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N.B. This paper has some overlap with [4], but was written
before. The decision to submit it for publication now comes from
the wish to set down some earlier motivation for the
constructions of that paper as well as of [3].

Abstract In this paper, we apply ideas of Dijkgraaf and Witten [7, 27] on 2+1
dimensional topological quantum field theory to arithmetic curves, that is, the spectra
of rings of integers in algebraic number fields. In the first three sections, we define
classical Chern–Simons functionals on spaces ofGalois representations. In the highly
speculative Sect. 6, we consider the far-fetched possibility of using Chern–Simons
theory to construct L-functions.
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1 The Arithmetic Chern–Simons Action: Basic Case

We wish to move rather quickly to a concrete definition in this first section. The
reader is directed to Sect. 5 for a motivational discussion of L-functions.

Let X = Spec(OF ), the spectrum of the ring of integers in a number field F . We
assume that F is totally imaginary, for simplicity of exposition. Denote by Gm the
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étale sheaf that associates to a scheme the units in the global sections of its coordinate
ring. We have the following canonical isomorphism ([22], p. 538):

inv : H 3(X,Gm) � Q/Z. (∗)

This map is deduced from the ‘invariant’ map of local class field theory. We will use
the same name for a range of isomorphisms having the same essential nature, for
example,

inv : H 3(X,Zp(1)) � Zp, (∗∗)

where Zp(1) = lim←−i
μpi , and μn ⊂ Gm is the sheaf of nth roots of 1. This follows

from the exact sequence

0 → μn → Gm
(·)n→ Gm → Gm/(Gm)n → 0.

That is, according to loc. cit.,

H 2(X,Gm) = 0,

while by op. cit., p. 551, we have

Hi (X,Gm/(Gm)n) = 0

for i ≥ 1. If we break up the above into two short exact sequences,

0 → μn → Gm
(·)n→ Kn → 0,

and
0 → Kn → Gm → Gm/(Gm)n → 0,

we deduce
H 2(X,Kn) = 0,

from which it follows that

H 3(X,μn) � 1

n
Z/Z,

the n-torsion inside Q/Z. Taking the inverse limit over n = pi gives the second
isomorphism above. The pro-sheaf Zp(1) is a very familiar coefficient system for
étale cohomology and (**) is reminiscent of the fundamental class of a compact
oriented three manifold for singular cohomology. Such an analogy was noted by
Mazur around 50 years ago [23] and has been developed rather systematically by a
number of mathematicians, notably, Masanori Morishita [24]. Within this circle of
ideas is included the analogy between knots and primes, whereby the map
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Spec(OF/Pv) � X

from the residue field of a primePv should be similar to the inclusion of a knot. Let
Fv be the completion of F at the place v and OFv

its valuation ring. If one takes this
analogy seriously (as did Morishita), the map

Spec(OFv
) → X,

should be similar to the inclusion of a handle-body around the knot, whereas

Spec(Fv) → X

resembles the inclusion of its boundary torus.1 Given a finite set S of primes, we can
look at the scheme

XS := Spec(OF [1/S]) = X \ {Pv}v∈S.

Since a link complement is homotopic to the complement of a tubular neighbourhood,
the analogy is then forced on us between XS and a threemanifoldwith boundary given
by a union of tori, one for each ‘knot’ in S. These of course are basic morphisms in
2+1 dimensional topological quantumfield theory [1]. From this perspective, perhaps
the coefficient system Gm of the first isomorphism should have reminded us of the
S1-coefficient important in Chern–Simons theory [7, 27]. A more direct analogue of
Gm is the sheafO×

M of invertible analytic functions on a complex varietyM . However,
for compact Kaehler manifolds, the comparison isomorphism

H 1(M, S1) � H 1(M,O×
M)0,

where the subscript refers to the line bundleswith trivial Chern class, is a consequence
of Hodge theory. This indicates that in the étale setting with no natural constant sheaf
of S1’s, the familiarGm has a topological nature, and can be regarded as a substitute.2

One problem, however, is that the Gm-coefficient computed directly gives divisible
torsion cohomology, whence the need for considering coefficients likeZp(1) in order
to get functions of geometric objects having an analytic nature as arise, for example,
in the theory of torsors for motivic fundamental groups [5, 15–18].

Let
π = π1(X, b),

1It is not clear tome that the topology of the boundary should really be a torus. (In fact,M. Kapranov
has remarked that it is closer to a Klein bottle.) A torus boundary is reasonable if one thinks of the
ambient space as a three-manifold. On the other hand, perhaps it’s possible to have a notion of a
knot in a homology three-manifold that has an exotic tubular neighbourhood?
2Recall, however, that it is of significance in Chern–Simons theory that one side of this isomorphism
is purely topological while the other has an analytic structure.
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the profinite étale fundamental group of X , where we take

b : Spec(F̄) → X

to be the geometric point coming from an algebraic closure of F . Assume now that
the group μn(F̄) of nth roots of 1 is in F . Fix an isomorphism ζn : 1

nZ/Z � μn . Then

inv : H 3(X,Z/nZ) � H 3(X,μn) � 1

n
Z/Z.

Now let A be a finite group and fix a class c ∈ H 3(A,Z/nZ). Let

M(A) := Homcont (π, A)/A

be the set of isomorphism classes of principal A-bundles over X . Here, the subscript
refers to continuous homomorphisms, on which A is acting by conjugation. For
[ρ] ∈ M(A), we get a class

ρ∗(c) ∈ H 3(π,Z/nZ)

that depends only on the isomorphism class [ρ]. Denoting by inv also the composed
map

H 3(π,Z/nZ) → H 3(X,Z/nZ) � 1

n
Z/Z.

We get thereby a function

CSc : M(A)→1

n
Z/Z;

[ρ] 	→ inv(ρ∗(c)).

This is the basic and easy case of the classical Chern–Simons functional in the
arithmetic setting.

