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Abstract. In this paper, we study the local geometry at a prime p of PEL

type Shimura varieties for which there is a hyperspecial level subgroup. We
consider the Newton polygon stratification of the special fiber at p of Shimura

varieties, and show that each Newton polygon stratum can be described in

terms of the products of the reduced fibers of the corresponding PEL type
Rapoport-Zink spaces with certain smooth varieties (which we call Igusa va-

rieties), and of the action on them of a p-adic group which depends on the

stratum. We then extend our construction to characteristic zero and, in the
case of bad reduction at p, use it to compare the vanishing cycles sheaves of the

Shimura varieties to the ones of the Rapoport-Zink spaces. As a result of this

analysis, in the case of proper Shimura varieties, we obtain a description of the
l-adic cohomology of the Shimura varieties, in terms of the l-adic cohomology

with compact supports of the Igusa varieties and of the Rapoport-Zink spaces,
for any prime l 6= p.
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1. Introduction

PEL type Shimura varieties arise as moduli spaces of polarized abelian varieties
endowed with the action of an algebra over Q. These varieties play an important role
in the Langlands’ program as in some case the global Langlands correspondences
are expected to be realized inside their l-adic cohomology.

In [26] Rapoport and Zink introduce some local analogues of PEL type Shimura
varieties. These are rigid analytic spaces which arise as moduli spaces of Barsotti-
Tate groups with additional structures and which provide a p-adic uniformization of
the corresponding Shimura varieties. The l-adic cohomology of the Rapoport-Zink
spaces is described by a conjecture of Kottwitz, which is “heuristically compatible”
with the corresponding conjecture of Langlands and predicts that in some cases
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the l-adic cohomology of the Rapoport-Zink spaces realizes the local Langlands
correspondences.

In [10], Harris and Taylor prove the local Langlands correspondence for GLn by
studying a certain class of PEL type Shimura varieties. In their work, they study
the geometry of the reduction modulo p of the Shimura varieties by introducing the
analogue in this context of Igusa curves, which they call Igusa varieties. These are
smooth moduli spaces of abelian varieties in characteristic p which arise as finite
étale covers of the fibers mod p of Shimura varieties with good reduction at p, and
which are isomorphic (up to inseparable morphisms) to the smooth components of
the fibers mod p of the Shimura varieties with bad reductions at p. This analysis
relies on the fact that the deformation theory of the abelian varieties classified by
the Shimura varieties they consider is controlled by Barsotti-Tate groups which are
one dimensional.

For general PEL type Shimura varieties, the above assumption on the dimension
of the pertinent Barsotti-Tate groups does not hold. It follows that, in the general
context, while it is still possible to define the Igusa moduli problems the resulting
varieties cover only certain subvarieties inside the reduction modulo p of a Shimura
variety, not the entire space. On the other hand, these subvarieties are is in some
sense “orthogonal” to the ones uniformized by the Rapoport-Zink spaces. More
precisely, the Igusa varieties describe the loci where the isomorphism classes of the p-
divisible parts of the abelian varieties are constant, while the Rapoport-Zink spaces
uniformize the loci corresponding to p-prime isogeny classes of abelian varieties.
Together, they cover the loci where the p-divisible parts of the abelian varieties
have prescribed isogeny class, i.e. the Newton polygon strata of the reduction of
the Shimura varieties.

It is our idea to study the local geometry at p of PEL type Shimura varieties
via the Newton polygon stratification of their fibers mod p. By combining together
the approach of Harris and Taylor and the one of Rapoport and Zink, we obtain
a description of the geometry and cohomology of each stratum in terms of the
geometry and cohomology of the products of the Igusa varieties with the reduced
fibers of Rapoport-Zink spaces. Moreover, in the cases of bad reduction at p, our
construction enable us to compare the vanishing cycles sheaves on the Shimura
varieties to the ones on the Rapoport-Zink spaces.

In the case of proper Shimura varieties, we can apply the theory of vanishing cy-
cles to translate these results into a formula describing the l-adic cohomology of the
Shimura varieties, regarded as a virtual representation of G(A∞), the adelic points
of the associated algebraic group G/Q, and of WEv , the Weil group of the localiza-
tion of the reflex field E at a prime v above p, in terms of the l-adic cohomology of
the corresponding Rapoport-Zink spaces and Igusa varieties.

In [20], we carried out this plan for a special class of of PEL type Shimura
varieties. In this paper, we extend those results to all PEL type Shimura varieties
for which there exists a hyperspecial level subgroup (i.e. a level subgroup which
is guaranteed to give good reduction) at a chosen prime p. In particular, we focus
on the solution of the technical problems which arise when extending the class of
Shimura varieties considered. We remark that all the main results of [20] can be
recovered as special cases of the results in this paper, although with different (but
equivalent) formulations. (In [20], the simplifying assumptions effected definitions
and construction in a way that shadowed some of the results.)



ON THE COHOMOLOGY OF CERTAIN PEL TYPE SHIMURA VARIETIES 3

Let us outline in detail the structure of this paper.
In section 2 we introduce the class of PEL type Shimura varieties we study.

In section 3, we recall the definitions of the Newton polygon stratification of the
reduction of the Shimura varieties modulo p and of Oort’s foliation of the New-
ton polygon strata. Both constructions are borrowed from the general theory of
moduli spaces of abelian varieties in positive characteristic and are originally due
respectively to Grothendieck and Katz in [15], and Oort in [22]. In the context
of Shimura varieties, their definitions require some adjustments (generalizations of
the Newton polygon stratification are due to Kottwitz in [19], and Rapoport and
Richartz in [25]). In section 4 we introduce the Igusa varieties as finite étale covers
of the leaves of Oort’s foliation. They arise as moduli spaces of abelian varieties in
positive characteristic and their notion is originally due to Harris and Taylor in [10],
who adapted Igusa’s moduli problems for elliptic curves to abelian varieties. In our
context, the generalization of the construction of Harris and Taylor relies on the
notion of slope filtration for a Barsotti-Tate group (see [15]) and in particular on
a result of Zink in [27]. The Igusa varieties are naturally equipped with two group
actions, one which reflects the group action away from p on the Shimura varieties
and the other which reflects changes of level in the Igusa structure. In section 5 we
introduce the moduli spaces of Barsotti-Tate groups defined by Rapoport and Zink
as the local analogues of PEL type Shimura varieties. We show how the geome-
try and cohomology of the Newton polygon strata of the Shimura varieties can be
understood in terms of the geometry and cohomology of the reduced fibers of the
Rapoport-Zink spaces and of the Igusa varieties. In particular, for each Newton
polygon stratum, we construct and study a system of finite surjective morphisms
from the product of the Igusa varieties with truncations of the reduced fiber of the
corresponding Rapoport-Zink space onto the stratum. This concludes our analysis
of the fibers in positive characteristic of Shimura varieties with good reduction.
In sections 6 and 7, we focus our attention to the cases of bad reduction. Using
Katz’s and Mazur’s notion of level structure, we construct some integral models in
characteristic zero and investigate the possibility of extending the previous maps
in positive characteristic to morphisms between formal schemes in character zero.
This problem is strictly related to comparing the vanishing cycles of the Shimura
varieties to the vanishing cycles of the corresponding Rapoport-Zink spaces (in the
sense of Berkovich’s [2] and [3]). In the case of proper Shimura varieties, our results
on the reduction modulo p and on the vanishing cycles can be piece together into
understanding the l-adic cohomology of the Shimura varieties, for any prime l 6= p
(see section 8).

The author wish to thank Richard Taylor for his continuous interest and sugges-
tions.

2. PEL type Shimura varieties

Let p be a prime number. The focus of our study is a certain class of PEL type
Shimura varieties (introduced by Kottwitz in [18]) which have good reduction at
all places of the reflex field lying above the prime p, in the cases when no level
structure at p is considered.

Following [18] (Sec. 5, pp. 389–392), we consider the PEL moduli problems
associated to the PEL data (B, ∗, V, 〈 , 〉), where:

• B is a finite dimensional simple algebra over Q;
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• ∗ is a positive involution on B over Q;
• V is a nonzero finitely generated left B-module;
• 〈 , 〉 is a non degenerate Q-valued ∗-hermitian alternating pairing on V ;

satisfying the following three conditions:
(1) there exists a Z(p)-order OB in B whose p-adic completion is a maximal

order in BQp
and which is preserved by ∗;

(2) there exists a lattice Λ in VQp
which is self-dual for 〈 , 〉 and is preserved by

OB ;
(3) (unramified hypothesis) BQp is a product of matrix algebras over unramified

extensions of Qp.
We remark that if F is the center of B, then condition (3) particular that the

number field F is unramified at p.
To the above data we associate the algebraic group G/Q of the B-linear au-

tomorphisms of V which preserve the pairing 〈 , 〉 up to scalar multiple, and its
subgroup G1/Q of the automorphisms of V which preserve 〈 , 〉. More precisely, let
C denotes the Q-algebra EndB(V ); it is a simple algebra over F endowed with an
involution # coming from the pairing 〈 , 〉 on V . Then, for any Q-algebra R

G(R) = {x ∈ (C ⊗Q R)×|xx# ∈ R×}

and
G1(R) = {x ∈ (C ⊗Q R)×|xx# = 1}.

