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General question: express Feynman integral computations (and
some direct mathematical generalizations) as computations of
periods of algebraic varieties

Period: integral of an algebraic differential form on an algebraic
variety over a chain defined by algebraic equations

e

(in general transcendental number but “obtained from algebraic data")

e What kind of periods?
e What kind of motives?
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Quantum Field Theory: perturbative (massless) scalar field theory

5(6) = [ 2(6)d° = $u(6) + Sin(¢)
in D dimensions, with Lagrangian density
1 5 M,
Z(¢) = §(a¢) + ?Qb + ZLin(9)
Perturbative expansion: Feynman rules and Feynman diagrams
(¢
ut

Sert(¢) = So(9) + Z #Agl’) (1Pl graphs)
r

Matilde Marcolli Feynman integrals and motives



Two different settings for Feynman integral computations:
Momentum space: momentum variables k., with e € Er
I'(¢) built from edge-propagators

’
(m? + [[kell?)

Configuration space: position variables x, with v € Vr
I(¢) built from propagators:
1

Go,r (Xs(e) — Xi(e)) = e =X P where D =2\+2
s(e e

or massive

A
m _
Gm,R(Xs(e) —Xi(e)) = ) 1 Xs(e) = Xt(ey | A5 (Ml Xs(e) —Xe(e) )

with %, (z) modified Bessel function
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Dual pictures:

® Gor(Xs(e) — Xi(e)) Green function of Laplacian; G g (Xs(e) — Xi(e))
fundamental solution of Helmholtz equation (A + m?)G = §

e Fourier transform: (test functions ¢ € .7 (R”))

— 4nbr2 1
(Gor * p)(k) = ORTE P(k)

—— 1

(G, * @)(k) = (m + k[P P(k)
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Algebraic formulation: extend from real to complex variables using a
quadratic form instead of the Euclidean norm
Momentum space Feynman amplitude (n = #£Er)

u(r) = / O3 evjiki + Z,N=1 €v.iPj)

dPkq - dPk,
G- Qn

quadratic form
D
j=1
Configuration space Feynman amplitude (massless; m = # V)

1 D D
U(r):/wd XV1"'d va

D
Qo(Xs(e)s Xi(e) = > (Xs(e)) — Xe(e)s)’
j=1
e Advantages: get an algebraic differential form
e Disadvantages: singular on a hypersurface (whose motive is
difficult to control
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Analytic formulation: extend from real to complex variables using the
Euclidean norm

=11

ecEr H S

ax,
) — Xe(e |2>\/\ v

veVr
over chain of integration o = R#\r

e Advantages: Singular on diagonals (motive will be easy to control)
e Disadvantages: not an algebraic differential form (only smooth)

Matilde Marcolli Feynman integrals and motives



Recent results:
e Using algebraic formulation in momentum space

e Earlier conjectures: periods would be Q(27/)-combinations of
multiple zeta values (periods of mixed Tate motives)
o New results show explicit non-mixed-Tate periods:

@ Dzmitry Doryn, On one example and one counterexample in
counting rational points on graph hypersurfaces,
arXiv:1006.3533

@ Francis Brown, Oliver Schnetz, A K3 in phi4, arXiv:1006.4064.

@ Francis Brown, Dzmitry Doryn, Framings for graph
hypersurfaces, arXiv:1301.3056
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Configuration space picture
X smooth projective variety with a dense A” (e.g. X = PP)

We look at two different problems

e Real case: the analytic formulation of the Feynman amplitude
(physically motivated case)

=11

ecEr

/\ ax
Hs — Xi(e |2)‘ Y

veVr

with o = X(R)#"
e ¢>-differential form on X' with singularities along diagonals
e not a closed form
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e Complex case: a complexification of the previous problem
(mathematical generalization)

Z = X x X with projectionp: Z — X, p:z=(x,y) — x

=11y, >—xt [z [\ o A%

ecEr veVr

where [|Xs(e) — Xi(e)l| = IP(2)s(e) — P(2)1(e) I
e closed form
e chain of integration:

oM = XV x {y = (y)} € 27 = X" x X

forafixedy = (yv | v € W)
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Relation to Green functions:
e Green function of real Laplacian on AP(R), with D = 2\ + 2:

Gr(x,y) = 1

Ix — y|[2*
e On AP(C) complex Laplacian
% 92
kZ: 8Xk8Xk
has Green form
—(D - 2)!