Examples might be constructed along the following lines. Let A = Z/nZ, α ∈
H 1(A,Z/nZ) the class of the identity, and β ∈ H 2(A,Z/nZ) the class of the exten-
sion

0 → Z/nZ
n→ Z/n2Z → Z/nZ → 0.

Then β = δα, where δ : H 1(A,Z/nZ) → H 2(A,Z/nZ) is the boundary map aris-
ing from the extension. From the cohomology theory of finite cyclic groups ([26],
I.7), we know that

(·) ∪ β : H 1(A,Z/nZ) → H 3(A,Z/nZ)

is an isomorphism. Put
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c := α ∪ β = α ∪ δα ∈ H 3(A,Z/nZ).

Then
CSc([ρ]) = inv[ρ∗(α) ∪ δρ∗(α)],

in close analogy to the formulas of abelian Chern–Simons theory.
In [3], this formula is applied to the study of arithmetic linking numbers.

2 The Arithmetic Chern–Simons Action: Boundaries

Let n be a natural number and S a finite set of primes in OF . We assume in this
section that all primes of F dividing n are in S. Let

πS := π1(XS, b)

and
πv = Gal(F̄v/Fv),

equipped with maps
iv : πv → πS

given by choices of embeddings F̄ � F̄v . The collection

{iv}v∈S

will be denoted by iS . Let

YS(A) := Homcont (πS, A)

and denote by MS(A) the action groupoid whose objects are the elements of YS(A)

with morphisms given by the conjugation action of A. We also have the local version

Y loc
S (A) =

∏

v∈S
Homcont (πv, A)

as well as the action groupoid Mloc
S (A) with objects Y loc

S (A) and morphisms given
by the action of AS := ∏

v∈S A conjugating the separate components in the obvious
sense. Thus, we have the restriction functor

rS : MS(A) → Mloc
S (A),

where a homomorphism ρ : πS → A is restricted to the collection
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i∗Sρ := (ρ ◦ iv)v∈S

and A is embedded diagonally in AS .
We will now employ a cocycle c ∈ Z3(A,Z/nZ) to associate a 1

nZ/Z-torsor to
each point of Y S

loc(A) in an AS-equivariant manner. This will be a finite arithmetic
version of the Chern–Simons line bundle [9] over MS

loc. We use the notation

Ci
S :=

∏

v∈S
Ci (πv,Z/nZ)

for the continuous cochains,

Zi
S :=

∏

v∈S
Z i (πv,Z/nZ) ⊂ Ci

S

for the cocycles, and

Bi
S :=

∏

v∈S
Bi (πv,Z/nZ) ⊂ Zi

S ⊂ Ci
S

for the coboundaries. In particular, we have the coboundary map (see Appendix A
for the sign convention)

d : C2
S → Z3

S.

Let ρS := (ρv)v∈S ∈ Y loc
S (A) and put

c ◦ ρS := (c ◦ ρv)v∈S,

c ◦ Ada := (c ◦ Adav
)v∈S

for a = (av)v∈S ∈ AS , where Adav
refers to the conjugation action. To define the

arithmetic Chern–Simons line associated to ρS , we need the intermediate object

H(ρS) := d−1(c ◦ ρS)/B
2
S ⊂ C2

S/B
2
S .

This is non-empty because H 3 of a local field is zero, and is a torsor for

H 2
S :=

∏

v∈S
H 2(Gv,Z/nZ) �

∏

v∈S

1

n
Z/Z.

([26], Theorem (7.1.8).) We then use the sum map

� :
∏

v∈S

1

n
Z/Z → 1

n
Z/Z
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to push this out to a 1
nZ/Z-torsor. That is, define

L(ρS) := �∗[H(ρS)].

The natural map H(ρS) → L(ρS) will also be denoted by the sum symbol �.
In fact, L extends to a functor from Mloc

S (A) to the category of 1
nZ/Z-torsors.

To carry out this extension, we just need to extend H to a functor to H 2
S -torsors.

According to Appendices A and B, for a = (av)v∈S ∈ AS and each v, there is an
element hav

∈ C2(A,Z/n)/B2(A,Z/n) such that

c ◦ Adav
= c + dhav

.

Also,
havbv

= hav
◦ Adbv

+ hbv
.

Hence, given a : ρS → ρ′
S, so that ρ

′
S = Ada ◦ ρS , we define

H(a) : H(ρS) → H(ρ′
S)

to be the map induced by

x 	→ x ′ = x + (hav
◦ ρv)v∈S.

Then

dx ′ = dx + (d(hav ◦ ρv))v∈S = (c ◦ ρv)v∈S + ((dhav ) ◦ ρv)v∈S = (c ◦ Adav ◦ ρv)v∈S .

So
x ′ ∈ d−1(c ◦ ρ′

S)/B
2
S,

and by the formula above, it is clear that H is a functor. That is, ab will send x to

x + hab ◦ ρS,

while if we apply b first, we get

x + hb ◦ ρS ∈ H(Adb ◦ ρS),

which then goes via a to

x + hb ◦ ρS + ha ◦ Adb ◦ ρS.

Thus,
H(ab) = H(a)H(b).
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Defining
L(a) = �∗ ◦ H(a)

turns L into a functor from Mloc
S to 1

nZ/Z-torsors. Even though we are not explic-
itly laying down geometric foundations, it is clear that L defines thereby an AS-
equivariant 1

nZ/Z-torsor on Y loc
S (A), or a 1

nZ/Z-torsor on the stack Mloc
S (A).

We can compose the functor L with the restriction rS : MS(A) → Mloc
S (A) to get

an A-equivariant functor Lglob fromMS(A) to 1
nZ/Z-torsors.

Lemma 2.1 Let ρ ∈ YS(A) and a ∈ Aut(ρ). Then Lglob(a) = 0.