Finally, we also fix the datum of a morphism h : C → CR such that h(z̄) = h(z)#,
for all z ∈ C and such that the symmetric R-valued form 〈·, h(i)·〉 on VR is positive
definite.

The choice of such morphism h determines a decomposition of the BC-module
VC as VC = V1 ⊕ V2, where V1 (resp. V2) is the subspace of VC on which h(z) acts
as z (resp. z̄). It follows from the definition that V1, V2 are BC-submodule of VC.

We denote by E ⊂ C the field of definition of the isomorphism class of the
complex representation V1 of B; E is called the reflex field.

Before introducing the PEL moduli problems associated to the above data, let
us recall that they fall in three families (cases A, C and D) which are distinguished
as follows. We consider the restriction of the involution ∗ of B to its center F , and
denote by F0 its fixed field, which is a totally real field since ∗ is positive on F . Then
the group G1/Q is obtained from an algebraic group G0/F0 by restriction of scalars
from F0 to Q. Let n be the positive integer defined by [F : F0](dimF C)1/2/2.

If F = F0, in which case we call the involution ∗ of the first kind, the associated
algebraic group G0 is of type An−1, and we refer to this as case A.

Otherwise, F is a totally complex quadratic extension of F0, in which case ∗
is said of the second kind, and the group G0 is either an orthogonal group in 2n
variables (i.e. of type Dn) or a symplectic group in 2n variables (i.e. of type Cn);
we refer to these as cases D and C, respectively.

In the case D, we assume p 6= 2. This assumption assures the smoothness of the
p-adic integral models we define below ([18], Sec. 5, p. 391).

Finally, let us point out that calling the moduli spaces we define below Shimura
varieties is a loose use of the terminolgy. In fact, in some cases (i.e. when the Hasse
principle for H1(Q, G) fails), these moduli spaces give Shimura varieties only after
we pass to a connected component (see [18], Sec. 8, pp. 398–400).
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Let A∞ denote the ring of the finite adeles of Q. To any open compact subgroup
U ⊂ G(A∞), we associate a contravariant set-valued functor FU on the category of
locally Noetherian schemes S over E. We remark that it is enough to define FU (S)
in the case when the scheme S is connected. Further more, we shall first define
FU (S) = FU (S, s) for a choice of a geometric point s ∈ S and then observe that
such set is independent on the choice of s ∈ S (see [18], Sec. 5, p. 391).

To any connected locally Noetherian scheme S over E and a geometric point
s ∈ S, the functor FU associates the set of isomorphism classes of quadruples
(A, λ, i, µ̄) where:

• A is an abelian scheme over S;
• λ : A → A∨ is a polarization;
• i : B ↪→ End(A)⊗ZQ a morphism of Q-algebras such that λ◦i(b∗) = i(b)∨◦λ

and det(b, Lie(A)) = det(b, V1), for all b ∈ B;
• µ̄ is a π1(S, s)-invariant U -orbit of isomorphisms of B ⊗Q A∞-modules µ :

V ⊗QA∞ → V As which takes the pairing 〈 , 〉 on V ⊗QA∞ to a (A∞)×-scalar
multiple of the λ-Weil pairing.

Two quadruples (A, λ, i, µ̄) and (A′, λ′, i′, µ̄′) are equivalent if there exists an
isogeny β : A → A′ which takes λ to a Q×-multiple of λ′, i to i′ and µ̄ to µ̄′

(see [18], Sec. 5, p. 390).
We say that an open compact subgroup U of G(A∞) is sufficiently small if there

exists a prime x in Q such that the projection of U in G(Qx) contains no elements of
finite order other than 1. If U is sufficiently small then the functor FU is represented
by a smooth quasi-projective scheme XU defined over E (see [18], Sec. 5, p. 391).

As the level U varies, the Shimura varieties XU form an inverse system, naturally
endowed with an action of G(A∞). For all integers i ≥ 0 and any prime l, we write

Hi(X, Ql) = lim
−→ UHi(XU ×E Ē, Ql)

for the i-th cohomology group of the Shimura varieties, regarded as an l-adic rep-
resentation of G(A∞)×Gal(Ē/E).

We now restrict our attention to levels U of the following form. Let K0 be the
maximal open compact subgroup of G(Qp) defined by

K0 = StabG(Qp)(Λ) = {x ∈ CQp |x(Λ) ⊂ Λ, xx# ∈ Z×p }.

For any open compact subgroup Up ⊂ G(A∞,p), we define

Up(0) = Up ×K0 ⊂ G(A∞).

It is an open compact subgroup of G(A∞). Moreover, if Up is sufficiently small (i.e.
there exists a prime x 6= p in Q such that the projection of Up in G(Qx) contains
no elements of finite order other than 1), then Up(0) is also sufficiently small.

For any level Up away from p, we call the associated Shimura variety XUp(0) a
Shimura variety with no level structure at p. In [18], Kottwitz proves that these
varieties admit smooth quasi-projective models over OE,(p) = OE ⊗ Z(p), which
arise as follows.

We define a set-valued functor FUp(0) on the category of pairs (S, s), where S
is a connected locally Noetherian OE,(p)-schemes and s is a geometric point on S.
We set FUp(0)(S, s) to be the set of equivalence classes of quadruples (A, λ, i, µ̄p)
where:

• A is an abelian scheme over S;
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• λ : A → A∨ is a prime-to-p polarization;
• i : OB ↪→ End(A)⊗Z Z(p) a morphism of Z(p)-algebras such that λ◦ i(b∗) =

i(b)∨ ◦ λ and det(b, Lie(A)) = det(b, V1) for all b ∈ OB ;
• µ̄p is a π1(S, s)-invariant Up-orbit of isomorphisms of B ⊗Q A∞,p-modules

µp : V ⊗Q A∞,p → V pAs which takes the pairing <,> on V ⊗Q A∞,p to
a (A∞,p)×-scalar multiple of the λ-Weil pairing (we denote by V pAs the
Tate space of As away from p).

Two quadruples (A, λ, i, µ̄p) and (A′, λ′, i′, (µ̄p)′) are equivalent if there exists a
prime-to-p isogeny β : A → A′ which takes λ to a Z×(p)-multiple of λ′, i to i′ and µ̄

to (µ̄p)′.
The set FUp(0)(S, s) is canonically independent on s, and thus it gives rise to a

set-valued functor on the category of locally Noetherian OE,(p)-schemes.
For a sufficiently small Up, the functor FUp(0) on the category of locally Noether-

ian OE,(p)-schemes is represented by a smooth quasi-projective scheme XUp(0) over
OE,(p) (see [18], Sec. 5, p. 391). Further more, there is a canonical isomorphism

XUp(0) = XUp(0) ×SpecOE,(p) Spec E.

As the level Up away from p varies, the varieties XUp(0) form an inverse system
naturally endowed with an action of G(A∞,p), which is compatible under the above
identification with the action of G(A∞) on the Shimura varieties XU .

We now fix a prime v of E above p, and denote by Ev the completion of E at v.
Because of the unramified hypothesis, Ev is an unramified finite extension of Qp.
For any level Up (resp. U), we then regard XUp(0) (resp. XU ) as schemes over the
ring of integers OEv of Ev (resp. over Ev).

Let k/Fp be the residue field of OEv , #k = q = pf . We choose an algebraic
closure F̄p of k and write σ : F̄p → F̄p for the Frobenius map x 7→ xp.

For any level Up ⊂ G(A∞,p), we denote the reduction of XUp(0) in characteristic
p as X̄Up(0) = XUp(0)×OEv

k, and write Fr = FrX̄Up for the absolute Frobenius on
X̄Up(0). Then, the f -th power of Fr on X̄Up(0) is the morphism X̄Up(0) → X̄Up(0)

corresponding to the quadruple (A(q), λ(q), ι, µ̄p), for (A, λ, ι, µ̄p) the universal fam-
ily over X̄Up(0).

3. The Newton polygon stratification and Oort’s foliation

Let Up be a sufficiently small open compact subgroup of G(A∞,p). We write
X = XUp(0) and X̄ = X̄Up(0)/k for its reduction in characteristic p. Let A be the
universal abelian variety over X̄ and write G = A[p∞]. Then G is a Barsotti-Tate
group endowed with a quasi-polarization and a compatible action of OBQp

, the
p-adic completion of OB in BQp

. (We say that an action of OBQp
of a polarized

Barsotti-Tate group is compatible if it satisfies the determinant condition as in [18].)
In the following, we call a Barsotti-Tate group endowed with a quasi-polarization
and of a compatible action ofOBQp

a Barsotti-Tate group with additional structures.
It follows from Serre-Tate theorem that the Barsotti-Tate group G controls the

geometry of the Shimura variety in characteristic p. Thus, we analyze the variety
X̄ by studying the behavior of G/X̄.

