7. Then,

r

CSe(lph = Y invu(py(@) Uh) = > mod Z,

veT

where V, = 4., — Y— and r is the number of primes in S which are inert in F°.

Proof The first equality follows from Theorem5.1. Thus, it suffices to compute
inv, (pf(a) U, for v e T. By Lemma5.4, inv, (p} () U 1,) = 0 if either p} ()
is trivial or v, is unramified. By the above discussion, p}(c) is trivial if and
only if f(D(v)) =0, ie., v splits in F*; and ¢, is unramified if and only if
v € 5. Furthermore, if p}(c) is not trivial and 1), is ramified, then by Lemma35.5,
inv, (p} (o) Upy) = % Thus the result follows.

Therefore to provide an example of calculation of the arithmetic Chern—Simons
invariants, it suffices to construct a tower of fields satisfying Assumption 5.7, which
is essentially the embedding problem in the inverse Galois theory. Instead, we will
consider the similar problems over Q, which are much easier to solve (or find from
the table). Then, we will construct a tower satisfying Assumption 5.7 from a tower
of fields over Q.
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Assumption 5.9 Suppose we have a number field L with its subfield K such that

Gal(L/Q) ~T.

d; , the (absolute) discriminant of L, is an odd integer.8
Gal(K/Q) ~ A.

Q(WD)isa quadratic subfield of K, where D is a divisor of dg .’
K /Q(+/D) is unramified at any finite primes.

RARE i

Then, we have the following.

Proposition 5.10 Let F = Q(/—|D| - t) be an imaginary quadratic field, where t
is a positive squarefree integer prime to D so that F N L = Q. Then, there is a tower
of fields F C F* C F7 satisfies Assumption 5.7. In fact, we can take

F"=KF and F*'=LF.
Proof First, it is clear that F is totally imaginary. Next, since F N L = Q
Gal(LF/F) ~Gal(L/Q) ~T" and Gal(KF/F) >~ Gal(K/Q) >~ A.

Since the discriminant of L is odd, L/K is unramified at the primes above 2, and so
is LF /K F. Finally, it suffices to show that K '/ F is unramified everywhere. Since
K /Q(+/D) is unramified everywhere, K /Q is only ramified at the primes dividing
D. (Note that the discriminant of K is odd, hence it is unramified at 2.) Moreover,
the ramification degree of any prime divisor p of D is 2, and the same is true for
F/Q. Since p is odd, K F/F is unramified at the primes above p by Abhyankar’s
lemma [5, Theorem 1], which implies our claim.

Remark 5.11 Since the ramification indices of any prime divisor p of D are 2 in
both F/Q and K /Q, we can use Abhyankar’s lemma in both directions. (Note that
our assumption implies that D is odd.) In other words, K /K is always unramified
at the primes dividing D.

The remaining part to check Assumption5.7 is the choice of F*®. Let

BZZ{FI,...,Fm}

be the set of quadratic subfields of F'". Then, there is one-to-one correspondence
between the set of surjective homomorphisms Gal(F""/F) — p, and B. Therefore

8We may consider when d, is even. Then later, it is not clear that FL/FK is unramified at the
primes above 2. Some choices of ¢ (for F') can make it ramified. Then, it is hard to determine the
value of local invariants unless 2 splits in F/F.

9Here, we always take that dg is odd because we cannot use Abhyankar’s lemma when p = 2, and
hence we may not remove ramification in the extension F K /F' at the primes above 2. In some nice
situation, we may directly prove that F(+/D)/F is unramified at the primes above 2 even though
D is even. If so, our assumption on dx can be removed.
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m = #Hom(A, ) — 1 and we can define «; : A — i so that F* = F; due to the
(chosen) isomorphism Gal(F"/F) ~ A.

Now, suppose F* = F(v/M) C F" for some divisor M of D.Let Q; = Q(v/ M)

and Q, = Q(+v/N), where N = (—|D| - )/ M. Then, we have the following commu-
tative diagram:

F® = F(vM) = F(~/'N)

/ unramN

Q) = QWM) F=QWMN) Q, = Q(/N)

\\\\\\\\Q////////

For a prime p, let g denote a prime of OF lying above p. We want to understand the
splitting behaviour of g in F°.

Lemma 5.12 Let p be an odd prime.

1.

Assume that p divides Dt. Then

g is inert in F* <= p is inert either in Q; or in Q,.

2. If pisinertin F, then g always splits in F°.
3. Assume that p splits in F. Then

g splits in F* < p splits in Q;.

Proof

1.

In this case, p is ramified in F, and p is ramified either in Q; or in Q,. Without
loss of generality, let p is ramified in Q,. Then, g is inert in F¢ if and only if p
is inert in Q; from the above commutative diagram.

Let (%) denote the Legendre symbol. If p isinertin F, then (@) = —1. Therefore
either (%) =lor (%) = 1. Without loss of generality, let (%) = 1and (%) =—1.
Then, p splits in Q; and hence there are at least two primes in F* above p. Since
g 1is the unique prime of F above p, g splits in F°.

. Since (@) = 1, either (%) = (%) =1or (M) = (%) =—1.1f (%) = —1, then

. . . 4 . .
there is only one prime in Q; above p. Thus, there are at most two primes in

F> above p. Since p already splits in F, g is inert in F'*. On the other hand, if
(%) = 1, then p splits completely in F“ because p splits completely both in Q,
and F. Thus, g splits in F°.

Let Dy, = d; /d% be the norm (to Q) of the relative discriminant of L/K . Then, L/ K
is precisely ramified at the primes dividing D, and hence
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S C {p € Spec(Or) : p | DL}

(Note that S is the set of primes in O that ramify in F*.) Let s be the number of
prime divisors of (D, D), which are inert either in Q; or in Q. Then, we have the
following.