Proof By assumption, Adaρ = ρ, and hence, dha ◦ ρ = 0. That is, ha ◦ ρ ∈ H 2

(πS,
1
nZ/Z). Hence, by the reciprocity law for H 2(πS,

1
nZ/Z) ([26], Theorem

(8.1.17)), we get
�∗(ha ◦ ρ) = 0.

�

By the argument of [9], p. 439, we see that there is a 1
nZ/Z-torsor

Linv([ρ])

of invariant sections for the functor Lglob depending only on the orbit [ρ]. This is the
set of families of elements

xρ′ ∈ Lglob(ρ′)

as ρ′ runs over [ρ] with the property that every morphism a : ρ1 → ρ2 takes xρ1

to xρ2 . Alternatively, L
inv([ρ]) is the inverse limit of the Lglob(ρ′) with respect to

the indexing category [ρ]. Alternatively, what Lemma 2.1 shows is that there are
canonical isomorphisms between the fibres of the torsor over points in the same
orbit.

Since S contains all primes dividing n, we have

H 3(πS,
1

n
Z/Z) = H 3(XS,

1

n
Z/Z) = 0,

([26], Proposition (8.3.18)) and the cocycle c ◦ ρ is a coboundary

c ◦ ρ = dβ

for β ∈ C2(πS,
1
nZ/Z). This element defines a class

CSc([ρ]) := �([i∗S(β)]) ∈ Linv([ρ]).

A different choice β′ will be related by
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β′ = β + z

for a 2-cocycle z ∈ Z2(πS,
1
nZ/Z), which vanishes when mapped to L((ρ ◦ iv)v∈S).

Thus, the classCSc([ρ]) is independent of the choice of β and defines a global section

CSc ∈ �(MS(A), Lglob).

Within the context of this paper, a ‘global section’ should just be interpreted as an
assignment of CSc([ρ]) as above for each orbit [ρ].

3 The Arithmetic Chern–Simons Action: The p-adic Case

Now fix a prime p and assume all primes of F dividing p are contained in S. Fix a
compatible system (ζpn )n of p-power roots of unity, giving us an isomorphism

ζ : Zp � Zp(1) := lim←−
n

μpn .

In this section, we will be somewhat more careful with this isomorphism. Also, it
will be necessary to make some assumptions on the representations that are allowed.

Let A be a p-adic Lie group, e.g., GLn(Zp). Assume A is equipped with an open
homomorphism t : A → � := Z

×
p and define An to be the kernel of the composite

map
A → Z

×
p → (Z/pnZ)× =: �n.

Let
A∞ = ∩n A

n = Ker(t).

In this section, we denote by YS(A) the continuous homomorphisms

ρ : πS → A

such that t ◦ ρ is a power χs of the p-adic cyclotomic character of πS by a p-adic unit
s. (We note that s itself is allowed to vary.) Of course this condition will be satisfied
by any geometric Galois representation or natural p-adic families containing one.

As before, A acts on YS(A) by conjugation. But in this section, we will restrict
the action to A∞ and use the notationMS(A) for the corresponding action groupoid.

Similarly, we denote by Y loc
S the collections of continuous homomorphisms ρS =

(ρv : πv→A)v∈S for which there exists a p-adic unit s such that t ◦ ρv = (χ|πv)
s for

all v.Mloc
S (A) then denotes the action groupoid defined by the product (A∞)S of the

conjugation action on the ρS .
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We now fix a continuous cohomology class

c ∈ H 3(A,Zp[[�]]),

where
Zp[[�]] = lim←−

n

Zp[�n].

We represent c by a cocycle in Z3(A,Zp[[�]]), which we will also denote by c.
Given ρ ∈ YS(A), we can view Zp[[�]] as a continuous representation of πS , where
the action is left multiplication via t ◦ ρ. We denote this representation by Zp[[�]]ρ.
The isomorphism ζ : Zp � Zp(1), even though it’s not πS-equivariant, does induce
a πS-equivariant isomorphism

ζρ : Zp[[�]]ρ � � := Zp[[�]] ⊗ Zp(1).

Here, Zp[[�]] written without the subscript refers to the action via the cyclotomic
character of πS (with s = 1 in the earlier notation). The isomorphism is defined as
follows. If t ◦ ρ = χs , then we have the isomorphism

Zp[[�]] � Zp[[�]]ρ
that sends γ to γs . On the other hand, we also have

Zp[[�]] � �

that sends γ to γ ⊗ γζ(1). Thus, ζρ can be taken as the inverse of the first followed
by the second.

Combining these considerations, we get an element

ζρ ◦ ρ∗c = ζρ ◦ c ◦ ρ ∈ Z3(πS,�).

Similarly, if ρS := (ρv)v∈S ∈ Y loc
S , we can regard Zp[[�]]ρv

as a representation of πv

for each v, and we get πv equivariant isomorphisms

ζρv
: Zp[[�]]ρv

� �.

We also use the notation

ζρS :
∏

v∈S
Zp[[�]]ρv

�
∏

v∈S
�

for the isomorphism given by the product of the ζρv
.
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It will be convenient to again denote by Ci
S(�) the product

∏
v∈S Ci (πv,�) and

use the similar notations Zi
S(�), Bi

S(�) and Hi
S(�). The element ζρS ◦ ρ∗

Sc is an
element in Z3

S(�). We then put

H(ρS,�) := d−1((ζρS ◦ ρ∗
Sc))/B

2
S(�) ⊂ C2

S(�)/B2
S(�).

This is a torsor for
H 2

S (�) �
∏

v∈S
H 2(πv,�).

The augmentation map
a : � → Zp(1)

for each v can be used to push this out to a torsor

a∗(H(ρS,�))

for the group ∏

v∈S
H 2(πv,Zp(1)) �

∏

v∈S
Zp,

which then can be pushed out with the sum map

� :
∏

v∈S
Zp → Zp

to give us a Zp-torsor

L(ρS,Zp) := �∗(a∗(H(ρS,�))).

