Feynman integrals and motives

Matilde Marcolli

Plenary talk: AMS Meeting, UC Riverside, November 2013
based on:

- O.Ceyhan, M.Marcolli, Feynman integrals and motives of configuration spaces, Communications in Mathematical Physics: Vol.313, N. 1 (2012), 35-70, arXiv:1012.5485
- O.Ceyhan, M.Marcolli, Feynman integrals and periods in configuration spaces, arXiv:1207.3544
- O.Ceyhan, M.Marcolli, Algebraic renormalization and Feynman integrals in configuration spaces, arXiv:1308.5687

General question: express Feynman integral computations (and some direct mathematical generalizations) as computations of periods of algebraic varieties
Period: integral of an algebraic differential form on an algebraic variety over a chain defined by algebraic equations

$$
\int_{\sigma} \omega
$$

(in general transcendental number but "obtained from algebraic data")

- What kind of periods?
- What kind of motives?

Quantum Field Theory: perturbative (massless) scalar field theory

$$
S(\phi)=\int \mathscr{L}(\phi) d^{D} x=S_{0}(\phi)+S_{i n t}(\phi)
$$

in D dimensions, with Lagrangian density

$$
\mathscr{L}(\phi)=\frac{1}{2}(\partial \phi)^{2}+\frac{m^{2}}{2} \phi^{2}+\mathscr{L}_{\text {int }}(\phi)
$$

Perturbative expansion: Feynman rules and Feynman diagrams

$$
\begin{equation*}
S_{e f f}(\phi)=S_{0}(\phi)+\sum_{\Gamma} \frac{\Gamma(\phi)}{\# \operatorname{Aut}(\Gamma)} \tag{1PIgraphs}
\end{equation*}
$$

Two different settings for Feynman integral computations:
Momentum space: momentum variables k_{e} with $e \in E_{\Gamma}$
$\Gamma(\phi)$ built from edge-propagators

$$
\frac{1}{\left(m^{2}+\left\|k_{e}\right\|^{2}\right)}
$$

Configuration space: position variables x_{V} with $v \in V_{\Gamma}$
$\Gamma(\phi)$ built from propagators:

$$
G_{0, \mathbb{R}}\left(x_{s(e)}-x_{t(e)}\right)=\frac{1}{\left\|x_{s(e)}-x_{t(e)}\right\|^{2 \lambda}}, \quad \text { where } \quad D=2 \lambda+2
$$

or massive
$G_{m, \mathbb{R}}\left(x_{s(e)}-x_{t(e)}\right)=\frac{m^{\lambda}}{(2 \pi)^{(\lambda+1)}}\left\|x_{s(e)}-x_{t(e)}\right\|^{-\lambda} \mathscr{K}_{\lambda}\left(m\left\|x_{s(e)}-x_{t(e)}\right\|\right)$
with $\mathscr{K}_{\nu}(z)$ modified Bessel function

Dual pictures:

- $G_{0, \mathbb{R}}\left(x_{s(e)}-x_{t(e)}\right)$ Green function of Laplacian; $G_{m, \mathbb{R}}\left(x_{s(e)}-x_{t(e)}\right)$ fundamental solution of Helmholtz equation $\left(\Delta+m^{2}\right) G=\delta$
- Fourier transform: (test functions $\varphi \in \mathscr{S}\left(\mathbb{R}^{D}\right)$)

$$
\begin{aligned}
\left(\widehat{G_{0, \mathbb{R}} \star \varphi}\right)(k) & =\frac{4 \pi^{D / 2}}{\Gamma(\lambda)} \frac{1}{\|k\|^{2}} \widehat{\varphi}(k) \\
\left(\widehat{G_{m, \mathbb{R}, \star} \star \varphi}\right)(k) & =\frac{1}{\left(m^{2}+\|k\|^{2}\right)} \widehat{\varphi}(k)
\end{aligned}
$$