Following [19] and [25], we denote by B(G) the set of σ-conjugacy classes in G(L),
where L = Qnr

p ⊃ Ev is the complete maximal unramified extension of Qp. (We
recall that any two elements b1, b2 ∈ G(L) are said to be σ-conjugate if there exists
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g ∈ G(L) such that b1 = gb2g
−σ.) Equivalently, B(G) is the set of isogenies classes

over F̄p ⊃ k of polarized Barsotti-Tate groups, endowed with a compatible action
of OBQp

. (We call an isogeny between two Barsotti-Tate groups with additional
structures any isogeny between the underlying Barsotti-Tate groups which preserves
the additional structures, i.e. which preserves the quasi-polarization up to a Z×p -
multiple and which commutes with theOBQp

-modules structures.) For any Barsotti-
Tate group G with additional structures, we denote by b(G) the corresponding
isogeny class, viewed as an element in B(G).

In [25], Rapoport and Richartz construct a partial ordering on the set B(G),
which we denote by ≥, and prove that for any element b ∈ B(G), the set

X̄ [b] = {x ∈ X̄| b(Gx̄) ≥ b} ⊂ X̄

is a closed subset of X̄.
Let us denote also by X̄ [b] the corresponding reduced closed subschemes of X̄,

for all b ∈ B(G). They form a stratification by closed subschemes of X̄, indexed by
the elements in B(G). We denote by X̄(b) = X̄−∪b′>bX̄

[b′] the corresponding open
strata. They are the reduced subschemes overlying the loci where the Barsotti-Tate
group G has constant isogeny class,

X̄(b) = {x ∈ X̄| b(Gx̄) = b} ⊂ X̄.

Let us remark that, as the level Up varies, the above stratification is preserved by
the natural projection between Shimura varieties X̄Up(0) → X̄V p(0) (for Up ⊂ Vp)
and also by the action of G(A∞,p), i.e. by the morphisms g : X̄Up(0) → X̄gUp(0)g−1

for all g ∈ G(A∞,p).
Finally, it is obvious by the definitions that the Newton polygon stratification of

X̄ (i.e. the stratification defined by considering the isogeny class of the underlying
Barsotti-Tate groups) is always coarser than the above stratification. While in
general the stratification introduced by Rapoport and Richartz is finer, in the case
of our interest, the two stratification are actually the same (see [25], Thm. 3.8, p.
173).

We now proceed by studying the open strata X̄(b), for b ∈ B(G). In [22], Oort
introduces a foliation of the Newton polygon strata of moduli spaces of abelian
varieties in positive characteristic p. He defines it by considering the loci where the
isomorphism class of the Barsotti-Tate group of the abelian varieties is constant.
These are closed subspaces of the Newton polygon strata which give rise to smooth
schemes, when endowed with the induced reduced structure.

As we already remarked, in the context of the reduction of PEL type Shimura
varieties, the Barsotti-Tate groups of the abelian varieties classified by the moduli
problem are naturally endowed with additional structures inherited by the ones on
the abelian varieties. In view of this, we refine the definition of Oort’s foliation in
this context as follows.

Proposition 1. Let Σ/F̄p ⊃ k be a polarized Barsotti-Tate group endowed with a
compatible action of OBQp

, and denote by b ∈ B(G) its isogeny class. We define

CΣ = {x ∈ X̄|Gx̄ ' Σ
k(x)

} ⊂ X̄(b) ×k F̄p.

This is closed subset of the stratum X̄(b) and as a subscheme of X̄(b) ×k F̄p

endowed with the induced reduced structure is smooth.
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Proof. Let us assume for the moment that the leaves are closed subsets of the
corresponding Newton polygon stratum, and endow them with the induced reduced
structure. Then it is a direct consequence of the definition that they are smooth.
In fact, it follows from the Serre-Tate theorem that the complete local rings at the
geometric closed points x ∈ CΣ are the same for all x (as they depend only on the
isomorphisms class of Σ/F̄p). In particular, all points x ∈ CΣ are smooth.

We now show that the leaves are closed inside the corresponding Newton polygon
stratum. In [22] (Thm. 2.2, p. 273 and Thm. 3.3, p. 275) Oort considers both the
cases of Barsotti-Tate groups and polarized Barsotti-Tate groups. (The case of non
polarized Barsotti-Tate groups was also discussed in [20], Prop. 2.7, p. 219 and
Prop. 4.7, p. 265.) In order to prove that these generalized leaves are closed inside
the Newton polygon stratum, one may adapt the arguments given in those cases
to the general case, by simply restricting the consideration to morphisms between
Barsotti-Tate groups which commutes with the additional structures. (It suffices
to remark that the condition that a morphisms of Barsotti-Tate groups commutes
with the additional structures is a closed condition on the base.)

Otherwise, one may deduce the general statement from the old ones by observ-
ing that the each leaf CΣ is the union of the connected components of the corre-
sponding old leaves, meaning the ones obtained by fixing the isomorphism class of
the underlying Barsotti-Tate groups, whose generic point η satisfies the condition
that there exists an isomorphism of Barsotti-Tate groups with additional structures
Gη ×K(η) K̄ ' ΣK̄ , for some algebraically closed field K̄ containing K(η), the field
of definition of the generic point η (cfr. proof of Thm 3.3 in [22]).

Thus, in particular, also the property of smoothness can be established as a
consequence of the analogous property of the old leaves. �

We remark that the refined foliations of the Newton polygon strata we have
introduced are finer than the regular foliations defined in [22], i.e. the foliations
obtained by fixing the isomorphism class of the underlying Barsotti-Tate groups. In
particular, as remarked in the above proof, the refined leaves are union of connected
components of the corresponding regular one.

It is an easy consequence of the definition, that, as the level Up varies, the leaves
of Oort’s foliation are preserved by both the natural projection between Shimura
varieties X̄Up(0) → X̄V p(0) (for Up ⊂ Vp) and the action of G(A∞,p).

The leaves of Oort’s foliations play an important role in our study. A key fact
to our application is the existence of the slope filtration for the universal Barsotti-
Tate group G when restricted to the leaves. The notion of slope filtration for
Barsotti-Tate groups is originally due to Grothendieck who proved its existence
for any Barsotti-Tate groups over a field in [9]. This result was later extended by
Katz ([15]) to Barsotti-Tate groups over a smooth curve, and more recently by Zink
([27]) over any regular scheme and by Oort and Zink ([23]) over a normal base. It is
an easy application of Zink’s work to this context that the universal Barsotti-Tate
group G admits a slope filtration when restricted to the leaves (see [20], section
3.2.3, p. 239). Here below we focus our attention on the interaction between slope
filtration and additional structures.

Let Σ/F̄p be a completely slope divisible Barsotti-Tate group with additional
structures. We write b ∈ B(G) for its isogeny class and 1 ≥ λ1 > λ2 > · · · > λk ≥ 0
for the slopes of its Newton polygon (which depends only on b). We recall that a
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Barsotti-Tate group over a algebraically closed field is completely slope divisible if
and only if is isomorphic to the direct sum of isoclinic slope divisible Barsotti-Tate
groups defined over finite fields (see [23], Cor. 1.5, p. 187). Thus Σ admits a slope
decomposition: Σ = ⊕iΣi, where for each i, 1 ≤ i ≤ k, Σi is a slope divisible
isoclinic Barsotti-Tate group of slope λi. We fix an integer B ≥ 1 such that, for
all i = 1, . . . , k, FBp−λiB : Σi → Σi(p

B) are well defined isogenies. Then, they are
indeed isomorphisms. We write ν = ⊕iF

Bp−λiB : Σ ' Σ(pB) for the corresponding
isomorphism on Σ.

We are interested in understanding how the additional structures of Σ reflect
on its isoclinic components. From the equality Isog(Σ) =

∏
i Isog(Σi), we observe

that the datum of an action of OBQp
on Σ is equivalent to the data of an action of

OBQp
on each isoclinic piece Σi, for all i. Further more, let us consider the datum

of a polarization ` : Σ → Σ∨ on Σ. The decomposition Σ = ⊕iΣi give rise to a
decomposition of the dual Barsotti-Tate group Σ∨ = ⊕i(Σi)∨, where each (Σi)∨

is a slope divisible isoclinic Barsotti-Tate group, of slope 1− λi. Thus, the datum
of a quasi-polarization ` on Σ is equivalent to the data of some OBQp

-equivariant
isomorphisms `i : Σi → (Σj)∨, for all i, j such that λi + λj = 1, with the property
that (`i)∨ = c(`)`j , for some constant c(`) ∈ Z×(p) independent of i. (In particular,
the existence of a polarization on Σ implies that its Newton polygon is symmetric,
i.e. if λ is a slope of N(Σ) with multiplicity ri, then 1−λ is also a slope of N(Σ) with
the same multiplicity.) Finally, we remark that, for any quasi-self-isogeny ρ = ⊕iρ

i

of Σ, ρ preserves the additional structures on Σ if and only if the quasi-self-isogenies
ρi are OBQp

-equivariant and (ρj)∨`iρi = c(ρ)p2 deg(ρ)`i, for some c(ρ) ∈ Z×(p) and all
i, j such that λi + λj = 1 (or equivalently such that i + j = k + 1).

