Algebraic Geometry of Segmentation and Tracking

Matilde Marcolli and Doris Tsao

Ma191b Winter 2017
Geometry of Neuroscience

Geometry of lines in 3-space and Segmentation and Tracking
This lecture is based on the papers:
Reference:

- Marco Pellegrini, Ray shooting and lines in space. Handbook of discrete and computational geometry, pp. 599-614, CRC Press Ser. Discrete Math. Appl., CRC, 1997
- Thorsten Theobald, An enumerative geometry framework for algorithmic line problems in \mathbb{R}^{3}, SIAM J. Comput. Vol. 31 (2002) N.4, 1212-1228
- Frank Sottile and Thorsten Theobald, Line problems in nonlinear computational geometry, Contemp. Math. Vol. 453 (2008) 411-432.

General Question: Computational Geometry Problem efficiently find intersections of a large number of rays (flow of light) and the objects of a scene

Aspects of the problem

- Vision: Segmentation and Tracking
- Robotics: moving objects in 3-space without collisions
- Computer Graphics: rendering realistic images simulating the flow of light

Coordinates on lines in 3-space
(1) By pairs of planes: four parameters (a, b, c, d)

$$
\ell=\left\{\begin{array}{l}
y=a z+b \\
x=c z+d
\end{array}\right.
$$

(2) By pairs of points: two reference planes $z=1$ and $z=0$, intersection of a non-horizontal line $\ell\left(x_{0}, y_{0}, 0\right)$ and $\left(x_{1}, y_{1}, 1\right)$ determine ℓ : four parameters $\left(x_{0}, y_{0}, x_{1}, y_{1}\right)$

Plücker coordinates of lines in 3-space

homogeneous coordinates: coordinates (x, y, z) with
$x=x_{1} / x_{0}, y=x_{2} / x_{0}, z=x_{3} / x_{0}$

$$
\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \text { with }\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \sim\left(\lambda x_{0}, \lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right)
$$

for $\lambda \neq 0$ scalar (projective coordinates on \mathbb{P}^{3})
(3) Plücker coordinates: $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$

$$
\ell=\left(\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

with $a_{0}, b_{0}>0$

homogeneous Plücker coordinates

Take all 2×2 minors of the 2×4 matrix above and compute determinants

$$
\xi_{i j}=\operatorname{det}\left(\begin{array}{ll}
a_{i} & a_{j} \\
b_{i} & b_{j}
\end{array}\right)
$$

Plücker point

$$
P(\ell)=\left(\xi_{01}, \xi_{02}, \xi_{03}, \xi_{12}, \xi_{31}, \xi_{23}\right)
$$

homogeneous coordinates of a point in \mathbb{P}^{5}
Plücker relations: coordinates $\xi_{i j}$ satisfy relation

$$
\xi_{01} \xi_{23}+\xi_{02} \xi_{31}+\xi_{03} \xi_{12}=0
$$

only homogeneous coordinates in \mathbb{P}^{5} that satisfy this relation come from lines ℓ in 3 -space

The Klein Quadric
$\mathcal{K}=\left\{P=\left(x_{0}: x_{1}: x_{2}: x_{3}: x_{4}: x_{5}\right) \in \mathbb{P}^{5} \mid x_{0} x_{5}+x_{1} x_{4}+x_{2} x_{3}=0\right\}$
Plücker hyperplanes: vector $v(\ell)=\left(\xi_{01}, \xi_{02}, \xi_{03}, \xi_{12}, \xi_{31}, \xi_{23}\right)$

$$
h(\ell)=\left\{P \in \mathbb{P}^{5} \mid v(\ell) \cdot P=0\right\}
$$

Twistor Theory

- The idea of transforming problems about lines in 3-spaces into points and hyperplanes in \mathbb{P}^{5} via the Klein quadric \mathcal{K} goes back to physics: Penrose's twistor approach to general relativity
- 4-dimensional vector space T (twistor space); projectivized $\mathbb{P}(T)=G(1, T) \sim \mathbb{P}^{3}$; Klein quadric \mathcal{K} is embedding $G(2, T) \hookrightarrow \mathbb{P}^{5}$ Grassmannian of 2-planes in 4-space T
- Penrose Twistor Transform:

$$
\mathbb{P}^{3}=G(1, T) \longleftarrow F(1,2, T) \longrightarrow G(2, T)=\mathcal{K}
$$