Algebraic formulation: extend from real to complex variables using a quadratic form instead of the Euclidean norm
Momentum space Feynman amplitude ($n=\# E_{\Gamma}$)

$$
U(\Gamma)=\int \frac{\delta\left(\sum_{i=1}^{n} \epsilon_{V, j} k_{i}+\sum_{j=1}^{N} \epsilon_{V, j} p_{j}\right)}{q_{1} \cdots q_{n}} d^{D} k_{1} \cdots d^{D} k_{n}
$$

quadratic form

$$
q_{e}\left(k_{e}\right)=\sum_{j=1}^{D} k_{e, j}^{2}+m^{2}
$$

Configuration space Feynman amplitude (massless; $m=\# V_{\Gamma}$)

$$
\begin{aligned}
& U(\Gamma)=\int \frac{1}{\left(Q_{1} \cdots Q_{n}\right)^{\lambda}} d^{D} x_{V_{1}} \cdots d^{D} x_{V_{m}} \\
& Q_{e}\left(x_{s(e)}, x_{t(e)}\right)=\sum_{j=1}^{D}\left(x_{s(e), j}-x_{t(e), j}\right)^{2}
\end{aligned}
$$

- Advantages: get an algebraic differential form
- Disadvantages: singular on a hypersurface (whose motive is difficult to control)

Analytic formulation: extend from real to complex variables using the Euclidean norm

$$
\omega_{\Gamma}=\prod_{e \in E_{\Gamma}} \frac{1}{\left\|x_{S(e)}-x_{t(e)}\right\|^{2 \lambda}} \bigwedge_{v \in V_{\Gamma}} d x_{v}
$$

over chain of integration $\sigma_{\Gamma}=\mathbb{R}^{\# V_{\Gamma}}$

- Advantages: Singular on diagonals (motive will be easy to control)
- Disadvantages: not an algebraic differential form (only smooth)

Recent results:

- Using algebraic formulation in momentum space
- Earlier conjectures: periods would be $\mathbb{Q}(2 \pi i)$-combinations of multiple zeta values (periods of mixed Tate motives)
- New results show explicit non-mixed-Tate periods:
- Dzmitry Doryn, On one example and one counterexample in counting rational points on graph hypersurfaces, arXiv:1006.3533
- Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.
- Francis Brown, Dzmitry Doryn, Framings for graph hypersurfaces, arXiv:1301.3056

Configuration space picture

 X smooth projective variety with a dense $\mathbb{A}^{D}\left(\right.$ e.g. $\left.X=\mathbb{P}^{D}\right)$We look at two different problems

- Real case: the analytic formulation of the Feynman amplitude (physically motivated case)

$$
\omega_{\Gamma}=\prod_{e \in E_{\Gamma}} \frac{1}{\left\|x_{s(e)}-x_{t(e)}\right\|^{2 \lambda}} \bigwedge_{v \in V_{\Gamma}} d x_{v}
$$

with $\sigma_{\Gamma}=X(\mathbb{R})^{\# V_{\Gamma}}$

- \mathscr{C}^{∞}-differential form on $X^{V_{\Gamma}}$ with singularities along diagonals
- not a closed form
- Complex case: a complexification of the previous problem (mathematical generalization)
$Z=X \times X$ with projection $p: Z \rightarrow X, p: z=(x, y) \mapsto x$

$$
\omega_{\Gamma}^{(Z)}=\prod_{e \in E_{\Gamma}} \frac{1}{\left\|x_{S(e)}-x_{t(e)}\right\|^{2 D-2}} \bigwedge_{v \in V_{\Gamma}} d x_{v} \wedge d \bar{x}_{v}
$$

where $\left\|x_{s(e)}-x_{t(e)}\right\|=\left\|p(z)_{s(e)}-p(z)_{t(e)}\right\|$

- closed form
- chain of integration:

$$
\sigma^{(z, y)}=X^{V_{\Gamma}} \times\left\{y=\left(y_{V}\right)\right\} \subset Z^{V_{\Gamma}}=X^{V_{\Gamma}} \times X^{V_{\Gamma}}
$$

for a fixed $y=\left(y_{v} \mid v \in V_{\Gamma}\right)$

Relation to Green functions:

- Green function of real Laplacian on $\mathbb{A}^{D}(\mathbb{R})$, with $D=2 \lambda+2$:

$$
G_{\mathbb{R}}(x, y)=\frac{1}{\|x-y\|^{2 \lambda}}
$$

- On $\mathbb{A}^{D}(\mathbb{C})$ complex Laplacian

$$
\Delta=\sum_{k=1}^{D} \frac{\partial^{2}}{\partial x_{k} \partial \bar{x}_{k}}
$$

has Green form

$$
G_{\mathbb{C}}(x, y)=\frac{-(D-2)!}{(2 \pi i)^{D}\|x-y\|^{2 D-2}}
$$

real and complex amplitudes modeled on these two cases

Different methods:

- real case: explicit computation of (regularized) integral

$$
\int_{\sigma_{\Gamma}} \omega_{\Gamma}
$$

using expansion of Green function in Gegenbauer polynomials

- complex case: cohomological method, pullback $\omega_{\Gamma}^{(Z)}$ to a compactification of configuration space where cohomologous to algebraic form with log poles; regularize to separate poles from chain of integration; explicitly compute the motive

Explicit computations of Feynman amplitudes (real case):

Step 1: explicit chains in $X^{V_{\Gamma}}$

- Acyclic orientations: Γ no looping edges, $\Omega(\Gamma)$ set of acyclic orientations; Stanley: $(-1)^{V_{\ulcorner }} P_{\Gamma}(-1)$ acyclic orientations where $P_{\Gamma}(t)$ chromatic polynomial
- orientation $\mathbf{o} \in \Omega(\Gamma) \Rightarrow$ partial ordering of vertices $w \geq o v$
- chain with boundary $\partial \Sigma_{o} \subset \cup_{e \in E_{\Gamma}} \Delta_{e}$

$$
\Sigma_{0}:=\left\{\left(x_{v}\right) \in X^{v_{r}(\mathbb{R})}: r_{w} \geq r_{v} \text { whenever } w \geq_{0} v\right\}
$$

middle dimensional relative homology class

$$
\left[\Sigma_{\mathbf{o}}\right] \in H_{\left|V_{\Gamma}\right|}\left(X^{V_{\Gamma}}, \cup_{e \in E_{\Gamma}} \Delta_{e}\right)
$$

- $\Sigma_{o} \backslash \cup_{v}\left\{r_{v}=0\right\}$ bundle fiber $\left(S^{D-1}\right)^{V_{\Gamma}}$ base

$$
\bar{\Sigma}_{\mathbf{o}}=\left\{\left(r_{v}\right) \in\left(\mathbb{R}_{+}^{*}\right)^{v_{\Gamma}}: r_{w} \geq r_{v} \text { whenever } w \geq_{\mathbf{o}} v\right\}
$$

Step 2: Gegenbauer polynomials

- Generating function and orthogonality $(|t|<1$ and $\lambda>-1 / 2)$

$$
\begin{gathered}
\frac{1}{\left(1-2 t x+t^{2}\right)^{\lambda}}=\sum_{n=0}^{\infty} C_{n}^{(\lambda)}(x) t^{n} \\
\int_{-1}^{1} C_{n}^{(\lambda)}(x) C_{m}^{(\lambda)}(x)\left(1-x^{2}\right)^{\lambda-1 / 2} d x=\delta_{n, m} \frac{\pi 2^{1-2 \lambda} \Gamma(n+2 \lambda)}{n!(n+\lambda) \Gamma(\lambda)^{2}}
\end{gathered}
$$

- $D=2 \lambda+2$ Newton potential expansion in Gegenbauer polynomials:

$$
\begin{gathered}
\frac{1}{\left\|x_{s(e)}-x_{t(e)}\right\|^{2 \lambda}}=\frac{1}{\rho_{e}^{2 \lambda}\left(1+\left(\frac{r_{e}}{\rho_{e}}\right)^{2}-2 \frac{r_{e}}{\rho_{e}} \omega_{s(e)} \cdot \omega_{t(e)}\right)^{\lambda}} \\
\quad=\rho_{e}^{-2 \lambda} \sum_{n=0}^{\infty}\left(\frac{r_{e}}{\rho_{e}}\right)^{n} C_{n}^{(\lambda)}\left(\omega_{s(e)} \cdot \omega_{t(e)}\right),
\end{gathered}
$$

with $\rho_{e}=\max \left\{\left\|x_{s(e)}\right\|,\left\|x_{t(e)}\right\|\right\}$ and $r_{e}=\min \left\{\left\|x_{s(e)}\right\|,\left\|x_{t(e)}\right\|\right\}$ and with $\omega_{v} \in S^{D-1}$