Let C = CΣ be the leaf inside the stratum X̄(b) associated to a completely
slope divisible Barsotti-Tate group Σ with additional structures, and consider the
universal Barsotti-Tate group G over C. Then G is a completely slope divisible
Barsotti-Tate group with slope filtration

0 ⊂ G1 ⊂ · · · ⊂ Gk = G

where the sub-quotients Gi = Gi/Gi−1 are isoclinic slope divisible Barsotti-Tate
groups of slope λi (see [20], section 3.2.3, p. 239). Since any morphism between
completely slope divisible Barsotti-Tate group preserves the slope filtration, we
deduce that both the filtrating Barsotti-Tate groups Gi and the sub-quotients Gi

inherit an action of OBQp
. Further more, let G∨/C be the Barsotti-Tate group dual

to G and denote by ` : G → G∨ the quasi-polarization on G. Then, we can endow
G∨ with an action of OBQp

, defined by the isogenies (a∗)∨, for all a ∈ OBQp
, and

regard ` as a OBQp
-equivariant isomorphism. Furthermore, the dual Barsotti-Tate

group G∨ is also completely slope divisible and for each i, 1 ≤ i ≤ k, we can identify
its i-th isoclinic sub-quotient

(G∨)i = (Gj)∨,

for j ∈ {1, . . . , k} such that λi + λj = 1. Thus, the datum of an quasi-polarization
` : G → G∨ gives rise to some OBQp

-equivariant isomorphisms

`i : Gi → (G∨)i = (Gj)∨,

for all i, j such that λi + λj = 1, with the property that (`i)∨ = c(`)`j , for some
constant c(`) ∈ Z×(p).
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We remark that the two data are not equivalent, i.e. it is not true in general that
any such collection of isomorphisms glue together to a quasi-polarization on G (nor
that an action of OBQp

on the isoclinic subquotients piece together to an action on
G). Nevertheless, it is true that any quasi-isogeny between two completely slope
divisible Barsotti-Tate groups with slope filtrations commutes with the additional
structures if and only if the induced quasi-isogenies among the corresponding slope
divisible isoclinic sub-quotients commute with the inherited additional structures.

On the other hand, the following also holds.

Proposition 2. Let x ∈ X̄(b), Σ = ⊕iΣi a complete slope divisible Barsotti-Tate
group with additional structures, defined over F̄p and C = CΣ ⊂ X̄(b). Then x ∈ C
if and only if for all i = 1, . . . , k there exist OBQp

-equivariant isomorphisms

Gi
x̄ ' Σi

k(x)

which commute with the isomorphisms `i induced by the quasi-polarizations on Gx̄

and Σ, up to Z×(p)-multiple.

Proof. One of the two implications is obvious, and the converse follows from the fact
that over any perfect field the slope filtration of a Barsotti-Tate group canonically
splits (i.e. Gx̄ = ⊕iGi

x̄). �

4. Igusa varieties

As in the previous section, we fix a level Up away from p and consider the
reduction mod p, X̄ = X̄Up(0), of the corresponding Shimura variety with no level
structure at p. We also fix a complete slope divisible Barsotti-Tate group Σ as
above, and denote by Cb = CΣ ⊂ X̄(b) the corresponding leaf of Oort’s foliation
(b = b(Σ) ∈ B(G)).

For any m ≥ 1, we write Jb,m for the Igusa variety of level m over Cb (sometimes,
we also write Jb,0 = Cb). We define the Igusa varieties as the universal spaces for
the existence of trivializations of the pm-torsion of the isoclinic sub-quotients of
G/Cb, and we will show that they are finite étale Galois covers of the leaf Cb. (The
property of being étale is a direct consequence of the fact that we are trivializing
each isoclinic sub-quotient separately.) We recall that the notion of Igusa variety
is originally due to Harris and Taylor in [10] (inspired by the work of Igusa, [11]).
We adapt their definition to our context.

Definition 3. For any integer m ≥ 1, the Igusa variety of level m Jb,m → Cb is
the universal space for the existence of isomorphisms

juniv
m,i : Σi[pm] → Gi[pm]

of finite flat group schemes over Cb such that
(1) they extend étale locally to any level m′ ≥ m;
(2) they are OBQp

-equivariant;
(3) they commute up to (Z/pm)×-multiple with the isomorphisms induced by

the quasi-polarizations on G and Σ.

The existence of a universal space for the existence of isomorphisms Σi[pm] '
Gi[pm] satisfying the first condition is proved in [20] (Prop 3.3, p. 240). Thus, in
order to conclude the existence of the Igusa varieties, it is enough to observe that
the locus where conditions (2) and (3) are satisfied is a closed subset of such space.
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It is clear from the definition that the Igusa variety Jb,m is equipped with an
action of the group of automorphism of Σ, Γb = Aut (Σ) =

∏
i Aut (Σi).

For any γ = ⊕iγ
i ∈ Γb, we define its action on the Igusa varieties Jb,m as

(A, λ, i, µp; jm,1, . . . jm, k) 7→ (A, λ, i, µp; jm,1 ◦ γ1
|[pm], . . . jm,k ◦ γk

|[pm]),

where we denote a point in Jb,m by the data of the corresponding abelian variety
endowed with additional structures (A, λ, i, µp) and isomorphisms (jm,1, . . . jm,k)
as in the definition of the Igusa varieties. (It is obvious that if the collection
of isomorphisms {jm,i}i satisfies the required properties, so does the collection
{jm,i ◦ γi

[pm]}i, for any γ ∈ Γb.) It follows from the definition that this action
naturally factors through the quotient Γb,m of Γb by the subgroup of automorphisms
of Σ which restrict to the identity on Σ[pm].

Proposition 4. For any m ≥ 1, the Igusa variety Jb,m → Cb is finite étale and
Galois, with Galois group Γb,m. In particular, the Igusa varieties are smooth.

Proof. Following [10] (Prop. II.1.7, p.69), it suffices to prove that for any geometric
closed point x ∈ Cb there exist some isomorphisms

Gi × SpecO∧Cb,x ' Σi × SpecO∧Cb,x ∀i = 1, . . . , k,

which commute with the additional structures.
Let x be a closed geometric point of Cb. It follows from the definition of the leaves

and the rigidity of isoclinic Barsotti-Tate groups that the Barsotti-Tate groups
underlying Gi and Σi are isomorphic over SpecO∧Cb,x, for all i (see [20], Lemma 3.4,
p. 240). Moreover, since x ∈ Cb, we can always choose some isomorphisms

φi : Gi ×O∧Cb,x ' Σi ×O∧Cb,x ∀i = 1, . . . , k,

such that their fibers at the point x commute with the additional structures.
Finally, we observe that for any given system of isomorphisms φi of the un-

derlying Barsotti-Tate groups, the commutativity properties can be expressed as
equalities of certain corresponding self-isogenies of the Σi × O∧Cb,x. Since all the
self-isogenies of the Σi over O∧Cb,x are already defined over F̄p, any equality among
them holds over O∧Cb,x if and only if it holds at the point x. �

Let us now consider Igusa varieties of different levels. It is easy to see that there
are natural projections

qb = qb,m′,m : Jb,m′ → Jb,m ∀m′ ≥ m,

which correspond to restricting the isomorphisms jm′,i to the pm-torsion subgroups,
for all i. Moreover, it follows from the definition that the projections qb are invariant
under the action of Γb on the Igusa varieties.

Thus, as the level m varies, the Igusa varieties Jb,m form a projective system
under the morphisms qb, which is endowed with an action of Γb. We show that
this action naturally extends to a sub-monoid Sb ⊃ Γb of the group Tb of the
quasi-self-isogenies of Σ preserving its additional structures.

We define Sb as follows. For any ρ ∈ Tb, we write ρi for the quasi-self-isogeny
of Σi induced by the restriction of ρ. Thus ρ = ⊕iρ

i. Let us suppose that ρ−1 is
an isogeny. Then, for each i = 1, . . . , k, we define two integers ei = ei(ρ) ≥ fi =
fi(ρ) ≥ 0 to be respectively the minimal and maximal integers such that

ker[pfi ] ⊂ ker[ρi−1
] ⊂ ker[pei ].
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Finally we define

Sb = {ρ ∈ Tb| ρ−1 is an isogeny, fi−1(ρ) ≥ ei(ρ)∀i ≥ 2}.

Let us remark that the inequalities defining Sb are not all independent. More
precisely, for any ρ ∈ Tb and indexes i, j such that i + j = k + 1, the corre-
sponding inequalities here above are equivalent (this follows from the property
ρ∨`ρ = c(ρ)p2 deg(ρ)`). It is easy to see that Sb is a sub-monoid of Tb and that
p−1, fr−B = ⊕ip

−λiB ∈ Sb. Further more, we have that Tb = 〈Sb, p, frB〉 (see [20],
Lemma 2.11, p. 222).

The action of Γb on the system of Igusa varieties extend to Sb ⊂ Tb.

Lemma 5. Let (A, λ, i, µp; jm,1, . . . jm, k) denote the universal object over the
Igusa variety Jb,m, ρ = ⊕iρi ∈ Sb and assume m ≥ e = e1(ρ).

There exists a unique finite flat subgroup Kρ ⊂ G[pe] such that the corresponding
subgroups inside the isoclinic sub-quotients Gi of G are jm,i(ker(ρ−1

i )), for all i.
Moreover, the quotient abelian variety A/Kρ inherits the additional structures of

A/Jb,m and thus gives rise to a morphism between the Igusa varieties

ρ : Jb,m → Jb,m−e.