Theorem 5.13 Assume that we have p and c as above. Then,

CS.([ph == (mod Z).

s
2
Proof First, we show that

S ={p eSpec(OF) :p | D, but ptr}.

For a prime divisor p of D; which does not divide ¢, we show that K F/K is
unramified at any primes above p, which implies that LF /K F is ramified at the
primes above p. If p does not divide D, then this is done because p is unramified
in F. On the other hand, if p divides D, K F/K is unramified at the primes above
p by Remark 5.11. Now, assume that p divides (Dy,t), and let g be a prime of
Ok lying above p. Then, g is ramified both in L/K and in K F/K. (Note that since
(t, D) = 1, K/Qis unramified at p but F/Q is ramified at p.) Therefore by the same
argument as in Remark 5.11, LF /K F is unramified at the primes above p, which
proves the above claim.

Next, by Theorem 5.8 it suffices to compute the number of primes in S which are
inert in F*. Let g € S be a prime above an odd prime p. Assume that p does not
divide D. (Then p is unramified in F.) If p is inert in F, then g always splits in F*
by Lemma 5.12.If p splitsin F and pOr = g - ', then g isinert (in F*) if and only
if o’ is inert. Therefore to compute the invariant, the contribution from such split
primes can be ignored. So, we may assume that p divides D. Then, there is exactly
one (ramified) prime g in Of above p, and our claim follows from Lemma5.12.

We remark that the computation of s is completely easy because Q;/Q and Q,/Q
are just quadratic fields. And this also illustrates that we only need information on
the primes dividing (D, D) for the computation.

5.5 Case I1: Cyclic Group

Let A =7Z/27Z,and I' = 7Z/4Z. Then, we can easily find Galois extensions L/K /Q
in Assumption 5.9 by the theory of cyclotomic fields.

Let p be a prime congruent to 1 modulo 4. Then, we can take L as the degree 4
subfield of Q(y,), and K = Q(,/p). Moreover, d; = pPanddg = p.

Let F = Q(y/—p - 1), where ¢ is a positive squarefree integer prime to p. (Then,
FNL=Q)
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Proposition 5.14 Let p and ¢ be chosen so that F® = F* = FK and F* = FL.

Then,

1
CS.lph = 5 = (%) _ 1

Proof By Theorem 5.13, it suffices to check whether p is inert in Q(4/—t). If it is
inert, then CS.([p]) = %, and O otherwise. Since p = 1 (mod 4), the result follows.

5.6 Case 2: Non-cyclic Abelian Group

Let A = Vy 1= Z/27 x 7Z/2Z, the Klein four group, and I" = Qg = Q, the quater-
nion group. To find Galois extensions L/K/Q in Assumption 5.9, we first study
quaternion extensions of QQ in general.

Proposition 5.15 Let L/Q be a Galois extension whose Galois group is isomorphic
to Q. Suppose that dy, is odd. Let K be a subfield of L with Gal(L/K) ~ 7Z/27. Then,

1. K = Q(/d1, /d>) for some positive squarefree d, and d».
2. dl = d2 =1 (mod 4)
3. Let p be a prime divisor of did,. Then, p divides Dy := dL/dIZ(.

Proof Since K is asubfield of L, dk is also odd. And since Q has aunique subgroup of
order 2, which is normal, K /Q is Galois and Gal(K /Q) =~ Z /27 x 7Z/27. Therefore
K = Q(J/dy, v/d), where d; and d, are products of prime discriminants. If L is
totally real, then K must be totally real as well. If L is not totally real, then the
complex conjugation generates a subgroup of Gal(L/Q) of order 2. Since Q has a
unique subgroup of order 2, K must be a fixed field of the complex conjugation, which
implies that K is totally real. So, d; and d, can be taken as positive squarefree integers.
Moreover, since they are products of prime discriminants and odd, d, =d, = 1
(mod 4).

Finally, let p be a prime divisor of d;, which does not divide d,. Note that
Q(/d)) C K C L and L/Q(+/d)) is a cyclic extension of degree 4. Since p does
not divide d», Q(/d>)/Q is unramified at p and hence K /Q(+/d>) is ramified at the
primes dividing p. By [19, Corollary 3], L/K is ramified at the primes above p and
hence p divides D . By the same argument, the claim follows when p is a divisor
of d,, which does not divide d;. Let p be a prime divisor of (d;, d,). Then, since

K = QWdi, Vdy) = QW/dy, Vdidy) = Q(V/dy, \/48) and p does notdivide £,

p
the result follows by the same argument as above.

Now, let d; and d, be two squarefree positive integers such that

e d =d,=1 (mod 4).
o (dy,dpr) =110

10Thjs is not a vacuous condition. In fact, there is a Q-extension L containing Q(+/21, 4/33) [35].
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Let K = Q(/dy, v/d>). Suppose that there is a number field L such that

e L/Q is Galois and Gal(L/Q) ~ Q.
e L contains K and the discriminant d; of L is odd.

Let F = Q(/—d d; - t), where t is a positive squarefree integer prime to d;d. Then
L N F = Q because all quadratic subfields of L are contained in K, which is totally
real. Since Hom(A, u,) is of order 4, there are three quadratic subfield of F K over

F:
Fi = F(d)), F = F(/dy),and F; := F(\/didy) = F(v/=1).