Step 3: angular and radial integrals

- on chain of integration $\sigma_{\Gamma}=X(\mathbb{R})^{V_{\Gamma}}$ Feynman integral becomes (Version N.1)

$$
\sum_{\mathbf{o} \in \Omega(\Gamma)} m_{\mathbf{0}} \int_{\Sigma_{0}} \prod_{e \in E_{\Gamma}} r_{t_{0}(e)}^{-2 \lambda}\left(\sum_{n}\left(\frac{r_{s_{0}(e)}}{r_{t_{0}(e)}}\right)^{n} C_{n}^{(\lambda)}\left(\omega_{s_{0}(e)} \cdot \omega_{t_{0}(e)}\right)\right) d V
$$

with positive integers m_{0} (multiplicities) and volume form $d V=\prod_{v} d^{D} x_{v}=\prod_{v} r_{v}^{D-1} d r_{v} d \omega_{v}$

- angular integrals:

$$
\mathscr{A}_{\left(n_{e}\right)_{e \in E_{\Gamma}}}=\int_{\left(S^{D-1}\right)^{v_{\Gamma}}} \prod_{e} C_{n_{e}}^{(\lambda)}\left(\omega_{s(e)} \cdot \omega_{t(e)}\right) \prod_{v} d \omega_{v}
$$

- radial integrals:

$$
\begin{gathered}
\sum_{\mathbf{o} \in \Omega(\Gamma)} m_{\mathbf{0}} \int_{\bar{\Sigma}_{\mathbf{o}}} \prod_{e \in E_{\Gamma}} \mathscr{F}\left(r_{s_{0}(e)}, r_{t_{0}(e)}\right) \prod_{v} r_{v}^{D-1} d r_{v} \\
\mathscr{F}\left(r_{s_{0}(e)}, r_{t_{0}(e)}\right)=r_{t_{0}(e)}^{-2 \lambda} \sum_{n_{e}} \mathscr{A}_{n_{e}}\left(\frac{r_{s_{0}(e)}}{r_{t_{0}(e)}}\right)^{n_{e}}
\end{gathered}
$$

Example: polygons and polylogarithms

- Γ polygon with k edges, $D=2 \lambda+2$:

$$
\mathscr{A}_{n}=\left(\frac{\lambda 2 \pi^{\lambda+1}}{\Gamma(\lambda+1)(n+\lambda)}\right)^{k} \cdot \operatorname{dim} \mathscr{H}_{n}\left(S^{2 \lambda+1}\right)
$$

$\mathscr{H}_{n}\left(S^{2 \lambda+1}\right)$ space of harmonic functions deg n on $S^{2 \lambda+1}$ (Gegenbauer polynomial and zonal spherical harmonics)

- when $D=4$, Feynman amplitude:

$$
\left(2 \pi^{2}\right)^{k} \sum_{\mathbf{o}} m_{\mathbf{0}} \int_{\bar{\Sigma}_{0}} \mathrm{Li}_{k-2}\left(\prod_{i} \frac{r_{w_{i}}^{2}}{r_{v_{i}}^{2}}\right) \prod_{v} r_{v} d r_{v}
$$

polylogarithm functions

$$
\operatorname{Li}_{s}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}
$$

vertices v_{i}, w_{i} sources and tails of oriented paths of $\mathbf{0}$

Problem: computations intractable very quickly for larger graphs!

- Can reduce to trivalent vertices and use triple integrals of harmonic functions: Gaunt coefficients $\left\langle Y_{\ell_{1}}^{\left(n_{1}\right)}, Y_{\ell_{2}}^{\left(n_{2}\right)} Y_{\ell_{3}}^{\left(n_{3}\right)}\right\rangle_{D}$ Racah's factorization in terms of isoscalar factors
$\left\langle Y_{\ell_{1}}^{\left(n_{1}\right)}, Y_{\ell_{2}}^{\left(n_{2}\right)}, Y_{\ell_{3}}^{\left(n_{3}\right)}\right\rangle_{D}=\left(\begin{array}{lll}n_{1} & n_{2} & n_{3} \\ n_{1}^{\prime} & n_{2}^{\prime} & n_{3}^{\prime}\end{array}\right)_{D: D-1}\left\langle Y_{\ell_{1}^{\prime}}^{\left(n_{1}^{\prime}\right)}, Y_{\ell_{2}^{\prime}}^{\left(n_{2}^{\prime}\right)}, Y_{\ell_{3}^{\prime}}^{\left(n_{3}^{\prime}\right)}\right\rangle_{D-1}$
$\ell_{i}=\left(n_{i}^{\prime}, \ell_{i}^{\prime}\right)$ with $n_{i}^{\prime}=m_{D-2, i}$ and $\ell_{i}^{\prime}=\left(m_{D-3, i}, \ldots, m_{1, i}\right)$
- There are general explicit (but complicated) expressions for the isoscalar factors
- For $D=4$ "leading term" involving multiple series related to MVZs: Mordell-Tornheim multiple series:
$\zeta_{M T, k}\left(s_{1}, \ldots, s_{k} ; s_{k+1}\right)=\sum_{\left(n_{1}, \ldots, n_{k}\right) \in \mathscr{R}_{P}^{(k)}} n_{1}^{-s_{1}} \cdots n_{k}^{-s_{k}}\left(n_{1}+\cdots+n_{k}\right)^{-s_{k+1}}$

