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General question: express Feynman integral computations (and
some direct mathematical generalizations) as computations of
periods of algebraic varieties

Period: integral of an algebraic differential form on an algebraic
variety over a chain defined by algebraic equations∫

σ
ω

(in general transcendental number but “obtained from algebraic data")

•What kind of periods?
•What kind of motives?
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Quantum Field Theory: perturbative (massless) scalar field theory

S(φ) =

∫
L (φ)dDx = S0(φ) + Sint(φ)

in D dimensions, with Lagrangian density

L (φ) =
1
2

(∂φ)2 +
m2

2
φ2 + Lint(φ)

Perturbative expansion: Feynman rules and Feynman diagrams

Seff (φ) = S0(φ) +
∑

Γ

Γ(φ)

#Aut(Γ)
(1PI graphs)
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Two different settings for Feynman integral computations:
Momentum space: momentum variables ke with e ∈ EΓ

Γ(φ) built from edge-propagators

1
(m2 + ‖ke‖2)

Configuration space: position variables xv with v ∈ VΓ

Γ(φ) built from propagators:

G0,R(xs(e) − xt(e)) =
1

‖xs(e) − xt(e)‖2λ , where D = 2λ+ 2

or massive

Gm,R(xs(e)−xt(e)) =
mλ

(2π)(λ+1)
‖xs(e)−xt(e)‖−λ Kλ(m‖xs(e)−xt(e)‖)

with Kν(z) modified Bessel function
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Dual pictures:

• G0,R(xs(e) − xt(e)) Green function of Laplacian; Gm,R(xs(e) − xt(e))
fundamental solution of Helmholtz equation (∆ + m2)G = δ

• Fourier transform: (test functions ϕ ∈ S (RD))

̂(G0,R ? ϕ)(k) =
4πD/2

Γ(λ)

1
‖k‖2 ϕ̂(k)

̂(Gm,R, ? ϕ)(k) =
1

(m2 + ‖k‖2)
ϕ̂(k)
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Algebraic formulation: extend from real to complex variables using a
quadratic form instead of the Euclidean norm
Momentum space Feynman amplitude (n = #EΓ)

U(Γ) =

∫
δ(
∑n

i=1 εv ,iki +
∑N

j=1 εv ,jpj)

q1 · · · qn
dDk1 · · · dDkn

quadratic form

qe(ke) =
D∑

j=1

k2
e,j + m2

Configuration space Feynman amplitude (massless; m = #VΓ)

U(Γ) =

∫
1

(Q1 · · ·Qn)λ
dDxv1 · · · dDxvm

Qe(xs(e), xt(e)) =
D∑

j=1

(xs(e),j − xt(e),j)
2

• Advantages: get an algebraic differential form
• Disadvantages: singular on a hypersurface (whose motive is
difficult to control)
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Analytic formulation: extend from real to complex variables using the
Euclidean norm

ωΓ =
∏

e∈EΓ

1
‖xs(e) − xt(e)‖2λ

∧
v∈VΓ

dxv

over chain of integration σΓ = R#VΓ

• Advantages: Singular on diagonals (motive will be easy to control)
• Disadvantages: not an algebraic differential form (only smooth)
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Recent results:
• Using algebraic formulation in momentum space

• Earlier conjectures: periods would be Q(2πi)-combinations of
multiple zeta values (periods of mixed Tate motives)

• New results show explicit non-mixed-Tate periods:

Dzmitry Doryn, On one example and one counterexample in
counting rational points on graph hypersurfaces,
arXiv:1006.3533

Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.

Francis Brown, Dzmitry Doryn, Framings for graph
hypersurfaces, arXiv:1301.3056
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Configuration space picture
X smooth projective variety with a dense AD (e.g. X = PD)

We look at two different problems

• Real case: the analytic formulation of the Feynman amplitude
(physically motivated case)

ωΓ =
∏

e∈EΓ

1
‖xs(e) − xt(e)‖2λ

∧
v∈VΓ

dxv

with σΓ = X(R)#VΓ

• C∞-differential form on X VΓ with singularities along diagonals

• not a closed form
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• Complex case: a complexification of the previous problem
(mathematical generalization)