As before, we can turn this into a functor L(·,Zp) on Mloc
S (A), taking into account

the action of (A∞)S . By composing with the restriction functor

rS : MS(A)→Mloc
S (A),

we also get a Zp-torsor Lglob(·,Zp) onMS(A).

We now choose an element β ∈ C2(πS,�) such that

dβ = ζρ ◦ c ◦ ρ ∈ Z3(πS,�) = B3(πS,�)

to define the p-adic Chern–Simons action

CSc([ρ]) := �∗a∗i∗S(β) ∈ Lglob([ρ],Zp).
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The argument that this action is independent of β and equivariant is also the same as
before, giving us an element

CSc ∈ �(MS(A), Lglob(·,Zp)).

4 Remarks

1. The restrictions (1) and (2) on the representations ρ that make up YS(A) in Sect. 3
might seem rather stringent. However, if we take A to be the image of some fixed
p-adic geometric Galois representation ρ0, this includes all twists ρ0(s) of ρ0
by unit powers χs of the p-adic cyclotomic character. Thus, we are in effect
constructing with the cocycle c a section of a line bundle on the entire p-adic
weight space Z

×
p . In the next section, we will discuss the motivation coming

from the theory of L-functions. The ability to construct such a section is already
promising from this point of view.

2. We have dealt with the p-adic theory assuming S is non-empty. It is straight-
forward to get a p-adic function on the moduli space for X , the case ‘without
boundary’. But according to the Fontaine-Mazur conjecture, an infinite p-adic
Lie group should not be possible as the image of a representation of π1(X, b).
Indeed, sinceCSc(ρ) is a p-adic invariant of such a represention, plausible appli-
cations to questions of existence and distribution could be considered.

3. In the p-adic theory, no changes are necessary for F with a real embedding
provided we take p �= 2. Indeed, even though the duality theorems involving
the sheaf Gm become somewhat more complicated because of the contribution
from real places, such contributions all vanish for p-adic coefficient sheaves if
p is odd. However, if one were to imagine a Chern–Simons theory for complex
L-functions, the Archimedean places should be expected to play an essential
role.

4. In the first two sections, we assumed the field F contained the nth roots of 1
so as to trivialize the sheaf μn . This allowed us to construct functions out of
constant cohomology classes for A. Similarly, in Sect. 3, we obtained Zp(1)
cohomology classes from Zp-classes by a twisting trick familiar in Iwasawa
theory. To avoid this, one could have regarded the group A as a constant sheaf
and used cohomology classes in H 3(BA,μn) from the beginning. But it is hard
to imagine constructing such classes other than by twisting classes with constant
coefficients. This is essentially equivalent to our approach.

5. We are not giving at present any examples. For finite groups A, it is not hard
to get classes in H 3, for example, starting from cyclic subgroups. On the other
hand, a norm compatible sequence of classes for infinite p-adic Lie groups
seems to be harder to construct. In subsequent work, we will study this question
systematically from the viewpoint of Lazard’s theory of analytic groups and
duality for groups like GLn(Zp) [12].
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6. It is unfortunate that the p-adic case does not include A = Zp for reasons of coho-
mological dimension. Even in topologicalChern–Simons theory, the abelian case
seems to have a nature different from groups like SU (2). One way of getting
around this difficult for A � Z

r
p might be to use classes in H 1(A,Zp) pulled back

to πS , from which one could take Massey products to end up with 3-cocycles.
Another possibility, following a pattern familiar in Iwasawa theory, would be to
find a sequence of Z/pnZ classes that are congruent in a somewhat subtle sense,
to which one applies the construction at the end of Sect. 1.

7. One notable difference from the usual Chern–Simons theory is that the Chern–
Simons line of this paper is presented as an additive torsor, rather than a mul-
tiplicative one. However, note that we are using an isomorphism 1

nZ/Z � μn ,
and the latter is multiplicative. Thus, our finite torsors can also be thought of as
multiplicative μn-torsors, in closer parallel to the topological setting.
However, the p-adic Chern–Simons line does seem to be genuinely additive. As
will be explained in the next section, the values of p-adic L-functions should
also lie in the fibers of a line bundle. Thus, if there is a connection between the
two, the arithmetic Chern–Simons invariant should be related to the logarithm
of the p-adic L-function.

8. In this paper, we are defining only the classical Chern–Simons functional. Spec-
ulating wildly, one might hope that twists of the value of a classical functional
by a family of cyclotomic characters represent a kind of semi-classical approxi-
mation. In any case, it would be interesting to construct a quantumwavefunction
in the arithmetic setting. For the finite-coefficient case of Sects. 1 and 2, this is
in principle easy to define. The (more important) p-adic coefficients present a
greater challenge.

9. Since the Spec(Fv) are playing the role of boundary tori, moduli spaces of local
Galois representations should make up the classical phase spaces of arithmetic
Chern–Simons theory. In the topological case, the corresponding moduli space
has an interpretation using either holomorphic vector bundles or Higgs bundles,
depending on the group. In this regard, it is interesting to take note of recent devel-
opments in p-adic Hodge theory defining a functor from Galois representations
to vector bundles on a p-adic curve [8]. The moduli space of vector bundles
that arises admits a uniformization by an infnite-dimensional Grassmannian in
essentially the same manner as for complex Riemann surfaces. The possibility
of using this construction to study determinant line bundles following the pattern
of conformal field theory appears to be an interesting avenue of investigation in
the study of local moduli spaces.

10. It is somewhat unforunate in this regard that work of Kapustin and Witten [13]
on the geometric Langlands programme doesn’t make use of Chern–Simons the-
ory, but rather, S-duality for 4D gauge theory. Since the Langlands programme is
another source of L-functions in arithmetic, a pleasant coincidence might have
been for topological Chern–Simons theory to play a critical role also in the geo-
metric Langlands programme. In any case, the analogy between Chern–Simons
functions and L-functions suggests a possibility for defining L-functions in geo-
metric Langlands, usually thought not to admit such a formalism. That is, the
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L-function on the geometric Galois side should have the structure of a wave-
function over a character variety. The role of automorphic forms in geometric
Langlands is played by D-modules onmoduli spaces of principal bundles that are
Hecke eigensheaves in a suitable sense. The theory of automorphic L-functions
should then assign an amplitude to such a D-module, possibly using a path inte-
gral over objects on a threemanifold that have the given D-module as a boundary
value.