$F(1,2, T)$ flag varieties with projection maps

- the Klein quadric has rulings by two families of planes (α-planes and β-planes)

- the α-planes are the images under the second projection of the fibers of the first projection in the Penrose transform diagram

$$
\mathbb{P}^{3}=G(1 ; T) \longleftarrow F(1,2 ; T) \longrightarrow G(2 ; T)
$$

- the β-planes similarly from dual Penrose diagram

$$
G\left(3 ; T^{*}\right) \longleftarrow F\left(2,3 ; T^{*}\right) \longrightarrow G(2 ; T)
$$

- In these planes every line is a light ray: two \mathbb{P}^{1} 's in the base of a light cone $C(\infty)$, same as $\mathbb{P}\left(\mathcal{S}_{\infty}\right) \times \mathbb{P}\left(\tilde{\mathcal{S}}_{\infty}\right)$, where \mathcal{S}_{∞} 2-dim spinor space over vertex ∞ of the light cone $C(\infty)$
- Grassmannian $G(2, T)$ is compactified and complexified Minkowski space with big cell as complexified spacetime
Only reviewed as motivation: we will not be using Twistor Theory

Projectivized and complex

- Why use projective spaces \mathbb{P}^{3} and \mathbb{P}^{5} instead of affine spaces \mathbb{A}^{4} and \mathbb{A}^{6} ?

Projective algebraic geometry works better than affine (because compactness)

$$
\mathbb{P}^{N}=\mathbb{A}^{N} \cup \mathbb{P}^{N-1}
$$

big cell \mathbb{A}^{N} and (projective) hyperplane \mathbb{P}^{N-1} at infinity

- Why use complex geometry $\mathbb{P}^{N}(\mathbb{C})$ for a real geometry problem?

Complex algebraic geometry works better than real (polynomials always have the correct number of solutions: intersections, etc.)

Set of real points $\mathbb{P}^{N}(\mathbb{R})$ of complex projective spaces $\mathbb{P}^{N}(\mathbb{C})$; similarly $\mathcal{K}(\mathbb{C})$ complex projective algebraic variety and $\mathcal{K}(\mathbb{R})$ its real points

General idea: formulate problems in projective algebraic geometry; solve for complex algebraic varieties; restrict to real points

Use of Plücker coordinates

- problems about lines in 3-space transformed into problems about hyperplanes and points in \mathbb{P}^{5}
- why better? a lot of tools about algebraic geometry of hyperplane arrangements
- disadvantages? five parameters instead of four (can increase running time of algorithms)

However: known that even if computational complexity of a hyperplane arrangement of n hyperplanes in \mathbb{P}^{5} is $\mathcal{O}\left(n^{5}\right)$, its intersection of \mathcal{K} has computational complexity only $\mathcal{O}\left(n^{4} \log n\right)$

The geometric setup: a scene in 3-space becomes a hyperplane arrangement in \mathbb{P}^{5}

- suppose given a configuration of objects in 3-space: assume polyhedra (can always approximate smooth objects by polyhedra, through a mesh)
- triangulate polyhedra and extends edges of the triangulation to infinite lines ℓ
- each such line ℓ determines a Plücker hyperplane $h(\ell)$ in \mathbb{P}^{5}
- get a hyperplane arrangement in \mathbb{P}^{5}

Ray Shooting Problem

- used for hidden surface removal, detecting and computing intersections of polyhedra
- Given a collection of polyhedra \mathcal{P} in 3 -space
- given a point P and a direction \vec{V}
- want to identify the first object \mathcal{P} intersected by a ray originating at P pointing in the direction \vec{V}
- consider a triangle τ of the triangulation of \mathcal{P} : a line ℓ passes through τ iff the point $P(\ell)$ in \mathbb{P}^{5} is in the intersection of the (real) half-spaces $h^{+}\left(\ell_{1}\right) \cap h^{+}\left(\ell_{2}\right) \cap h^{+}\left(\ell_{3}\right)$ or $h^{-}\left(\ell_{1}\right) \cap h^{-}\left(\ell_{2}\right) \cap h^{-}\left(\ell_{3}\right)$ determines by the hyperplanes $h\left(\ell_{1}\right)$, $h\left(\ell_{2}\right), h\left(\ell_{3}\right)$ of the three boundary lines ℓ_{i} of τ
- to find solution to ray-shooting problem: locate $P(\ell)$ check list of triangles τ associated to the corresponding cell of the hyperplane arrangement