Proof. The existence of a finite flat subgroups Kρ piecing together the subgroups
Ki

ρ = jm,i(ker(ρ−1
i )) can be proved by induction on the number of slopes k. We

refer to [20] (Lemma 3.6, p. 243) for a detailed proof. Here we simply recall the
construction of Kρ for k = 2 (the essential idea of the proof being well represented
by this case). Let k = 2, we write ι : G1 → G and pr : G → G2 for the natural
inclusion and projection respectively. Then

Kρ = pr−1
|G[pe2 ](K

2
ρ) + ι(K1

ρ) ⊂ G[pe].

Let us now consider the abelian variety A/Kρ. In order to conclude we need to
show that it inherits the additional structures of A, via the isogeny ρ̂ : A → A/Kρ.

We observe that it is always possible to define such structures, namely a com-
patible action of OBQp

and a polarization, on the quotient via quasi-isogenies (i.e.
to define an action of an element b ∈ OBQp

on A/Kρ as ρ̂ ◦ i(b) ◦ ρ̂−1, where i(b)
denotes the action of b on A, and similarly a polarization). Therefore, it suffices to
show that these quasi-isogenies are well defined isogenies, and this can be checked
by looking at their restrictions to the p∞-torsion subgroup G/Kρ ⊂ A/Kρ. Even
more, it is enough to consider the corresponding restrictions to the isoclinic sub-
quotients. Then, it follows from the construction of Kρ and the fact that ρ ∈ Tb

that when looking at the isoclinic sub-quotients Gi → (G/Kρ)i = Gi/Ki
ρ the induced

structures are indeed well defined isogenies.
Finally, it is clear that, for any i, the Barsotti-Tate group Gi/Ki

ρ is pointwise
isomorphic to Σi, and moreover the isomorphism jm,i induces a trivializations of its
[pm−e]-torsion subgroup. Equivalently, we see that the the quotient abelian variety
belongs to the leaf Cb and that it inherits an Igusa structure of level m− e. �

It is easy to check that, for all ρ ∈ Sb, the morphisms ρ : Jb,m → Jb,m−e are
compatible with the projections among Igusa varieties of different levels m ≥ e =
e1(ρ), and that they give rise to an action of the monoid Sb on the system of Igusa
varieties which extends the action of Γb.
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In a similar way, it is possible to define a σ-semi-linear action of Frobenius on the
Igusa varieties as arising from the Frobenius morphism of the Barsotti-Tate group
Σ, F : Σ → Σ(p), i.e. to define

Frob : Jb,m → Jb,m−1

to be the σ-semi-linear morphism corresponding to the quotient abelian variety
A(p) = A/A[F ] endowed with the induced additional structures. Then, Frob is
simply the absolute Frobenius of Jb,m followed by the projection qb,m,m−1.

Let us now reconsider the above constructions as the level away from p varies.
We reintroduced in our notation the level Up away from p, and write

Jb,Up,m → Cb,Up(0) ⊂ X̄
(b)
Up(0) ⊂ X̄Up(0)

for the Igusa varieties of level Up away from p and level m at p. We already
remarked that, as the level Up varies, the leaves of Oort’s foliation form a system
endowed with an action of the group G(A∞,p) inherited from the action on the
Shimura varieties XUp(0). It follows from the defining universal properties that the
same holds for the Igusa varieties. More precisely, for any b ∈ B(G) and m ≥ 1, we
define an action of the group G(A∞,p) on the Igusa varieties of level m at p (as the
level Up away from p varies) as

∀g ∈ G(A∞,p) : Jb,m,Up → Jb,m,Up

(A, λ, i, µp; jm,1, . . . , jm,k) 7→ (A, λ, i, µp ◦ g; jm,1, . . . , jm,k).

This action is clearly compatible under the projection maps with the action of
G(A∞,p) on the leaves Cb,Up(0). Further more, it commutes with the natural projec-
tions among the Igusa varieties, as the level at p varies, and also with the previously
defined action of Sb.

Thus, we may consider the Igusa varieties Jb,Up,m as a projective system, indexed
by the levels Up,m, endowed with the action of the monoid Sb ×G(A∞,p).

We now focus our attention on the l-adic cohomology with compact supports
of the Igusa varieties, for l 6= p a prime number. As the Igusa varieties form
a projective system endowed with an action of Sb × G(A∞,p), their cohomology
groups naturally form a direct system

Hi
c(Jb, Ql) = lim

−→ Up,m Hi
c(Jb,m,Up , Ql) ∀i

also endowed with an action of the sub-monoid Sb × G(A∞,p) ⊂ Tb × G(A∞,p).
We show that, while this action cannot be extended to an action of Tb ×G(A∞,p)
on the varieties, it is possible to do so on the cohomology groups. Because of the
equality Tb = 〈Sb, p, frB〉, it suffices to prove that the action of p−1, fr−B ∈ Sb on
the cohomology groups of the Igusa varieties is invertible.

Lemma 6. Maintaining the above notations.
(1) For any m ≥ 1, (p−1, 1) ∈ Sb × G(A∞,p) acts on the Igusa varieties as

(p, 1) ◦ qb,m,m−1.
(2) For any m ≥ λ1B, (fr−B , 1) ∈ Sb × G(A∞,p) acts on the Igusa varieties

as qb,m−λ1B,m−B ◦ Frob.

Proof. Part (1) is obvious. Part (2) follows from the definition of slope, i.e. from
the equalities Σi[pλiB ] = Σi[FB ], for all i. �
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Proposition 7. The action of the sub-monoid Sb × G(A∞,p) on the cohomology
groups of the Igusa varieties extends uniquely to an action of the group Tb×G(A∞,p).

Moreover, as representations of Tb×G(A∞,p), the Hi
c(Jb, Ql) are admissible, for

all i ≥ 0 .

Proof. The extendibility of the action follows directly from the previous lemma.
The admissibility of the representations from the equalities

Hi
c(Jb, Ql)Γ

m
b ×Up

= Hi
c(Jb,Up,m, Ql),

where Γm
b is the subgroup of Tb consisting of the isomorphisms of Σ which restrict

to the identity on Σ[pm]. �

5. The geometry of the Newton polygon strata

In the previous section, we introduced the Igusa varieties as certain coverings of
the leaves of Oort’s foliation of the Newton polygon strata of the reduction of the
Shimura varieties. The leaves are obtained by isolating the abelian varieties with
p-divisible part in a prescribed isomorphism class.

On the other hand, one may consider inside a Newton polygon stratum the
isogeny class of a given abelian variety. In [26], Rapoport and Zink associate to each
Newton polygon stratum (i.e. to each b ∈ B(G)) a moduli space Mb of Barsotti-
Tate groups with additional structures whose reduced fiber may be regarded as a
cover of the isogeny classes of the abelian varieties in the stratum.

In this section, we show how these two constructions can be pieced together
to realize the products of the Igusa varieties with the Rapoport-Zink spaces as a
system of covers of the Newton polygon strata, and how the Newton polygon strata
can then be viewed as the quotients of these spaces under the action of the groups
Tb, b ∈ B(G).

More precisely, we construct a system of finite morphisms

πN : Jm,b × M̄n,d
b → X̄(b) ×k F̄p,

indexed by positive integers m,n, d,N (m ≥ d and N ≥ d/δf , where δ ∈ Q is a
numeric invariant of b ∈ B(G)), which are compatible under the projections among
the Igusa varieties and the inclusion among the truncated Rapoport-Zink spaces
M̄n,d

b , and also Tb-invariant and WEv
-equivariant. Moreover, we prove that for

any geometric closed point x of X̄(b) the fibers of πN at x form a Tb-principal ho-
mogeneous space. The machinery developed in [20] enable us to deduce from the
existence of a system of morphisms with these property the existence of a spec-
tral sequence of representations of the Weil group computing the cohomology with
compact supports of the strata X̄

(b)
Up(0) in terms of the cohomology with compact

supports of the corresponding Igusa varieties and Rapoport-Zink spaces and of the
action on them of the group Tb, for all b ∈ B(G) and Up ⊂ G(A∞,p).

We start by recalling the definition of the formal schemeMb over Ẑnr
p = W (F̄p) ⊃

OEv
associated by Rapoport and Zink to a decent isogeny class b ∈ B(G). Let us

recall that an isogeny class b is said to be decent if contains a Barsotti-Tate group
defined over a finite field. In [23] (Cor. 1.5, p. 187) Oort and Zink prove that this
is equivalent to containing a completely slope divisible Barsotti-Tate group. For
convenience, we choose a completely slope divisible Barsotti-Tate group Σ = Σb in
the isogeny class b.
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For any scheme S/Ẑnr
p where p is locally nilpotent, Mb(S) is the set of isomor-

phism classes of Barsotti-Tate groups with additional structures H/S together with
a quasi-isogeny β : Σ×F̄p

S̄ → H ×S S̄ defined over S̄ = Z(p) ⊂ S.
The group Tb naturally acts on the Rapoport-Zink spaceMb by right translations

∀ρ ∈ Tb : (H,β) 7→ (H,β ◦ ρ).