Proposition 5.16 Let p and c; = «; U € be chosen so that F* = F;, F*" = FK and
Ft = FL. Then,

CS.,([p]) = % =1T] <_d2't> <[] (d_l) -1

iy NP pld NP
1 d —d -t
CSup) =5 = [[(Z) < [[(——)=-1
2 p p
pld pldy

1 —
CSuloh =5 = ] (i) _—
pldidy

Proof By the above lemma and Theorem 5.13, it suffices to compute the number of
prime divisors of dyd,, which are inert in Q; or in Q.

First, compute CS, ([p]). In this case, Q; = Q(+/d)) and Q; = Q(v/—d, - 1). If

p is a divisor of d, it is inert in QQ, if and only if

()

Therefore, the number of such prime divisors of d; is odd if and only if

(%)

pldi p

Similarly, the number of prime divisors of d,, which are inert in Qy, is odd if and

only if
1_[ (d_1> =—1

plas NP

Thus, we have

1 —d, - d
es.oh =5 = TT(Z2) < 1(%) = -1
P plda

pld, p
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The remaining two cases can easily be done by the same method as above.

We can find Galois extensions L/ K /Q satisfying the above assumptions from the
database. Here, we take L /K /Q from the LMFDB [36] as follows. Let

g(x) = x8 — x7 +98x% — 105x7 + 3191x* + 1665x> + 44072x? + 47933x + 328171

be an irreducible polynomial over @, and § be a root of g(x). Let
L=0Q) and K = Q+/5,29).

So, d; = 5 and dy = 29. Moreover, D; = 3% - 52 . 292,
Let F = Q(+/—5-29 - r), where ¢ is a positive squarefree integer prime to 5 - 29.

Corollary 5.17 Let p and c; = o; U € be chosen as above. Then,

CSo(lpD) = ~ = <5> C lesi=42 (mod5).

[\

5

p—

t

cs ([]_1 t _ t
=3 = (5)=-)

Now, we provide another example. Let L/ K /Q from the the LMFDB [37] as follows.
Let

[\

g(x) = x® — x7 — 34x% + 29x° 4+ 361x* — 305x> — 1090x2 + 1345x — 395
be an irreducible polynomial over @, and § be a root of g(x). Let
L=Q() and K = Q(/5,21).

So, d; = 5 and dy = 21. Moreover, D; = 3% - 5% .72
Let F = Q(+/—105 - 1), where ¢ is a positive squarefree integer prime to 105.
Corollary 5.18 Let p and c; = o; U € be chosen as above. Then,

CS. ([pD) = % — <%> =—-1&t=12 (mod)>5).

1 t t
CS.,([pD = 5 — <§) = —<§> < 2,8,10,11,13,19 (mod 21).

Cs, _ ! Y (R (5 =

Now, we take A = Vy, but I' = Dy, the dihedral group of order 8. We found L/ K /Q
from the LMFDB [38] as follows. Let
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g(x)=x8—3x7+4x6—3x5+3x4—3x3+4x2—3x+l

be an irreducible polynomial over QQ, and 3 be a root of g(x). Let
L=Q() and K =QW-3,v-T7).

If we take D = 21, then this choice satisfies Assumption 5.9. Moreover, d;, = 36.74
and dg = 3% 7%

Let F = Q(+~/—21-1), where ¢ is a positive squarefree integer prime to 21.
(Then, F N L = Q because all imaginary quadratic subfields of L are Q(+/—3) and
Q(+v/=7).) Since Hom(A, 11») is of order 4, there are three quadratic subfield of F K
over F:

Fi = F(W=3), F, := F(~=7),and F; := F(~/21).

Proposition 5.19 Let pand c; = o; U € be chosen so that F* = F;, F*" = FK and
F* = FL. Then,

CS., ([pD) = % — (%) =—-1l¢<=t=2 (mod3).
CS.,([pD) = % forallt.
CS.,([pD) = % = (%) =l<t=1 (mod3).

Proof Since D; = 32, the result follows from Theorem 5.13.

5.7 Case 3: Non-abelian Group

Let A =S,, the symmetric group of degree 4. Then, H'(A, u) >~ Z/27 and
H?(A,7Z/27) ~ 7./]27 x 7.J27. Thus, there is a unique surjective map « : A —» 1o
and three non-trivial central extensions I'; of A by Z/27Z:

o I} =278, >~ GL(2, F3), the general linear group of degree 2 over 5.
o [ =275, the transitive group ‘16765’ in [33].
o I3 = 2%S, corresponding to the cup product of the signature with itself.

Let ¢; be a cocycle representing the extension

0 7/2Z r A=5S ——0.

In this subsection, we will consider the first two cases. There are another descriptions
of the groups I and I. Let
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E:1——SLQ2,F3) —— ' ——F; ~Z/2Z ——0.

If € splits, then I" >~ I, otherwise I" =~ 1.

Letc = aUe€;.(So, I" = I1.)Suppose Q C QD) C K C Lisatoweroffields
satisfying Assumption 5.9. Let F = Q(./—|D] - ), where ¢ is a squarefree integer
prime to D and greater than 1. Then, FNL = F N (@(\/5) = Q. (The first equality
holds because I" has a unique subgroup of order 24.)

Proposition 5.20 Let p and ¢ be chosen so that F* = F(/D), F* = FK and
FT = FL. Then,

CS.(pD) = 0.

Proof Since the extension

€:1——SL(Q2,F3) — GL(Q2,F3) —— F} ~ Z/2Z — 0

splits, Gal(L/Q) ~ Gal(L/Q(v/D)) x Gal(Q(+/D)/Q).

Let p be a prime divisor of (D, D). By our assumption, p is odd. Let I, be
an inertia subgroup of Gal(L/Q) ~ I' = GL(2, ;). Since L/K and Q(D)/Q are
ramified at p but K /Q(+/D) is not, the ramification index of p in L/Q is 4, and
I, = 7/27 x 7./27.

