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Abstract In this paper, we apply ideas of Dijkgraaf and Witten [6, 32] on 3 dimen-
sional topological quantum field theory to arithmetic curves, that is, the spectra of
rings of integers in algebraic number fields. In the first three sections, we define
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classical Chern–Simons actions on spaces of Galois representations. In the subse-
quent sections, we give formulas for computation in a small class of cases and point
towards some arithmetic applications.

1 The Arithmetic Chern–Simons Action: Introduction and
Definition

The purpose of this paper is to cast in concrete mathematical form the ideas presented
in the preprint [17]. The reader is referred to that paper for motivation and specu-
lation. Since there is no plan to submit it for separate publication, we repeat here
the basic constructions before going on to a family of examples. This paper adheres,
however, to a rather strict mathematical presentation. As we remind the reader below,
the analogies in the background have come to be somewhat well-known under the
heading of ‘arithmetic topology.’ The emphasis of this paper, however, will be less
on analogies, and more on the possibility that specific technical tools of topology
and physics can be imported into number theory.

Let X = Spec(OF ), the spectrum of the ring of integers in a number field F . We
assume that F is totally imaginary. Denote by Gm the étale sheaf that associates to a
scheme the units in the global sections of its coordinate ring. We have the following
canonical isomorphism [20, p. 538]:

inv : H 3(X, Gm) � Q/Z. (∗)

This map is deduced from the ‘invariant’ map of local class field theory. We will
therefore use the same name for a range of isomorphisms having the same essential
nature, for example,

inv : H 3(X, Zp(1)) � Zp, (∗∗)

where Zp(1) = lim←−i
μpi , and μn ⊂ Gm is the sheaf of nth roots of 1. This follows

from the exact sequence

0 → μn → Gm
(·)n→ Gm → Gm/(Gm)n → 0.

That is, according to loc. cit.,

H 2(X, Gm) = 0,

while by op. cit., p. 551, we have

Hi (X, Gm/(Gm)n) = 0

for i ≥ 1. If we break up the above into two short exact sequences,
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0 → μn → Gm
(·)n→ Kn → 0,

and
0 → Kn → Gm → Gm/(Gm)n → 0,

we deduce
H 2(X,Kn) = 0,

from which it follows that

H 3(X,μn) � 1

n
Z/Z,

the n-torsion inside Q/Z. Taking the inverse limit over n = pi gives the second
isomorphism above. The pro-sheaf Zp(1) is a very familiar coefficient system for
étale cohomology and (**) is reminiscent of the fundamental class of a compact
oriented three manifold for singular cohomology. Such an analogy was noted by
Mazur around 50years ago [21] and has been developed rather systematically by a
number of mathematicians, notably, Masanori Morishita [23]. Within this circle of
ideas is included the analogy between knots and primes, whereby the map

Spec(OF/Pv) � X

from the residue field of a primePv should be similar to the inclusion of a knot. Let
Fv be the completion of F at the prime v and OFv

its valuation ring. If one takes this
analogy seriously (as did Morishita), the map

Spec(OFv
) → X,

should be similar to the inclusion of a handle-body around the knot, whereas

Spec(Fv) → X

resembles the inclusion of its boundary torus.1 Given a finite set S of primes, we
consider the scheme

X S := Spec(OF [1/S]) = X \ {Pv}v∈S.

Since a link complement is homotopic to the complement of a tubular neighbourhood,
the analogy is then forced on us between X S and a three manifold with boundary
given by a union of tori, one for each ‘knot’ in S. These of course are basicmorphisms
in 3 dimensional topological quantumfield theory [1]. From this perspective, perhaps

1It is not clear to us that the topology of the boundary should really be a torus. This is reasonable
if one thinks of the ambient space as a three-manifold. On the other hand, perhaps it’s possible to
have a notion of a knot in a homology three-manifold that has an exotic tubular neighbourhood?
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the coefficient system Gm of the first isomorphism should have reminded us of the
S1-coefficient important in Chern–Simons theory [6, 32]. A more direct analogue of
Gm is the sheafO×

M of invertible analytic functions on a complex variety M . However,
for compact Kähler manifolds, the comparison isomorphism

H 1(M, S1) � H 1(M,O×
M)0,

where the subscript refers to the line bundles with trivial topological Chern class,
is a consequence of Hodge theory. This indicates that in the étale setting with no
natural constant sheaf of S1’s, the familiar Gm has a topological nature, and can be
regarded as a substitute.2 One problem, however, is that theGm-coefficient computed
directly gives divisible torsion cohomology, whence the need for considering coef-
ficients like Zp(1) in order to get functions of geometric objects having an analytic
nature as arise, for example, in the theory of torsors for motivic fundamental groups
[4, 13–16].

We now move to the definition of the arithmetic Chern–Simons action. Let

π := π1(X, b),

be the profinite étale fundamental group of X , where we take

b : Spec(F) → X

to be the geometric point coming from an algebraic closure of F . Assume now that
the group μn(F) of nth roots of unity is in F and fix a trivialisation ζn : Z/nZ � μn .
This induces the isomorphism

inv : H 3(X, Z/nZ) � H 3(X,μn) � 1

n
Z/Z.

Now let A be a finite group and fix a class c ∈ H 3(A, Z/nZ). Let

M(A) := Homcont (π, A)/A

be the set of isomorphism classes of principal A-bundles over X . Here, the subscript
refers to continuous homomorphisms, on which A is acting by conjugation. For
[ρ] ∈ M(A), we get a class

ρ∗(c) ∈ H 3(π, Z/nZ)

that depends only on the isomorphism class [ρ]; if ρ2 = Ada ◦ ρ1 for some a ∈ A,
thenρ∗

2(c) = ρ∗
1(Ad

∗
a(c)), but c andAd

∗
a(c) are cohomologous byLemma7.2.Denote

2Recall, however, that it is of significance in Chern–Simons theory that one side of this isomorphism
is purely topological while the other has an analytic structure.
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by inv also the composed map

H 3(π, Z/nZ) H 3(X, Z/nZ)
inv
�

1
n Z/Z.

We get thereby a function

C Sc : M(A) 1
n Z/Z;

[ρ] inv(ρ∗(c)).

This is the basic and easy case of the classical Chern–Simons action3 in the arithmetic
setting.

Section2 sets down some definitions for ‘manifolds with boundary,’ that is, X S as
above. In fact, it turns out that the Chern–Simons action with boundaries is necessary
for the computation of the action even in the ‘compact’ case, in a manner strongly
reminiscent of computations in topology (see [7, Theorem 1.7 (d)], for example).
That is, we will compute the Chern–Simons invariant of a representation ρ of π
using a suitable decomposition

X“ = ”X S ∪ [∪vSpec(OFv
)]

and restrictions of π to X S and the Spec(OFv
).

To describe the construction, we need more notations. We assume that all primes
of F dividing n are in the finite set of primes S. Let

πS := π1(X S, b)

and
πv := Gal(Fv/Fv)

equipped with maps
iv : πv → πS

given by choices of embeddings F ↪→ Fv . The collection

{iv}v∈S

will be denoted by iS . There is a natural quotient map

κS : πS → π.

3The authors realise that this terminology is likely to be unfamiliar, and maybe even appears pre-
tentious to number-theorists. However, it does seem to encourage the reasonable view that concepts
and structures from geometry and physics can be specifically useful in number theory.
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Let
YS(A) := Homcont (πS, A)

and denote by MS(A) the action groupoid whose objects are the elements of YS(A)

with morphisms given by the conjugation action of A. We also have the local version

Y loc
S (A) :=

∏

v∈S

Homcont (πv, A)

as well as the action groupoid Mloc
S (A) with objects Y loc

S (A) and morphisms given
by the action of AS := ∏

v∈S A conjugating the separate components in the obvious
sense. Thus, we have the restriction functor

rS : MS(A) → Mloc
S (A),

where a homomorphism ρ : πS → A is restricted to the collection

rS(ρ) = i∗
Sρ := (ρ ◦ iv)v∈S.

We will construct, in Sect. 2, a functor L from Mloc
S (A) to the 1

n Z/Z-torsors as a
finite arithmetic version of the Chern–Simons line bundle [7] over Mloc

S (A). To a
global representation ρ ∈ MS(A), the Chern–Simons action will then associate an
element (Eq. (2.3))

C Sc([ρ]) ∈ L(rS(ρ)).

Now, given [ρ] ∈ M(A), we pull it back to [ρ ◦ κS] ∈ MS(A) and apply the Chern–
Simons action with boundary to get an element

C Sc([ρ ◦ κS]) ∈ L([rS(ρ ◦ κS)]).

On the other hand, for each v ∈ S, we can pull back ρ to a local unramified repre-
sentation

ρurv : πur
v → π → A,

where πur
v is the unramified quotient of πv . The extra structure of the unramified

representation will then allow us to canonically associate an element

∑

v∈S

(βv) ∈ L([rS(ρ ◦ κS)]),

which can be interpreted as the Chern–Simons action of (ρurv )v∈S on ∪v∈SSpec(OFv
).

Theorem 1.1 (The Decomposition Formula) Let A be a finite group and fix a class
c ∈ H 3(A, Z/nZ). Then
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C Sc([ρ]) =
∑

v∈S

(βv) − C Sc([ρ ◦ κS])

for [ρ] ∈ M(A).

Section4 is devoted to a proof of Theorem 1.1. The key point of this formula is
that C Sc([ρ]) can be computed as the difference between two trivialisations of the
torsor, a ramified global trivialisation and an unramified local trivialisation.

In Sect. 5, we use this theorem to compute the Chern–Simons action for a class of
examples. It is amusing to note the form of the action when A is finite cyclic. That is,
let A = Z/nZ, α ∈ H 1(A, Z/nZ) the class of the identity, and β ∈ H 2(A, Z/nZ)

the class of the extension

0 Z/nZ
n

Z/n2
Z A 0.

Thenβ = δα, where δ : H 1(A, Z/nZ) = H 1(A, A) → H 2(A, Z/nZ) is the bound-
ary map arising from the extension. Put

c := α ∪ β = α ∪ δα ∈ H 3(A, Z/nZ).

Then
C Sc([ρ]) = inv[ρ∗(α) ∪ δρ∗(α)],

in close analogy to the4 formulas of abelian Chern–Simons theory.
However, our computations are not limited to the case where A is an abelian

cyclic group. Along similar lines, we will provide an infinite family of number fields
F and representations ρ such that C Sc([ρ]) is non-vanishing for [ρ] ∈ M(A) with
a different class c ∈ H 3(A, Z/2Z) and both abelian A (see Propositions 5.14, 5.16,
and 5.19) and non-abelian A (see Proposition 5.23).

In Sect. 6, we provide arithmetic applications to a class of Galois embedding
problems using the fact that the existence of an unramified extension forces a Chern–
Simons invariant to be zero.

In this paper, we do not develop a p-adic theory in the case where the bound-
ary is empty. In future papers, we hope to apply local trivialisations using Selmer
complexes to remedy this omission and complete the theory begun in Sect. 3. To
get actual p-adic functions, one needs of course to come to an understanding of
explicit cohomology classes on p-adic Lie groups, possibly by way of the theory of
Lazard [18]. Suitable quantisations of the theory of this paper in a manner amenable
to arithmetic applications will be explored as well in future work, as in [3], where a
precise arithmetic analogue of a ‘path-integral formula’ for arithmetic linking num-
bers is proved. In that preprint, a connection is made also to the class invariant
homomorphism from additive Galois module structure theory. A pro-p version of
this homomorphism is related to p-adic L-functions and heights, providing some
evidence for the speculation from [17].