Similarly, one can defined a σ-semi-linear isomorphism of Mb arising from the
Frobenius of Σ

Frob : Mb →Mb

(H,β) 7→ (H,F−1 ◦ β),

which commutes with the action of Tb.
Let us recall that the formal scheme Mb is only locally of finite type. Because of

this, it is technically convenient to focus our attention on certain subspaces of Mb

(which we call truncated Rapoport-Zink spaces) which are of finite type, and which
form a cover of Mb. For any pair of positive integers n, d, we define Mn,d

b ⊂ Mb

as the locus classifying pairs (H,β) such that the quasi-isogenies pnβ and pd−nβ−1

are isogenies (equivalently, such that pnβ is an isogeny whose kernel is killed by
pd). The Mn,d

b are closed subspaces of Mb and, as n, d vary, they form a direct
system under the natural inclusions ib = in,d

n′,d′ , with Mb as a limit. It is clear from
the definition that the truncated Rapoport-Zink spaces are not preserved by the
actions of Tb and Frob, nevertheless one can anyway think of the action of Tb and
Frob on Mb as arising from an action on the direct system. More precisely, for any
ρ ∈ Tb, let n(ρ) and d(ρ) be the smallest integer such that pn(ρ)ρ and pd(ρ)−n(ρ)ρ−1

are isogenies. Then, the morphism ρ : Mb → Mb induces by restriction some
morphisms

ρ : Mn,d
b →Mn+n(ρ),d+d(ρ)

b ∀n, d,

which obviously commute with the natural inclusions. Analogously, by restricting
Frob to Mn,d

b ⊂Mb we obtain some σ-semi-linear morphisms

Frob : Mn,d
b →Mn+1,d+1

b ∀n, d.

Let M̄b (resp. M̄n,d
b ) over F̄p denote the reduced fiber of Mb (resp. Mn,d

b ,
for any n, d). M̄b uniformizes the isogeny classes of the abelian varieties classified
by X̄(b). More precisely, let x be a geometric closed point of X̄(b) and A/F̄p the
corresponding abelian variety. We also assume for simplicity that A[p∞] ' Σ. To
any isomorphism φ : Σ → A[p∞] one can associate a morphism

fx,φ : Mb → X̄(b) ×k F̄p

which maps a point (H,β) to the abelian variety A/φ(ker(pnβ)) (for any n suf-
ficiently large) endowed with the additional structures induced by the ones of A.
The image of fx,φ is the isogeny class of x. It is a simple but important remark
that the restriction of fx,φ to the subscheme M̄n,d

b depends only on the restriction
of the isomorphism φ to the pd-torsion subgroups, for any n, d.

We proceed to construct some morphisms

πN : Jm,b × M̄n,d
b → X̄(b) ×Spec k Spec F̄p, m, n, d,N ∈ N,
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which can be described as piecing together (up to some power of Frobenius) the
above morphisms fx,φ, as x and φ vary. A key ingredient in the construction of the
maps πN is the following observation.

Lemma 8. Let G be a Barsotti-Tate group with additional structures over a k-
scheme S. Assume G has constant isogeny class and is completely slope divisible.
Let (0) ⊂ G1 ⊂ · · · Gk = G denote the slope filtration of G and write Gi for its
slope divisible isoclinic sub-quotient of slope λi, for all i. Let δ = mini=1,...k−1(λi−
λi+1). Then, for any pair of integers d ≥ 0 and r ≥ d/δf there exists a canonical
isomorphism

G(qr)[pd] ' ⊕k
i=1Gi(q

r)
[pd]

compatible with the induced additional structures.

Proof. It follows from the property of complete slope divisibility that, for any d ≥ 0,
the rf -th power of Frobenius of the Barsotti-Tate group underlying G canonically
splits the restriction of the slope filtration to the pd-torsion subgroups, for r ≥ d/δf
(see [20], Lemma 4.1, p. 251). It is easy to check that the corresponding splitting
sections commute with the additional structures of G,Gi and Gi (for all i). �

Proposition 9. For any positive integers m,n, d, N , m ≥ d and N ≥ d/δf , there
exist some morphisms

πN : Jm,b × M̄n,d
b → X̄(b) ×k F̄p

such that
(1) πN = (Frf × 1) ◦ πN ;
(2) πN ◦ qb = πN ;
(3) πN ◦ ib = πN ;
(4) πN ◦ρ×ρ = πN , for any ρ ∈ Sb, and m ≥ d+d(ρ)+e(ρ), N ≥ (d+d(ρ))/δf ;
(5) πN ◦ (Frobf ×Frobf ) = (1× σf ) ◦ πN , for m ≥ d + 1 and N ≥ (d + 1)/δf .

Proof. Let A be the universal abelian variety over Jm,b and jm,i, for i = 1, . . . , k
the Igusa structures on A/Jb,m. By lemma 8 the Igusa structures on A give rise to
an isomorphism

j(N) = ⊕ij
(qN )
m,i |[pd]

: Σ(qN )[pd] = ⊕iΣi(q
N )

[pd] → ⊕iGi(q
N )

[pd] ' G(qN )[pd],

for any d ≤ m, d ≤ Nfδ.
Let (H, β) the universal family over M̄n,d

b . It follows from the definition of M̄n,d
b

that pnβ : Σ → H is an isogeny and ker(pnβ) ⊂ Σ[pd], and thus also pnβ(qN ) :
Σ(qN ) → H(qN ) is an isogeny and ker(pnβ(qN )) ⊂ Σ(qN )[pd].

We define πN : Jm,b × M̄n,d
b → X̄(b) ×k F̄p to be the morphism corresponding

to the abelian variety A/j(N)(ker(pnβ(qN ))), endowed with additional structures
induced by the ones on A and with level structure the orbit of the isomorphism

V ⊗ A∞,p
µp

// V p(A(qN ))
p−n

// V p(A(qN )) // V p( A(qN )

j(N)(ker(pnβ(qN )))
).

As in the proof of proposition 5, in order to show the existence of induced
additional structures on A/j(N)(ker(pnβ(qN ))), we first remark that it is always
possible to define such structures via quasi-isogenies, and that in order to check
that such quasi-isogenies are well defined isogenies it suffices to prove it for their
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restrictions to the p∞-torsion subgroups. Finally, we observe that this holds because
the Barsotti-Tate group H is endowed with additional structures, compatible under
β with the ones on Σ.

It is clear from the construction that the abelian variety A/j(N)(ker(pnβ(pfN )))
and its additional structures depend only on the restrictions of the Igusa varieties
to the pd-torsion subgroups. This is equivalent to part (2) of the statement. Anal-
ogously, it is not hard to check that part (3) also holds.

Parts (4) and (5) are easy consequences of the definition of the action of Sb and
Frob on the product spaces Jb,m × M̄n,d

b , while part (1) follows directly from the
construction and the equality ker(β)(p) = ker(β(p)). �

We now focus our attention on the fibers of the morphisms πN . Let x be a point of
X̄(b)(F̄p), and m,n, d some positive integers with m ≥ d. For any N ≥ N0 ≥ d/δf ,
we consider the fibers over x of the maps πN : Jm,b × M̄n,d

b → X̄(b) ×k F̄p. Using
part (1) of proposition 9, we can identify

π−1
N (FrfNx) = π−1

N0
(FrfN0x).

Moreover, as m varies, the sets π−1
N (FrfNx) form an inverse system under the

projections qb, and the corresponding limits are a direct system under the inclusions
ib, as n, d vary. We call the fiber above x the resulting set

Π−1(x) = lim
←− n,d lim

−→ m π−1
N (FrfNx),

endowed with the topology of direct limit of inverse limits of discrete sets. It follows
from part (4) of proposition 9 that Π−1(x) is also endowed with a continuous action
of Sb, and moreover it is easy to see that this action extends uniquely to a continuous
action of the group Tb = 〈Sb, p, frB〉 (this follows from part (5) and lemma 6).

Let us give an alternative and more explicit description of the fibers Π−1(x), for
all x ∈ X̄(b)(F̄p). Let Jb(F̄p) = lim

←−mJm,b(F̄p), or equivalently

Jb(F̄p) = {(B, λ, i, µ̄p; j)|(B, λ, i, µ̄p) ∈ X̄(b)(F̄p) and j : Σ ' B[p∞]}.

It has a natural topology of inverse limit of discrete sets, which is defined by a basis
of opens consisting of the subsets

Vjm,x = {(B, λ, i, µ̄p; j)|(B, λ, i, µ̄p) = x ∈ X̄(b)(F̄p) and j|[pm] = jm} ⊂ Jb(F̄p),

for all x ∈ X̄(b)(F̄p) and jm : Σ[pm] ' B[pm].
Let us consider the M̄b(F̄p) as endowed with the discrete topology and the

product Jb(F̄p) × M̄b(F̄p) with the product topology. Then, the action of Sb on
Jb(F̄p)× M̄b(F̄p), which arises from the action on the corresponding varieties, can
be explicitly described as

∀ρ ∈ Sb : ((B, λ, i, µ̄p; j), (H,β)) 7→
(
(B/j(ker ρ−1), λ′, i, µ̄p; j ◦ ρ), (H,β ◦ ρ)

)
.