Another Problem: which bodies from a given scene cannot be seen from any location outside the scene

- Geometric formulation: determining common tangents to four given bodies in \mathbb{R}^{3}
- for polyhedra: common tangents means common transversals to edge lines; for smooth objects tangents

Model Result: Four spheres in \mathbb{R}^{3} (centers not all aligned) have at most 12 common tangent lines; there are configurations that realize 12

Four spheres with coplanar centers and 12 common tangent lines (figure from Sottile-Theobald)

How to get the geometric formulation

- Partial Visibility:
- $C \subset \mathbb{R}^{3}$ convex body (bounded, closed, convex, with inner points)
- set \mathcal{C} of convex bodies C in \mathbb{R}^{3} (a scene)
- a body C is partially visible if $\exists P \in C$ and \vec{V} such that ray from P in direction \vec{V} does not intersect any other C^{\prime} in \mathcal{C} unobstructed view of at least some points of C from some viewpoint outside the scene: visibility ray
- reduce collection \mathcal{C} be removing all C not partially visible
- if there is a visibility ray for C can continuously move it (translate, rotate) until line is tangent to at least two bodies in \mathcal{C} (one of which can be C): reached boundary of the visibility region for C
- Consider set $\mathcal{T}(\mathcal{C})$ of lines in \mathbb{R}^{3} that intersect all bodies $C \in \mathcal{C}$
- Lines in \mathbb{R}^{3} have four parameters; open condition so $\mathcal{T}(\mathcal{C})$ is a 4-dimensional set
- $\mathcal{T}(\mathcal{C})$ semialgebraic set (defined by algebraic equalities and inequalities) with boundary $\partial \mathcal{T}(\mathcal{C})$ containing lines that are tangent to at least one $C \in \mathcal{C}$
- combinatorial structure of the set $\mathcal{T}(\mathcal{C})$: faces determined by sets of lines tangent to a fixed subset of bodies in \mathcal{C}
- because $\mathcal{T}(\mathcal{C})$ is 4-dimensional, have faces of dimensions $j \in\{0,1,2,3\}$ given by lines tangent to $4-j$ bodies

Lines and Spheres

- Case C polyhedra: linear computational geometry
- Case C smooth (e.g. spheres): nonlinear computational geometry

Core problem: find configurations of lines tangent to k spheres and transversal to $4-k$ lines in \mathbb{R}^{3}

Refer to all cases as "common tangents"

One sphere and three lines with with four common tangents
(figure from Theobald)

Bounds on number of common tangents

Fact: (Theobald)

Given k spheres and transversal to $4-k$ lines in \mathbb{R}^{3}; if only finitely many common tangents, then maximal number is

$$
N_{k}=\left\{\begin{array}{cc}
2 & k=0 \\
4 & k=1 \\
8 & k=2 \\
12 & k=3, k=4
\end{array}\right.
$$

In each case there are configuration realizing the bound

- need Bézout: $\left\{f_{i}\left(x_{0}, \ldots, x_{n}\right)\right\}_{i=1}^{n}$ homogeneous polynomials degrees d_{i} with finite number of common zeros in \mathbb{P}^{N} then number of zeros (with multiplicity) at most $d_{1} \dot{d}_{2} \cdots d_{n}$
- Bézout gives $N_{0} \leq 2, N_{1} \leq 4, N_{2} \leq 8$
- For instance, to get $N_{1} \leq 4$: common tangents to three lines and one sphere means
(1) three linear equations