Z = X × X with projection p : Z → X , p : z = (x , y) 7→ x

ω
(Z)
Γ =

∏
e∈EΓ

1
‖xs(e) − xt(e)‖2D−2

∧
v∈VΓ

dxv ∧ dx̄v

where ‖xs(e) − xt(e)‖ = ‖p(z)s(e) − p(z)t(e)‖
• closed form

• chain of integration:

σ(Z ,y) = X VΓ × {y = (yv )} ⊂ Z VΓ = X VΓ × X VΓ

for a fixed y = (yv | v ∈ VΓ)
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Relation to Green functions:
• Green function of real Laplacian on AD(R), with D = 2λ+ 2:

GR(x , y) =
1

‖x − y‖2λ

• On AD(C) complex Laplacian

∆ =
D∑

k=1

∂2

∂xk∂x̄k

has Green form

GC(x , y) =
−(D − 2)!

(2πi)D‖x − y‖2D−2

real and complex amplitudes modeled on these two cases
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Different methods:
• real case: explicit computation of (regularized) integral∫

σΓ

ωΓ

using expansion of Green function in Gegenbauer polynomials

• complex case: cohomological method, pullback ω(Z)
Γ to a

compactification of configuration space where cohomologous to
algebraic form with log poles; regularize to separate poles from chain
of integration; explicitly compute the motive
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Explicit computations of Feynman amplitudes (real case):

Step 1: explicit chains in X VΓ

• Acyclic orientations: Γ no looping edges, Ω(Γ) set of acyclic
orientations; Stanley: (−1)VΓPΓ(−1) acyclic orientations where
PΓ(t) chromatic polynomial

• orientation o ∈ Ω(Γ)⇒ partial ordering of vertices w ≥o v

• chain with boundary ∂Σo ⊂ ∪e∈EΓ
∆e

Σo := {(xv ) ∈ X VΓ(R) : rw ≥ rv whenever w ≥o v}

middle dimensional relative homology class

[Σo] ∈ H|VΓ|(X VΓ ,∪e∈EΓ
∆e)

• Σo r ∪v{rv = 0} bundle fiber (SD−1)VΓ base

Σo = {(rv ) ∈ (R∗+)VΓ : rw ≥ rv whenever w ≥o v}

Matilde Marcolli Feynman integrals and motives



Step 2: Gegenbauer polynomials
• Generating function and orthogonality (|t| < 1 and λ > −1/2)

1
(1− 2tx + t2)λ

=
∞∑

n=0

C(λ)
n (x)tn

∫ 1

−1
C(λ)

n (x)C(λ)
m (x) (1− x2)λ−1/2dx = δn,m

π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2

• D = 2λ+ 2 Newton potential expansion in Gegenbauer
polynomials:

1
‖xs(e) − xt(e)‖2λ =

1
ρ2λ

e (1 + ( re
ρe

)2 − 2 re
ρe
ωs(e) · ωt(e))λ

= ρ−2λ
e

∞∑
n=0

(
re

ρe
)nC(λ)

n (ωs(e) · ωt(e)),

with ρe = max{‖xs(e)‖, ‖xt(e)‖} and re = min{‖xs(e)‖, ‖xt(e)‖} and
with ωv ∈ SD−1
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Step 3: angular and radial integrals
• on chain of integration σΓ = X(R)VΓ Feynman integral becomes
(Version N.1)∑

o∈Ω(Γ)

mo

∫
Σo

∏
e∈EΓ

r−2λ
to(e)

(∑
n

(
rso(e)

rto(e)
)nC(λ)

n (ωso(e) · ωto(e))

)
dV

with positive integers mo (multiplicities) and volume form
dV =

∏
v dDxv =

∏
v rD−1

v drv dωv

• angular integrals:

A(ne)e∈EΓ
=

∫
(SD−1)VΓ

∏
e

C(λ)
ne (ωs(e) · ωt(e))

∏
v

dωv

• radial integrals:∑
o∈Ω(Γ)

mo

∫
Σ̄o

∏
e∈EΓ

F (rso(e), rto(e))
∏

v

rD−1
v drv

F (rso(e), rto(e)) = r−2λ
to(e)

