2-dimensional \(\mathbb{Q} \)-lattices

\[\Lambda, \phi \]
\(\Lambda \subset \mathbb{C} \cong \mathbb{R}^2 \)

\(\{ e_1, e_2 \} \) basis of \(\mathbb{C} \) as \(\mathbb{R} \)-vector space

\(\text{GL}_2^+(\mathbb{R}) \) acts on \(\mathbb{C} \) by \(\mathbb{R} \)-linear transformations

for \(\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2^+(\mathbb{R}) \)

and \(\Lambda_0 = \mathbb{Z} e_1 + \mathbb{Z} e_2 = \mathbb{Z} + i\mathbb{Z} \) standard lattice

\(M_2(\mathbb{Z}) = \text{Hom} (\mathbb{Q}^2, \mathbb{Q}^2) \)

or equivalently \(\rho \in M_2(\mathbb{Z}) \)

\[\rho : \mathbb{Q}^2 \rightarrow \mathbb{Q}^2 / \Lambda_0 \]

\[\rho (a) = \rho (a)e_1 + \rho (a)e_2 \]

Then describe \((\Lambda, \phi)\) 2-dim \(\mathbb{Q} \)-lattices as

\[(\Lambda, \phi) = (\Lambda^{-1} \Lambda_0, \phi') \quad \text{for some} \quad \alpha \in \text{GL}_2^+(\mathbb{R}) \quad \rho \in M_2(\mathbb{Z}) \]

\((\alpha^{-1} \Lambda_0, \alpha^{-1} \phi') = (\beta^{-1} \Lambda_0, \beta^{-1} \phi') \) \(\text{iff} \)

\[\beta \alpha^{-1} \Lambda_0 = \Lambda_0 \quad \text{and} \quad \rho \alpha^{-1} \phi' = \phi' \]

\[\Rightarrow \quad \beta \alpha^{-1} = \gamma \in \text{SL}_2(\mathbb{Z}) \quad \text{and} \quad \phi' = \gamma \phi \quad \gamma \in \text{SL}_2(\mathbb{Z}) \]

\[(\beta, \phi') = (\gamma \alpha, \phi') \]

So 2-dim \(\mathbb{Q} \)-lattices

\[\Lambda \setminus (M_2(\mathbb{Z}) \times \text{GL}_2^+(\mathbb{R})) \]

\(\text{diagonal action of} \ \text{SL}_2(\mathbb{Z}) \)
\[a = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{R}) \]

\[a(x e_1 + y e_2) = (ax + by)e_1 + (cx + dy)e_2 \]

\(\mathbb{C}^* \equiv \lambda = a + ib = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \in \text{GL}_2^+(\mathbb{R}) \)

acts as above

\[\lambda(\lambda, \phi) = (\lambda \lambda, \lambda \phi) \text{ scaling action of } \mathbb{C}^* \times \text{GL}_2^+(\mathbb{R}) \]

i.e.

\[(\alpha, \rho) \rightarrow (\lambda^{-1} \alpha, \rho) \]

Then 2-dim \(\mathbb{C} \)-lattices up to scaling

\[\pi \left(\begin{pmatrix} M_2(\mathbb{Z}) \times \text{GL}_2^+(\mathbb{R}) \end{pmatrix}_{\mathbb{C}^*} \right) = \pi \left(\begin{pmatrix} M_2(\mathbb{Z}) \times H^1 \end{pmatrix}_{\text{diag. action of } \pi} \right) \]

in fact

\[\text{GL}_2^+(\mathbb{R}) \text{ acts on upper half plane } \mathbb{H} \]

by fractional linear transformations

\[z \mapsto \frac{az + b}{cz + d} \]

stabilizer of point \(z = i \) is \(\mathbb{C}^* \)

so map \(\alpha \rightarrow \alpha(i) \)

\[\text{GL}_2^+(\mathbb{C}) \rightarrow \mathbb{H} \] identifies \(\mathbb{H} = \text{GL}_2^+(\mathbb{C})_{\mathbb{C}^*} \)

\(\mathbb{C} \)-lattices up to scale \(\sim \) pairs \((\rho, \phi)\)

\[(\lambda, \phi) = (\lambda (\mathbb{Z} + \mathbb{Z} i), \lambda (\rho, \gamma \rho^*)) \]
Commensurability relation