$$
\xi_{01} \xi_{23}^{\prime}-\xi_{02} \xi_{13}^{\prime}+\xi_{03} \xi_{12}^{\prime}+\xi_{12} \xi_{03}^{\prime}-\xi_{13} \xi_{02}^{\prime}+\xi_{23} \xi_{01}^{\prime}=0
$$

which express the fact that the line ℓ with
$P(\ell)=\left(\xi_{01}, \xi_{02}, \xi_{03}, \xi_{12}, \xi_{31}, \xi_{23}\right)$ and the fixed line ℓ^{\prime} (one of the three given lines) with $P\left(\ell^{\prime}\right)=\left(\xi_{01}^{\prime}, \xi_{02}^{\prime}, \xi_{03}^{\prime}, \xi_{12}^{\prime}, \xi_{31}^{\prime}, \xi_{23}^{\prime}\right)$ intersect in \mathbb{P}^{3}
(2) one equation

$$
P(\ell)^{t}\left(\wedge^{2} Q\right) P(\ell)=0
$$

expressing the fact that the line ℓ with
$P(\ell)=\left(\xi_{01}, \xi_{02}, \xi_{03}, \xi_{12}, \xi_{31}, \xi_{23}\right)$ is tangent to the quadric Q
(3) and the Plücker relations that restrict to the Klein quadric \mathcal{K}

$$
\xi_{01} \xi_{23}+\xi_{02} \xi_{31}+\xi_{03} \xi_{12}=0
$$

hence in total using Bézout get $N_{1} \leq 4$.

- linear operator defined as

$$
\begin{gathered}
\wedge^{2}: M_{m \times n}(\mathbb{R}) \rightarrow M_{\binom{m}{2} \times\binom{ n}{2}}(\mathbb{R}) \\
\left(\wedge^{2} A\right)_{I, J}=\operatorname{det}\left(A_{[I, J]}\right)
\end{gathered}
$$

where $I \subset\{1, \ldots, m\}$ with $\# I=2$ and $J \subset\{1, \ldots n\}$ with $\# J=2$ and $A_{[I, J]}$ the 2×2 minor of A with rows and columns I and J

Note: the equation $P^{t}\left(\wedge^{2} Q\right) P=0$ for tangency of line and quadric comes from the fact that ℓ tangent to quadric Q iff 2×2 matrix $L^{t} Q L$ is singular, where L is the 4×2 matrix representing ℓ in Plücker form

$$
L(\ell)=\left(\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3} \\
b_{0} & b_{1} & b_{2} & b_{3}
\end{array}\right)
$$

condition that $L^{T} Q L$ is singular:

$$
\operatorname{det}\left(L^{t} Q L\right)=\left(\wedge^{2} L^{t}\right)\left(\wedge^{2} Q\right)\left(\wedge^{2} L\right)=\left(\wedge^{2} L\right)^{t}\left(\wedge^{2} Q\right)\left(\wedge^{2} L\right)
$$

where $\wedge^{2} L=P(\ell)$ identifying 6×1 matrix as vector in \mathbb{P}^{5}

- in the case of a sphere in \mathbb{R}^{3} of radius r and center $\left(c_{1}, c_{2}, c_{3}\right)$ explicit equation

$$
\left(\begin{array}{l}
p_{01} \\
p_{02} \\
p_{03} \\
p_{12} \\
p_{13} \\
p_{23}
\end{array}\right)^{T}\left(\begin{array}{cccccc}
c_{2}^{2}+c_{3}^{2}-r^{2} & -c_{1} c_{2} & -c_{1} c_{3} & c_{2} & c_{3} & 0 \\
-c_{1} c_{2} & c_{1}^{2}+c_{3}^{2}-r^{2} & -c_{2} c_{3} & -c_{1} & 0 & c_{3} \\
-c_{1} c_{3} & -c_{2} c_{3} & c_{1}^{2}+c_{2}^{2}-r^{2} & 0 & -c_{1}-c_{2} \\
c_{2} & -c_{1} & 0 & 1 & 0 & 0 \\
c_{3} & 0 & -c_{1} & 0 & 1 & 0 \\
0 & c_{3} & -c_{2} & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
p_{01} \\
p_{02} \\
p_{03} \\
p_{12} \\
p_{13} \\
p_{23}
\end{array}\right)
$$

because quadric is $\left(x_{1}-c_{1} x_{0}\right)^{2}+\left(x_{2}-c_{2} x_{0}\right)^{2}+\left(x_{3}-c_{3} x_{0}\right)^{2}=r^{2} x_{0}^{2}$ in homogeneous coordinates