It is clearly that this action is continuous for the product topology, and also that it
has an obvious extension to the sub-monoid of Tb consisting of all quasi-isogenies
whose inverses are isogenies. Further more, in order to extend it to a continuous
action of Tb, it is enough to check that p−1 acts invertibly, and this follows from
the observation(

(B/j(ker p), λ′, i, µ̄p; j ◦ p−1), (H,β ◦ p−1)
)

=
(
(B, λ, i, µ̄p; j), (H,β ◦ p−1)

)
.
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Let us now define a map Π : Jb(F̄p)× M̄b(F̄p) → X̄(b)(F̄p) as

((B, λ, i, µ̄p; j), (H,β)) 7→ (B/j(ker(pnβ)), λ′, i, µ̄′p),

where the additional structures on B/j(ker(pnβ)) are induced by the ones on B
via the isogeny ν : B → B/j(ker(pnβ)), and µ′ = νp−nµ. It is easy to see that the
above map is continuous for the discrete topology on X̄(b)(F̄p), and moreover that
for any x ∈ X̄(b)(F̄p), one can identify Π−1(x) with the fiber of Π above x (not just
as sets but also as topological spaces).

Proposition 10. For any x ∈ X̄(b)(F̄p), its fiber Π−1(x) is a principle homoge-
neous space for the continuous action of Tb.

Proof. Let us first remark that if φ : A → B isogeny between abelian varieties and
A (resp. B) is endowed with additional structures, then if they exist the induced
additional structures on B (resp. A) via φ are unique and moreover they always
exist as structures defined via quasi-isogenies. With this in mind, one can then
apply the same argument used in [20] (Prop. 4.4, p. 259). �

We observe that the previous proposition implies in particular that Π−1(x) is
non-empty, for any x ∈ X̄(b)(F̄p), and thus equivalently that the morphisms πN are
surjective on geometric points, for m,n, d,N large.

Proposition 11. For any positive integers m,n, d, N , m ≥ d and N ≥ d/δf , the
morphism πN : Jm,b × M̄n,d

b → X̄(b) × F̄p is finite.

Proof. First, let us remark that the morphism πN is quasi-finite. Let x be a geo-
metric closed point of X̄(b), and assume π−1

N (x) non empty. Then, any isomorphism
Tb ' Π−1(x) gives rise to a surjection G\K → π−1

N (x), for some compact subset
K ⊂ Tb and open subgroup G ⊂ Γb. This implies, in particular, that π−1

N (x) is
finite.

Knowing that the morphism πN is quasi-finite, in order to conclude it suffices to
show that it also satisfies the Valuative Criterium of Properness. The same proof
used in [20] (Prop. 4.8, p. 266) applies to this case. �

The existence of some morphisms πN : Jm,b × M̄n,d
b → X̄(b) × F̄p with the

properties we described is all we need to apply the constructions and results of
section 5 in [20] to compute the cohomology of the stratum X̄(b) in terms of the
cohomology of the Igusa varieties and the Rapoport-Zink spaces, and of the action
of them of Tb.

We first recall some definitions and notations. We denote by Un,d
b the maximal

open subspaces of Mb contained in Mn,d
b , and by Ūn,d

b their reduced fibers. The
interiors of the truncated Rapoport-Zink spaces form an open cover of M̄ and thus
they can be used to compute its cohomology with compact supports, i.e. for any
sheaf F/M̄b

Ht
c(M̄b,F) = lim

−→ n,d Ht
c(Ū

n,d
b ,F), t ≥ 0.

We write π̇N for the restrictions of the morphisms πN to the subschemes Jb,m ×
Ūn,d

b ⊂ Jb,m × M̄n,d
b and p̄r : Jb,m × Ūn,d

b → M̄b for the projections to the second
factor.
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Let τ 7→ τ̄ = (σf )r(τ) denote the projection WEv
→ Gal(F̄p/k). For any abelian

torsion étale sheaf L over X̄(b)× F̄p, we define an action of the Weil group WEv on
L to be the data of isomorphisms

τ : (1× τ̄)∗L ' L ∀τ ∈ WEv

such that τ ◦ τ ′ = τ ′τ . (This definition is modeled on the natural action of WEv
on

the vanishing cycles of a sheaf over the generic fiber X ×OEv
Ev.) Analogously, we

call an action of the Weil group WEv on a sheaf G over M̄ the data of isomorphisms
τ : (Frobf )r(τ) ∗G ' G, for all τ ∈ WEv

, r(τ) ≥ 0, such that τ ◦ τ ′ = τ ′τ .

Theorem 12. (see [20] 5.11, p.280) For any b ∈ B(G) and Up ⊂ G(A∞,p), let
L be an abelian torsion étale sheaf over X̄(b) × F̄p, with torsion orders prime to
p, endowed with an action of the Weil group WEv

. Then, there exists a WEv
-

equivariant spectral sequence

Ep,q
2 = Hq(Tb, lim−→ m,n,dHc(Jb,m × Ūn,d

b , π̇∗NL)) ⇒ Hp+q
c (X̄(b)

Up(0) × F̄p,L).

We now restrict our focus to the case of lr-torsion sheaves, for l 6= p a prime and
any integer r ≥ 1. We denote by Hr(Tb) the Hecke algebra of Tb with coefficients
in Z/lrZ. In the cases which allow it, one can use the Künneth formula for étale
cohomology with compact supports to rewrite the previous result as follows.

Theorem 13. (see [20], 5.13, p. 283) For any b ∈ B(G), Up ⊂ G(A∞,p), let L
(resp. G) be an étale sheaf of Z/lrZ-modules over X̄(b) × F̄p (resp. M̄), endowed
with an action of the Weil group WEv

.
Suppose there exists a system of WEv

-equivariant isomorphisms of étale sheaves

{π̇∗NL ' p̄r∗G}m,n,d,N,m≥d,N≥d/δf

which are compatible under the natural transaction maps induced by qb, ib and
ρ ∈ Sb.

Then, there exists a WEv -equivariant spectral sequence of Z/lrZ-modules

⊕t+s=q Torp
Hr(Tb)

(
Hs

c (M̄,G), lim
−→ mHt

c(Jb,Up,m, Z/lrZ)
)
⇒ Hp+q

c (X̄(b)
Up(0) × F̄p,L).

It is easy to see that when L (resp. G) is the constant étale sheaf over X̄(b) (resp.
over M̄) associated to Z/lrZ the hypothesis of the previous theorem are satisfied.
We thus deduce the following corollary.

Corollary 14. For any b ∈ B(G), Up ⊂ G(A∞,p). There exists a WEv
-equivariant

spectral sequence of Z/lrZ-modules

⊕t+s=q Torp
Hr(Tb)

(
Hs

c (M̄, Z/lrZ),Ht
c(Jb,Up , Z/lrZ)

)
⇒ Hp+q

c (X̄(b)
Up(0) × F̄p, Z/lrZ),

where we write Ht
c(Jb,Up , Z/lrZ) = lim

−→ mHt
c(Jb,Up,m, Z/lrZ), for all t ≥ 0.

6. Some integral models for spaces with level structure at p

This and the next sections have the ultimate goal of proving that there exists
certain integral models for the Shimura varieties and the Rapoport-Zink spaces
with level structure at p, whose vanishing cycles sheaves satisfy the hypothesis of
theorem 13. The key ingredient of the construction is Katz’s and Mazur’s notion
of full set of sections of a finite flat scheme ([16], section 1.8.2, p. 33).

We construct integral models for the Shimura varieties and the Rapoport-Zink
spaces with level structure at p as some finite covers of the corresponding schemes
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with no level structure at p. Let us remark that our goal is to give integral models
not only of the moduli spaces but also of the action on them of G(A∞) and G(Qp),
respectively.

In order to adapt Katz’s and Mazur’s definition to our context we first introduce
some new notations. Let Λ ⊂ VQp

be a self-dual lattice preserved by the action
of OBQp

. For any integer m ≥ 1, let us consider the lattices Λ ⊂ p−mΛ ⊂ VQp
.

The quotient p−mΛ/Λ is naturally a OBQp
-module endowed with a non degenerate

∗-hermitian alternating pairing induced by the pairing 〈, 〉 on VQp

〈, 〉m : p−mΛ/Λ× p−mΛ/Λ → p−mZp/Zp

(x + Λ, y + Λ) 7→ 〈pmx, y〉,
for all x, y ∈ p−mΛ. As m vary, the groups p−mΛ/Λ form a direct system under
the natural inclusions; we regard its limit V/Λ as an étale Barsotti-Tate group
endowed with the compatible action of OBQp

and polarization arising from the
additional structures on the p−mΛ/Λ, for all m ≥ 1. We identify Λ with its Tate
space. Thus, under the latter identification, any g ∈ G(Qp) may be regarded as a
quasi-self-isogeny of V/Λ commuting with its additional structures.

For any integer m ≥ 1, we define

Km = {g ∈ G(Qp)| g(Λ) ⊂ Λ, gg# ∈ Z×p , g|Λ ≡ 1 mod pmΛ}.

Then, the quotient K0/Km can be identified with a group of OBQp
-equivariant

automorphisms of p−mΛ/Λ preserving the pairing 〈, 〉m up to scalar multiple in
(Z/pmZ)×.

For any level Up away from p and integer m ≥ 0, we define

Up(m) = Up ×Km ⊂ G(A∞).

As Up,m vary, the Up(m) naturally form a direct system of sufficiently small open
compact subgroups of G(A∞), cofinal to the system of all open compact subgroups.

For all U of the form U = Up(m), we define some integral models Xm = XUp(m)

over OEv of the corresponding Shimura varieties.