∑
ne

Ane (
rso(e)

rto(e)
)ne
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Example: polygons and polylogarithms

• Γ polygon with k edges, D = 2λ+ 2:

An =

(
λ2πλ+1

Γ(λ+ 1)(n + λ)

)k

· dim Hn(S2λ+1)

Hn(S2λ+1) space of harmonic functions deg n on S2λ+1

(Gegenbauer polynomial and zonal spherical harmonics)

• when D = 4, Feynman amplitude:

(2π2)k
∑

o

mo

∫
Σ̄o

Lik−2(
∏

i

r2
wi

r2
vi

)
∏

v

rv drv

polylogarithm functions

Lis(z) =
∞∑

n=1

zn

ns

vertices vi , wi sources and tails of oriented paths of o
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Problem: computations intractable very quickly for larger graphs!

• Can reduce to trivalent vertices and use triple integrals of harmonic
functions: Gaunt coefficients 〈Y (n1)

`1
,Y (n2)

`2
Y (n3)
`3
〉D Racah’s

factorization in terms of isoscalar factors

〈Y (n1)
`1

,Y (n2)
`2

,Y (n3)
`3
〉D =

(
n1 n2 n3

n′1 n′2 n′3

)
D:D−1

〈Y (n′1)

`′1
,Y

(n′2)

`′2
,Y

(n′3)

`′3
〉D−1

`i = (n′i , `
′
i ) with n′i = mD−2,i and `′i = (mD−3,i , . . . ,m1,i)

• There are general explicit (but complicated) expressions for the
isoscalar factors
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• For D = 4 “leading term" involving multiple series related to MVZs:

Mordell–Tornheim multiple series:

ζMT ,k (s1, . . . , sk ; sk+1) =
∑

(n1,...,nk )∈R
(k)
P

n−s1
1 · · · n−sk

k (n1+· · ·+nk )−sk+1

R = R
(k)
P := {(n1, . . . , nk ) | ni > 0, i = 1, . . . , k}

Apostol–Vu multiple series:

ζAV ,k (s1, . . . , sk ; sk+1) =
∑

(n1,...,nk )∈R
(k)
MP

n−s1
1 · · · n−sk

k (n1+· · ·+nk )−sk+1

R = R
(k)
MP := {(n1, . . . , nk ) | nk > · · · > n2 > n1 > 0}

BUT: possible occurrences of non-mixed-Tate terms in larger graphs!
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Different behavior of the complex case

Step 1: Graph configuration spaces

ConfΓ(X) = X VΓ r
⋃

e∈EΓ

∆e

•Wonderful compactifications: compactify ConfΓ(X) to a smooth
projective algebraic variety Conf Γ(X) so that

DΓ = Conf Γ(X) r ConfΓ(X)

is a normal crossings divisor

• For Z = X × X take F(X , Γ) ' ConfΓ(X)× X VΓ with
∆

(Z)
e
∼= ∆e × X VΓ and compactify to F(X , Γ) in the same way
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• General method: realize Conf Γ(X) or F(X , Γ) as a sequence of
blowups of X VΓ (or Z VΓ) along a collection of dominant transforms of
diagonals

• Equivalent description: closure in

ConfΓ(X) ↪→
∏
γ∈GΓ

Bl∆γX VΓ

with GΓ subgraphs induced (all edges of Γ between subset of
vertices) and 2-vertex-connected

• Fulton–MacPherson configuration spaces (= complete graph case
of ConfΓ(X)); more general arrangements of subvarieties:
DeConcini–Procesi, Li Li

• strata of DΓ parameterized by forests of nested subgraphs (as in
Fulton–MacPherson case)
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Motives of algebraic varieties (Grothendieck) Universal cohomology
theory for algebraic varieties (with realizations)

• Pure motives: smooth projective varieties with correspondences

Hom((X , p,m), (Y , q, n)) = qCorrm−n
/∼,Q(X ,Y ) p

Algebraic cycles mod equivalence (rational, homological, numerical),
composition

Corr(X ,Y )× Corr(Y ,Z )→ Corr(X ,Z )

(πX ,Z )∗(π
∗
X ,Y (α) • π∗Y ,Z (β))

intersection product in X × Y × Z ; with projectors p2 = p and q2 = q
and Tate twists Q(m) with Q(1) = L−1