4In fact, every cohomology class in H3(A, Z/nZ) can be written as this form (cf. [25, Sect. 1.7]).
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2 The Arithmetic Chern–Simons Action: Boundaries

We keep the notations as in the introduction. We will now employ a cocycle
c ∈ Z3(A, Z/nZ) to associate a 1

n Z/Z-torsor to each point of Y loc
S (A) in an AS-

equivariant manner. We use the notation

Ci
S :=

∏

v∈S

Ci (πv, Z/nZ)

for the continuous cochains,

Zi
S :=

∏

v∈S

Z i (πv, Z/nZ) ⊂ Ci
S

for the cocycles, and

Bi
S :=

∏

v∈S

Bi (πv, Z/nZ) ⊂ Zi
S ⊂ Ci

S

for the coboundaries. In particular, we have the coboundary map (see Appendix
“Appendix 1: Conjugation on Group Cochains” for the sign convention)

d : C2
S → Z3

S.

Let ρS := (ρv)v∈S ∈ Y loc
S (A) and put

c ◦ ρS := (c ◦ ρv)v∈S,

c ◦ Ada := (c ◦ Adav
)v∈S

for a = (av)v∈S ∈ AS , where Adav
refers to the conjugation action. To define the

arithmetic Chern–Simons line associated to ρS , we need the intermediate object

H(ρS) := d−1(c ◦ ρS)/B2
S ⊂ C2

S/B2
S .

This is a torsor for

H 2
S :=

∏

v∈S

H 2(πv, Z/nZ) �
∏

v∈S

1

n
Z/Z

([25, Theorem (7.1.8)]). We then use the sum map

Σ :
∏

v∈S

1

n
Z/Z → 1

n
Z/Z
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to push this out to a 1
n Z/Z-torsor. That is, define

L(ρS) := Σ∗[H(ρS)]. (2.1)

The natural map H(ρS) → L(ρS) will also be denoted by the sum symbol Σ .
In fact, L extends to a functor fromMloc

S (A) to the category of 1
n Z/Z-torsors. To

carry out this extension, we just need to extend H to a functor to H 2
S -torsors. Accord-

ing to Appendices “Appendix 1: Conjugation on Group Cochains” and “Appendix 2:
Conjugation Action on Group Cochains: Categorical Approach”, for a = (av)v∈S ∈
AS and each v, there is an element hav

∈ C2(A, Z/nZ)/B2(A, Z/nZ) such that

c ◦ Adav
= c + dhav

.

Also,
havbv

= hav
◦ Adbv

+ hbv
.

Hence, given a : ρS → ρ′
S, so that ρ

′
S = Ada ◦ ρS , we define

H(a) : H(ρS) → H(ρ′
S)

to be the map induced by

x �→ x ′ = x + (hav
◦ ρv)v∈S.

Then

dx ′ = dx + (d(hav ◦ ρv))v∈S = (c ◦ ρv)v∈S + ((dhav ) ◦ ρv)v∈S = (c ◦ Adav ◦ ρv)v∈S .

So
x ′ ∈ d−1(c ◦ ρ′

S)/B2
S,

and by the formula above, it is clear that H is a functor.5 That is, ab will send x to

x + hab ◦ ρS,

while if we apply b first, we get

x + hb ◦ ρS ∈ H(Adb ◦ ρS),

which then goes via a to

5While the functor H does depend on the choices of ha , they are intrinsic to A, in that they are
cochains on A, not a priori related to the Galois representations. So we may regard them as part of
the data defining the field theory, similar to c.
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x + hb ◦ ρS + ha ◦ Adb ◦ ρS.

Thus,
H(ab) = H(a)H(b).

Defining
L(a) = Σ∗ ◦ H(a)

turns L into a functor from Mloc
S to 1

n Z/Z-torsors. Even though we are not explic-
itly laying down geometric foundations, it is clear that L defines thereby an AS-
equivariant 1

n Z/Z-torsor on Y loc
S (A), or a 1

n Z/Z-torsor on the stack Mloc
S (A).

We can compose the functor L with the restriction rS : MS(A) → Mloc
S (A) to get

an A-equivariant functor Lglob from YS(A) to 1
n Z/Z-torsors.

Lemma 2.1 Let ρ ∈ YS(A) and a ∈ Aut(ρ). Then Lglob(a) = 0.

Proof By assumption, Adaρ = ρ, and hence, dha ◦ ρ = 0. That is, ha ◦ ρ ∈ H 2(πS,

Z/nZ). Hence, by the reciprocity law for H 2(πS, Z/nZ) ([25, Theorem (8.1.17)]),
we get

Σ∗(ha ◦ ρ) = 0.

By the argument of [7, p. 439], we see that there is a 1
n Z/Z-torsor

L inv([ρ])

of invariant sections for the functor Lglob depending only on the orbit [ρ]. This is the
set of families of elements

xρ′ ∈ Lglob(ρ′)

as ρ′ runs over [ρ] with the property that every morphism a : ρ1 → ρ2 takes xρ1 to
xρ2 . Alternatively, L inv([ρ]) is the inverse limit of the Lglob(ρ′) with respect to the
indexing category [ρ].

Since
H 3(πS, Z/nZ) = 0

([25, Proposition (8.3.18)]), the cocycle c ◦ ρ is a coboundary

c ◦ ρ = dβ (2.2)

for β ∈ C2(πS, Z/nZ). This element defines a class

C Sc([ρ]) := Σ([i∗
S(β)]) ∈ L inv([ρ]). (2.3)

A different choice β′ will be related by

β′ = β + z
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for a 2-cocycle z ∈ Z2(πS, Z/nZ), which vanishes when mapped to L((ρ ◦ iv)v∈S)

because of the reciprocity sequence

0 H 2(πS, Z/nZ) H 2
S

∑
v invv 1

n Z/Z 0.

Thus, the classC Sc([ρ]) is independent of the choice of β and defines a global section

C Sc ∈ Γ (MS(A), Lglob).

Within the context of this paper, a ‘global section’ should just be interpreted as an
assignment of C Sc([ρ]) as above for each orbit [ρ].

3 The Arithmetic Chern–Simons Action: The p-adic Case

Now fix a prime p and assume all primes of F dividing p are contained in S. Fix a
compatible system (ζpn )n of p-power roots of unity, giving us an isomorphism

ζ : Zp � Zp(1) := lim←−
n

μpn .

In this section, we will be somewhat more careful with this isomorphism. Also, it
will be necessary to make some assumptions on the representations that are allowed.

Let A be a p-adic Lie group, e.g., GLn(Zp). Assume A is equipped with an open
homomorphism6 t : A → Γ := Z

×
p and define An to be the kernel of the composite

map
A → Z

×
p → (Z/pn

Z)× =: Γn.

Let
A∞ = ∩n An = Ker(t).

In this section, we denote by YS(A) the continuous homomorphisms

ρ : πS → A

such that t ◦ ρ is a powerχs of the p-adic cyclotomic characterχofπS by a p-adic unit
s. (We note that s itself is allowed to vary.) Of course this condition will be satisfied
by any geometric Galois representations or natural p-adic families containing one.

As before, A acts on YS(A) by conjugation. But in this section, we will restrict
the action to A∞ and use the notationMS(A) for the corresponding action groupoid.

Similarly, we denote by Y loc
S the collections of continuous homomorphisms

6For example, one may choose t to be the determinant when A = GLn(Zp).
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ρS := (ρv : πv → A)v∈S

for which there exists a p-adic unit s such that t ◦ ρv = (χ|πv
)s for all v. Mloc

S (A)

then denotes the action groupoid defined by the product (A∞)S of the conjugation
action on the ρS .

We now fix a continuous cohomology class

c ∈ H 3(A, Zp[[Γ ]]),

where
Zp[[Γ ]] = lim←−

n

Zp[Γn].

We represent c by a cocycle in Z3(A, Zp[[Γ ]]), which we will also denote by c.
Given ρ ∈ YS(A), we can view Zp[[Γ ]] as a continuous representation of πS , where
the action is left multiplication via t ◦ ρ. We denote this representation by Zp[[Γ ]]ρ.
The isomorphism ζ : Zp � Zp(1), even though it’s not πS-equivariant, does induce
a πS-equivariant isomorphism

ζρ : Zp[[Γ ]]ρ � Λ := Zp[[Γ ]] ⊗ Zp(1).

Here, Zp[[Γ ]] written without the subscript refers to the action via the cyclotomic
character of πS (with s = 1 in the earlier notation). The isomorphism is defined as
follows. If t ◦ ρ = χs , then we have the isomorphism

Zp[[Γ ]] � Zp[[Γ ]]ρ
that sends γ to γs . On the other hand, we also have

Zp[[Γ ]] � Λ

that sends γ to γ ⊗ γζ(1). Thus, ζρ can be taken as the inverse of the first followed
by the second.

Combining these considerations, we get an element

ζρ ◦ ρ∗c = ζρ ◦ c ◦ ρ ∈ Z3(πS,Λ).

Similarly, if ρS := (ρv)v∈S ∈ Y loc
S , we can regard Zp[[Γ ]]ρv

as a representation of πv

for each v, and we get πv-equivariant isomorphisms

ζρv
: Zp[[Γ ]]ρv

� Λ.

We also use the notation



Arithmetic Chern–Simons Theory II 93

ζρS :
∏

v∈S

Zp[[Γ ]]ρv
�

∏

v∈S

Λ

for the isomorphism given by the product of the ζρv
.

It will be convenient to again denote by Ci
S(Λ) the product

∏
v∈S Ci (πv,Λ) and

use the similar notations Zi
S(Λ), Bi

S(Λ) and Hi
S(Λ). The element ζρS ◦ ρ∗

Sc is an
element in Z3

S(Λ). We then put

H(ρS,Λ) := d−1(ζρS ◦ ρ∗
Sc)/B2

S(Λ) ⊂ C2
S(Λ)/B2

S(Λ).

This is a torsor for
H 2

S (Λ) �
∏

v∈S

H 2(πv,Λ).

The augmentation map
a : Λ → Zp(1)

for each v can be used to push this out to a torsor

a∗(H(ρS,Λ))

for the group ∏

v∈S

H 2(πv, Zp(1)) �
∏

v∈S

Zp,

which then can be pushed out with the sum map

Σ :
∏

v∈S

Zp → Zp

to give us a Zp-torsor

L(ρS, Zp) := Σ∗(a∗(H(ρS,Λ))).

As before, we can turn this into a functor L(·, Zp) on Mloc
S (A), taking into account

the action of (A∞)S . By composing with the restriction functor

rS : MS(A) → Mloc
S (A),

we also get a Zp-torsor Lglob(·, Zp) on MS(A).
We now choose an element β ∈ C2(πS,Λ) such that

dβ = ζρ ◦ c ◦ ρ ∈ Z3(πS,Λ) = B3(πS,Λ)

to define the p-adic Chern–Simons action
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C Sc([ρ]) := Σ∗a∗i∗
S(β) ∈ Lglob([ρ], Zp).

The argument that this action is independent of β and equivariant is also the same as
before, giving us an element

C Sc ∈ Γ (MS(A), Lglob(·, Zp)).

