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Geometry of lines in 3-space and Segmentation and Tracking

This lecture is based on the papers:

Reference:

Marco Pellegrini, Ray shooting and lines in space. Handbook
of discrete and computational geometry, pp. 599–614, CRC
Press Ser. Discrete Math. Appl., CRC, 1997

Thorsten Theobald, An enumerative geometry framework for
algorithmic line problems in R3, SIAM J. Comput. Vol.31
(2002) N.4, 1212–1228

Frank Sottile and Thorsten Theobald, Line problems in
nonlinear computational geometry, Contemp. Math. Vol.453
(2008) 411–432.
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General Question: Computational Geometry Problem efficiently
find intersections of a large number of rays (flow of light) and the
objects of a scene

Aspects of the problem

Vision: Segmentation and Tracking

Robotics: moving objects in 3-space without collisions

Computer Graphics: rendering realistic images simulating the
flow of light
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Coordinates on lines in 3-space

1 By pairs of planes: four parameters (a, b, c, d)

` =

{
y = az + b
x = cz + d

2 By pairs of points: two reference planes z = 1 and z = 0,
intersection of a non-horizontal line ` (x0, y0, 0) and (x1, y1, 1)
determine `: four parameters (x0, y0, x1, y1)
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Plücker coordinates of lines in 3-space

homogeneous coordinates: coordinates (x , y , z) with
x = x1/x0, y = x2/x0, z = x3/x0

(x0 : x1 : x2 : x3) with (x0, x1, x2, x3) ∼ (λx0, λx1, λx2, λx3)

for λ 6= 0 scalar (projective coordinates on P3)

3 Plücker coordinates: a = (a0, a1, a2, a3) and
b = (b0, b1, b2, b3)

` =

(
a0 a1 a2 a3
b0 b1 b2 b3

)
with a0, b0 > 0
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homogeneous Plücker coordinates

Take all 2× 2 minors of the 2× 4 matrix above and compute
determinants

ξij = det

(
ai aj
bi bj

)
Plücker point

P(`) = (ξ01, ξ02, ξ03, ξ12, ξ31, ξ23)

homogeneous coordinates of a point in P5

Plücker relations: coordinates ξij satisfy relation

ξ01ξ23 + ξ02ξ31 + ξ03ξ12 = 0

only homogeneous coordinates in P5 that satisfy this relation come
from lines ` in 3-space
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The Klein Quadric

K = {P = (x0 : x1 : x2 : x3 : x4 : x5) ∈ P5 | x0x5 + x1x4 + x2x3 = 0}

Plücker hyperplanes: vector v(`) = (ξ01, ξ02, ξ03, ξ12, ξ31, ξ23)

h(`) = {P ∈ P5 | v(`) · P = 0}

Matilde Marcolli and Doris Tsao Algebraic Geometry of Segmentation and Tracking



Twistor Theory

• The idea of transforming problems about lines in 3-spaces into
points and hyperplanes in P5 via the Klein quadric K goes back to
physics: Penrose’s twistor approach to general relativity

• 4-dimensional vector space T (twistor space); projectivized
P(T ) = G (1,T ) ∼ P3; Klein quadric K is embedding
G (2,T ) ↪→ P5 Grassmannian of 2-planes in 4-space T

• Penrose Twistor Transform:

P3 = G (1,T )←− F (1, 2,T ) −→ G (2,T ) = K

F (1, 2,T ) flag varieties with projection maps

Matilde Marcolli and Doris Tsao Algebraic Geometry of Segmentation and Tracking



• the Klein quadric has rulings by two families of planes (α-planes
and β-planes)
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• the α-planes are the images under the second projection of the
fibers of the first projection in the Penrose transform diagram

P3 = G (1;T )←−F (1, 2;T )−→G (2;T )

• the β-planes similarly from dual Penrose diagram

G (3;T ∗)←− F (2, 3;T ∗) −→ G (2;T )

• In these planes every line is a light ray: two P1’s in the base of a
light cone C (∞), same as P(S∞)× P(S̃∞), where S∞ 2-dim
spinor space over vertex ∞ of the light cone C (∞)

• Grassmannian G (2,T ) is compactified and complexified
Minkowski space with big cell as complexified spacetime

Only reviewed as motivation: we will not be using Twistor Theory
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Projectivized and complex

• Why use projective spaces P3 and P5 instead of affine spaces A4

and A6?

Projective algebraic geometry works better than affine (because
compactness)

PN = AN ∪ PN−1

big cell AN and (projective) hyperplane PN−1 at infinity

• Why use complex geometry PN(C) for a real geometry problem?

Complex algebraic geometry works better than real (polynomials
always have the correct number of solutions: intersections, etc.)