Partially defined action of $\text{GL}_2^+(\mathbb{Q})$

if $(x, \phi) \longleftrightarrow (p, \alpha) \iff p \in M_2(\mathbb{Z})$ we $\text{GL}_2^+(\mathbb{Q})$

then \(g \in \text{GL}_2^+(\mathbb{Q}) \) s.t. \(gf \in M_2(\mathbb{Z}) \)

gives commensurable lattice \((gp, gw)\)

but notice: orbits of \(\Gamma = \text{SL}_2(\mathbb{Z}) \)

so more precisely start with groupoid

\[\tilde{G}_2 = \left\{ (g, p, \alpha) \in \text{GL}_2^+(\mathbb{Q}) \times M_2(\mathbb{Z}) \times \text{GL}_2^+(\mathbb{R}) : gp \in M_2(\mathbb{Z}) \right\} \]

units of groupoid \(\tilde{G}_2 = M_2(\mathbb{Z}) \times \text{GL}_2^+(\mathbb{R}) \)

then take a quotient by an action of \(\Gamma \times \Gamma \)

\(\Gamma = \text{SL}_2(\mathbb{Z}) \)

\[\tilde{G}_2 \simeq \Gamma \setminus \tilde{G}_2 \]

\[(g, p, \alpha) \mapsto (g, p, \alpha) \mapsto (g_1g_2^{-1}, p_2, \alpha_2 \alpha_1) \]

it is the groupoid of the commensurability relation:

\[(g, p, \alpha) \mapsto \left((\alpha \gamma \gamma^{-1}, \alpha \gamma p), (\alpha \gamma \gamma^{-1}, \alpha \gamma p) \right) \]

\(\Gamma \) class mod \(\Gamma \times \Gamma \)

\[f \cdot f_2 (g, p, \alpha) = \sum_{h \in \Gamma \setminus \tilde{G}_2} f_1 (gh^{-1}, hp, h \alpha) f_2 (h, p, \alpha) \]

\(\text{Groupoid algebra} \)
When considering 2-dim \(\mathbb{Q} \)-lattices mod \(C^* \) scaling would like to take \(\mathcal{G}_2/C^* \)

but composition law of groupoid not well defined in the quotient

example: take point \(z = i \in \mathbb{H} \) and \(\mathbb{Q} \)-lattices

\[
\begin{align*}
(\Lambda, \phi) &= (\mathbb{Z} + 2\mathbb{Z}, 0) \\
(\Lambda', \phi') &= (\mathbb{Z} + i\mathbb{Z}, 0)
\end{align*}
\]

they are commensurable

composition: \((\Lambda, \phi), (\Lambda', \phi') \circ (\Lambda', \phi') \)

in \(\mathcal{G}_2 \) is \((\Lambda', \phi') \) ok

in \(\mathcal{G}_2 \) also consider pair

\[
(i(\Lambda, \phi), i(\Lambda', \phi'))
\]

can still compose with \((\Lambda', \phi'), (\Lambda, \phi) \)

because \(i \) is symm. of \(\phi' \) (autom.)

so \(i(\Lambda', \phi') = (\Lambda', \phi') \)

composition in \(\mathcal{G}_2 \) is \(i(\Lambda, \phi), (\Lambda, \phi)) \neq (\Lambda, \phi), (\Lambda, \phi) \)

not a unit of \(\mathcal{G}_2 \) unit of \(\mathcal{G}_2 \)

but in \(\mathcal{G}_2/C^* \) \((i(\Lambda, \phi), i(\Lambda', \phi')) \) becomes equal to \((\Lambda, \phi), (\Lambda, \phi)) \)

so composition not well defined

Can get around this problem and still obtain convolution algebra for \(\mathbb{Q} \)-latt mod scaling, just not groupoid algebra.
the same convention product

\[(f_1 \ast f_2)(g,\rho,\alpha) = \sum_{h \in \text{GL}_2^+(\mathbb{Q}) \setminus \text{GL}_2^+(\mathbb{Q})} f_1(gh^{-1}, \rho, h(z)) f_2(h, \rho, \alpha)\]

but applied to functions \(p \in \text{GL}_2^+(\mathbb{Q}) \times (\mathbb{M}_2(\mathbb{Z}) \times \text{GL}_2^+(\mathbb{R}))\)

that are not of compact support but are invariant under \(x\) and compact support under \(G_x\) \(x \in \mathbb{A}\)

\(C^*\)-actions on \(\text{GL}_2^+(\mathbb{R})\)

i.e. \(f(g, \rho, x \lambda) = x^k f(g, \rho, \alpha)\)

homogeneous of weight \(k\)

choose those that homogeneous of weight 0 (invariant)

\[(f_1 \ast f_2)(g,\rho,\alpha) = \sum_{h \in \text{GL}_2^+(\mathbb{Q}) \setminus \text{GL}_2^+(\mathbb{Q})} f_1(gh^{-1}, \rho, h(z)) f_2(h, \rho, \alpha)\]

\[
f^x(g,\rho,\alpha) = \frac{f(g^{-1}, gp, g(z))}{f(g, \rho, \alpha)}
\]