4 Towards Computation: The Decomposition Formula

In this section, we indicate how onemight go about computing the arithmetic Chern–
Simons invariant in the unramified case with finite coefficients. That is, we assume
that we are in the setting of Sect. 1. We provide a proof of Theorem 1.1 in a slightly
generalized setting.

Let X = Spec(OF ) and M a continuous representation of π = π1(X, b) regarded
as a locally constant sheaf on X . Assume M = lim←− Mi with Mi finite representations
such that there is a finite set T of primes in OF containing all primes dividing the
order of any |Mi |. Let U = Spec(OF, T ), πT = π1(U, b), and πv = Gal(Fv/Fv) for
a prime v of F . Fix natural homomorphisms

κT : πT → π and κv : πv → π.

We denote by ρT (resp. ρv) the composition of κT (resp. kv) with

ρ ∈ Homcont (π, M).

Finally, we write Pv for the maximal ideal of OF corresponding to the prime v and
rv for the restriction map of cochains or cohomology classes from πT to πv .

Denote by C∗
c (πT , M) the complex defined as a mapping fiber

C∗
c (πT , M) := Fiber[C∗(πT , M) →

∏

v∈T

C∗(πv, M)].

So
Cn

c (πT , M) = Cn(πT , M) ×
∏

v∈T

Cn−1(πv, M),

and
d(a, (bv)v∈T ) = (da, (rv(a) − dbv)v∈T )

for (a, (bv)v∈T ) ∈ Cn
c (πT , M). As in [10, p. 18–19], since there are no real places in

F , there is a quasi-isomorphism

C∗
c (πT , M) � RΓ (X, j! j∗(M)),
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where j : U → X is the inclusion. But there is also an exact sequence

0 j! j∗(M) M i∗i∗(M) 0,

where i : T → X is the closed immersion complementary to j . Thus, we get an exact
sequence

∏
v∈T

H 2(kv, i∗(M)) H 3(C∗
c (πT , M)) H 3(X, M)

∏
v∈T

H 3(kv, i∗(M)),

where kv := Spec(OF/Pv), from which we get an isomorphism

H 3
c (U, M) := H 3(C∗

c (πT , M)) � H 3(X, M),

since kv has cohomological dimension 1.
We interpret this as a statement that the cohomology of X

H 3(X, M)

can be identified with cohomology of a ‘compactification’ of U with respect to
the ‘boundary,’ that is, the union of the Spec(Fv) for v ∈ T . This means that a
class z ∈ H 3(X, M) is represented by (a, (bv)v∈T ), where a ∈ Z3(πT , M) and bv ∈
C2(πv, M) in such a way that

dbv = rv(a).

There is also the exact sequence

H 2(πT , M)
∏
v∈T

H 2(πv, M) H 3
c (U, M) 0,

the last zero being H 3(U, M) := H 3(πT , M) = 0. We can use this to compute the
invariant of z when M = μn . (Note that F contains μn and hence it is in fact iso-
morphic to the constant sheaf Z/nZ.) We have to lift z to a collection of classes
xv ∈ H 2(πv,μn) and then take the sum

inv(z) =
∑

v

invv(xv).

This is independent of the choice of the xv by the reciprocity law (cf. [20, p. 541]).
The lifting process may be described as follows. The map

∏

v∈T

H 2(πv,μn) −→ H 3
c (U,μn)
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just takes a tuple of 2-cocycles (xv)v∈T to (0, (xv)v∈T ). But by the vanishing of
H 3(U,μn), given z = (a, (b−,v)v∈T ), we can find a global cochain b+ ∈ C2(πT ,μn)

such that db+ = a. We then put

xv := b−,v − rv(b+).

Note that (0, (xv)v∈T ) is cohomologous to z = (a, (b−,v)v∈T ).
As before, we start with a class c ∈ H 3(A,μn) � H 3(A, Z/nZ). Then, we get a

class
z = j3 ◦ ρ∗(c) ∈ H 3(X,μn),

where j i : Hi (π,μn) → Hi (X,μn) is the natural map from group cohomology to
étale cohomology (cf. [22, Theorem 5.3 of Chap. I]). Letw be a cocycle representing
ρ∗(c) ∈ H 3(π,μn). Let Iv ⊂ πv be the inertia subgroup.We now can trivialise κ∗

v(w)

by first doing it over πv/Iv to which it factors. That is, the b−,v as above can be chosen
as cochains factoring through πv/Iv . This is possible because H 3(πv/Iv,μn) = 0.
The class (κ∗

T (w), (b−,v)v∈T ) chosen in this way is independent of the choice of the
b−,v . This is because H 2(πv/Iv,μn) is also zero. The point is that the representation of
z as (κ∗

T (w), (b−,v)v∈T )with unramified b−,v is essentially canonical.More precisely,
given κ∗

v(w)|(πv/Iv) ∈ Z3(πv/Iv,μn), there is a canonical

b−,v ∈ C2(πv/Iv,μn)/B2(πv/Iv,μn)

such that db−,v = κ∗
v(w)|(πv/Iv). This can then be lifted to a canonical class in

C2(πv,μn)/B2(πv,μn).

Nowwe trivialise κ∗
T (w) globally as above, that is, by the choice of b+ ∈ C2(πT ,μn)

such that db+ = κ∗
T (w). Then (b−,v − b+,v)v∈T will be cocycles, where b+,v :=

rv(b+), and we compute

inv(z) =
∑

v∈T

invv(b−,v − b+,v).

Thus, for a given homomorphism ρ : π → A, it suffices to find various trivialisations
of ρ∗(c) after restriction to πT and to πv for v ∈ T .

• We are free to choose a finite set T of primes in a convenient way as long as T
contains all primes dividing n. And then, for any v ∈ T , solve

db−,v = ρ∗
v(c) ∈ Z3(πv,μn).

In fact, b−,v comes from an element in C2(πv/Iv,μn) by inflation, so b−,v is
unramified.

• For chosen T , solve
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db+ = ρ∗
T (c) ∈ Z3(πT ,μn),

and we set b+,v = rv(b+) ∈ C2(πv,μn).

Then, we have the decomposition formula

C Sc([ρ]) =
∑

v∈T

invv([b−,v − b+,v]). (†)

In the case M = μn and S = T , a finite set of primes in OF containing all primes
dividing n, a simple inspection implies that

∑

v∈T

invv([b−,v − b+,v]) =
∑

v∈S

(βv) − C Sc([ρ ◦ κS]).

Thus, the formula (†) provides a proof of Theorem 1.1. In general, b−,v and b+,v

are not cocycles but their difference is. This corresponds to the fact that
∑
v∈S

(βv) and

C Sc([ρ ◦ κS]) are not an element of 1
n Z/Z but their difference is.

A few remarks about this method:

1. Underlying this is the fact that the compact support cohomology H 3
c (U,μn) can

be computed relative to the somewhat fictitious boundary of U or as relative coho-
mology H 3(X, T ;μn). Choosing the unramified local trivialisations corresponds to
this latter representation.

2. To summarise the main idea again, starting from a cocycle z ∈ Z3(π,μn) we
have canonical unramified trivialisations at each v and a non-canonical global rami-
fied trivialisation.

The invariant of z measures the discrepancy between the unramified local trivial-
isations and a ramified global trivialisation.

The fact that the non-canonicality of the global trivialisation is unimportant fol-
lows from the reciprocity law (cf. [20, p. 541]).

3. The description above that computes the invariant by comparing the local
unramified trivialisation with the global ramified one is a precise analogue of the
so-called ‘gluing formula’ for Chern–Simons invariants when applied to ρ∗(c) for a
representation ρ : π → Z/nZ and a 3-cocycle c on Z/nZ.

5 Examples

In this section, we provide several explicit examples of computation of C Sc([ρ]). We
still assume that we are in the setting of Sect. 1.
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5.1 General Strategy

To compute the arithmetic Chern–Simons invariants, we essentially use the decom-
position formula (†) in Sect. 4. The most difficult part in the above method is finding
an element b+ ∈ C2(πT ,μn) that gives a global trivialisation.

To simplify our problem, we assume that a cocycle c ∈ Z3(A,μn) is defined by
the cup product:

c = α ∪ ε,

where α ∈ Z1(A,μn) = Hom(A,μn) and ε ∈ Z2(A, Z/nZ) is a cocycle represent-
ing an extension

E : 0 Z/nZ Γ
ϕ

A 1.

We note that if we take a section σ of ϕ that sends eA to eΓ , then

ε(x, y) = σ(x) · σ(y) · σ(xy)−1 ∈ Ker ϕ = Z/nZ

(cf. [30, p. 183]). As discussed in Sect. 1, this assumption is vacuous if A = Z/nZ.
To find b−,v and b+,v in the decomposition formula (†), we first trivialise ε in πv

and πT , respectively. Namely, let

dγ−,v = ρ∗
v(ε) and dγ+ = ρ∗

T (ε).

Here, the precise choice of γ−,v will be unimportant, except it should be unramified
and normalised so that γ−,v(eA) = 0. Hence, we will be inexplicit below about this
choice. Again, let γ+,v = rv(γ+). Then, we have

d(ρ∗
v(α) ∪ γ−,v) = −ρ∗

v(α) ∪ dγ−,v = −ρ∗
v(α ∪ ε) = −ρ∗

v(c)

and
d(ρ∗

T (α) ∪ γ+) = −ρ∗
T (α) ∪ dγ+ = −ρ∗

T (α ∪ ε) = −ρ∗
T (c).

Therefore, we can find

b−,v = −ρ∗
v(α) ∪ γ−,v and b+,v = rv(b+) = rv(−ρ∗

T (α) ∪ γ+) = −ρ∗
v(α) ∪ γ+,v.

In summary, we get the following formula.

Theorem 5.1 For ρ and c as above, we have

C Sc([ρ]) := C S[c]([ρ]) =
∑

v∈T

invv(ρ
∗
v(α) ∪ ψv), (5.1)

where ψv = γ+,v − γ−,v ∈ Z1(πv, Z/nZ) = H 1(πv, Z/nZ) = Hom(πv, Z/nZ).
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So, to evaluate the arithmetic Chern–Simons action, we need to study

• a trivialisation of certain pullback of a 2-cocycle ε, and
• the local invariant of a cup product of two characters on πv .

In the following two subsections, we will see how this idea can be realised.

5.2 Trivialisation of a Pullback of ε

As before, let ε ∈ Z2(A, Z/nZ) denote a 2-cocycle representing an extension

E : 0 Z/nZ Γ
ϕ

A

σ

1

with a section σ such that σ(eA) = eΓ .
Suppose that we have the following commutative diagram of group homomor-

phisms:

Ker( f )

f̃ |Ker( f )

Ã

f
f̃

Z/nZ Γ
ϕ

A.

(�)

Then, we can easily trivialise f ∗(ε) ∈ Z2( Ã, Z/nZ) using the following lemma.

Lemma 5.2 For any g ∈ Ã, let

γ(g) := σ( f (g)) · f̃ (g)−1.

Then, γ(g) ∈ Ker(ϕ) = Z/nZ and dγ = f ∗(ε) ∈ Z2( Ã, Z/nZ). Furthermore, we
have γ(eÃ) = 0 and γ(g · h) = γ(g) + γ(h) for any g, h ∈ Ker( f ).