$$
\mathscr{R}=\mathscr{R}_{P}^{(k)}:=\left\{\left(n_{1}, \ldots, n_{k}\right) \mid n_{i}>0, \quad i=1, \ldots, k\right\}
$$

Apostol-Vu multiple series:
$\zeta_{A V, k}\left(s_{1}, \ldots, s_{k} ; s_{k+1}\right)=\quad \sum \quad n_{1}^{-s_{1}} \cdots n_{k}^{-s_{k}}\left(n_{1}+\cdots+n_{k}\right)^{-s_{k+1}}$

$$
\begin{gathered}
\left(n_{1}, \ldots, n_{k}\right) \in \mathscr{R}_{M P}^{(k)} \\
\mathscr{R}=\mathscr{R}_{M P}^{(k)}:=\left\{\left(n_{1}, \ldots, n_{k}\right) \mid n_{k}>\cdots>n_{2}>n_{1}>0\right\}
\end{gathered}
$$

BUT: possible occurrences of non-mixed-Tate terms in larger graphs!

Different behavior of the complex case
Step 1: Graph configuration spaces

$$
\operatorname{Conf}_{\Gamma}(X)=X^{V_{\Gamma}} \backslash \bigcup_{e \in E_{\Gamma}} \Delta_{e}
$$

- Wonderful compactifications: compactify $\operatorname{Conf}_{\Gamma}(X)$ to a smooth projective algebraic variety $\overline{\operatorname{Conf}}_{\Gamma}(X)$ so that

$$
\mathscr{D} \Gamma=\overline{\operatorname{Conf}}_{\Gamma}(X) \backslash \operatorname{Conf}_{\Gamma}(X)
$$

is a normal crossings divisor

- For $Z=X \times X$ take $F(X, \Gamma) \simeq \operatorname{Conf}_{\Gamma}(X) \times X^{V_{\Gamma}}$ with $\Delta_{e}^{(Z)} \cong \Delta_{e} \times X^{V_{\Gamma}}$ and compactify to $\overline{F(X, \Gamma)}$ in the same way
- General method: realize $\overline{\operatorname{Conf}}_{\Gamma}(X)$ or $\overline{F(X, \Gamma)}$ as a sequence of blowups of $X^{V_{\Gamma}}$ (or $Z^{V_{\Gamma}}$) along a collection of dominant transforms of diagonals
- Equivalent description: closure in

$$
\operatorname{Conf}_{\Gamma}(X) \hookrightarrow \prod_{\gamma \in \mathscr{G}_{\Gamma}} \mathrm{Bl}_{\Delta_{\gamma}} X^{V_{\Gamma}}
$$

with \mathscr{G}_{Γ} subgraphs induced (all edges of Γ between subset of vertices) and 2-vertex-connected

- Fulton-MacPherson configuration spaces (= complete graph case of $\operatorname{Conf}_{\Gamma}(X)$); more general arrangements of subvarieties: DeConcini-Procesi, Li Li
- strata of \mathscr{D}_{Γ} parameterized by forests of nested subgraphs (as in Fulton-MacPherson case)

Motives of algebraic varieties (Grothendieck) Universal cohomology theory for algebraic varieties (with realizations)

- Pure motives: smooth projective varieties with correspondences

$$
\operatorname{Hom}((X, p, m),(Y, q, n))=q \operatorname{Corr}_{/ \sim, \mathbb{Q}}^{m-n}(X, Y) p
$$