5 Towards Computation

In this section, we indicate how one might go about computing the Chern–Simons
invariant in the unramified case with finite coefficients. That is, we assume we are in
the setting of Sect. 1. The ideas of this section have been developed in the paper [4].

Let X = Spec(OF ) and M a continuous representation of π = π1(X) regarded as
a locally constant sheaf on X . Assume M = lim←− Mn with Mn finite representations
such that there is a finite set T of primes in OF containing all primes dividing the
order of any |Mn|. Let U = Spec(OF,T ), GT = π1(U ), and Gv = Gal(F̄v/Fv) for a
place v of F . Writemv for the maximal ideal ofOF corresponding to the place v and
rv for the restriction map of cochains or cohomology classes from GT to Gv .

Denote by C∗
c (GT , M) the complex defined as a mapping fiber

C∗
c (GT , M) := Fiber[C∗(GT , M)→

∏

v∈T
C∗(Gv, M)].

So
Cn
c (GT , M) = Cn(GT , M) ×

∏

v∈T
Cn−1(Gv, M),

and
d(a, (bv)) = (da, (rv(a) − dbv))

for (a, (bv)) ∈ Cn
c (GT , M). As in [10], p. 20, since there are no real places in F ,

there is a quasi-isomorphism

C∗
c (GT , M) � R�(U, j!(M)),

where j : U→X is the inclusion. But there is also an exact sequence

0→ j! j∗(M)→M→i∗i∗(M)→0,

where i : T→X is the closed immersion complementary to j . Thus, we get an exact
sequence
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∏

v∈T
H2(Spec(OF/mv), i

∗(M))→H3(Cc(GT , M))→H3(X, M)→
∏

v∈T
H3(Spec(OF/mv),

from which we get an isomorphism

H 3(Cc(GT , M)) � H 3(X, M),

since Spec(OF/mv) has cohomological dimension 1.
We interpret this as a statement that the cohomology of X

H 3(X, M)

can be identified with cohomology of a ‘compactification’ of U with respect to
the ‘boundary’, that is, the union of the Spec(Fv) for v ∈ T . This means that a
class z ∈ H 3(X, M) is represented by (c, (bv)v∈T ), where c ∈ Z3(GT , M) and bv ∈
C2(Gv, M) in such a way that

dbv = c|Gv.

There is also the exact sequence

→ H 2(GT , M) →
∏

v∈T
H 2(Gv, M) → H 3

c (U, M) → 0,

the last zero being H 3(U, M) = 0. We can use this to compute the invariant of z
when M = μn . We have to lift z to a collection of classes xv ∈ H 2(Gv,μn) and then
take the sum

inv(z) =
∑

v

inv(xv).

This is independent of the choice of the xv by the reciprocity law. The lifting process
may be described as follows. The map

∏

v∈T
H 2(Gv,μn) → H 3

c (U,μn)

just takes a tuple of 2-cocycles (xv)v∈T to (0, (xv)v∈T ). But by the vanishing of
H 3(U,μn), given z = (c, (bv)), we can find a global cochain a ∈ C2(GT ,μn) such
that da = c. We then put xv := bv − rv(a).

When we start with a class z ∈ H 3(π,μn) let c ∈ Z3(π,μn) represent z. Let
Iv ∈ Gv be the inertia subgroup. We now can trivialise c|Gv by first trivialising it
over Gv/Iv to which it factors (since c is a globally unramified class). That is, the
bv as above can be chosen as cochains factoring through Gv/Iv . This is possible
because H 3(Gv/Iv,μn) = 0. The class (c, (bv)) chosen this way is independent of
the choice of the bv . This is because H 2(Gv/Iv,μn) is also zero. The point is that
the representation of z as (c, (bv)) with unramified bv is essentially canonical. More
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precisely, given c|(Gv/Iv) ∈ Z3(Gv/Iv,μn), there is a canonical

bv ∈ C2(Gv/Iv,μn)/B
2(Gv/Iv,μn)

such that dbv = c|(Gv/Iv). This can then be lifted to a canonical class inC2(Gv,μn)

/B2(Gv,μn). Now we trivialise c|GT globally as above, that is, by the choice of
a ∈ C2(GT ,μn) such that da = c|GT . Then ((bv − rv(a))v∈T will be cocycles, and
we compute

inv(z) =
∑

v

inv(bv − rv(a)).

A few remarks about this method:

1. Underlying this is the fact that the the compact support cohomology H 3(U,μn)

can be computed relative to the somewhat fictitious boundary of U or as rel-
ative cohomology H 3(X, T ;μn). Choosing the unramified local trivialisations
corresponds to this latter representation.

2. To summarise the main idea again, starting from a cocycle c ∈ Z3(π,μn)we have
canonical unramified trivalisations at each v and a non-canonical global ramified
trivialisation.

The invariant of z measures the discrepancy between the unramified local trivialisations
and a ramified global trivialisation.

The fact that the non-canonicality of the global trivialisation is unimportant fol-
lows from the reciprocity law.

3. The description above that computes the invariant by comparing the local unrami-
fied trivialisationwith the global ramified one is a precise analogue of the so-called
‘glueing formula’ for Chern–Simons invariants when applied to ρ∗(c) for a repre-
sentation ρ : π→ 1

nZ/Z and a 3-cocycle c on 1
nZ/Z. A systematic treatment with

explicit examples is presented in the work [4].

For the moment, we content ourselves with some ideas for the case of Hom(π,Z/p).
Recall from Sect. 1 that a 3-cocycle on Z/p can be obtained as δα ∪ α, where

α ∈ H 1(Z/p,Z/p) is the identity map and δ is the boundary map coming from the
extension

E : 0 → Z/p → Z/p2 → Z/p → 0.