Proof First,we note thatγ(g) ∈ Ker(ϕ) becauseϕ ◦ σ is the identity andϕ ◦ f̃ = f .
By definition and the fact that Ker(ϕ) is in the center of Γ ,

dγ(x, y) = γ(y) · γ(xy)−1 · γ(x) = γ(y) · γ(x) · γ(xy)−1

= {σ( f (y)) · f̃ (y)−1} · {σ( f (x)) · f̃ (x)−1} · {σ( f (xy)) · f̃ (xy)−1}−1

= {σ( f (y)) · f̃ (y)−1} · σ( f (x)) · f̃ (x)−1 · f̃ (x) · f̃ (y) · σ( f (xy))−1

= σ( f (x)) · {σ( f (y)) · f̃ (y)−1} · f̃ (y) · σ( f (xy))−1

= σ( f (x)) · σ( f (y)) · σ( f (x · y))−1

= f ∗(ε)(x, y).
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Therefore the first claim follows. Also, γ(eÃ) = 0 because σ( f (eÃ)) = σ(eA) = eΓ

and f̃ (eÃ) = eΓ . Finally, for any g ∈ Ker( f ), γ(g) = − f̃ (g), so it is a homomor-
phism because f̃ is a homomorphism and the image of f̃ |Ker( f ), which is contained
in Z/nZ, is abelian.

Remark 5.3 In Diagram (�), we can take Ã = Γ , f = ϕ and f̃ is the identity. For
the rest of this section, we always fix such a choice.

5.3 Local Invariant Computation

In this subsection, we investigate several conditions to ensure

invv(φ ∪ ψ) �= 0 ∈ 1

n
Z/Z,

where φ ∈ H 1(πv,μn)=Hom(πv,μn) and ψ ∈ Z1(πv, Z/nZ) = Hom(πv, Z/nZ).

Lemma 5.4 Suppose that φ is unramified, i.e., φ factors through πv/Iv . Then,

invv(φ ∪ ψ) = 0

if one of the following holds.

1. φ = 1, the trivial character.
2. ψ is unramified.

Proof If φ = 1, then φ ∪ ψ = 0 ∈ H 2(πv,μn). Thus, invv(φ ∪ ψ) = 0. Also, if ψ is
unramified, thenφ ∪ ψ arises from H 2(πv/Iv,μn) by inflation, which is 0. Therefore,
φ ∪ ψ = 0 ∈ H 2(πv,μn) and the result follows.

If v does not divide n, then we can prove more.

Lemma 5.5 Assume that v does not divide n. And assume that φ is an unramified
generator of Hom(πv,μn), i.e., a generator of Hom(πv/Iv,μn). Then,

invv(φ ∪ ψ) �= 0 ⇐⇒ ψ is ramified.

Proof Using a fixed primitive nth root ζ of unity, we fix an isomorphism

η : Z/nZ μn

a ζa

and using η, we get natural isomorphisms
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Hom(πv,
1
n Z/Z) Hom(πv, Z/nZ)

1
n ·(−)

η◦(−)

Hom(πv,μn).

η−1◦(−)

In this proof, we will regard φ as an element of Hom(πv,
1
n Z/Z) and ψ as one of

Hom(πv,μn) using the above isomorphisms.

If ψ is unramified, invv(φ ∪ ψ) = 0 by the above lemma. Since μn ⊂ Fv , by
the Kummer theory we can find an element a ∈ F∗

v such that δ(a) = ψ, where δ :
F∗

v /(F∗
v )n � H 1(πv, μn) = Hom(πv,μn). Let

ordv : F∗
v −→ Z

be the normalized valuation on F∗
v that sends a uniformiser � of OFv

to 1. Then,

ψ is ramified ⇐⇒ ordv(a) �≡ 0 (mod n).

Since φ is an unramified7 generator, φ(Frob) = t
n for some t ∈ (Z/nZ)×, where

Frob is a lift of the Frobenius in πv/Iv to πv . Then,

invv(φ ∪ ψ) = invv(φ ∪ δ(a)) = φ(Frobordv(a)) = t · ordv(a)

n
.

Combining the above two results, we obtain

ψ is ramified ⇐⇒ invv(φ ∪ ψ) �= 0

as desired.

Remark 5.6 When n = 2, the above lemmas are enough for the computation of
local invariants.

5.4 Construction of Examples

From now on, we assume that n = 2.
As a corollary of Sect. 5.2, if we have the following commutative diagrams

7This is where our assumption that v � n is used.
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πT
ρ̃+

κT

ρ+

Γ

ϕ

πv

κv

ρ̃v

ρv

Γ

ϕand

π
ρ

A π
ρ

A,

(��)

then we get
γ+ = (ρ̃+)∗(γ) and γ−,v = (ρ̃v)

∗(γ).

Thus we can explicitly compute C Sc([ρ]) using the previous strategy when we
are in the following situation:

Assumption 5.7

1. F is a totally imaginary field.
2. c = α ∪ ε with α : A → μ2 surjective, and ε representing an extension

E : 0 Z/2Z Γ A 1.

3. There are Galois extensions of F :

F ⊂ Fα ⊂ Fur ⊂ F+

such that

• Gal(Fur/F) is isomorphic to A and Fur/F is unramified everywhere.
• Gal(F+/F) is isomorphic to Γ and F+/F is unramified at the primes above
2.

• Fα is the fixed field of the kernel of the composition

Gal(Fur/F)
∼−→ A

α−→ μ2

and hence we get a commutative diagram

A α

π

ρ

Gal(Fur/F)

�

Gal(Fα/F)
�

μ2.

Suppose we are in the above assumption. Let S be the set of primes ofOF ramified
in F+, and S2 the set of primes ofOF dividing 2. Then by our assumption, S ∩ S2 = ∅.
Let T = S ∪ S2. Then, we can find a global trivialisation γ+ of ρ∗

T (ε) from the
following commutative diagram
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Z/2Z � Ker(φ) = Gal(F+/Fur)

φ̃|Ker(φ)=Id

Gal(F+/F)

φ
φ̃=Id

Z/2Z Γ � Gal(F+/F) A � Gal(Fur/F).

For each v ∈ T , let D(v) be the decomposition group of Gal(F+/F) at v. In other
words,

D(v) = {g ∈ Gal(F+/F) : gv = v} � Gal(F+
ν /Fv),

where ν is a prime of F+ lying above v. And let I (v) be the inertia subgroup of
D(v). Then, I (v) = 0 if and only if v divides 2. Thus,

γ+,v is unramified ⇐⇒ v ∈ S2.

Since ψv := γ+,v − γ−,v and we always take γ−,v unramified,

ψv is unramified ⇐⇒ v ∈ S2.

Furthermore,
ρ∗

v(α) is trivial ⇐⇒ f (D(v)) = 0,

where f is the natural projection fromGal(F+/F) toGal(Fα/F). And f (D(v)) = 0
exactly occurs when v splits in Fα. Note that ρ∗

v(α) is always an unramified generator
of Hom(πv,μ2) if it is not trivial.

Now we are ready to compute the arithmetic Chern–Simons invariants.

Theorem 5.8 Suppose we are in Assumption 5.7. Then,

C Sc([ρ]) =
∑

v∈T

invv(ρ
∗
v(α) ∪ ψv) = r

2
mod Z,

where ψv = γ+,v − γ−,v and r is the number of primes in S which are inert in Fα.

Proof The first equality follows from Theorem5.1. Thus, it suffices to compute
invv(ρ

∗
v(α) ∪ ψv) for v ∈ T . By Lemma5.4, invv(ρ

∗
v(α) ∪ ψv) = 0 if either ρ∗

v(α)

is trivial or ψv is unramified. By the above discussion, ρ∗
v(α) is trivial if and

only if f (D(v)) = 0, i.e., v splits in Fα; and ψv is unramified if and only if
v ∈ S2. Furthermore, if ρ∗

v(α) is not trivial and ψv is ramified, then by Lemma5.5,
invv(ρ

∗
v(α) ∪ ψv) = 1

2 . Thus the result follows.

Therefore to provide an example of calculation of the arithmetic Chern–Simons
invariants, it suffices to construct a tower of fields satisfying Assumption 5.7, which
is essentially the embedding problem in the inverse Galois theory. Instead, we will
consider the similar problems over Q, which are much easier to solve (or find from
the table). Then, we will construct a tower satisfying Assumption 5.7 from a tower
of fields over Q.
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Assumption 5.9 Suppose we have a number field L with its subfield K such that

1. Gal(L/Q) � Γ .
2. dL , the (absolute) discriminant of L , is an odd integer.8

3. Gal(K/Q) � A.
4. Q(

√
D) is a quadratic subfield of K , where D is a divisor of dK .9

5. K/Q(
√

D) is unramified at any finite primes.

Then, we have the following.

Proposition 5.10 Let F = Q(
√−|D| · t) be an imaginary quadratic field, where t

is a positive squarefree integer prime to D so that F ∩ L = Q. Then, there is a tower
of fields F ⊂ Fur ⊂ F+ satisfies Assumption 5.7. In fact, we can take

Fur = K F and F+ = L F.

Proof First, it is clear that F is totally imaginary. Next, since F ∩ L = Q

Gal(L F/F) � Gal(L/Q) � Γ and Gal(K F/F) � Gal(K/Q) � A.

Since the discriminant of L is odd, L/K is unramified at the primes above 2, and so
is L F/K F . Finally, it suffices to show that K F/F is unramified everywhere. Since
K/Q(

√
D) is unramified everywhere, K/Q is only ramified at the primes dividing

D. (Note that the discriminant of K is odd, hence it is unramified at 2.) Moreover,
the ramification degree of any prime divisor p of D is 2, and the same is true for
F/Q. Since p is odd, K F/F is unramified at the primes above p by Abhyankar’s
lemma [5, Theorem 1], which implies our claim.

Remark 5.11 Since the ramification indices of any prime divisor p of D are 2 in
both F/Q and K/Q, we can use Abhyankar’s lemma in both directions. (Note that
our assumption implies that D is odd.) In other words, K F/K is always unramified
at the primes dividing D.

The remaining part to check Assumption5.7 is the choice of Fα. Let

B := {F1, . . . , Fm}

be the set of quadratic subfields of Fur. Then, there is one-to-one correspondence
between the set of surjective homomorphisms Gal(Fur/F) → μ2 and B. Therefore

8We may consider when dL is even. Then later, it is not clear that F L/F K is unramified at the
primes above 2. Some choices of t (for F) can make it ramified. Then, it is hard to determine the
value of local invariants unless 2 splits in Fα/F .
9Here, we always take that dK is odd because we cannot use Abhyankar’s lemma when p = 2, and
hence we may not remove ramification in the extension F K/F at the primes above 2. In some nice
situation, we may directly prove that F(

√
D)/F is unramified at the primes above 2 even though

D is even. If so, our assumption on dK can be removed.
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m = #Hom(A,μ2) − 1 and we can define αi : A → μ2 so that Fαi = Fi due to the
(chosen) isomorphism Gal(Fur/F) � A.

Now, suppose Fα = F(
√

M) ⊂ Fur for some divisor M of D. LetQ1 = Q(
√

M)

andQ2 = Q(
√

N ), where N = (−|D| · t)/M . Then, we have the following commu-
tative diagram:

Fα = F(
√

M) = F(
√

N )

unramified

Q1 = Q(
√

M) F = Q(
√

M N ) Q2 = Q(
√

N )

Q

For a prime p, let ℘ denote a prime of OF lying above p. We want to understand the
splitting behaviour of ℘ in Fα.

Lemma 5.12 Let p be an odd prime.