On the other hand, since p is odd, L /Q is tamely ramified at p and hence /,, must
be cyclic, which is a contradiction. Therefore (D, D) = 1 and hence the result
follows by Theorem 5.13.

We can find several examples of such towers from the LMFDB. Let

g1(x) = x¥ —4x7 4+ 7x% + 7x% — 51x* +50x° + 61x% — 107x — 83

gz(x)=x4—x—1

be irreducible polynomials over Q [39, 40], and let L (resp. K ') be the the splitting field
of g1 (x) (resp. g2(x)). Then, Gal(L/Q) ~ GL(2, F3) and Gal(K /Q) >~ S4. More-
over, d; = 3%*-283%* and dx = 283'%. Thus, D = —283 satisfies Assumption 5.9.
Note that since the discriminant D of g,(x) is squarefree, K/ Q(\/B) is unramified
everywhere (cf. [12, p. 1]).

Let F = Q(+/—283 - t), where ¢ is a squarefree integer prime to 283, and ¢ > 1.

Corollary 5.21 Let p and ¢ be chosen so that F* = F(/—283), F" = FK and
FT = FL. Then,

CSe([pD) = 0.
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Now, we consider another case. Let c = a U €. (So, I" = I3.) Let L be the splitting
field of

F) = x4+ 5515 —790x'* — 4654x 13 + 234254x'2 + 1612152x ! — 33235504x 10
— 263221982x° + 2331584048x® + 21321377994x” — 74566280958x° — 825209618478x°
+922238608476x* + 13790070608536x> — 6704968288135x> — 80794234036917x + 87192014930816.

Let K be the splitting field of
g(x) =x*—x* —4x* +x +2.

Then, Gal(L/Q) >~ I' = I'; and Gal(K /Q) >~ S; = A." (See [33, 34].)
Lemma 5.22 We have the following.

1. K/Q(\/2777) is unramified everywhere.

2. Q(/2777) is a unique quadratic subfield of L.

3. QW2777) C K C L.

4. Dy is a multiple of 2777, i.e., L/K is ramified at the primes above 2777.

Proof For simplicity, let E := Q(+/2777) and p = 2777.

1. Since S4 has a unique subgroup of order 12, K has a unique quadratic subfield
K’. Since the discriminant of g(x) is p, a prime, K’ = E and K /E is unramified
everywhere (cf. [12, p. 1]).

2. Let §; be the roots of f(x). Then, L = U Q(5;). Since the discriminant of the
field Q[x]1/(f(x)) is p'?, Q(B;) contains E, and so does L. On the other hand,
since I" has also a unique subgroup of order 24, E is a unique quadratic subfield
of L.

3. Since

f(x) = (x +1372)% - (x +179D)* - (x + 1822)* - (x +2653)* (mod p),

the ramification index of p in Q(3;)/Q is 4. Since L = U Q(3;) and p is odd,
the ramification index of p in L/Q is 4 by Abhyankar’s lemma. Since L/Q is
tamely ramified at p, the inertia subgroup 7, of Gal(L/Q) =~ I is cyclic of order
4. Since I" has a unique subgroup C of order 2, I, contains C. Thus, L/M is
ramified at the primes above p, where M is the fixed field of C in L. Since E/Q
is also ramified at p, M/ E is unramified at the primes above p, and hence M/E
is unramified everywhere.

"' This example is provided us by Dr. Kwang—Seob Kim.
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> ramified only at the primes above p
unique Ss-subextension

L
M
> unramified everywhere A4-extension

unique quadratic subextension — E
‘ > ramified only at p

Q

Now, it suffices to show that K = M.Let N = K N M. Then, since K and M are
Galois over E, so is N. Also since the normal subgroups of Gal(K /E) ~ A4 =~
Gal(M/E) are either {1}, V4 or Ay,

Gal(N/E) ~ either {1}, Z/3Z or As.

Note that the class group of E is Z/37Z. Let H be the Hilbert class field of E.

Then, the class group of H is Vy. (This can easily be checked because the degree of

H/Qissmall.) If Gal(N/E) >~ {1}, then E has two different degree 3 unramified

extensions given by K ¥* and M "*, which is a contradiction. If Gal(N / E) ~ Z/37,

then N = H and N has two different unramified V, extensions K and M, which

is a contradiction. Thus, Gal(N/E) >~ A4 and hence K = N = M, as desired.
4. This is proved in (3).

Thus, we can take D = 2777. Let F = Q(+/—2777 - t) for a positive squarefree
integer ¢ prime to 2777. Then, F N L = Q because L has a unique quadratic subfield
Q(+/2777), which is real.

Proposition 5.23 Letr p and ¢ be chosen so that F* = F (WD), F" = FK and
F*™ = FL. Then,

1 —t1 1t
CSc([pD) = 5 — <ﬁ> = (ﬁ) =

Proof Since (D, D) =2777 and F* = F(\/B) = F(4/—t), the result follows
from Theorem 5.13.

Remark 5.24 Even inthe non-abelian case, we have infinite family of non-vanishing
arithmetic Chern—Simons invariants!

6 Application

In this section, we give a simple arithmetic application of our computation. Namely,
we show non-solvability of a certain case of the embedding problem based on our
examples of non-vanishing arithmetic Chern—Simons invariants.
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For an odd prime p, let p* = (—1)%4p. Let

s t
dy=[]pr and dy=]]aq;.
i=1 j=1

where p;, g; are distinct odd prime numbers, and d, d, > 0. Let

()11 o)1)

I<j<t I<i<s

Let
Aldy.d) = [] A and A(dr.dy):= [] B;.