If we have a homomorphism
f : N → Z/p,

a trivialisation of f ∗(δα ∪ α) may be obtained by trivialising δα. That is, if db =
f ∗(δα), for a cochain b on N , then

d(−α ∪ b) = α ∪ δα.
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Another way of putting this is that a splitting of the sequence f ∗(E) will give a
trivialisation. That is, if there is a lifting f̃ : N → Z/p2 of f , then we can construct
a trivialisation. An explicit description goes like this. Choose a set-theoretic splitting
s : Z/p → Z/p2, for example, in the standardway that sends the class of i mod p to
that of i mod p2. Then δα = ds. Suppose f̃ exists as above. Then the trivialisation
of f ∗δα is given by

b := s ◦ f − f̃ ,

so that −α ∪ (s ◦ f − f̃ ) is a trivialisation of α ∪ δα. Now, if N = Gv/Iv � Ẑ, it
suffices to choose f̃ in any manner. So the key point is the lifting f̃ in the case where
N = GT and f : GT → Z/p is the composition of a representation ρ : π → Z/p
with the quotient map k : GT → π. To construct examples, here is a simple starting
point. Take F an totally imaginary field such that the class groupCF � Z/p. I believe
there are many examples where the Hilbert class field of F has been constructed as
a Kummer extension, even though we need to look through the literature on explicit
class field theory (say with F = Q(μp2)). Let H = F(h1/p) and let ρ : π → Z/p
be the corresponding Kummer character. With these assumptions, of course there
can’t be a lift ρ̃ : π → Z/p2. However, by taking T to be the ramified places of the
character corresponding to h1/p

2
, f := ρ ◦ k does lift to f̃ : GT → Z/p2. This then

gives the trivialisation of f ∗(δα) as above.

6 Motivation: L-Functions

In the following, the ring R can be provisionally thought of as either C, Zp, or Qp

for some primes p. However, one can, and needs to, allow more general coefficients,
such as an extension field ofQp, or the profinite group rings of Iwasawa theory ([10],
1.4.1). It is conceivable thatmore general rings are appropriate for the complex theory
as well. However, for concreteness, it is all right to keep in mind these simple cases.

The theory of L-functions, still largely conjectural, assigns a canonical L-
amplitude

L(X,F)

to a pair consisting of a scheme X of finite type over Z and a constructible sheaf
F of finitely-generated R-modules in the étale topology of X . It is convenient to
allow also elements of bounded derived categories of such F as coefficients. This
amplitude is sometimes a number in R, but is expected in general to be an element
of a determinant line. The proposal that an amplitude of the right sort can always
be defined is known as the Hasse-Weil conjecture for complex L-functions and
Iwasawa’smain conjecture for p-adic L-functions. Themain difficulty canbe thought
of as a problem of regularizing an infinite product. Since this point of view may not
be entirely familiar to physicists, we give a brief overview of the theory described in
[10, 14].
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Associated to (X,F), there are the cohomology groups with compact support

Hi
c (X,F),

which are finitely generated R-modules. We denote by D(X,F) the dual of the
determinant of cohomology

D(X,F) := ⊗i det H
i (X,F)(−1)i+1

,

a projective R-module of rank 1 [19]. Hence, ifM is a moduli space of sheaves on X ,
the D(X,F)will vary over points [F] ∈ M and come together to form a line bundle3

D → M.

Note here that M will be like the representation varieties in complex geometry, and
hence, have the structure of a scheme, formal scheme, or an analytic space over
Spec(R).

The L-amplitude is conjectured to be a generator

L(X,F) ∈ D(X,F),

which should patch together to a trivialisation of D over M. Thus, the theory of
L-functions proposes the existence of a canonical section

L(X, ·) ∈ �(M,D)

for suitable moduli spaces M of sheaves. The techniques of arithmetic geometry
have so far provided essentially ad hoc methods for constructing such sections in
limited settings. Thus, the availability of solutions to entirely analogous problems
in quantum field theory is the main motivation for an attempt to develop a parallel
arithmetic theory.

A sheaf F is acyclic if Hi
c (X,F) = 0 for all i . For an acyclic sheaf F, there is a

canonical trivialisation
D(X,F) � R

corresponding to the fact that the determinant of the zero module is R. For acyclic
sheaves, the L-amplitude can be regarded as an element of R. Furthermore, over the
locus Macyc ⊂ M of acylic sheaves, we expect the determinant line bundle to have
a canonical trivialization

D|Macyc � OMacyc .

Thus, over Macyc, the L-amplitude can be regarded as a function.

3For this motivational discussion, the precise conditions necessary for the geometric statement to
hold will be left unstated.
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For coefficient rings like R = Zp, even when F is not acyclic, F ⊗ Qp may be
acyclic. So even when an element in D(X,F) may not canonically be an element of
R, it may sometimes be regarded as an element of R ⊗ Qp. A related phenomenon
is the following. Suppose

M = Spec(T )

and the locus of non-acyclic sheaves form a divisor with equation f = 0. Then D

can be regarded as a T -module. And

D[1/ f ] = D ⊗ T [1/ f ]

is canonically trivial. Let s be the section of D[1/ f ] corresponding to 1 under this
trivialization. Then, in favorable circumstances, for example, if M is regular, the
section

(1/ f )s

extends over all of M and can be regarded as a trivializing section of D. This is
the way in which characteristic elements that occur in classical formulations of the
Iwasawa main conjecture become interpreted as trivializing sections of determinant
lines (cf. [10], Example 2.5).