Set of real points PN(R) of complex projective spaces PN(C);
similarly K(C) complex projective algebraic variety and K(R) its
real points

General idea: formulate problems in projective algebraic geometry;
solve for complex algebraic varieties; restrict to real points
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Use of Plücker coordinates

problems about lines in 3-space transformed into problems
about hyperplanes and points in P5

why better? a lot of tools about algebraic geometry of
hyperplane arrangements

disadvantages? five parameters instead of four (can increase
running time of algorithms)

However: known that even if computational complexity of a
hyperplane arrangement of n hyperplanes in P5 is O(n5), its
intersection of K has computational complexity only O(n4 log n)
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The geometric setup: a scene in 3-space becomes a hyperplane
arrangement in P5

• suppose given a configuration of objects in 3-space: assume
polyhedra (can always approximate smooth objects by polyhedra,
through a mesh)

• triangulate polyhedra and extends edges of the triangulation to
infinite lines `

• each such line ` determines a Plücker hyperplane h(`) in P5

• get a hyperplane arrangement in P5
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Ray Shooting Problem

• used for hidden surface removal, detecting and computing
intersections of polyhedra

• Given a collection of polyhedra P in 3-space

• given a point P and a direction ~V

• want to identify the first object P intersected by a ray
originating at P pointing in the direction ~V

• consider a triangle τ of the triangulation of P: a line ` passes
through τ iff the point P(`) in P5 is in the intersection of the
(real) half-spaces h+(`1) ∩ h+(`2) ∩ h+(`3) or
h−(`1) ∩ h−(`2) ∩ h−(`3) determines by the hyperplanes h(`1),
h(`2), h(`3) of the three boundary lines `i of τ

• to find solution to ray-shooting problem: locate P(`) check list
of triangles τ associated to the corresponding cell of the
hyperplane arrangement
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Another Problem: which bodies from a given scene cannot be seen
from any location outside the scene

• Geometric formulation: determining common tangents to four
given bodies in R3

• for polyhedra: common tangents means common transversals to
edge lines; for smooth objects tangents

Model Result: Four spheres in R3 (centers not all aligned) have at
most 12 common tangent lines; there are configurations that
realize 12
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Four spheres with coplanar centers and 12 common tangent lines

(figure from Sottile–Theobald)
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How to get the geometric formulation

• Partial Visibility:

- C ⊂ R3 convex body (bounded, closed, convex, with inner points)

- set C of convex bodies C in R3 (a scene)

- a body C is partially visible if ∃P ∈ C and ~V such that ray from
P in direction ~V does not intersect any other C ′ in C
unobstructed view of at least some points of C from some
viewpoint outside the scene: visibility ray

- reduce collection C be removing all C not partially visible

• if there is a visibility ray for C can continuously move it
(translate, rotate) until line is tangent to at least two bodies in C
(one of which can be C ): reached boundary of the visibility region
for C
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• Consider set T (C) of lines in R3 that intersect all bodies C ∈ C
• Lines in R3 have four parameters; open condition so T (C) is a
4-dimensional set

• T (C) semialgebraic set (defined by algebraic equalities and
inequalities) with boundary ∂T (C) containing lines that are
tangent to at least one C ∈ C
• combinatorial structure of the set T (C): faces determined by sets
of lines tangent to a fixed subset of bodies in C
• because T (C) is 4-dimensional, have faces of dimensions
j ∈ {0, 1, 2, 3} given by lines tangent to 4− j bodies
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Lines and Spheres

Case C polyhedra: linear computational geometry

Case C smooth (e.g. spheres): nonlinear computational
geometry

Core problem: find configurations of lines tangent to k spheres and
transversal to 4− k lines in R3

Refer to all cases as “common tangents”
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One sphere and three lines with with four common tangents

(figure from Theobald)
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Bounds on number of common tangents

Fact: (Theobald)
Given k spheres and transversal to 4− k lines in R3; if only finitely
many common tangents, then maximal number is

Nk =


2 k = 0
4 k = 1
8 k = 2

12 k = 3, k = 4

In each case there are configuration realizing the bound

• need Bézout: {fi (x0, . . . , xn)}ni=1 homogeneous polynomials
degrees di with finite number of common zeros in PN then number
of zeros (with multiplicity) at most d1ḋ2 · · · dn
• Bézout gives N0 ≤ 2, N1 ≤ 4, N2 ≤ 8
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• For instance, to get N1 ≤ 4: common tangents to three lines and
one sphere means

1 three linear equations

ξ01ξ
′
23 − ξ02ξ′13 + ξ03ξ

′
12 + ξ12ξ

′
03 − ξ13ξ′02 + ξ23ξ

′
01 = 0

which express the fact that the line ` with
P(`) = (ξ01, ξ02, ξ03, ξ12, ξ31, ξ23) and the fixed line `′ (one of
the three given lines) with P(`′) = (ξ′01, ξ