- Case of $N_{1} \leq 4$ as above
- Case $N_{2} \leq 8$ very similar argument
- Case $N_{0} \leq 2$ also similar: common transversals to four lines in 3-space classical enumerative geometry problem, known 2 can be achieved (with \mathbb{R}-solutions) so $N_{0}=2$
- $N_{1}=4$ a construction achieving the maximum shown in previous figure
- $N_{2}=8$: explicit construction of a configuration of two lines and two balls with eight common tangent lines

configurations of four lines: $\ell_{1}, \ell_{2}, \ell_{3}$ on a ruling of a hyperboloid; lines transversal to them second ruling; a fourth line either two or zero (real) intersections with hyperboloid (from Sottile-Theobald)

configuration of two lines and two balls with eight common tangent lines (figure from Theobald)
- H hyperplane in \mathbb{P}^{5} characterizing lines transversal to given $\ell=\ell_{1}$
$H=\left\{P^{\prime} \mid \xi_{01} \xi_{23}^{\prime}-\xi_{02} \xi_{13}^{\prime}+\xi_{03} \xi_{12}^{\prime}+\xi_{12} \xi_{03}^{\prime}-\xi_{13} \xi_{02}^{\prime}+\xi_{23} \xi_{01}^{\prime}=0\right\}$
points of $\mathcal{K} \cap H$ correspond to such lines
- quadrics Q_{2}, Q_{3}, Q_{4} and corresponding $\wedge^{2} Q_{i}$:

$$
P\left(\ell^{\prime}\right)^{t}\left(\wedge^{2} Q_{i}\right) P\left(\ell^{\prime}\right)=0
$$

equations characterizing tangency to Q_{i} for $P\left(\ell^{\prime}\right) \in H$

- so far would get a total degree 6 (three quadratic equations and one linear) but these are not independent and there are intersections of multiplicity two which leads to a counting of 12
to get the multiplicity counting
- quadric Q of a sphere
$\left(x_{1}-c_{1} x_{0}\right)^{2}+\left(x_{2}-c_{2} x_{0}\right)^{2}+\left(x_{3}-c_{3} x_{0}\right)^{2}=r^{2} x_{0}^{2}$ in homogeneous coordinates in \mathbb{P}^{3}
- intersects the plane \mathbb{P}^{2} at infinity in the conic $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$
- point $p=\left(0, \zeta_{1}, \zeta_{2}, \zeta_{3}\right)$ on the conic: tangent to conic at p in plane \mathbb{P}^{2} has Plücker coordinates $\left(0,0,0, \zeta_{3},-\zeta_{2}, \zeta_{1}\right)$
- Plücker vector of a tangent to conic in the \mathbb{P}^{2} at infinity is also contained in $\wedge^{2} Q_{2}, \wedge^{2} Q_{3}, \wedge^{2} Q_{4}$
- use this to conclude that the tangent hyperplanes to the quadrics $\wedge^{2} Q_{2}, \wedge^{2} Q_{3}, \wedge^{2} Q_{4}$ and \mathcal{K} all contain a common 2-dimensional subspace
- conclude that multiplicity of intersection at least 2 , which gives the correct counting of max number of tangents

configuration of one line and three balls with twelve common tangent lines (figure from Theobald)
- a similar argument for the bound $N_{4} \leq 12$ (see Theobald and Sottile-Theobald)
- further step: give a characterization of the configuration with infinitely many common tangents like four collinear centers and equal radii (or collinear centers and inscribed in same hyperboloid), see Theobald and Sottile-Theobald

configurations of four spheres with infinitely many common tangents (Sottile-Theobald)

Conclusions

the geometric argument on maximal number of common tangents allows for an estimate of the algorithmic complexity of the visibility problem: solving polynomial equations of the given degree (eg a degree 12 equation for the case of 4 -spheres)