GelY) = Griypx — 202

real and complex amplitudes modeled on these two cases
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Different methods:
e real case: explicit computation of (regularized) integral

or

using expansion of Green function in Gegenbauer polynomials

e complex case: cohomological method, pullback wﬁz) toa

compactification of configuration space where cohomologous to
algebraic form with log poles; regularize to separate poles from chain
of integration; explicitly compute the motive
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Explicit computations of Feynman amplitudes (real case):

Step 1: explicit chains in X'

e Acyclic orientations: I no looping edges, (') set of acyclic
orientations; Stanley: (—1)" P-(—1) acyclic orientations where
Pr(t) chromatic polynomial

e orientation o € Q(I') = partial ordering of vertices w >4 v
e chain with boundary 0% C Uecg Ae

Yo :={(x,) € X'I(R) : r,, > r, whenever w >, v}
middle dimensional relative homology class
[Zol € Hie (X', Uecrr Do)
e Y, Uy{r, = 0} bundle fiber (SP~")" base

Yo = {(r) € (R : r, > r, whenever w >, v}
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Step 2: Gegenbauer polynomials
e Generating function and orthogonality (|t| < 1 and A > —1/2)

(1—2tx+t2 ZC”

21722 (n + 2)\)
n'(n+ A)T(A)?

1
/ Ci () Ch(x) (1 = x®) 2 0x = 6
—1
e D = 2\ + 2 Newton potential expansion in Gegenbauer
polynomials:

1 1
IXs(e) = X1 PB(1+ (2)? — 272ws(e) - Wi(e))

I
_peZAZ 2y (w e) " Wie))s

with pe = max{||xs(e) |, [ X(e)|I} @and re = min{||xge)ll, [[Xs(e) |} and
with w, € §P—1
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Step 3: angular and radial integrals
e on chain of integration or = X(R)I Feynman integral becomes
(Version N.1)

Z mo/ H 2>\< s°(e))nC(/\)(Wso(e)"*%(e))) dv

r,
0eQ(r) To eckr o(e)

with positive integers my (multiplicities) and volume form
dv - HV dDXV - HV r‘?_1 drv de
e angular integrals:

_ (N
‘Q{(ne)eeEr = /(SD—1)Vr 1;[ Cne (ws(e) -wt(e)) 1:[ dwy

e radial integrals:

Z mo/Z 1_[9@o rto(e) Hr ar,

oeQ(IN) ° ecEr

I’So
7 (rso(e)’ rto(e) to(e) Z «Q{ne ( Iy (e (e )
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Example: polygons and polylogarithms
e [ polygon with k edges, D = 2\ + 2:

A1
o, = 2w
FA+1)(n+ A

)>k -dim ,(S# )

(82 1) space of harmonic functions deg n on S?*
(Gegenbauer polynomial and zonal spherical harmonics)

e when D = 4, Feynman amplitude:
21k : o
(27%)< :mo/_ Lix—2(] | =) IIron
o 2o iV %

polylogarithm functions

0 Zn
Lis(Z) == ;
n=1

vertices v;, w; sources and tails of oriented paths of o
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Problem: computations intractable very quickly for larger graphs!

e Can reduce to trivalent vertices and use triple integrals of harmonic
functions: Gaunt coefficients (Y™, v v™)) ; Racah’s
factorization in terms of isoscalar factors

(m) yAm2) yAns)y _ ( M N2 13 (n}) \(m3) \,(m)
o= (1 ) R e

gi — (n’ E’) with n; = Mp—2, and f; = (mD73,/7 LR m17")

1771

e There are general explicit (but complicated) expressions for the
isoscalar factors
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e For D = 4 “leading term" involving multiple series related to MVZs:
Mordell-Tornheim multiple series:

CMT,k(S17"7Skvsk+1) = Z n1731 ...n;sk(n1+...+nk)_sk+1

(1)€Y
=R = {(m,...,m)|n>0, i=1,.. Kk}
Apostol-Vu multiple series:

CAV,k(Sh-u,Sk;Sk—H) = Z n1—s1 ,..n;sk(n1+...+nk)*3k+1

(n17-~-7nk)€%/(\:;g

%:%,EJKF), = (n1,...,nk)|nk>--->n2>n1 >0}

BUT: possible occurrences of non-mixed-Tate terms in larger graphs!