I<i<s I<j<t

Lemma 6.1 A(d,d>) = A(d,, dy).

Proof Note that A(d, d2) = [i<i<s (;’—’) Since d; is positive, the number of prime
I<j=<t
divisors of d; which are congruent to 3 modulo 4 is even. And the same is true for

d,. Thus by the quadratic reciprocity law,

v=IG) =11 E)

I<j<t
By taking product for all 1 <i < s, we get the result.

Recall that Q denotes the quaternion group.

Proposition 6.2 Let K = Q(/d1, ~/d). If A(dy, dy) = —1, then there cannot exist
a number field L with odd discriminant, such that Gal(L/Q) ~ Qand K C L.

A referee of an earlier version of this paper has pointed out that this result can also be
obtained using the theorem'? of Witt in [31, p. 244] (or (7.7) on [8, p. 106]). (In our
situation, if such a field L exists, the theorem implies A(d;, d») = 1, which gives us a
contradiction.) So this proposition should be viewed as a new perspective rather than
anew result. In fact, Propositions 6.2 and 6.4 deal with a class of embedding problems
wherein the existence of an unramified extension forces a Chern—Simons invariant
to be zero. The outline of proof together with the explicit formulas for computing the
Chern—Simons invariant should make clear that even the simplest Z/27Z-valued case
is likely to have a non-trivial range of applications. We consider the point of view
presented here as a simple and rough analogue of the classical theorem of Herbrand,
whereby the existence of certain unramified extensions of cyclotomic fields forces

12K extends to a quaternion extension if and only if the Hilbert symbols (dy, d») and (d1da, —1)
agree in the Brauer group.
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some L-values to be congruent to zero ([29, Sect.6.3]). In future papers, we hope
to discuss this analogy in greater detail and investigate the possibility of ‘converse
Herbrand’ type results in the spirit of Ribet’s theorem [27].

Proof Suppose that there does exist such a field L/Q satisfying all the given prop-
erties above. Choose a prime £ such that

e ¢ does not divide dd>.
e /=3 (mod 4).
o (5) =Aiand (35) = B; foralli and j.

In fact, £ = a (mod 4d,d,) for some a with (a, 4d;d,) = 1, and hence there are

infinitely many such primes by Dirichlet’s theorem.
Now let d3 := €* = —£. And let F = Q(+/d d>d3). Then by direct computation
using the quadratic reciprocity law, we get

(7)= IL ) IL(2) = LG L (5) = o0

1<i<s 1<j<t 1<i<s 1<j<t qj

Thus by the above lemma, we get

Furthermore, for all i and j

dod dsd
(2)=A,.2=1 and <2>=BJ2.=1.
Di 4q;

Therefore by [19, Theorem 1], there is a Galois extension M /Q such that M/F is
unramified everywhere, and Gal(M/F) ~ Q. Furthermore K F = F(J/d,, /d) is
the unique subfield of M with Gal(M /K F) ~ Z/2Z.

Let A=V, and let ¢; = o; Ue, where a; € H'(A, 115) and € € Z%(A, Z7.]27)
represents the extension Q. Since M/F is an unramified Q-extension, [e] =0 €
H?(rm,7/27), where m = m(Spec(Or), b) as before. Thus, [c;] =0 € H>(X, 1)
for all i. This implies that CS,, ([p]) = O for all i, where p € Hom(w, A) factors
through

T — Gal(KF/F) ~ A.

Take o so that F*' = F(+/d). Since

IT(F22) T (%)= T 5= o = 3.0 =

1<i<s pi 1<j<t qj 1<j<t

by assumption, we get
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Table 1 Some biquadratic fields and quaternionic extensions

d; d> A 3L? d; dy A 3L? d; dy A 3L?
5 13 —1 No 13 17 1 Yes 17 21 1 Yes
[44] [48]
17 -1 No 13 21 -1 No 17 29 -1 No
21 1 Yes 13 |29 1 Yes 17 33 1 Yes
[37] [45] [49]
5 29 1 Yes 13 33 -1 No 17 37 -1 No
[41]
33 -1 No 13 37 -1 No 17 41 -1 No
37 -1 No 13 41 -1 No 17 53 1 Yes
[50]
5 41 1 Yes 13 53 1 Yes 17 57 -1 No
[42] [46]
53 -1 No 13 57 -1 No 17 61 -1 No
57 -1 No 13 61 1 Yes 17 65 -1 No
[47]
5 61 1 Yes 13 69 1 No 17 69 1 Yes
[43] [51]

1
CS., (oD = 5

by Proposition 5.16, which is a contradiction. Thus, there cannot exist such L.

Remark 6.3 For the explicit construction of quaternion extensions L of Q, see [9]
or [28, Theorem 4.5].

In the LMFDB, you can search for Q-extensions L over Q with odd discriminants. We
make a table for readers, which verifies our theorem numerically. Here A = A(d;, d5)
(Table 1).

When d; =13 and d; = 3-23 = 69, there cannot exist such L even though
A(dy, dp) = 1. This follows from the following proposition which is already known
to experts (e.g. [28]). For the sake of readers, we provide a complete proof as well.

Proposition 6.4 Let K = Q(\/dy, /d>) as above. Let p be a prime divisor of d;,
which is congruent to 3 modulo 4. If (%) = 1, then there cannot exist a number

field L such that Gal(L/Q) ~ Qand K C L.