1. Assume that p divides Dt. Then

℘ is inert in Fα ⇐⇒ p is inert either in Q1 or in Q2.

2. If p is inert in F, then ℘ always splits in Fα.
3. Assume that p splits in F. Then

℘ splits in Fα ⇐⇒ p splits in Q1.

Proof

1. In this case, p is ramified in F , and p is ramified either in Q1 or in Q2. Without
loss of generality, let p is ramified in Q2. Then, ℘ is inert in Fα if and only if p
is inert in Q1 from the above commutative diagram.

2. Let
(

a
b

)
denote the Legendre symbol. If p is inert in F , then

(
M N

p

) = −1. Therefore

either
(

M
p

) = 1 or
(

N
p

) = 1. Without loss of generality, let
(

M
p

) = 1 and
(

N
p

) = −1.
Then, p splits in Q1 and hence there are at least two primes in Fα above p. Since
℘ is the unique prime of F above p, ℘ splits in Fα.

3. Since
(

M N
p

) = 1, either
(

M
p

) = (
N
p

) = 1 or
(

M
p

) = (
N
p

) = −1. If
(

M
p

) = −1, then
there is only one prime in Q1 above p. Thus, there are at most two primes in
Fα above p. Since p already splits in F , ℘ is inert in Fα. On the other hand, if(

M
p

) = 1, then p splits completely in Fα because p splits completely both in Q1

and F . Thus, ℘ splits in Fα.

Let DL = dL/d2
K be the norm (toQ) of the relative discriminant of L/K . Then, L/K

is precisely ramified at the primes dividing DL , and hence
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S ⊂ {p ∈ Spec(OF ) : p | DL}.

(Note that S is the set of primes in OF that ramify in F+.) Let s be the number of
prime divisors of (DL , D), which are inert either in Q1 or in Q2. Then, we have the
following.

Theorem 5.13 Assume that we have ρ and c as above. Then,

C Sc([ρ]) ≡ s

2
(mod Z).

Proof First, we show that

S = {p ∈ Spec(OF ) : p | DL but p � t}.

For a prime divisor p of DL which does not divide t , we show that K F/K is
unramified at any primes above p, which implies that L F/K F is ramified at the
primes above p. If p does not divide D, then this is done because p is unramified
in F . On the other hand, if p divides D, K F/K is unramified at the primes above
p by Remark 5.11. Now, assume that p divides (DL , t), and let ℘ be a prime of
OK lying above p. Then, ℘ is ramified both in L/K and in K F/K . (Note that since
(t, D) = 1, K/Q is unramified at p but F/Q is ramified at p.) Therefore by the same
argument as in Remark 5.11, L F/K F is unramified at the primes above p, which
proves the above claim.

Next, by Theorem 5.8 it suffices to compute the number of primes in S which are
inert in Fα. Let ℘ ∈ S be a prime above an odd prime p. Assume that p does not
divide D. (Then p is unramified in F .) If p is inert in F , then ℘ always splits in Fα

by Lemma 5.12. If p splits in F and pOF = ℘ · ℘ ′, then℘ is inert (in Fα) if and only
if ℘ ′ is inert. Therefore to compute the invariant, the contribution from such split
primes can be ignored. So, we may assume that p divides D. Then, there is exactly
one (ramified) prime ℘ in OF above p, and our claim follows from Lemma5.12.

We remark that the computation of s is completely easy because Q1/Q and Q2/Q

are just quadratic fields. And this also illustrates that we only need information on
the primes dividing (DL , D) for the computation.

5.5 Case 1: Cyclic Group

Let A = Z/2Z, and Γ = Z/4Z. Then, we can easily find Galois extensions L/K/Q

in Assumption 5.9 by the theory of cyclotomic fields.
Let p be a prime congruent to 1 modulo 4. Then, we can take L as the degree 4

subfield of Q(μp), and K = Q(
√

p). Moreover, dL = p3 and dK = p.
Let F = Q(

√−p · t), where t is a positive squarefree integer prime to p. (Then,
F ∩ L = Q.)
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Proposition 5.14 Let ρ and c be chosen so that Fα = Fur = F K and F+ = F L.
Then,

C Sc([ρ]) = 1

2
⇐⇒

(
t

p

)
= −1.

Proof By Theorem 5.13, it suffices to check whether p is inert in Q(
√−t). If it is

inert, then C Sc([ρ]) = 1
2 , and 0 otherwise. Since p ≡ 1 (mod 4), the result follows.

5.6 Case 2: Non-cyclic Abelian Group

Let A = V4 := Z/2Z × Z/2Z, the Klein four group, and Γ = Q8 = Q, the quater-
nion group. To find Galois extensions L/K/Q in Assumption 5.9, we first study
quaternion extensions of Q in general.

Proposition 5.15 Let L/Q be a Galois extension whose Galois group is isomorphic
toQ. Suppose that dL is odd. Let K be a subfield of L with Gal(L/K ) � Z/2Z. Then,

1. K = Q(
√

d1,
√

d2) for some positive squarefree d1 and d2.
2. d1 ≡ d2 ≡ 1 (mod 4).
3. Let p be a prime divisor of d1d2. Then, p divides DL := dL/d2

K .

Proof Since K is a subfield of L ,dK is also odd.And sinceQhas a unique subgroupof
order 2, which is normal, K/Q is Galois andGal(K/Q) � Z/2Z × Z/2Z. Therefore
K = Q(

√
d1,

√
d2), where d1 and d2 are products of prime discriminants. If L is

totally real, then K must be totally real as well. If L is not totally real, then the
complex conjugation generates a subgroup of Gal(L/Q) of order 2. Since Q has a
unique subgroup of order 2, K must be a fixedfield of the complex conjugation,which
implies that K is totally real. So, d1 and d2 can be taken as positive squarefree integers.
Moreover, since they are products of prime discriminants and odd, d1 ≡ d2 ≡ 1
(mod 4).

Finally, let p be a prime divisor of d1, which does not divide d2. Note that
Q(

√
d1) ⊂ K ⊂ L and L/Q(

√
d1) is a cyclic extension of degree 4. Since p does

not divide d2, Q(
√

d2)/Q is unramified at p and hence K/Q(
√

d2) is ramified at the
primes dividing p. By [19, Corollary 3], L/K is ramified at the primes above p and
hence p divides DL . By the same argument, the claim follows when p is a divisor
of d2, which does not divide d1. Let p be a prime divisor of (d1, d2). Then, since

K = Q(
√

d1,
√

d2) = Q(
√

d1,
√

d1d2) = Q(
√

d1,
√

d1d2
p2 ) and p does not divide d1d2

p2 ,

the result follows by the same argument as above.

Now, let d1 and d2 be two squarefree positive integers such that

• d1 ≡ d2 ≡ 1 (mod 4).
• (d1, d2) = 1.10

10This is not a vacuous condition. In fact, there is a Q-extension L containing Q(
√
21,

√
33) [35].
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Let K = Q(
√

d1,
√

d2). Suppose that there is a number field L such that

• L/Q is Galois and Gal(L/Q) � Q.
• L contains K and the discriminant dL of L is odd.

Let F = Q(
√−d1d2 · t), where t is a positive squarefree integer prime to d1d2. Then

L ∩ F = Q because all quadratic subfields of L are contained in K , which is totally
real. Since Hom(A,μ2) is of order 4, there are three quadratic subfield of F K over
F :

F1 := F(
√

d1), F2 := F(
√

d2), and F3 := F(
√

d1d2) = F(
√−t).

Proposition 5.16 Let ρ and ci = αi ∪ ε be chosen so that Fαi = Fi , Fur = F K and
F+ = F L. Then,

C Sc1([ρ]) = 1

2
⇐⇒

∏

p|d1

(−d2 · t

p

)
×

∏

p|d2

(
d1
p

)
= −1.

C Sc2([ρ]) = 1

2
⇐⇒

∏

p|d1

(
d2
p

)
×

∏

p|d2

(−d1 · t

p

)
= −1.

C Sc3([ρ]) = 1

2
⇐⇒

∏

p|d1d2

(−t

p

)
= −1.

Proof By the above lemma and Theorem 5.13, it suffices to compute the number of
prime divisors of d1d2, which are inert in Q1 or in Q2.

First, compute C Sc1([ρ]). In this case, Q1 = Q(
√

d1) and Q2 = Q(
√−d2 · t). If

p is a divisor of d1, it is inert in Q2 if and only if

(−d2 · t

p

)
= −1.

Therefore, the number of such prime divisors of d1 is odd if and only if

∏

p|d1

(−d2 · t

p

)
= −1.

Similarly, the number of prime divisors of d2, which are inert in Q1, is odd if and
only if

∏

p|d2

(
d1
p

)
= −1.

Thus, we have

C Sc1([ρ]) = 1

2
⇐⇒

∏

p|d1

(−d2 · t

p

)
×

∏

p|d2

(
d1
p

)
= −1.
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The remaining two cases can easily be done by the same method as above.

We can find Galois extensions L/K/Q satisfying the above assumptions from the
database. Here, we take L/K/Q from the LMFDB [36] as follows. Let

g(x) = x8 − x7 + 98x6 − 105x5 + 3191x4 + 1665x3 + 44072x2 + 47933x + 328171

be an irreducible polynomial over Q, and β be a root of g(x). Let

L = Q(β) and K = Q(
√
5,

√
29).

So, d1 = 5 and d2 = 29. Moreover, DL = 32 · 52 · 292.
Let F = Q(

√−5 · 29 · t), where t is a positive squarefree integer prime to 5 · 29.
Corollary 5.17 Let ρ and ci = αi ∪ ε be chosen as above. Then,

C Sc1([ρ]) = 1

2
⇐⇒

(
t

5

)
= −1 ⇐⇒ t ≡ ±2 (mod 5).

C Sc2([ρ]) = 1

2
⇐⇒

(
t

29

)
= −1.

C Sc3([ρ]) = 1

2
⇐⇒

(
t

5

)
= −

(
t

29

)
.

Now,we provide another example. Let L/K/Q from the the LMFDB [37] as follows.
Let

g(x) = x8 − x7 − 34x6 + 29x5 + 361x4 − 305x3 − 1090x2 + 1345x − 395

be an irreducible polynomial over Q, and β be a root of g(x). Let

L = Q(β) and K = Q(
√
5,

√
21).

So, d1 = 5 and d2 = 21. Moreover, DL = 32 · 52 · 72.
Let F = Q(

√−105 · t), where t is a positive squarefree integer prime to 105.

Corollary 5.18 Let ρ and ci = αi ∪ ε be chosen as above. Then,

C Sc1([ρ]) = 1

2
⇐⇒

(
t

5

)
= −1 ⇐⇒ t ≡ ±2 (mod 5).

C Sc2([ρ]) = 1

2
⇐⇒

(
t

3

)
= −

(
t

7

)
⇐⇒ 2, 8, 10, 11, 13, 19 (mod 21).

C Sc3([ρ]) = 1

2
⇐⇒

(
t

3

)
·
(

t

5

)
·
(

t

7

)
= −1.

Now, we take A = V4, but Γ = D4, the dihedral group of order 8. We found L/K/Q

from the LMFDB [38] as follows. Let



110 H.-J. Chung et al.

g(x) = x8 − 3x7 + 4x6 − 3x5 + 3x4 − 3x3 + 4x2 − 3x + 1

be an irreducible polynomial over Q, and β be a root of g(x). Let

L = Q(β) and K = Q(
√−3,

√−7).