Algebraic cycles mod equivalence (rational, homological, numerical), composition

$$
\begin{gathered}
\operatorname{Corr}(X, Y) \times \operatorname{Corr}(Y, Z) \rightarrow \operatorname{Corr}(X, Z) \\
\left(\pi_{X, Z}\right)_{*}\left(\pi_{X, Y}^{*}(\alpha) \bullet \pi_{Y, Z}^{*}(\beta)\right)
\end{gathered}
$$

intersection product in $X \times Y \times Z$; with projectors $p^{2}=p$ and $q^{2}=q$ and Tate twists $\mathbb{Q}(m)$ with $\mathbb{Q}(1)=\mathbb{L}^{-1}$
Numerical pure motives: $\mathscr{M}_{\text {num, } \mathbb{Q}}(k)$ semi-simple abelian category (Jannsen)

- Mixed motives: varieties that are possibly singular or not projective (much more complicated theory!) Triangulated category $\mathscr{D} \mathscr{M}$ (Voevodsky, Levine, Hanamura)

$$
\begin{aligned}
\mathfrak{m}(Y) & \rightarrow \mathfrak{m}(X) \rightarrow \mathfrak{m}(X \backslash Y) \rightarrow \mathfrak{m}(Y)[1] \\
& \mathfrak{m}\left(X \times \mathbb{A}^{1}\right)=\mathfrak{m}(X)(-1)[2]
\end{aligned}
$$

- Mixed Tate motives $\mathscr{D} \mathscr{M} \mathscr{T} \subset \mathscr{D} \mathscr{M}$ generated by the $\mathbb{Q}(m)$

Over a number field: t -structure, abelian category of mixed Tate motives (vanishing result, M.Levine)

Motives and the Grothendieck ring of varieties

- Difficult to determine explicitly in the triangulated category of mixed motives
- Simpler invariant (universal Euler characteristic for motives): class
[X_{Γ}] in the Grothendieck ring of varieties $K_{0}(\mathscr{V})$
- generators $[X]$ isomorphism classes
- $[X]=[X \backslash Y]+[Y]$ for $Y \subset X$ closed
- $[X] \cdot[Y]=[X \times Y]$

Tate motives: $\mathbb{Z}\left[\mathbb{L}, \mathbb{L}^{-1}\right] \subset K_{0}(\mathscr{M})$
(K_{0} group of category of pure motives: virtual motives)

Universal Euler characteristics:
Any additive invariant of varieties: $\chi(X)=\chi(Y)$ if $X \cong Y$

$$
\begin{gathered}
\chi(X)=\chi(Y)+\chi(X \backslash Y), \quad Y \subset X \\
\chi(X \times Y)=\chi(X) \chi(Y)
\end{gathered}
$$

values in a commutative ring \mathscr{R} is same thing as a ring homomorphism

$$
\chi: K_{0}(\mathscr{V}) \rightarrow \mathscr{R}
$$

Examples:

- Topological Euler characteristic
- Couting points over finite fields

Motives of configuration spaces - Key ingredient: Blowup formulae

- For mixed motives (Voevodsky category):

$$
\mathfrak{m}\left(\mathrm{Bl}_{V}(Y)\right) \cong \mathfrak{m}(Y) \oplus \bigoplus_{k=1}^{\operatorname{codim}(V)-1} \mathfrak{m}(V)(k)[2 k]
$$

- For Grothendieck classes Bittner relation

$$
\left[\operatorname{Bl}_{V}(Y)\right]=[Y]-[V]+[E]=[Y]+[V]\left(\left[\mathbb{P}^{\operatorname{codim}_{Y}(V)-1}\right]-1\right)
$$

exceptional divisor E

- Conclusion: the motive of $\overline{\operatorname{Conf}}_{\Gamma}(X)$ and of $\overline{F(X, \Gamma)}$ is mixed Tate if X is mixed Tate.

Smooth and algebraic forms

- de Rham cohomology of a smooth quasi-projective varieties computed using algebraic differential forms (Grothendieck)
- if complement of normal crossings divisor can use forms with log poles (Deligne)

$$
H^{*}(\mathscr{U}) \simeq \mathbb{H}^{*}\left(\mathscr{X}, \Omega_{\mathscr{X}}^{*}(\log (\mathscr{D}))\right)
$$