Numerical pure motives: Mnum,Q(k) semi-simple abelian category
(Jannsen)
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• Mixed motives: varieties that are possibly singular or not projective
(much more complicated theory!) Triangulated category DM
(Voevodsky , Levine, Hanamura)

m(Y )→ m(X)→ m(X r Y )→ m(Y )[1]

m(X × A1) = m(X)(−1)[2]

• Mixed Tate motives DMT ⊂ DM generated by the Q(m)

Over a number field: t-structure, abelian category of mixed Tate
motives (vanishing result, M.Levine)
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Motives and the Grothendieck ring of varieties
• Difficult to determine explicitly in the triangulated category of mixed
motives

• Simpler invariant (universal Euler characteristic for motives): class
[XΓ] in the Grothendieck ring of varieties K0(V )

generators [X ] isomorphism classes

[X ] = [X r Y ] + [Y ] for Y ⊂ X closed

[X ] · [Y ] = [X × Y ]

Tate motives: Z[L,L−1] ⊂ K0(M )
(K0 group of category of pure motives: virtual motives)

Matilde Marcolli Feynman integrals and motives



Universal Euler characteristics:
Any additive invariant of varieties: χ(X) = χ(Y ) if X ∼= Y

χ(X) = χ(Y ) + χ(X r Y ), Y ⊂ X

χ(X × Y ) = χ(X)χ(Y )

values in a commutative ring R is same thing as a ring
homomorphism

χ : K0(V )→ R

Examples:
• Topological Euler characteristic
• Couting points over finite fields
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Motives of configuration spaces – Key ingredient: Blowup formulae

• For mixed motives (Voevodsky category):

m(BlV (Y )) ∼= m(Y )⊕
codimY (V)−1⊕

k=1

m(V )(k)[2k ]

• For Grothendieck classes Bittner relation

[BlV (Y )] = [Y ]− [V ] + [E ] = [Y ] + [V ]([PcodimY (V)−1]− 1)

exceptional divisor E

• Conclusion: the motive of Conf Γ(X) and of F(X , Γ) is mixed Tate if
X is mixed Tate.
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Smooth and algebraic forms
• de Rham cohomology of a smooth quasi-projective varieties
computed using algebraic differential forms (Grothendieck)

• if complement of normal crossings divisor can use forms with log
poles (Deligne)

H∗(U ) ' H∗(X ,Ω∗X (log(D)))

•X smooth projective variety dimC m; D normal crossings divisor;
U = X r D ; ω smooth closed differential form degm on U ;
⇒ ∃ algebraic differential form η log poles along D , with
[η] = [ω] ∈ Hm

dR(U )

• Conclusion: ∃ algebraic form η
(Z)
Γ with log poles along union of Dγ ,

cohomologous to π∗γ(ω
(Z)
Γ ) on σ̃(Z ,y)

Γ

•Warning: motive over Q, but algebraic form may be over larger
field! (work in progress: show form defined over Q(2πi) using
Bochner–Martinelli kernel and Green forms)
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Regularization problem

• η(Z)
Γ algebraic differential form; σ̃(Z ,y)

Γ algebraic cycle: Feynman
integral becomes ∫

σ̃
(Z ,y)
Γ r(DΓ∩σ̃

(Z ,y)
Γ )

η
(Z)
Γ

would be a period... but divergent!!
(because of intersection DΓ ∩ σ̃

(Z ,y)
Γ of chain with divisor)

• need a regularization and renormalization procedure to eliminate
divergences

• Different methods: (1) principal value and residue currents; (2)
deformation to the normal cone; (3) algebraic renormalization via
Hopf algebras and Rota–Baxter algebras

• Focus on (3)
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Algebraic renormalization

Two step procedure:
• Regularization: replace divergent integral U(Γ) by function with
poles
• Renormalization: pole subtraction with consistency over subgraphs
(Hopf algebra structure)

• Kreimer, Connes–Kreimer, Connes–M.: Hopf algebra of Feynman
graphs and BPHZ renormalization method in terms of Birkhoff
factorization and differential Galois theory

• Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of
Rota–Baxter algebras
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Connes–Kreimer Hopf algebra H = H (T ) (depends on theory)

• Free commutative algebra in generators Γ 1PI Feynman graphs

• Grading: loop number (or internal lines)

deg(Γ1 · · · Γn) =
∑

i

deg(Γi), deg(1) = 0

• Coproduct:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈V (Γ)

γ ⊗ Γ/γ

• Antipode: inductively

S(X) = −X −
∑

S(X ′)X ′′

for ∆(X) = X ⊗ 1 + 1⊗ X +
∑

X ′ ⊗ X ′′
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Algebraic renormalization (Connes-Kreimer; Ebrahimi-Fard, Guo,
Kreimer)
• Rota–Baxter algebra of weight λ = −1: R commutative unital
algebra; T : R → R linear operator with

T (x)T (y) = T (xT (y)) + T (T (x)y) + λT (xy)

• Example: T = projection onto polar part of Laurent series

• T determines splitting R+ = (1− T )R, R− = unitization of TR;
both R± are algebras

• Feynman rule φ : H → R commutative algebra homomorphism
from CK Hopf algebra H to Rota–Baxter algebra R weight −1

φ ∈ HomAlg(H ,R)

• Note: φ does not know that H Hopf and R Rota-Baxter, only
commutative algebras
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• Birkhoff factorization ∃φ± ∈ HomAlg(H ,R±)

φ = (φ− ◦ S) ? φ+

where φ1 ? φ2(X) = 〈φ1 ⊗ φ2,∆(X)〉
• Connes-Kreimer inductive formula for Birkhoff factorization:

φ−(X) = −T (φ(X) +
∑

φ−(X ′)φ(X ′′))

φ+(X) = (1− T )(φ(X) +
∑

φ−(X ′)φ(X ′′))

where ∆(X) = 1⊗ X + X ⊗ 1 +
∑

X ′ ⊗ X ′′

• Recovers what known in physics as BPHZ renormalization
procedure
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Back to configuration spaces:

• Can use same configuration space and compactification for all
graphs with fixed number of vertices (cost: more blowups)

• Smooth variety Y with normal crossings divisor D ; form with log
poles η ∈ Ωk

Y (log D) and intersection DJ = Dj1 ∩ · · ·Djr of
components of D ∫

Σ
ResDJ (η) =

1
(2πi)r

∫
LDJ (Σ)

η

ResDJ (η) = iterated Poincaré residue
LDJ (Σ) = Leray coboundary
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Rota-Baxter algebra for (Y ,D)

• even forms with log poles Ωeven
Y (log D): commutative algebra

• polar part operator

T (η) =
n∑

j=1

dfj
fj
∧ ResDj (η)

fj = local equation for Dj

• (Ωeven
Y (log D),T ) = Rota–Baxter algebra of weight −1

T (η ∧ T (ξ)) + T (T (η) ∧ ξ)− T (η) ∧ T (ξ) = T (η ∧ ξ)
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• obtain Rota-Baxter algebra of configuration spaces

• Regularization: given a Feynman graph Γ and the
(non-holomorphic closed) form ω

(Z)
Γ : pull back to wornderful

compactification and replace by cohomologous algebraic form ηΓ

with log poles

• algebraic Feynman rules: the assignment

φ : Γ 7→ ω
(Z)
Γ 7→ ηΓ

defines a morphism of commutative algebras from the Hopf algebra
of Feynman graphs to the Rota–Baxter algebra of configuration
spaces

• Renormalization: apply BPHZ to this algebraic Feynman rule
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Birkhoff factorization

φ−(Γ) = −T (ηΓ +
∑
γ⊂Γ

φ−(γ) ∧ ηΓ/γ)

φ+(Γ) = (1−T )(ηΓ+
∑
γ⊂Γ

φ−(γ)∧ηΓ/γ) = ηΓ,D+
∑
γ⊂Γ

(φ−(γ)∧ηΓ/γ)D ,

with ηD = η − T (η)

Renormalized integral∫
σ̃Γ,C

ηΓ,D +
∑
γ⊂Γ

(φ−(γ) ∧ ηΓ/γ)D

free of divergences and integral of algebraic differential form:
genuine period
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