Proof Let p be a prime divisor of d,, which is congruent to 3 modulo 4. Suppose
that (%) = 1 and there exists such a field L. Then by the same argument as in
Proposition 5.15, the ramification index of p in L/Qis 4. Let O = Z[+/d;] be the ring
of integers of Q(+/d;). Then, since (%‘) =1, pO = p - p’ for two different maximal
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ideals g and g’. Thus, D(p) = I(p) >~ Z/4Z, where D(p) (resp. 1(p)) is the
decomposition group (resp. inertia group) of g in Gal(L/Q) =~ Q. Since O, >~ Z,,,
the D(p) = I (p) =~ Z/4Z canberegardedasaquotienton;,< ~Z/(p— DL x Z,.
Because p — 1 =2 (mod 4), this is a contradiction and hence the result follows.
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7 Appendix 1: Conjugation on Group Cochains

‘We compute cohomology of a topological group G with coefficients in a topological
abelian group M with continuous G-action using the complex whose component of
degree i is C'(G, M), the continuous maps from G’ to M. The differential

d:C(G, M) — C*Y(G, M)

is given by
df (g1, 82, .-+, &+1) = 81 f (g2, -, &i+1)
i
+Zf(gls o 8k QR84 8kt -5 i) + (DT f (g1, g0, 80)
k=1
We denote by

B(G, M) Cc ZI(G, M) c C'(G, M)

the images and the kernels of the differentials, the coboundaries and the cocycles,
respectively. The cohomology is then defined as

H (G, M) :=Z'(G, M)/B (G, M).
There is a natural right action of G on the cochains given by

a:cr ¢ :=al'coAd,,
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where Ad, refers to the conjugation action of @ on G'.
Lemma 7.1 The G action on cochains commutes with d:
d(c®) = (dc)
foralla € G.

Proof If c € C'(G, M), then

d(c)(g1, 82 -+, &i+1) = 810" '¢(Ady(82), - . ., Ady(gis1))

i
+> ae(Ada(D), .. Ada(8k—1), Ada(81)Ada(8rr 1), Ada(8k42). - » Ada(giy1))
k=1

+(=D"Mae(Ady(g1), Adu(g2), - - -, Adu(gi)
=a'Ad,(g1)c(Ad,(g2), - - ., Ady(git1))

+3 a7 e(Ada(gD), - Ada(gk1), Ada(80Ada(Zict 1), Ada(Zk12), - -» Ada(gi41)
k=1

+H(=D™Ma e(Adu(81), Ada(g2); - -, Ada(g0))
= a ' (do)(Adu(g1), Adu(g2); - - -, Ada(git1)
= (dc)* (81,82, -+, &i+1)-
We also use the notation (g1, g2, ..., &) := Ad,(g1, &2, - . ., &) [t is well-known
that this action is trivial on cohomology. We wish to show the construction of explicit
h, with the property that
¢ =c+dh,

for cocycles of degree 1, 2, and 3. The first two are relatively straightforward, but
degree 3 is somewhat delicate. In degree 1, first note that c(e) = c(ee) = c(e) +
ec(e) = c(e) + c(e),sothatc(e) = 0.Next,0 = c(e) = c(gg™") = c(g) + gc(g™h),
and hence, c(g~') = —g~'c(g). Therefore,
claga™") = c(a) + ac(ga™") = c(a) + ac(g) + age(a™") = c(a) + ac(g) — aga™ ' c(a).

From this, we get
c(g) = c(g) +a'c(a) — ga~'c(a).
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That is,
¢ =c+dh,

for the zero cochain 4,(g) = a~'c(a).
Lemma 7.2 For each c € Z'(G, M) and a € G, we can associate an
hi~'[c]l e C'N(G, M)/B'™(G, M)

in such a way that A
(1) ¢*—c=dh '[c];

@) h'el = (el + hy el

Proof This is clear for i = 0 and we have shown above the construction of hg[c] for
ceZ(G, M) satisfying (1). Let us check the condition (2):

hl,[cl(g) = (ab) 'c(ab)
= b~ a7 (c(a) + ac(b)) = b hOlel(Ady(9)) + hlcl(g) = (hIeD? (o) + M)lcl(g).

We prove the statement using induction on i, which we now assume to be > 2. For
amodule M, we have the exact sequence

0—>M— C'(G,M)—> N — 0,
where C!(G, M) has the right regular action of G and N = C'(G, M)/ M. Here,
we give C!'(G, M) the topology of pointwise convergence. There is a canonical
linear splitting s : N — C'(G, M) with image the group of functions f such that
f(e) =0, using which we topologise N. According to [24, Proof of 2.5], the G-
module C' (G, M) is acyclic,13 that is,
H (G, C' (G, M) =0
for i > 0. Therefore, given a cocycle ¢ € Z/(G, M), there is an

F e C'1(G, CY(G, M))

such that its image f € C'~!'(G, N) is a cocycle and d F = c. Hence, d(F* — F) =
¢ — c. Also, by induction, there is a k, € C'~2(G, N) such that f* — f = dk, and

13The notation there for C'(G, M) is F(g)(G , M). One difference is that Mostow uses the complex
E*(G, M) of equivariant homogeneous cochains in the definition of cohomology. However, the
isomorphism E" — C” that sends f(go, g1,.-.,8n) to f(1, 81,8182, ...,8182 - &) identifies
the two definitions. This is the usual comparison map one uses for discrete groups, which clearly
preserves continuity.
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kap, = (ky)? + ky, + di forsomel € C'=3(G, N) (zeroifi = 2).Let K, = s o k, and
put
h,=F—F —dK,.

Then the image of 4, in N is zero, so h, takes values in M, and dh, = c¢* — c. Now
we check property (2). Note that

Kupy =s0kay =50 (ky)” +so0k,+sodl.