- \mathscr{X} smooth projective variety $\operatorname{dim}_{\mathbb{C}} m$; \mathscr{D} normal crossings divisor;
$\mathscr{U}=\mathscr{X} \backslash \mathscr{D} ; \omega$ smooth closed differential form degm on \mathscr{U};
$\Rightarrow \exists$ algebraic differential form η log poles along \mathscr{D}, with $[\eta]=[\omega] \in H_{d R}^{m}(\mathscr{U})$
- Conclusion: \exists algebraic form $\eta_{\Gamma}^{(Z)}$ with log poles along union of D_{γ}, cohomologous to $\pi_{\gamma}^{*}\left(\omega_{\Gamma}^{(Z)}\right)$ on $\tilde{\sigma}_{\Gamma}^{(Z, y)}$
- Warning: motive over \mathbb{Q}, but algebraic form may be over larger field! (work in progress: show form defined over $\mathbb{Q}(2 \pi i)$ using Bochner-Martinelli kernel and Green forms)

Regularization problem

- $\eta_{\Gamma}^{(Z)}$ algebraic differential form; $\tilde{\sigma}_{\Gamma}^{(Z, y)}$ algebraic cycle: Feynman integral becomes

$$
\int_{\tilde{\sigma}_{\Gamma}^{(Z, y)} \backslash\left(\mathscr{D}_{\Gamma} \cap \tilde{\sigma}_{\Gamma}^{(Z, y)}\right)} \eta_{\Gamma}^{(Z)}
$$

would be a period... but divergent!! (because of intersection $\mathscr{D}_{\Gamma} \cap \tilde{\sigma}_{\Gamma}^{(Z, y)}$ of chain with divisor)

- need a regularization and renormalization procedure to eliminate divergences
- Different methods: (1) principal value and residue currents; (2) deformation to the normal cone; (3) algebraic renormalization via Hopf algebras and Rota-Baxter algebras
- Focus on (3)

Algebraic renormalization

Two step procedure:

- Regularization: replace divergent integral $U(\Gamma)$ by function with poles
- Renormalization: pole subtraction with consistency over subgraphs (Hopf algebra structure)
- Kreimer, Connes-Kreimer, Connes-M.: Hopf algebra of Feynman graphs and BPHZ renormalization method in terms of Birkhoff factorization and differential Galois theory
- Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of Rota-Baxter algebras

Connes-Kreimer Hopf algebra $\mathscr{H}=\mathscr{H}(\mathscr{T})$ (depends on theory)

- Free commutative algebra in generators 「1PI Feynman graphs
- Grading: loop number (or internal lines)

$$
\operatorname{deg}\left(\Gamma_{1} \cdots \Gamma_{n}\right)=\sum_{i} \operatorname{deg}\left(\Gamma_{i}\right), \quad \operatorname{deg}(1)=0
$$

- Coproduct:

$$
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma \in \mathscr{V}(\Gamma)} \gamma \otimes \Gamma / \gamma
$$

- Antipode: inductively

$$
S(X)=-X-\sum S\left(X^{\prime}\right) X^{\prime \prime}
$$

for $\Delta(X)=X \otimes 1+1 \otimes X+\sum X^{\prime} \otimes X^{\prime \prime}$

Algebraic renormalization (Connes-Kreimer; Ebrahimi-Fard, Guo, Kreimer)

- Rota-Baxter algebra of weight $\lambda=-1$: \mathscr{R} commutative unital algebra; $T: \mathscr{R} \rightarrow \mathscr{R}$ linear operator with

$$
T(x) T(y)=T(x T(y))+T(T(x) y)+\lambda T(x y)
$$

- Example: $T=$ projection onto polar part of Laurent series
- T determines splitting $\mathscr{R}_{+}=(1-T) \mathscr{R}, \mathscr{R}_{-}=$unitization of $T \mathscr{R}$; both $\mathscr{R}_{ \pm}$are algebras
- Feynman rule $\phi: \mathscr{H} \rightarrow \mathscr{R}$ commutative algebra homomorphism from CK Hopf algebra \mathscr{H} to Rota-Baxter algebra \mathscr{R} weight -1

$$
\phi \in \operatorname{Hom}_{\mathrm{Alg}}(\mathscr{H}, \mathscr{R})
$$

- Note: ϕ does not know that \mathscr{H} Hopf and \mathscr{R} Rota-Baxter, only commutative algebras
- Birkhoff factorization $\exists \phi_{ \pm} \in \operatorname{Hom}_{\mathrm{Alg}}\left(\mathscr{H}, \mathscr{R}_{ \pm}\right)$

$$
\phi=\left(\phi_{-} \circ S\right) \star \phi_{+}
$$

where $\phi_{1} \star \phi_{2}(X)=\left\langle\phi_{1} \otimes \phi_{2}, \Delta(X)\right\rangle$