Matilde Marcolli Feynman integrals and motives



Different behavior of the complex case

Step 1: Graph configuration spaces

Confr(X) = X" < | Ao

ecEr

e Wonderful compactifications: compactify Confr(X) to a smooth
projective algebraic variety Confr(X) so that

9r = Confr(X) ~ Confr(X)

is a normal crossings divisor

o For Z = X x X take F(X,T) ~ Confr(X) x X" with
AP =~ A, x XV and compactify to F(X,T) in the same way
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e General method: realize Confr(X) or F(X,I') as a sequence of
blowups of X" (or Z"7) along a collection of dominant transforms of
diagonals

e Equivalent description: closure in
Confr(X) < ] Bla,x
YEYr

with ¢ subgraphs induced (all edges of I' between subset of
vertices) and 2-vertex-connected

¢ Fulton—-MacPherson configuration spaces (= complete graph case
of Confr(X)); more general arrangements of subvarieties:
DeConcini—Procesi, Li Li

e strata of & parameterized by forests of nested subgraphs (as in
Fulton—MacPherson case)
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Motives of algebraic varieties (Grothendieck) Universal cohomology
theory for algebraic varieties (with realizations)

e Pure motives: smooth projective varieties with correspondences

Hom((X,p,m),(Y,q,n)) = qCorr]_&(X,Y)p

Algebraic cycles mod equivalence (rational, homological, numerical),
composition

Corr(X, Y) x Corr(Y,Z) — Corr(X, Z)

(mx,2)+(7x,v(a) @ 7y 2(B))
intersection product in X x Y x Z; with projectors p> = pand ¢° = q
and Tate twists Q(m) with Q(1) = L~
Numerical pure motives: .#,m (k) semi-simple abelian category
(Jannsen)
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e Mixed motives: varieties that are possibly singular or not projective
(much more complicated theory!) Triangulated category ¥.#
(Voevodsky , Levine, Hanamura)

m(Y) - m(X) > m(X\Y)—= m(Y)[1]
m(X x AT) = m(X)(-1)[2]

e Mixed Tate motives .4 T C 2.# generated by the Q(m)

Over a number field: t-structure, abelian category of mixed Tate
motives (vanishing result, M.Levine)

Matilde Marcolli Feynman integrals and motives



Motives and the Grothendieck ring of varieties
o Difficult to determine explicitly in the triangulated category of mixed
motives

e Simpler invariant (universal Euler characteristic for motives): class
[Xr] in the Grothendieck ring of varieties Ko (7")

@ generators [X] isomorphism classes
o [X]=[X\Y]+[Y]forY C X closed
° [X]-[Y]=[XxY]

Tate motives: Z[L,L™"] C Ko(.#)
(Ko group of category of pure motives: virtual motives)
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Universal Euler characteristics:
Any additive invariant of varieties: x(X) = x(Y)if X =Y

XX)=x(Y)+x(X\Y), YCX

X(X X Y) = x(X)x(Y)

values in a commutative ring % is same thing as a ring
homomorphism
X - Ko(Af/) 4

Examples:
e Topological Euler characteristic
e Couting points over finite fields
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Motives of configuration spaces — Key ingredient: Blowup formulae

e For mixed motives (Voevodsky category):
m(Bly(Y)) Zm(Y)® m(V)(k)[2k]

e For Grothendieck classes Bittner relation
[Bly(Y)] = [Y] — [V] + [E] = [Y] + [V]([Ptm()=1] — 1)

exceptional divisor E

e Conclusion: the motive of Confr(X) and of F(X,T) is mixed Tate if
X is mixed Tate.
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Smooth and algebraic forms
e de Rham cohomology of a smooth quasi-projective varieties
computed using algebraic differential forms (Grothendieck)

e if complement of normal crossings divisor can use forms with log
poles (Deligne)

H (%) = H' (2", 2y (log(2)))

e 2 smooth projective variety dim¢c m; £ normal crossings divisor;
U = Z ~ Z;wsmooth closed differential form degm on % ;
=- 7 algebraic differential form 7 log poles along &, with

[] = [w] € Hon(%)

e Conclusion: 3 algebraic form nﬁz) with log poles along union of D.,
cohomologous to wj(wﬁz)) on &ﬁz’”

e Warning: motive over QQ, but algebraic form may be over larger
field! (work in progress: show form defined over Q(2/) using

Bochner—Martinelli kernel and Green forms)
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Regularization problem

. nﬁz) algebraic differential form; &EZ’Y) algebraic cycle: Feynman

/"( ) m"( ) T’
5 Z,y \(@ & Z,y )

(
would be a period... but divergent!!