The L-amplitude is conjectured to satisfy some natural conditions ([14], conjec-
ture 3.2.2, modified by [10], conjecture 2.3.2):

(1) Multiplicativity: If

0 → F1 → F2 → F3 → 0

is a exact sequence, then the canonical isomorphism

D(X,F2) � D(X,F2) ⊗ D(X,F2)

takes L(X.F2) to L(X.F1) ⊗ L(X.F3).
(2) Compatibility change of coefficient rings: If R′ is an R-algebra and F′ =

F ⊗L R′, then the natural isomorphism

D(X,F) ⊗R R′ � D(X,F′)

takes L(X,F) ⊗ 1 to L(X,F′). (The base-change considered in [10] is more general
to accommodate the possibility of non-commutative coefficient rings.)

(3) Two normalisation conditions: an easy one for sheaves over a finite field, and
a very hard one having to do with conjectures on L-amplitude of motives.

We comment on (1) and (3). The most important case of (1) is

0 → j!( j−1F) → F → i∗(i−1(F)) → 0,
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where i : Z � X is a closed embedding and j : U � X is the complement. Then
the required multiplicativity is

L(X,F) = L(U,F) ⊗ L(Z ,F),

where we omit the inverse images for notational convenience. Note that when all
three are acyclic, the tensor product becomes a product of numbers and this is a
literal equality.

The easy normalisation condition in (3) is when X = Spec(Fq), the spectrum of
a finite field with q = pd elements. In that case, the stalk Fx at a geometric point

x : Spec(F̄q) → Spec(Fq)

carries an action of the geometric Frobenius

Frx : Spec(F̄q) → Spec(F̄q)

(the dual to the map a 	→ aq
−1
). Thus, we get an exact sequence

0 → H 0(F) → Fx
I−Frx−→ Fx → H 1(F) → 0,

inducing an isomorphism

D(Spec(Fq),F) � det(Fx )
∗ ⊗ det(Fx ) � R.

Then L(Spec(Fq),F) is defined to be the inverse image of 1. When Fx is R-free and
F is acyclic, this gives the normalization

L(Spec(Fq),F) = 1

det([I − Frx ]|Fx)
.

When X = Spec(Fq), the category of sheaves of R-modules is equivalent to the cate-
gory of continuous representations of Gal(F̄q/Fq) on R-modules. This Galois group
is topologically generated by Frx . The formalism of theWeil-étale topology [20, 21]
allows us to view arbitrary representations of the Weil group WFq ⊂ Gal(F̄q/Fq),
that is, the group of integer powers of Frx , as sheaves on schemes over Fq . Since
WFq � Z, the one-dimensional complex characters of the Weil group of Spec(Fq)

are parametized by C×. So they can all be written as

Frx 	→ q−s,

for some s ∈ C. (The reason we parametrize the characters this way is because it is
the description that’s compatible with the norm character on the global idele class
group.) We denote the 1-dim representation corresponding to this character C(s).
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When F is a sheaf of C-vector spaces, we denote by F(s) the sheaf corresponding
to the representation Fx ⊗ C(s). If F(s) is acyclic, we get

L(Spec(Fq),F(s)) = 1

det([I − p−s Frx ]|Fx)
.

This is the way in which the analytic L-factors that arise in the complex theory of L-
functions come up naturally as we vary a representation in a canonical one-parameter
family.

For general X , let S be a finite subset of X0, the set of closed points of X , and
US = X \ S. Then the multiplicative property of the L-amplitude gives

L(X,F) = L(US,F)
∏

y∈S
L(Spec(k(y)),Fy),

where k(y) is the (finite) residue field at y. If the limit as S grows large exists, we
should have

L(X,F) = L(generic,F)
∏

y∈X0

L(Spec(k(y)),Fy),

where the factor L(generic,F) can sometimes be determined. In substantial gener-
ality, it can be shown that the limit exists when we replace F by F(s) for Re(s)
sufficiently large, forcing on us essentially the familiar definition of an L-amplitude
as an infinite product. There is also a formalism for making sense of this for coef-
ficient rings more general than C (subject to hard conjectures and theorems about
Weil sheaves associated to l-adic sheaves). The usual Hasse-Weil conjecture asserts
that when F is motivic, one can define L(X,F(s)) in a way that’s meromorphic in
s, with poles contributed only by trivial sheaves.

The hard (and important) normalisation condition would require lengthy prereq-
uisites, and will not be discussed here at all. The reader is referred to [10, 14].

Nowwe specialise to the situation where X = Spec(OF ) as in the earlier sections,
and XS = Spec(OF [1/S]) for a finite set of primes S. As indicated above, a p-adic
L-function is supposed to be a section of D on MS:

L(X, ·) ∈ �(MS,D).

In this paper, we have constructed in Sect. 3

CSc(·)

an additive version of such a section, at least for a restricted family. The optimistic
wish referred to in the abstract is a comparison

CSc(·) ∼ log L(X, ·).
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To effect such a comparison, one would obviously have to relate the Zp-torsors
constructed in an elementary fashion to the determinant line bundles. I am told by
Dan Freed that such a comparison is not available even in topological Chern–Simons
theory, and may be rather difficult. Nevertheless, the strong analogy between the
multiplicativity of L-functions and the glueing formula seems worth investigating in
detail.

Bruce Bartlett has emphasised to me the importance of Reidemeister torsion
within this circle of ideas. Indeed, Witten [27] had already noted that the square root
of Reidemeister torsion appears as themain contribution to the semi-classical Chern–
Simons wavefunction by a classical minimum. Since there has been for some time
a folklore analogy in number theory between L-functions and Reidemeister torsion
(cf. [6]), a reasonable avenue of investigation might be a definition of an arithmetic
Reidemeister torsion using the arithmetic Chern–Simons functional, which could
then be compared to the L-amplitude.

The main point is important enough to be worth repeating: it is a major unsolved
problem of arithmetic geometry to define global sections of determinant line bundles
satisfying the natural properties outlined above. The speculations of this section were
motivated by the wishful thought that ideas from physics could be employed to effect
such a definition. The constructions of the first three sections can be regarded as small
beginning steps in this direction.