\(\mathbb{A}\) resulting algebra

Representations: \(y \in \mathbb{M}_2(\mathbb{Z}) \times \mathbb{H}\)

\(y = (\rho, \tau)\)

\(G_y = \{ g \in \text{GL}_2^+(\mathbb{Q}) : gp \in \mathbb{M}_2(\mathbb{Z}) \}\)

\((\pi_y(f) \pi_x)(g) = \sum_{h \in \text{GL}_2^+(\mathbb{Q}) \setminus \text{GL}_2^+(\mathbb{Q})} f(gh^{-1}, \rho, h(z)) \pi_x(h)\)

\(\pi_y(g)\) \(\pi_x\) Reps of \(\mathbb{A}\)
If \(f = \sup \|x_y(f)\| \)
\[f \text{ compact support} \implies \sup < \infty \]

Note that \(\mathcal{M}_0(\mathbb{R}) \times \mathbb{R} \) is not compact
So \(f(g, p, z) = 1_{\mathbb{R}} \) for comp. support
So \(A_2 \) is not a unital algebra

Time evolution:
\[\sigma_t(f)(g, p, z) = \det(g) f(g, p, z) \]
again as in 1-dim case
\[\det(g) = \frac{\text{covol}(\Lambda')}{\text{covol}(\Lambda)} \]

Symmetries:
\[\text{Gl}^+(\mathbb{Q}) \cdot \text{Gl}_2(\mathbb{Z}) = \text{Gl}_2(A_0, f) \]

Note
\[\text{Gl}^+(\mathbb{Q}) \cap \text{Gl}_2(\mathbb{Z}) = \text{SL}_2(\mathbb{Z}) \]

Action of \(\text{Gl}_2(\mathbb{Z}) \):
\[\gamma: (\Lambda, \phi) \mapsto (\Lambda, \phi \circ \gamma) \]
\[\gamma: \mathbb{Q}_+^2 \to \mathbb{Q}_+^2 \]
preserves commensurability: \((\Lambda, \phi) \sim (\Lambda', \phi') \implies (\Lambda, \phi \circ \gamma) \sim (\Lambda', \phi' \circ \gamma)\)
on algebra automorphisms
\[\gamma(f)(g, p, z) = f(g, p, z) \gamma \text{ compatible with time evolution} \]
\[\Theta_n(f)(g, p, z) = \begin{cases} \int_{(g, p, 1) \in \text{det}(m)^{-1}, z} f(g, p, 1) \text{det}(m)^{-1} \quad &\text{if } g, p \text{ in } M_n(\mathbb{Z}) \text{ and } \text{det}(m)^{-1} \in M_n(\mathbb{Z}) \\ 0 &\text{otherwise} \end{cases} \]

acting by endomorphisms

Of these certain endom are inner

\[\forall n \in \mathbb{N} \text{ c } M_n^+(\mathbb{Z}) \quad \text{inner endom.} \]

\[\Theta_n(f) = \mu_n f \mu_n^* \quad \text{matrix} \]

\[\mu_n(g, f, z) = \begin{cases} 1 &g \in \text{P}(n) \\ 0 &\text{otherwise} \end{cases} \]

\[\text{partially def acti of } \mathbb{Q}^+ \subset \text{GL}_2^+(\mathbb{Q}) \]

\[\text{} = \text{symmetries mod inner } \text{GL}_2^+(\mathbb{Q}) : \text{GL}_2(\mathbb{Q}) \]

\[\text{Autmorphisms of the modular field} \]

Modular field (field of modular functions)

Converse groups level N:

\[\Gamma(N) = \left\{ \gamma \in \text{P} : \gamma \equiv 1 \text{ mod } N \right\} \]

Notation:

\[\alpha \in \text{GL}_2^+(\mathbb{R}) \]

\[(f \mid_\alpha) (z) = \text{det}(\alpha)^{-1} f\left(\frac{aq + b}{cz + d} \right) (c z + d)^{-k} \]

for \(\alpha = (a \ b) \]

\[(c \ d) \]
Modular functions of level N:

f holomorphic function on \mathbb{H} s.t.

$$f|_\gamma = f \quad \forall \gamma \in \Gamma(N)$$

F_N field of most functions of level N

$F = \bigcup F_N$ field of mod functions

- There are explicit generators for $\mathfrak{o} F_N$

- F can be embedded (in many ways) as a subfield of \mathbb{C}

- Embeddings $F \subseteq \mathbb{C}$ parameterized by invertible 2-dim \mathbb{Q}-lattices (Λ, ψ)

- $\text{Aut}(F) = \mathfrak{q}_+^* \backslash \text{Gle}(\mathfrak{a}_q, f)$

Analysis of arithmetic subalgebras of BC system will involve modular functions here