If we take D = 21, then this choice satisfies Assumption 5.9. Moreover, dL = 36 · 74
and dK = 32 · 72.

Let F = Q(
√−21 · t), where t is a positive squarefree integer prime to 21.

(Then, F ∩ L = Q because all imaginary quadratic subfields of L are Q(
√−3) and

Q(
√−7).) Since Hom(A,μ2) is of order 4, there are three quadratic subfield of F K

over F :
F1 := F(

√−3), F2 := F(
√−7), and F3 := F(

√
21).

Proposition 5.19 Let ρ and ci = αi ∪ ε be chosen so that Fαi = Fi , Fur = F K and
F+ = F L. Then,

C Sc1([ρ]) = 1

2
⇐⇒

(
t

3

)
= −1 ⇐⇒ t ≡ 2 (mod 3).

C Sc2([ρ]) = 1

2
for all t.

C Sc3([ρ]) = 1

2
⇐⇒

(
t

3

)
= 1 ⇐⇒ t ≡ 1 (mod 3).

Proof Since DL = 32, the result follows from Theorem 5.13.

5.7 Case 3: Non-abelian Group

Let A = S4, the symmetric group of degree 4. Then, H 1(A,μ2) � Z/2Z and
H 2(A, Z/2Z) � Z/2Z × Z/2Z. Thus, there is a unique surjective map α : A � μ2

and three non-trivial central extensions Γi of A by Z/2Z:

• Γ1 = 2+S4 � GL(2, F3), the general linear group of degree 2 over F3.
• Γ2 = 2−S4, the transitive group ‘16T 65’ in [33].
• Γ3 = 2detS4, corresponding to the cup product of the signature with itself.

Let εi be a cocycle representing the extension

0 Z/2Z Γi A = S4 0.

In this subsection, we will consider the first two cases. There are another descriptions
of the groups Γ1 and Γ2. Let
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E : 1 SL(2, F3) Γ F
×
3 � Z/2Z 0.

If E splits, then Γ � Γ1, otherwise Γ � Γ2.
Let c = α ∪ ε1. (So,Γ = Γ1.) SupposeQ ⊂ Q(

√
D) ⊂ K ⊂ L is a tower of fields

satisfying Assumption 5.9. Let F = Q(
√−|D| · t), where t is a squarefree integer

prime to D and greater than 1. Then, F ∩ L = F ∩ Q(
√

D) = Q. (The first equality
holds because Γ has a unique subgroup of order 24.)

Proposition 5.20 Let ρ and c be chosen so that Fα = F(
√

D), Fur = F K and
F+ = F L. Then,

C Sc([ρ]) = 0.

Proof Since the extension

E : 1 SL(2, F3) GL(2, F3) F
×
3 � Z/2Z 0

splits, Gal(L/Q) � Gal(L/Q(
√

D)) � Gal(Q(
√

D)/Q).
Let p be a prime divisor of (DL , D). By our assumption, p is odd. Let Ip be

an inertia subgroup of Gal(L/Q) � Γ = GL(2, F3). Since L/K and Q(
√

D)/Q are
ramified at p but K/Q(

√
D) is not, the ramification index of p in L/Q is 4, and

Ip � Z/2Z × Z/2Z.
On the other hand, since p is odd, L/Q is tamely ramified at p and hence Ip must

be cyclic, which is a contradiction. Therefore (DL , D) = 1 and hence the result
follows by Theorem 5.13.

We can find several examples of such towers from the LMFDB. Let

g1(x) = x8 − 4x7 + 7x6 + 7x5 − 51x4 + 50x3 + 61x2 − 107x − 83

g2(x) = x4 − x − 1

be irreducible polynomials overQ [39, 40], and let L (resp. K ) be the the splittingfield
of g1(x) (resp. g2(x)). Then, Gal(L/Q) � GL(2, F3) and Gal(K/Q) � S4. More-
over, dL = 324 · 28324 and dK = 28312. Thus, D = −283 satisfies Assumption 5.9.
Note that since the discriminant D of g2(x) is squarefree, K/Q(

√
D) is unramified

everywhere (cf. [12, p. 1]).
Let F = Q(

√−283 · t), where t is a squarefree integer prime to 283, and t > 1.

Corollary 5.21 Let ρ and c be chosen so that Fα = F(
√−283), Fur = F K and

F+ = F L. Then,
C Sc([ρ]) = 0.
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Now, we consider another case. Let c = α ∪ ε2. (So, Γ = Γ2.) Let L be the splitting
field of

f (x) = x16 + 5x15 − 790x14 − 4654x13 + 234254x12 + 1612152x11 − 33235504x10

− 263221982x9 + 2331584048x8 + 21321377994x7 − 74566280958x6 − 825209618478x5

+ 922238608476x4 + 13790070608536x3 − 6704968288135x2 − 80794234036917x + 87192014930816.

Let K be the splitting field of

g(x) = x4 − x3 − 4x2 + x + 2.

Then, Gal(L/Q) � Γ = Γ2 and Gal(K/Q) � S4 = A.11 (See [33, 34].)

Lemma 5.22 We have the following.

1. K/Q(
√
2777) is unramified everywhere.

2. Q(
√
2777) is a unique quadratic subfield of L.

3. Q(
√
2777) ⊂ K ⊂ L.

4. DL is a multiple of 2777, i.e., L/K is ramified at the primes above 2777.

Proof For simplicity, let E := Q(
√
2777) and p = 2777.

1. Since S4 has a unique subgroup of order 12, K has a unique quadratic subfield
K ′. Since the discriminant of g(x) is p, a prime, K ′ = E and K/E is unramified
everywhere (cf. [12, p. 1]).

2. Let βi be the roots of f (x). Then, L = ∪ Q(βi ). Since the discriminant of the
field Q[x]/( f (x)) is p12, Q(βi ) contains E , and so does L . On the other hand,
since Γ has also a unique subgroup of order 24, E is a unique quadratic subfield
of L .

3. Since

f (x) ≡ (x + 1372)4 · (x + 1791)4 · (x + 1822)4 · (x + 2653)4 (mod p),

the ramification index of p in Q(βi )/Q is 4. Since L = ∪ Q(βi ) and p is odd,
the ramification index of p in L/Q is 4 by Abhyankar’s lemma. Since L/Q is
tamely ramified at p, the inertia subgroup Ip of Gal(L/Q) � Γ is cyclic of order
4. Since Γ has a unique subgroup C of order 2, Ip contains C . Thus, L/M is
ramified at the primes above p, where M is the fixed field of C in L . Since E/Q

is also ramified at p, M/E is unramified at the primes above p, and hence M/E
is unramified everywhere.

11This example is provided us by Dr. Kwang–Seob Kim.
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L
ramified only at the primes above p

unique S4-subextension M

unramified everywhere A4-extension

unique quadratic subextension E
ramified only at p

Q

Now, it suffices to show that K = M . Let N = K ∩ M . Then, since K and M are
Galois over E , so is N . Also since the normal subgroups of Gal(K/E) � A4 �
Gal(M/E) are either {1}, V4 or A4,

Gal(N/E) � either {1}, Z/3Z or A4.

Note that the class group of E is Z/3Z. Let H be the Hilbert class field of E .
Then, the class group of H is V4. (This can easily be checked because the degree of
H/Q is small.) If Gal(N/E) � {1}, then E has two different degree 3 unramified
extensions given by K V4 and M V4 , which is a contradiction. IfGal(N/E) � Z/3Z,
then N = H and N has two different unramified V4 extensions K and M , which
is a contradiction. Thus, Gal(N/E) � A4 and hence K = N = M , as desired.

4. This is proved in (3).

Thus, we can take D = 2777. Let F = Q(
√−2777 · t) for a positive squarefree

integer t prime to 2777. Then, F ∩ L = Q because L has a unique quadratic subfield
Q(

√
2777), which is real.

Proposition 5.23 Let ρ and c be chosen so that Fα = F(
√

D), Fur = F K and
F+ = F L. Then,

C Sc([ρ]) = 1

2
⇐⇒

( −t

2777

)
=

(
t

2777

)
= −1.

Proof Since (DL , D) = 2777 and Fα = F(
√

D) = F(
√−t), the result follows

from Theorem 5.13.

Remark 5.24 Even in the non-abelian case,wehave infinite family of non-vanishing
arithmetic Chern–Simons invariants!

6 Application

In this section, we give a simple arithmetic application of our computation. Namely,
we show non-solvability of a certain case of the embedding problem based on our
examples of non-vanishing arithmetic Chern–Simons invariants.
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For an odd prime p, let p∗ = (−1)
p−1
2 p. Let

d1 =
s∏

i=1

p∗
i and d2 =

t∏

j=1

q∗
j ,

where pi , q j are distinct odd prime numbers, and d1, d2 > 0. Let

Ai :=
(

d2
pi

)
=

∏

1≤ j≤t

(
q j

pi

)
and B j :=

(
d1
q j

)
=

∏

1≤i≤s

(
pi

q j

)
.

Let
Δ(d1, d2) :=

∏

1≤i≤s

Ai and Δ(d2, d1) :=
∏

1≤ j≤t

B j .

Lemma 6.1 Δ(d1, d2) = Δ(d2, d1).

Proof Note that Δ(d1, d2) = ∏
1≤i≤s
1≤ j≤t

(pi

q j

)
. Since d1 is positive, the number of prime

divisors of d1 which are congruent to 3 modulo 4 is even. And the same is true for
d2. Thus by the quadratic reciprocity law,

Ai =
∏

1≤ j≤t

(
q j

pi

)
=

∏

1≤ j≤t

(
pi

q j

)
.

By taking product for all 1 ≤ i ≤ s, we get the result.

Recall that Q denotes the quaternion group.

Proposition 6.2 Let K = Q(
√

d1,
√

d2). If Δ(d1, d2) = −1, then there cannot exist
a number field L with odd discriminant, such that Gal(L/Q) � Q and K ⊂ L.

A referee of an earlier version of this paper has pointed out that this result can also be
obtained using the theorem12 of Witt in [31, p. 244] (or (7.7) on [8, p. 106]). (In our
situation, if such a field L exists, the theorem impliesΔ(d1, d2) = 1, which gives us a
contradiction.) So this proposition should be viewed as a new perspective rather than
a new result. In fact, Propositions 6.2 and 6.4 dealwith a class of embedding problems
wherein the existence of an unramified extension forces a Chern–Simons invariant
to be zero. The outline of proof together with the explicit formulas for computing the
Chern–Simons invariant should make clear that even the simplest Z/2Z-valued case
is likely to have a non-trivial range of applications. We consider the point of view
presented here as a simple and rough analogue of the classical theorem of Herbrand,
whereby the existence of certain unramified extensions of cyclotomic fields forces

12K extends to a quaternion extension if and only if the Hilbert symbols (d1, d2) and (d1d2,−1)
agree in the Brauer group.
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some L-values to be congruent to zero ([29, Sect. 6.3]). In future papers, we hope
to discuss this analogy in greater detail and investigate the possibility of ‘converse
Herbrand’ type results in the spirit of Ribet’s theorem [27].

Proof Suppose that there does exist such a field L/Q satisfying all the given prop-
erties above. Choose a prime 	 such that

• 	 does not divide d1d2.
• 	 ≡ 3 (mod 4).
• (−	

pi

) = Ai and
(−	

q j

) = B j for all i and j .