7 Appendix: Conjugation on Group Cochains

We compute cohomology of a topological group G with coefficients in a topological
abelian group M with continuous G-action using the complex whose component of
degree i is Ci (G, M), the continuous maps from Gi to M . The differential

d : Ci (G, M) → Ci+1(G, M)

is given by
d f (g1, g2, . . . , gi+1)

= g1 f (g2, . . . , gi+1) +
i∑

k=1

f (g1, . . . , gk−1, gkgk+1, gk+2, . . . , gi+1) + (−1)i+1 f (g1, g2, . . . , gi ).

We denote by
Bi (G, M) ⊂ Zi (G, M) ⊂ Ci (G, M)

the images and the kernels of the differentials, the coboundaries and the cocycles,
respectively. The cohomology is then defined as

Hi (G, M) := Zi (G, M)/Bi (G, M).
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There is a natural right action of G on the cochains given by

a : c 	→ ca := a−1c ◦ Ada,

where Ada refers to the conjugation action of a on Gi .

Lemma 7.1 The G action on cochain commutes with d:

d(ca) = (dca)

for all a ∈ G.

Proof If c ∈ Ci (G, M), then

d(ca)(g1, g2, . . . , gi+1) = g1a
−1c(Ada(g2), . . . , Ada(gi+1))

+
i∑

k=1

a−1c(Ada(g1), . . . , Ada(gk−1), Ada(gk)Ada(gk+1), Ada(gk+2), . . . , Ada(gi+1))

+(−1)i+1a−1c(Ada(g1), Ada(g2), . . . , Ada(gi ))

= a−1Ada(g1)c(Ada(g2), . . . , Ada(gi+1))

+
i∑

k=1

a−1c(Ada(g1), . . . , Ada(gk−1), Ada(gk)Ada(gk+1), Ada(gk+2), . . . , Ada(gi+1))

+(−1)i+1a−1c(Ada(g1), Ada(g2), . . . , Ada(gi ))

= a−1(dc)(Ada(g1), Ada(g2), . . . , Ada(gi+1)

= (dc)a(g1, g2, . . . , gi+1).

�

We use also the notation (g1, g2, . . . , gi )
a := Ada(g1, g2, . . . , gi ). It is well known

that this action is trivial on cohomology.Wewish to show the construction of explicit
ha with the property that

ca = c + dha

for cocycles of degree 1, 2, and 3. The first two are relatively straightforward, but
degree 3 is somewhat delicate. In degree 1, first note that c(e) = c(ee) = c(e) +
ec(e) = c(e) + c(e), so that c(e) = 0. Next, 0 = c(e) = c(gg−1) = c(g) + gc(g−1),
and hence, c(g−1) = −g−1c(g). Therefore,

c(aga−1) = c(a) + ac(ga−1) = c(a) + ac(g) + agc(a−1) = c(a) + ac(g) − aga−1c(a).
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From this, we get
ca(g) = c(g) + a−1c(a) − ga−1c(a).

That is,
ca = c + dha

for the zero cochain ha(g) = a−1c(a).

Lemma 7.2 For each c ∈ Zi (G, M) and a ∈ G, we can associate an

hi−1
a [c] ∈ Ci−1(G, M)/Bi−1(G, M)

in such a way that
(1) ca − c = dhi−1

a [c];

(2) hi−1
ab [c] = (hi−1

a [c])b + hi−1
b [c].

Proof This is clear for i = 0 and we have shown above the construction of h0a[c] for
c ∈ Z1(G, M) satisfying (1). Let us check the condition (2):

h0ab[c](g) = (ab)−1c(ab)

= b−1a−1(c(a) + ac(b)) = b−1h0a[c](Adb(g)) + h0b[c](g) = (h0a[c])b(g) + h0b[c](g).

We prove the statement using induction on i , which we now assume to be ≥ 2. For
a module M , we have the exact sequence

0 → M → C1(G, M) → N → 0,

where C1(G, M) has the right regular action of G and N = C1(G, M)/M . Here,
we give C1(G, M) the topology of pointwise convergence. There is a canonical
linear splitting s : N → C1(G, M) with image the group of functions f such that
f (e) = 0, using which we topologise N . According to [25], proof of 2.5, the G-
module C1(G, M) is acyclic,4 that is,

Hi (G,C1(G, M)) = 0

for i > 0. Therefore, given a cocycle c ∈ Zi (G, M), there is an F ∈ Ci−1(G,

C1(G, M)) such that its image f ∈ Ci−1(G, N ) is a cocycle and dF = c. Hence,
d(Fa − F) = ca − c. Also, by induction, there is a ka ∈ Ci−2(G, N ) such that

4The notation there for C1(G, M) is F0
0 (G, M). One difference is that Mostow uses the complex

E∗(G, M) of equivariant homogeneous cochains in the definition of cohomology. However, the
isomorphism En → Cn that sends f (g0, g1, . . . , gn) to f (1, g1, g1g2, . . . , g1g2 · · · gn) identifies
the two definitions. This is the usual comparison map one uses for discrete groups, which clearly
preserves continuity.
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f a − f = dka and kab = (ka)b + kb + dl for some l ∈ Ci−3(G, N ) (zero if i = 2).
Let Ka = s ◦ ka and put

ha = Fa − F − dKa .

Then the image of ha in N is zero, so ha takes values in M , and dha = ca − c. Now
we check property (2). Note that

Kab = s ◦ kab = s ◦ (ka)
b + s ◦ kb + s ◦ dl.

But s ◦ (ka)b − (s ◦ ka)b and s ◦ dl − d(s ◦ l) both have image in M . Hence, Kab =
Kb

a + Kb + d(s ◦ l) + m for some cochain m ∈ Ci−2(G, M). From this, we deduce

dKab = (dKa)
b + dKb + dm,

from which we get

hab = Fab − F − dKab = (Fa)b − Fb + Fb − F − (dKa)b − dKb − dm = (ha)b + hb + dm.

�
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