(because of intersection Zr N &ﬁz’y ) of chain with divisor)

e need a regularization and renormalization procedure to eliminate
divergences

o Different methods: (1) principal value and residue currents; (2)
deformation to the normal cone; (3) algebraic renormalization via
Hopf algebras and Rota—Baxter algebras

e Focus on (3)
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Algebraic renormalization

Two step procedure:

e Regularization: replace divergent integral U(I") by function with
poles

e Renormalization: pole subtraction with consistency over subgraphs
(Hopf algebra structure)

e Kreimer, Connes—Kreimer, Connes—M.: Hopf algebra of Feynman
graphs and BPHZ renormalization method in terms of Birkhoff
factorization and differential Galois theory

e Ebrahimi-Fard, Guo, Kreimer: algebraic renormalization in terms of
Rota—Baxter algebras

Matilde Marcolli Feynman integrals and motives



Connes—Kreimer Hopf algebra s# = .#°(.7) (depends on theory)
e Free commutative algebra in generators I' 1Pl Feynman graphs
e Grading: loop number (or internal lines)

deg(I'y---Tp) = deg(l), deg(1) =0

e Coproduct:

AN =To1+1al+ Y y&l/y
ye¥ ()

e Antipode: inductively
S(X)=-X->_ S(X)X"

for AX)=X@1+1X+ > X @X'
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Algebraic renormalization (Connes-Kreimer; Ebrahimi-Fard, Guo,
Kreimer)

e Rota—Baxter algebra of weight A = —1: % commutative unital
algebra; T : Z — Z linear operator with

T(X)T(y) = T(xT(y)) + T(T(x)y) + AT(xy)

e Example: T = projection onto polar part of Laurent series

e T determines splitting Z = (1 — T)%, %_ = unitization of T%;
both #Z.. are algebras

e Feynman rule ¢ : 5 — % commutative algebra homomorphism
from CK Hopf algebra 7 to Rota—Baxter algebra % weight —1

¢ € HomAlg(%ﬂ,%)

e Note: ¢ does not know that .7# Hopf and % Rota-Baxter, only
commutative algebras
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e Birkhoff factorization J¢+ € Homay, (A, %)
6 =(¢-08)xd,

where ¢1 x ¢2(X) = (1 ® 2, A(X))
e Connes-Kreimer inductive formula for Birkhoff factorization:

$-(X) = =T (@(X) + Y ¢-(X)(X"))

0+(X) = (1= T)(6(X) + Y _ o-(X)o(X"))
where A(X) =1 X+ X®1+Y X @ X’

e Recovers what known in physics as BPHZ renormalization
procedure
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Back to configuration spaces:

e Can use same configuration space and compactification for all
graphs with fixed number of vertices (cost: more blowups)

e Smooth variety # with normal crossings divisor &; form with log
poles n € QX (log 2) and intersection 2, = Dj, N - - - Dj, of
components of &

1
Resy =
/z esﬁJ(n) (27Ti)r /.i"%(z) !

Resg,(n) = iterated Poincaré residue
Z3,(X) = Leray coboundary
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Rota-Baxter algebra for (%, 2)
e even forms with log poles Q25" (log Z): commutative algebra

e polar part operator

df,
T =Y 7/’ A Resp, (1)
=

f; = local equation for D;
o (25" (log 7), T) = Rota—Baxter algebra of weight —1

TATE)+T(T)AE =T AT(E) =T(nAE)
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e obtain Rota-Baxter algebra of configuration spaces

e Regularization: given a Feynman graph I and the
(non-holomorphic closed) form wﬁz): pull back to wornderful
compactification and replace by cohomologous algebraic form nr
with log poles

e algebraic Feynman rules: the assignment

defines a morphism of commutative algebras from the Hopf algebra
of Feynman graphs to the Rota—Baxter algebra of configuration
spaces

e Renormalization: apply BPHZ to this algebraic Feynman rule
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Birkhoff factorization

¢ (N ==Tr+>_o-(v) Anrjy)
~yCl
o (N = nr+z¢ YINNF /) —nr@+z (VA /y) 25
~yCl ~ycr

with g =1 — T(n)
Renormalized integral

/~77rj+z o (V) Anry)o
or,c

~yCl

free of divergences and integral of algebraic differential form:
genuine period
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