′
02, ξ

′
03, ξ

′
12, ξ

′
31, ξ

′
23)

intersect in P3

2 one equation
P(`)t (∧2Q)P(`) = 0

expressing the fact that the line ` with
P(`) = (ξ01, ξ02, ξ03, ξ12, ξ31, ξ23) is tangent to the quadric Q

3 and the Plücker relations that restrict to the Klein quadric K

ξ01ξ23 + ξ02ξ31 + ξ03ξ12 = 0

hence in total using Bézout get N1 ≤ 4.
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• linear operator defined as

∧2 : Mm×n(R)→ M(m2)×(n2)
(R)

(∧2A)I ,J = det(A[I ,J])

where I ⊂ {1, . . . ,m} with #I = 2 and J ⊂ {1, . . . n} with #J = 2
and A[I ,J] the 2× 2 minor of A with rows and columns I and J
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Note: the equation Pt (∧2Q)P = 0 for tangency of line and
quadric comes from the fact that ` tangent to quadric Q iff 2× 2
matrix LtQL is singular, where L is the 4× 2 matrix representing `
in Plücker form

L(`) =

(
a0 a1 a2 a3
b0 b1 b2 b3

)
condition that LTQL is singular:

det(LtQL) = (∧2Lt)(∧2Q)(∧2L) = (∧2L)t(∧2Q)(∧2L)

where ∧2L = P(`) identifying 6× 1 matrix as vector in P5
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• in the case of a sphere in R3 of radius r and center (c1, c2, c3)
explicit equation

because quadric is (x1− c1x0)2 + (x2− c2x0)2 + (x3− c3x0)2 = r2x20
in homogeneous coordinates

Matilde Marcolli and Doris Tsao Algebraic Geometry of Segmentation and Tracking



Case of N1 ≤ 4 as above

Case N2 ≤ 8 very similar argument

Case N0 ≤ 2 also similar: common transversals to four lines in
3-space classical enumerative geometry problem, known 2 can
be achieved (with R-solutions) so N0 = 2

N1 = 4 a construction achieving the maximum shown in
previous figure

N2 = 8: explicit construction of a configuration of two lines
and two balls with eight common tangent lines
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configurations of four lines: `1, `2, `3 on a ruling of a hyperboloid; lines

transversal to them second ruling; a fourth line either two or zero (real)

intersections with hyperboloid (from Sottile–Theobald)
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configuration of two lines and two balls with eight common tangent lines

(figure from Theobald)
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bound N3 ≤ 12

• H hyperplane in P5 characterizing lines transversal to given
` = `1

H = {P ′ | ξ01ξ′23 − ξ02ξ′13 + ξ03ξ
′
12 + ξ12ξ

′
03 − ξ13ξ′02 + ξ23ξ

′
01 = 0}

points of K ∩ H correspond to such lines

• quadrics Q2, Q3, Q4 and corresponding ∧2Qi :

P(`′)t (∧2Qi )P(`′) = 0

equations characterizing tangency to Qi for P(`′) ∈ H

• so far would get a total degree 6 (three quadratic equations and
one linear) but these are not independent and there are
intersections of multiplicity two which leads to a counting of 12
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to get the multiplicity counting

• quadric Q of a sphere
(x1 − c1x0)2 + (x2 − c2x0)2 + (x3 − c3x0)2 = r2x20 in homogeneous
coordinates in P3

• intersects the plane P2 at infinity in the conic x21 + x22 + x23 = 0

• point p = (0, ζ1, ζ2, ζ3) on the conic: tangent to conic at p in
plane P2 has Plücker coordinates (0, 0, 0, ζ3,−ζ2, ζ1)

• Plücker vector of a tangent to conic in the P2 at infinity is also
contained in ∧2Q2, ∧2Q3, ∧2Q4

• use this to conclude that the tangent hyperplanes to the quadrics
∧2Q2, ∧2Q3, ∧2Q4 and K all contain a common 2-dimensional
subspace

• conclude that multiplicity of intersection at least 2, which gives
the correct counting of max number of tangents
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configuration of one line and three balls with twelve common tangent

lines (figure from Theobald)
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• a similar argument for the bound N4 ≤ 12 (see Theobald and
Sottile-Theobald)

• further step: give a characterization of the configuration with
infinitely many common tangents like four collinear centers and
equal radii (or collinear centers and inscribed in same hyperboloid),
see Theobald and Sottile-Theobald
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configurations of four spheres with infinitely many common tangents

(Sottile–Theobald)
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Conclusions

the geometric argument on maximal number of common tangents
allows for an estimate of the algorithmic complexity of the visibility
problem: solving polynomial equations of the given degree (eg a
degree 12 equation for the case of 4-spheres)
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