- Connes-Kreimer inductive formula for Birkhoff factorization:

$$
\begin{gathered}
\phi_{-}(X)=-T\left(\phi(X)+\sum \phi_{-}\left(X^{\prime}\right) \phi\left(X^{\prime \prime}\right)\right) \\
\phi_{+}(X)=(1-T)\left(\phi(X)+\sum \phi_{-}\left(X^{\prime}\right) \phi\left(X^{\prime \prime}\right)\right)
\end{gathered}
$$

where $\Delta(X)=1 \otimes X+X \otimes 1+\sum X^{\prime} \otimes X^{\prime \prime}$

- Recovers what known in physics as BPHZ renormalization procedure

Back to configuration spaces:

- Can use same configuration space and compactification for all graphs with fixed number of vertices (cost: more blowups)
- Smooth variety \mathscr{Y} with normal crossings divisor \mathscr{D}; form with log poles $\eta \in \Omega_{\mathscr{Y}}^{k}(\log \mathscr{D})$ and intersection $\mathscr{D}_{J}=D_{j_{1}} \cap \cdots D_{j_{r}}$ of components of \mathscr{D}

$$
\int_{\Sigma} \operatorname{Res}_{\mathscr{D}_{J}}(\eta)=\frac{1}{(2 \pi i)^{r}} \int_{\mathscr{L}_{\mathscr{D}_{J}}(\Sigma)} \eta
$$

$\operatorname{Res}_{\mathscr{D}_{J}}(\eta)=$ iterated Poincaré residue $\mathscr{L}_{\mathscr{D}_{J}}(\Sigma)=$ Leray coboundary

Rota-Baxter algebra for (\mathscr{Y}, \mathscr{D})

- even forms with \log poles $\Omega_{\mathscr{Y}}^{\text {even }}(\log \mathscr{D})$: commutative algebra
- polar part operator

$$
T(\eta)=\sum_{j=1}^{n} \frac{d f_{j}}{f_{j}} \wedge \operatorname{Res}_{D_{j}}(\eta)
$$

$f_{j}=$ local equation for D_{j}

- $\left(\Omega_{\mathscr{Y}}^{\text {even }}(\log \mathscr{D}), T\right)=$ Rota-Baxter algebra of weight -1

$$
T(\eta \wedge T(\xi))+T(T(\eta) \wedge \xi)-T(\eta) \wedge T(\xi)=T(\eta \wedge \xi)
$$

- obtain Rota-Baxter algebra of configuration spaces
- Regularization: given a Feynman graph Γ and the (non-holomorphic closed) form $\omega_{\Gamma}^{(Z)}$: pull back to wornderful compactification and replace by cohomologous algebraic form η_{Γ} with \log poles
- algebraic Feynman rules: the assignment

$$
\phi: \Gamma \mapsto \omega_{\Gamma}^{(Z)} \mapsto \eta_{\Gamma}
$$

defines a morphism of commutative algebras from the Hopf algebra of Feynman graphs to the Rota-Baxter algebra of configuration spaces

- Renormalization: apply BPHZ to this algebraic Feynman rule

Birkhoff factorization

$$
\begin{gathered}
\phi_{-}(\Gamma)=-T\left(\eta_{\Gamma}+\sum_{\gamma \subset \Gamma} \phi_{-}(\gamma) \wedge \eta_{\Gamma / \gamma}\right) \\
\phi_{+}(\Gamma)=(1-T)\left(\eta_{\Gamma}+\sum_{\gamma \subset \Gamma} \phi_{-}(\gamma) \wedge \eta_{\Gamma / \gamma}\right)=\eta_{\Gamma, \mathscr{D}}+\sum_{\gamma \subset \Gamma}\left(\phi_{-}(\gamma) \wedge \eta_{\Gamma / \gamma}\right)_{\mathscr{D}}
\end{gathered}
$$

with $\eta_{\mathscr{D}}=\eta-T(\eta)$
Renormalized integral

$$
\int_{\tilde{\sigma}_{\Gamma, \mathbb{C}}} \eta_{\Gamma, \mathscr{D}}+\sum_{\gamma \subset \Gamma}\left(\phi_{-}(\gamma) \wedge \eta_{\Gamma / \gamma}\right)_{\mathscr{D}}
$$

free of divergences and integral of algebraic differential form: genuine period