But s o (k,)? — (s 0 k,)? and s o dI — d(s o I) both have image in M. Hence, K, =
K? + K, + d(s o) + m for some cochain m € C'=2(G, M). From this, we deduce

dK. = (dK,)" + dK), + dm,
from which we get

hap = F — F —dKgp = (FY? — FP + FP — F — (dK,)? — dKj, — dm = (ha)? + hp + dm.

8 Appendix 2: Conjugation Action on Group Cochains:
Categorical Approach

In this section, an alternative and conceptual proof of Lemma 7.2 is outlined.
Although not strictly necessary for the purposes of this paper, we believe that a
functorial theory of secondary classes in group cohomology will be important in
future developments. This point has also been emphasised to M.K. by Lawrence
Breen. More details and elaborations will follow in a forthcoming publication by
B.N.

8.1 Notation

In what follows G is a group and M is a left G-module. The action is denoted by “m.
The left conjugation action of @ € G on G is denoted Ad, (x) = axa~'. We have an
induced right action on n-cochains f G" — M given by

@ = (f(Ad, g)).

Here, g € G" is an n-chain, and Ad, g is defined componentwise.
In what follows, [n] stands for the ordered set {0, 1, ..., n}, viewed as a category.
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8.2 Idea

The above action on cochains respects the differential, hence passes to cohomology.
It is well known that the induced action on cohomology is trivial. That is, given
an n-cocycle f and any element a € G, the difference f¢ — f is a coboundary.
In this appendix we explain how to construct an (n — 1)-cochain A, ; such that
d(hg ) = f — f. The construction, presumably well known, uses standard ideas
from simplicial homotopy theory [26, Sect. 1]. The general case of this construction,
as well as the missing proofs of some of the statements in this appendix will appear
in a separate article.

Let G denote the one-object category (in fact, groupoid) with morphisms G. For
an element a € G, we have an action of a on § which, by abuse of notation, we will
denote again by Ad, : § — G; it fixes the unique object and acts on morphisms by
conjugation by a.

The main point in the construction of the cochain 1, f is that there is a “homotopy”
(more precisely, a natural transformation) H, from the identity functor id: § — §
to Ad, : § — G. The homotopy between id and Ad, is given by the functor H, :
G x [1] — G defined by

H,lo =id, H,|y = Ad,, and H,(1) = a_l‘

It is useful to visualise the category G x [1] as

0,0

0——1.

8.3 Cohomology of Categories

We will use multiplicative notation for morphisms in a category, namely, the com-
position of g: x — y with h: y — z is denoted gh: x — z.

Let C be a small category and M a left C-module, that is, a functor M : C°° — Ab,
X — M,, to the category of abelian groups (or your favorite linear category). Note
that when G is as above, this is nothing but a left G-module in the usual sense. For
an arrow g: x — y in €, we denote the induced map M, — M, by m > &m.

Let G denote the set of all n-tuples g of composable arrows in C,

81 2 8n
g =0 — 0 — .- — e

We refer to such a g as an n-cell in C; this is the same thing as a functor [n] — C,
which we will denote, by abuse of notation, again by g.
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An n-chain in C is an element in the free abelian group C,(C, Z) generated by
the set C"! of n-cells. For an n-cell g as above, we let sg € Ob € denote the source
of g;.

By an n-cochain on C with values in M we mean a map f that assigns to any
n-cellg € C" an element in M. Note that, by linear extension, we can evaluate f
on any n-chain in which all n-cells share a common source point.

The n-cochains form an abelian group C"(C, M). The cohomology groups
H"(C, M), n > 0, are defined using the cohomology complex C*(C, M):

0-ce.mSce .. b oe s orie s ...

where the differential
d: C"(C, M) — C" (e, M)

is defined by

Af (81, 82+ 8nt ) =5 (F (@2 s g 1))+ D (=1 (81 &i8id 1 -+ s 8nt1)

1<i<n

+ (D" f (g1, g2, gn).

A left G-module M in the usual sense gives rise to a left module on G, which we
denote again by M. We sometimes denote C*(G, M) by C*(G, M). Note that the
corresponding cohomology groups coincide with the group cohomology H” (G, M).
The cohomology complex C*(C, M) and the cohomology groups H" (C, M) are
functorial in M. They are also functorial in C in the following sense. A functor ¢ :
D — € gives rise to a D-module *M := M o ¢ D — Ab. We have a map of

complexes
©*: C*(C, M) —» C*(D, p*M), (8.1)

which gives rise to the maps
©*: H'(C, M) - H"(D, ¢*M)

on cohomology, for all n > 0.

8.4 Definition of the Cochains h,_

The flexibility we gain by working with chains on general categories allows us to
import standard ideas from topology to this setting. The following definition of the
cochains £, ; is an imitation of a well known construction in topology.

Let f € C"*'(G, M) be an (n + 1)-cochain, and a € G an element. Let H, : G x
[1] — G be the corresponding natural transformation. We define 4, r € C"(G, M)
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by
ha r(8) = f(Ha(g x [1])).

Here, g € " is an n-cell in G, so g x [1] is an (n + 1)-chain in G x [1], namely,
the cylinder over g.

To be more precise, we are using the notation g x [1] for the image of the funda-
mental class of [r] x [1]in § x [1] under the functor g x [1] [n] x [1] = G x [1].
We visualize [n] x [1] as

0,1 — 1,1) = -+ = (n, 1)

T T T

0,00 — 1,00 — -+ — (n,0)
Its fundamental class is the alternating sum of the (n + 1)-cells

1) — = (1)

;

(070) — (r90)
in [n] x [1], for 0 < r < n. Therefore,

hay@® = Y (=1 f(g1,... 8 a " Adagrin, .., Adagr).  (82)

0<r<n

The following proposition can be proved using a variant of Stokes’ formula for
cochains.