In fact, 	 ≡ a (mod 4d1d2) for some a with (a, 4d1d2) = 1, and hence there are
infinitely many such primes by Dirichlet’s theorem.

Now let d3 := 	∗ = −	. And let F = Q(
√

d1d2d3). Then by direct computation
using the quadratic reciprocity law, we get

(
d1d2

	

)
=

∏

1≤i≤s

(
pi

	

) ∏

1≤ j≤t

(
q j

	

)
=

∏

1≤i≤s

(−	

pi

) ∏

1≤ j≤t

(−	

q j

)
= Δ(d1, d2) · Δ(d2, d1).

Thus by the above lemma, we get

(
d1d2

	

)
= 1.

Furthermore, for all i and j

(
d2d3

pi

)
= A2

i = 1 and

(
d3d1
q j

)
= B2

j = 1.

Therefore by [19, Theorem 1], there is a Galois extension M/Q such that M/F is
unramified everywhere, and Gal(M/F) � Q. Furthermore K F = F(

√
d1,

√
d2) is

the unique subfield of M with Gal(M/K F) � Z/2Z.
Let A = V4, and let ci = αi ∪ ε, where αi ∈ H 1(A,μ2) and ε ∈ Z2(A, Z/2Z)

represents the extension Q. Since M/F is an unramified Q-extension, [ε] = 0 ∈
H 2(π, Z/2Z), where π = π1(Spec(OF ), b) as before. Thus, [ci ] = 0 ∈ H 3(X,μ2)

for all i . This implies that C Sci ([ρ]) = 0 for all i , where ρ ∈ Hom(π, A) factors
through

π � Gal(K F/F) � A.

Take α1 so that Fα1 = F(
√

d1). Since

∏

1≤i≤s

(−d2 · 	

pi

)
×

∏

1≤ j≤t

(
d1
q j

)
=

∏

1≤ j≤t

B j = Δ(d2, d1) = Δ(d1, d2) = −1

by assumption, we get
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Table 1 Some biquadratic fields and quaternionic extensions

d1 d2 Δ ∃L? d1 d2 Δ ∃L? d1 d2 Δ ∃L?

5 13 −1 No 13 17 1 Yes
[44]

17 21 1 Yes
[48]

5 17 −1 No 13 21 −1 No 17 29 −1 No

5 21 1 Yes
[37]

13 29 1 Yes
[45]

17 33 1 Yes
[49]

5 29 1 Yes
[41]

13 33 −1 No 17 37 −1 No

5 33 −1 No 13 37 −1 No 17 41 −1 No

5 37 −1 No 13 41 −1 No 17 53 1 Yes
[50]

5 41 1 Yes
[42]

13 53 1 Yes
[46]

17 57 −1 No

5 53 −1 No 13 57 −1 No 17 61 −1 No

5 57 −1 No 13 61 1 Yes
[47]

17 65 −1 No

5 61 1 Yes
[43]

13 69 1 No 17 69 1 Yes
[51]

C Sc1([ρ]) = 1

2

by Proposition 5.16, which is a contradiction. Thus, there cannot exist such L .

Remark 6.3 For the explicit construction of quaternion extensions L of Q, see [9]
or [28, Theorem 4.5].

In the LMFDB, you can search forQ-extensions L overQwith odd discriminants.We
make a table for readers,which verifies our theoremnumerically.HereΔ = Δ(d1, d2)
(Table1).

When d1 = 13 and d2 = 3 · 23 = 69, there cannot exist such L even though
Δ(d1, d2) = 1. This follows from the following proposition which is already known
to experts (e.g. [28]). For the sake of readers, we provide a complete proof as well.

Proposition 6.4 Let K = Q(
√

d1,
√

d2) as above. Let p be a prime divisor of di ,
which is congruent to 3 modulo 4. If

(d3−i

p

) = 1, then there cannot exist a number
field L such that Gal(L/Q) � Q and K ⊂ L.

Proof Let p be a prime divisor of d2, which is congruent to 3 modulo 4. Suppose
that

(d1
p

) = 1 and there exists such a field L . Then by the same argument as in

Proposition 5.15, the ramification index of p in L/Q is 4. LetO = Z[√d1] be the ring
of integers of Q(

√
d1). Then, since

(d1
p

) = 1, pO = ℘ · ℘ ′ for two different maximal
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ideals ℘ and ℘ ′. Thus, D(℘) = I (℘) � Z/4Z, where D(℘) (resp. I (℘)) is the
decomposition group (resp. inertia group) of ℘ in Gal(L/Q) � Q. Since O℘ � Zp,
the D(℘) = I (℘) � Z/4Z can be regarded as a quotient ofZ×

p � Z/(p − 1)Z × Zp.
Because p − 1 ≡ 2 (mod 4), this is a contradiction and hence the result follows.
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7 Appendix 1: Conjugation on Group Cochains

We compute cohomology of a topological group G with coefficients in a topological
abelian group M with continuous G-action using the complex whose component of
degree i is Ci (G, M), the continuous maps from Gi to M . The differential

d : Ci (G, M) → Ci+1(G, M)

is given by
d f (g1, g2, . . . , gi+1) = g1 f (g2, . . . , gi+1)

+
i∑

k=1

f (g1, . . . , gk−1, gk gk+1, gk+2, . . . , gi+1) + (−1)i+1 f (g1, g2, . . . , gi ).

We denote by
Bi (G, M) ⊂ Zi (G, M) ⊂ Ci (G, M)

the images and the kernels of the differentials, the coboundaries and the cocycles,
respectively. The cohomology is then defined as

Hi (G, M) := Zi (G, M)/Bi (G, M).

There is a natural right action of G on the cochains given by

a : c �→ ca := a−1c ◦ Ada,
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where Ada refers to the conjugation action of a on Gi .

Lemma 7.1 The G action on cochains commutes with d:

d(ca) = (dca)

for all a ∈ G.

Proof If c ∈ Ci (G, M), then

d(ca)(g1, g2, . . . , gi+1) = g1a
−1c(Ada(g2), . . . ,Ada(gi+1))

+
i∑

k=1

a−1c(Ada(g1), . . . ,Ada(gk−1),Ada(gk)Ada(gk+1),Ada(gk+2), . . . ,Ada(gi+1))

+(−1)i+1a−1c(Ada(g1),Ada(g2), . . . ,Ada(gi ))

= a−1Ada(g1)c(Ada(g2), . . . ,Ada(gi+1))

+
i∑

k=1

a−1c(Ada(g1), . . . ,Ada(gk−1),Ada(gk)Ada(gk+1),Ada(gk+2), . . . ,Ada(gi+1))

+(−1)i+1a−1c(Ada(g1),Ada(g2), . . . ,Ada(gi ))

= a−1(dc)(Ada(g1),Ada(g2), . . . ,Ada(gi+1))

= (dc)a(g1, g2, . . . , gi+1).

We also use the notation (g1, g2, . . . , gi )
a := Ada(g1, g2, . . . , gi ). It is well-known

that this action is trivial on cohomology.Wewish to show the construction of explicit
ha with the property that

ca = c + dha

for cocycles of degree 1, 2, and 3. The first two are relatively straightforward, but
degree 3 is somewhat delicate. In degree 1, first note that c(e) = c(ee) = c(e) +
ec(e) = c(e) + c(e), so that c(e) = 0.Next, 0 = c(e) = c(gg−1) = c(g) + gc(g−1),
and hence, c(g−1) = −g−1c(g). Therefore,

c(aga−1) = c(a) + ac(ga−1) = c(a) + ac(g) + agc(a−1) = c(a) + ac(g) − aga−1c(a).

From this, we get
ca(g) = c(g) + a−1c(a) − ga−1c(a).
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That is,
ca = c + dha

for the zero cochain ha(g) = a−1c(a).

Lemma 7.2 For each c ∈ Zi (G, M) and a ∈ G, we can associate an

hi−1
a [c] ∈ Ci−1(G, M)/Bi−1(G, M)

in such a way that
(1) ca − c = dhi−1

a [c];
(2) hi−1

ab [c] = (hi−1
a [c])b + hi−1

b [c].

Proof This is clear for i = 0 and we have shown above the construction of h0
a[c] for

c ∈ Z1(G, M) satisfying (1). Let us check the condition (2):

h0
ab[c](g) = (ab)−1c(ab)

= b−1a−1(c(a) + ac(b)) = b−1h0a[c](Adb(g)) + h0b[c](g) = (h0a[c])b(g) + h0b[c](g).

We prove the statement using induction on i , which we now assume to be ≥ 2. For
a module M , we have the exact sequence

0 → M → C1(G, M) → N → 0,

where C1(G, M) has the right regular action of G and N = C1(G, M)/M . Here,
we give C1(G, M) the topology of pointwise convergence. There is a canonical
linear splitting s : N → C1(G, M) with image the group of functions f such that
f (e) = 0, using which we topologise N . According to [24, Proof of 2.5], the G-
module C1(G, M) is acyclic,13 that is,

Hi (G, C1(G, M)) = 0

for i > 0. Therefore, given a cocycle c ∈ Zi (G, M), there is an

F ∈ Ci−1(G, C1(G, M))

such that its image f ∈ Ci−1(G, N ) is a cocycle and d F = c. Hence, d(Fa − F) =
ca − c. Also, by induction, there is a ka ∈ Ci−2(G, N ) such that f a − f = dka and

13The notation there for C1(G, M) is F0
0 (G, M). One difference is that Mostow uses the complex

E∗(G, M) of equivariant homogeneous cochains in the definition of cohomology. However, the
isomorphism En → Cn that sends f (g0, g1, . . . , gn) to f (1, g1, g1g2, . . . , g1g2 · · · gn) identifies
the two definitions. This is the usual comparison map one uses for discrete groups, which clearly
preserves continuity.
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kab = (ka)
b + kb + dl for some l ∈ Ci−3(G, N ) (zero if i = 2). Let Ka = s ◦ ka and

put
ha = Fa − F − d Ka .

Then the image of ha in N is zero, so ha takes values in M , and dha = ca − c. Now
we check property (2). Note that

Kab = s ◦ kab = s ◦ (ka)
b + s ◦ kb + s ◦ dl.

But s ◦ (ka)
b − (s ◦ ka)

b and s ◦ dl − d(s ◦ l) both have image in M . Hence, Kab =
K b

a + Kb + d(s ◦ l) + m for some cochain m ∈ Ci−2(G, M). From this, we deduce

d Kab = (d Ka)
b + d Kb + dm,

from which we get

hab = Fab − F − d Kab = (Fa)b − Fb + Fb − F − (d Ka)b − d Kb − dm = (ha)b + hb + dm.

8 Appendix 2: Conjugation Action on Group Cochains:
Categorical Approach

In this section, an alternative and conceptual proof of Lemma 7.2 is outlined.
Although not strictly necessary for the purposes of this paper, we believe that a
functorial theory of secondary classes in group cohomology will be important in
future developments. This point has also been emphasised to M.K. by Lawrence
Breen. More details and elaborations will follow in a forthcoming publication by
B.N.

8.1 Notation

In what follows G is a group and M is a left G-module. The action is denoted by am.
The left conjugation action of a ∈ G on G is denoted Ada(x) = axa−1. We have an
induced right action on n-cochains f Gn → M given by

f a(g) := a−1
( f (Ada g)).