Proposition 8.1 The gradedmap h_ ,: C*tY(G, M) — C*(G, M) is a chain homo-
topy between the chain maps

id, (—)*: C*(G, M) — C*(G, M).

That is,
ha,df +d(haf) = fa - f

forevery (n + 1)-cochain f. In particular, if f is an (n + 1)-cocycle, thend(h, ) =
fe=1r.
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8.5 Composing Natural Transformations

Given an (n + 1)-cochain f, and elements a,b € G, we can construct three n-
cochains: h, ¢, hy r and hyp r. A natural question to ask is whether these three
cochains satisfy a cocycle condition. It turns out that the answer is yes, but only
up to a coboundary dh, p, r. Below we explain how £, ;s is constructed. In fact, we
construct cochains /4, .. 4., for any k elements a; € G, 1 <i < k, and study their
relationship.

Let f € C"t*(G, M) be an (n + k)-cochain. Let a = (ay, ..., a;) € G**. Con-
sider the category G x [k],

0 1

L Lk—1

to

Let H, : G x [k] = G be the functor such that ¢; — a,j_li and H,ljo = idg. (So,
Hal{k—i} = Ad¢1i+1~~~ak-) Define ]’laqf (S Cn(G, M) by

ha r(8) = f(Ha(g x [k])). (8.3)

Here, g € € is an n-cell in G, so g x [k] is an (n + k)-chain in G x [k].

To be more precise, we are using the notation g x [k] for the image of the funda-
mental class of [n] x [k] in G x [k] under the functor g x [k] [n] x [k] = G x [k].
We visualize [n] x [k] as

©,k) — (1,k) — -+ — (n,k)
T T T
T 1 T

0, 1) — (1,1) — -+ — (1, 1)

T T T

0,00 — (1,O) — -+ — (n,0)

Its fundamental class is the (n + k)-chain

> _(=D’IP,

P

where P runs over (length n 4 k) paths starting from (0, 0) and ending in (n, k).
Note that such paths correspond to (k, n) shuffles; | P| stands for the parity of the
shuffle (which is the same as the number of squares above the path in the n x k grid).
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The most economical way to describe the relations between various A, ¢ is in
terms of the cohomology complex of the right module

M?* := Hom (C*(G, M), C*(G, M)).

Here, Hom stands for the enriched hom in the category of chain complexes, and
the right action of G on M* is induced from the right action f — f“ of G on the
C*(G, M) sitting on the right. The differential on M* is defined by

dipe () = (=)™ o der(.my — deG.m) 0 U,

where |u| is the degree of the homogeneous u € C*(G, M).
Note that, for every a € G*k, we have ha, s € M. This defines a k-cochain on
G of degree —k with values in M*,

A a > ha_, a€ G**,

We set /=1 := 0. Note that 2© is the element in M corresponding to the identity
map id: C*(G, M) — C*(G, M).

The relations between various 4, r can be packaged in a simple differential rela-
tion. As in the case k = 0 discussed in Proposition 8.1, this proposition can be proved
using a variant of Stokes’ formula for cochains.

Proposition 8.2 For every k > —1, we have dy (h*™D) = d(h®).

In the above formula, the term dy. (h**1) means that we apply dy. to the values
(in M*) of the cochain 2%+ The differential on the right hand side of the formula
is the differential of the cohomology complex C*(G, M*) of the (graded) right G-
module M.

More explicitly, let f € C"**(G, M) be an (n + k)-cochain. Then, Proposition
8.2 states that, for every a € G***1_ we have the following equality of n-cochains:

(_1)(k+1)ha1....,ak+1,df _dhal ..... a1, f — haz ----- aks1, f +
lzk(_l)lhal ~~~~~ aiaist, i, f T
<i<

(=D o -

Corollary 8.3 Let f € C"K(G, M) be an (n + k)-cocycle. Then, for every a €
G** D the n-cochain

1<i<k

is a coboundary. In fact, it is the coboundary of —hg, ...a.,,,f-

Example 8.4 Let us examine Corollary 8.3 for small values of k.
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(i) For k = 0, the statement is that, for every cocycle f, f — f¢ is a coboundary.

In fact, it is the coboundary of — s ,. We have already seen this in Proposition
8.1.

(i) For k = 1, the statement is that, for every cocycle f, the cochain

hp,f — hap,y + hZf

is a coboundary. In fact, it is the coboundary of —h, p, f.

8.6 Explicit Formula for h,,, ... 4, f

Let f: G*"*% — Mbean (n + k)-cochain,anda := (a;, as, ..., ax) € G**.Then,
by Eq.(8.3), the effect of the n-cochain A, 4. r on an n-tuple x := (xo, x1, ..
Xn—1) € G*" is given by:

B

Rayoay 0, X10 - am) = ) (=DIPF(xP),
P

where x* is the (n + k)-tuple obtained by the following procedure.

Recall that P is a path from (0, 0) to (, k) in the n by k grid. The /™ component
x! of x” is determined by the / th segment on the path P. Namely, suppose that the
coordinates of the starting point of this segment are (s, 7). Then,

—1
XIP = G
if the segment is vertical, and

P —1
X, = @—r41 " @)X (A—r1 - Qx) ",

if the segment is horizontal. Here, we use the convention that ay = 1.
The following example helps visualize x*':

T @apmi@an™ @)
az

_—

asxaay !
aj!
4

X0 X1
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The corresponding term is
—1 -1 -1 ~1 B
—f(xo, x1,a; , aax2a; a3, (azas)x3(azas) ™, (azas)xs(azas)™ ,a; ,a; ).

The sign of the path is determined by the parity of the number of squares in the n by
k grid that sit above the path P (in this case 15).
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