Here, g ∈ Gn is an n-chain, and Ada g is defined componentwise.
In what follows, [n] stands for the ordered set {0, 1, . . . , n}, viewed as a category.
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8.2 Idea

The above action on cochains respects the differential, hence passes to cohomology.
It is well known that the induced action on cohomology is trivial. That is, given
an n-cocycle f and any element a ∈ G, the difference f a − f is a coboundary.
In this appendix we explain how to construct an (n − 1)-cochain ha, f such that
d(ha, f ) = f a − f . The construction, presumably well known, uses standard ideas
from simplicial homotopy theory [26, Sect. 1]. The general case of this construction,
as well as the missing proofs of some of the statements in this appendix will appear
in a separate article.

Let G denote the one-object category (in fact, groupoid) with morphisms G. For
an element a ∈ G, we have an action of a on G which, by abuse of notation, we will
denote again by Ada : G → G; it fixes the unique object and acts on morphisms by
conjugation by a.

Themain point in the construction of the cochain ha, f is that there is a “homotopy”
(more precisely, a natural transformation) Ha from the identity functor id: G → G

to Ada : G → G. The homotopy between id and Ada is given by the functor Ha :
G × [1] → G defined by

Ha|0 = id, Ha|1 = Ada, and Ha(ι) = a−1.

It is useful to visualise the category G × [1] as

0 ι

G

1

G

.

8.3 Cohomology of Categories

We will use multiplicative notation for morphisms in a category, namely, the com-
position of g: x → y with h: y → z is denoted gh: x → z.

Let C be a small category and M a left C-module, that is, a functor M : Cop → Ab,
x �→ Mx , to the category of abelian groups (or your favorite linear category). Note
that when G is as above, this is nothing but a left G-module in the usual sense. For
an arrow g: x → y in C, we denote the induced map My → Mx by m �→ gm.

Let C[n] denote the set of all n-tuples g of composable arrows in C,

g = • g1−→ • g2−→ · · · gn−→ •.

We refer to such a g as an n-cell in C; this is the same thing as a functor [n] → C,
which we will denote, by abuse of notation, again by g.
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An n-chain in C is an element in the free abelian group Cn(C, Z) generated by
the set C[n] of n-cells. For an n-cell g as above, we let sg ∈ ObC denote the source
of g1.

By an n-cochain on C with values in M we mean a map f that assigns to any
n-cell g ∈ C[n] an element in Msg. Note that, by linear extension, we can evaluate f
on any n-chain in which all n-cells share a common source point.

The n-cochains form an abelian group Cn(C, M). The cohomology groups
Hn(C, M), n ≥ 0, are defined using the cohomology complex C•(C, M):

0 −→ C0(C, M)
d−→ C1(C, M)

d−→ · · · d−→ Cn(C, M)
d−→ Cn+1(C, M)

d−→ · · ·

where the differential
d : Cn(C, M) → Cn+1(C, M)

is defined by

d f (g1, g2, . . . , gn+1) = g1( f (g2, . . . , gn+1)) +
∑

1≤i≤n

(−1)i f (g1, . . . , gi gi+1, . . . , gn+1)

+ (−1)n+1 f (g1, g2, . . . , gn).

A left G-module M in the usual sense gives rise to a left module on G, which we
denote again by M . We sometimes denote C•(G, M) by C•(G, M). Note that the
corresponding cohomology groups coincide with the group cohomology Hn(G, M).

The cohomology complex C•(C, M) and the cohomology groups Hn(C, M) are
functorial in M . They are also functorial in C in the following sense. A functor ϕ :
D → C gives rise to a D-module ϕ∗M := M ◦ ϕ Dop → Ab. We have a map of
complexes

ϕ∗ : C•(C, M) → C•(D,ϕ∗M), (8.1)

which gives rise to the maps

ϕ∗ : Hn(C, M) → Hn(D,ϕ∗M)

on cohomology, for all n ≥ 0.

8.4 Definition of the Cochains ha, f

The flexibility we gain by working with chains on general categories allows us to
import standard ideas from topology to this setting. The following definition of the
cochains ha, f is an imitation of a well known construction in topology.

Let f ∈ Cn+1(G, M) be an (n + 1)-cochain, and a ∈ G an element. Let Ha :G ×
[1] → G be the corresponding natural transformation. We define ha, f ∈ Cn(G, M)
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by
ha, f (g) = f (Ha(g × [1])).

Here, g ∈ C[n] is an n-cell in G, so g × [1] is an (n + 1)-chain in G × [1], namely,
the cylinder over g.

To be more precise, we are using the notation g × [1] for the image of the funda-
mental class of [n] × [1] in G × [1] under the functor g × [1] [n] × [1] → G × [1].
We visualize [n] × [1] as

(0, 1) (1, 1) · · · (n, 1)

(0, 0) (1, 0) · · · (n, 0)

Its fundamental class is the alternating sum of the (n + 1)-cells

(r, 1) · · · (n, 1)

(0, 0) · · · (r, 0)

in [n] × [1], for 0 ≤ r ≤ n. Therefore,

ha, f (g) =
∑

0≤r≤n

(−1)r f (g1, . . . , gr , a−1,Ada gr+1, . . . ,Ada gn). (8.2)

The following proposition can be proved using a variant of Stokes’ formula for
cochains.

Proposition 8.1 The graded map h−,a : C•+1(G, M) → C•(G, M) is a chain homo-
topy between the chain maps

id, (−)a : C•(G, M) → C•(G, M).

That is,
ha,d f + d(ha, f ) = f a − f

for every (n + 1)-cochain f . In particular, if f is an (n + 1)-cocycle, then d(ha, f ) =
f a − f .
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8.5 Composing Natural Transformations

Given an (n + 1)-cochain f , and elements a, b ∈ G, we can construct three n-
cochains: ha, f , hb, f and hab, f . A natural question to ask is whether these three
cochains satisfy a cocycle condition. It turns out that the answer is yes, but only
up to a coboundary dha,b, f . Below we explain how ha,b, f is constructed. In fact, we
construct cochains ha1,...,ak , f , for any k elements ai ∈ G, 1 ≤ i ≤ k, and study their
relationship.

Let f ∈ Cn+k(G, M) be an (n + k)-cochain. Let a = (a1, . . . , ak) ∈ G×k . Con-
sider the category G × [k],

0
ι0

G

1

G

ι1 · · · ιk−1
k.

G

Let Ha : G × [k] → G be the functor such that ιi �→ a−1
k−i and Ha|{0} = idG . (So,

Ha|{k−i} = Adai+1···ak .) Define ha, f ∈ Cn(G, M) by

ha, f (g) = f (Ha(g × [k])). (8.3)

Here, g ∈ C[n] is an n-cell in G, so g × [k] is an (n + k)-chain in G × [k].
To be more precise, we are using the notation g × [k] for the image of the funda-

mental class of [n] × [k] in G × [k] under the functor g × [k] [n] × [k] → G × [k].
We visualize [n] × [k] as

(0, k) (1, k) · · · (n, k)

...
...

...

(0, 1) (1, 1) · · · (n, 1)

(0, 0) (1, 0) · · · (n, 0)

Its fundamental class is the (n + k)-chain

∑

P

(−1)|P| P,

where P runs over (length n + k) paths starting from (0, 0) and ending in (n, k).
Note that such paths correspond to (k, n) shuffles; |P| stands for the parity of the
shuffle (which is the same as the number of squares above the path in the n × k grid).
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The most economical way to describe the relations between various ha, f is in
terms of the cohomology complex of the right module

M
• := Hom (C•(G, M),C•(G, M)) .

Here, Hom stands for the enriched hom in the category of chain complexes, and
the right action of G on M

• is induced from the right action f �→ f a of G on the
C•(G, M) sitting on the right. The differential on M

• is defined by

dM•(u) = (−1)|u|u ◦ dC•(G,M) − dC•(G,M) ◦ u,

where |u| is the degree of the homogeneous u ∈ C•(G, M).
Note that, for every a ∈ G×k , we have ha, f ∈ M

−k . This defines a k-cochain on
G of degree −k with values in M

•,

h(k) : a �→ ha,−, a ∈ G×k .

We set h(−1) := 0. Note that h(0) is the element in M
0 corresponding to the identity

map id: C•(G, M) → C•(G, M).
The relations between various ha, f can be packaged in a simple differential rela-

tion. As in the case k = 0 discussed in Proposition 8.1, this proposition can be proved
using a variant of Stokes’ formula for cochains.

Proposition 8.2 For every k ≥ −1, we have dM•(h(k+1)) = d(h(k)).

In the above formula, the term dM•(h(k+1)) means that we apply dM• to the values
(in M

•) of the cochain h(k+1). The differential on the right hand side of the formula
is the differential of the cohomology complex C•(G, M

•) of the (graded) right G-
module M

•.
More explicitly, let f ∈ Cn+k(G, M) be an (n + k)-cochain. Then, Proposition

8.2 states that, for every a ∈ G×(k+1), we have the following equality of n-cochains:

(−1)(k+1)ha1,...,ak+1,d f − dha1,...,ak+1, f = ha2,...,ak+1, f +
∑

1≤i≤k
(−1)i ha1,...,ai ai+1,...,ak+1, f +

(−1)k+1hak+1
a1,...,ak , f .

Corollary 8.3 Let f ∈ Cn+k(G, M) be an (n + k)-cocycle. Then, for every a ∈
G×(k+1), the n-cochain

ha2,...,ak+1, f +
∑

1≤i≤k

(−1)i ha1,...,ai ai+1,...,ak+1, f + (−1)k+1hak+1
a1,...,ak , f

is a coboundary. In fact, it is the coboundary of −ha1,...,ak+1, f .

Example 8.4 Let us examine Corollary 8.3 for small values of k.
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(i) For k = 0, the statement is that, for every cocycle f , f − f a is a coboundary.
In fact, it is the coboundary of −h f,a . We have already seen this in Proposition
8.1.

(ii) For k = 1, the statement is that, for every cocycle f , the cochain

hb, f − hab, f + hb
a, f

is a coboundary. In fact, it is the coboundary of −ha,b, f .

8.6 Explicit Formula for ha1,...,ak, f

Let f :G×(n+k) → M be an (n + k)-cochain, anda := (a1, a2, . . . , ak) ∈ G×k . Then,
by Eq. (8.3), the effect of the n-cochain ha1,...,ak , f on an n-tuple x := (x0, x1, . . . ,
xn−1) ∈ G×n is given by:

ha1,...,ak , f (x0, x1, . . . , xn−1) =
∑

P

(−1)|P| f (xP),

where xP is the (n + k)-tuple obtained by the following procedure.
Recall that P is a path from (0, 0) to (n, k) in the n by k grid. The l th component

xP
l of xP is determined by the l th segment on the path P . Namely, suppose that the
coordinates of the starting point of this segment are (s, t). Then,

xP
l = a−1

k−t

if the segment is vertical, and

xP
l = (ak−t+1 · · · ak)xs(ak−t+1 · · · ak)

−1,

if the segment is horizontal. Here, we use the convention that a0 = 1.
The following example helps visualize xP :

a−1
1

(a3a4)x3(a3a4)−1 (a3a4)x4(a3a4)−1

a−1
2

a4x2a−1
4

a−1
3

x0 x1

a−1
4
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The corresponding term is

− f (x0, x1, a−1
4 , a4x2a−1

4 , a−1
3 , (a3a4)x3(a3a4)

−1, (a3a4)x4(a3a4)
−1, a−1

2 , a−1
1 ).

The sign of the path is determined by the parity of the number of squares in the n by
k grid that sit above the path P (in this case 15).
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