We first consider the following general situation. Let S be aOEv
-scheme and G/S

a polarized Barsotti-Tate group endowed with a compatible action of OBQp
. For any

integer m ≥ 1, we define a contravariant set-valued functor Sm = S(pmΛ/Λ,G/S)
on the category of S-schemes. To an S-scheme T the functor Sm associates the set
of group morphisms

α : p−mΛ/Λ → G[pm](T )
satisfying the conditions:

(1) {α(x)|x ∈ p−mΛ/Λ} is a full set of sections of G[pm]T /T ;
(2) α is OBQp

-equivariant;
(3) α maps the pairing 〈, 〉 to the `-Weil pairing on G[pm](T ), up to a scalar

multiple in (Z/pmZ)×.

Proposition 15. For any OEv -scheme S, polarized Barsotti-Tate group G/S en-
dowed with a compatible action of OBQp

, and integer m ≥ 1, the contravariant
set-valued functor

Sm = S(pmΛ/Λ,G/S)
is represented by a finite S-scheme.
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Proof. It follows from proposition 1.9.1 of [16] (p. 38) that the functor which
associates to a S-scheme T the set of group morphisms α : p−mΛ/Λ → G[pm](T )
satisfying the condition (1) is represented by a closed subscheme of G[pm]×S · · ·×S

G[pm]. Thus, in order to conclude, it suffices to remark that both conditions (2)
and (3) are closed. �

It follows from the definition that the group K0/Km acts on the space Sm by
composition on the right. It is not hard to see that the spaces Sm form a projective
system indexed by the positive integers m, and that this system can be endowed
with an action of K0 arising from the action of K0 on each quotient Sm via the
projections K0 → K0/Km.

For any level Up ⊂ G(A∞,p) and m ≥ 1, we define

fUp,m : XUp(m) = S(pmΛ/Λ,G/XUp(0)) → XUp(0),

for G = A[p∞] the Barsotti-Tate group associated to the universal abelian variety
over XUp(0). (When there is no ambiguity, we remove the level Up from the nota-
tions and simply write fm : Xm → X .) As both Up,m vary, the schemes XUp(m)

form a projective system which can be endowed with an action of the subgroup
G(A∞,p)×K0 ⊂ G(A∞).

We remark that over the generic fiber X = XUp(0)/Ev the Barsotti-Tate group
G is étale in which case the notion of full set of sections recovers the usual notion
of level structure. Thus we can identify the generic fibers XUp(m) ×OEv

Ev of the
above schemes with the Shimura varieties XUp(m) of the same level. Further more,
under these identifications the action of G(A∞,p)×K0 on the generic fibers of the
schemes XUp(m) agrees with the action of G(A∞) on the Shimura varieties.

Extending the action of G(A∞,p)×K0 on these integral models of the Shimura
varieties to an action of G(A∞) is not possible in general. (It is possible when the
Barsotti-Tate group A[p∞] can replace by a one-dimensional one, as for example
in [10].) To overcome this obstacle we consider a larger class of integral models for
the Shimura varieties on which the action of G(A∞,p) ×K0 extends to the action
of a certain sub-monoid G(A∞)+ of G(A∞), with the property that G(A∞) =
〈G(A∞)+, p〉.

We return to the general situation of a OEv -scheme S and a polarized Barsotti-
Tate group G/S endowed with a compatible action of OBQp

. Maintaining the pre-
vious notations, we write Sm = S(pmΛ/Λ,G/S), for all m ≥ 1, and

α : pmΛ/Λ → G[pm](Sm)

for the universal full set of sections of G[pm] over Sm.
Let G(Qp)+ denote the sub-monoid of the inverses of self-isogenies of V/Λ,

G(Qp)+ = {g ∈ G(Qp)| g−1(Λ) ⊂ Λ} ⊂ G(Qp).

For any g ∈ G(Qp)+ and integer m ≥ e = e(g) (i.e. such that ker(g−1) ⊂ p−mΛ/Λ),
we define

Sm,g = S(p−mΛ/Λ,G/S, g) → Sm

as the universal space for the existence of a finite flat subgroup E ⊂ G[pm] of order
pdeg(g−1) such that

(1) E is self-dual under the `-Weil pairing on G[pm] and OBQp
-invariant;

(2) α(ker g−1) ⊂ E(Sm,g);
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(3) the induced morphism ᾱ : p−m+eΛ/Λ → (G/E)[pm−e](Sm,g) is a full set of
sections of (G/E)[pm−e]/Sm,g.

The scheme Sm,g → Sm can be realized as a closed subscheme of the Grassmanian
variety classifying all finite flat subschemes of G[pm]/Sm of order pdeg(g−1).

Proposition 16. (see [20], Prop. 7.3, p. 298) Maintaining the above notations.
(1) The morphism Sm,g → Sm is proper and induces an isomorphism on the

generic fibers over Ev.
(2) For g ∈ K0 ⊂ G(Qp)+, Sm,g = Sm.
(3) For n ≤ m, Sm,p−n = Sm.
(4) For γ ∈ K0, g ∈ G(Qp)+, there are natural isomorphisms

γ : Sm,g → Sm,γ−1◦g

compatible with the action of γ on Sm.

Proof. The arguments used in [20] apply also in this context. �

For any level U = Up(m) and g ∈ G(Qp)+, e(g) ≤ m, we write

Xm,g = XUp(m),g = S(pmΛ/Λ,G/XUp(0), g),

and fm,g = fUp,m,g : XUp(m),g → XUp(0). Thus the fm,g are proper morphisms
which factor via fm : Xm → X . Let U = Up(m) be any level, then, for all
g ∈ G(Qp)+ such that e(g) ≤ m, the schemes XUp(m),g/OEv

can be regarded as
models for the Shimura variety of level U .

Proposition 17. Let Up(m) ⊂ G(A∞), g ∈ G(Qp)+, m ≥ e = e(g). There exists
a morphism

g : XUp(m),g → XUp(m−e)

associated to data of the abelian variety A/E, endowed with the additional structures
induced by the ones of A, and of the full set of sections ᾱ of (A/E)[pm−e].

Further more,
(1) g is proper;
(2) the generic fiber of g can be identify with the action of g on the Shimura

varieties;
(3) for n ≤ m, p−n : XUp(m),p−n = XUp(m) → XUp(m−n) is the natural projec-

tion;
(4) as the level Up(m) varies, the morphisms associated to g ∈ G(Qp)+ are

compatible under the natural projections.

Proof. It follows from the defining property of E that the abelian variety A/E
satisfies the properties required to define a morphism g : XUp(m),g → XUp(m−e).
The proof of the listed properties of g is the same as in [20] (Prop. 7.3, p. 298). �

Analogously, by considering the universal Barsotti-Tate group H over Mb, one
can construct some formal Ẑnr

p -schemes Mb,m,g together with some morphisms
φb,m,g : Mb,m,g → Mb, for g ∈ G(Qp)+ and m ≥ e(g), whose associated rigid
analytic spaces can be identify with the Rapoport-Zink spaces Mrig

b,Km
/Qnr

p , for all
m ≥ 0, and which are endowed with an action of G(Qp)+ extending the action on
the generic fibers.
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7. Formal completions along the Newton polygon strata

Let b ∈ B(G), and fix a level U = Up(M) = Up × KM ⊂ G(A∞,p) × G(Qp),
M ≥ 0. For any g ∈ G(Qp)+, e(g) ≤ M , we denote by XUp(M),g the formal
completion of XUp(M),g along its fiber mod p.

Let us suppose for a moment that it were possible to define some formal schemes
Jb,Up,m over Ẑnr

p , lifting the Igusa varieties to characteristic zero, together with a
system of morphisms of formal schemes

Jb,Up,m ×Mn,d
b → XUp(0) × Ẑnr

p

lifting the morphisms πN defined in the section 5. Then, to study the pull-backs
of the vanishing cycle sheaves of the Shimura varieties and of the Rapoport-Zink
spaces with structure of level M at p would be equivalent to studying the pull-backs
over Jb,m ×Mn,d of the formal schemes XUp(M),g → XUp(0) and Mb,M,g → Mb,
respectively.

We start by constructing some formal liftings of the Igusa varieties over Ẑnr
p .

Let Cb,Up(0) denote the completion of the Shimura variety of level Up along the leaf
Cb,Up(0) (thus Cb,Up(0) ⊂ XUp(0),g). Then, a theorem of Grothendieck (see [8], Exp.
I, 8.4) establishes that the natural functor from the category of finite étale covers of
the formal scheme Cb,Up(0)/Ẑnr

p to the category of finite étale covers of Cb,Up(0)/F̄p,
which to any cover S → Cb,Up(0) associates the reduced fiber S = S ×Ẑnr

p
F̄p, is an

equivalence of categories.
For any m ≥ 1, we define Jb,Up,m to be the finite étale cover of Cb,Up(0) corre-

sponding to Jb,Up,m → Cb,Up(0), under Grothendieck’s equivalence. Thus, as the
levels Up,m vary, the formal schemes Jb,Up,m form a projective system endowed
with an action of G(A∞,p)×Γb, extending the action on the reduced fibers. By defi-
nition, Jb,Up,m is a smooth formal scheme over Ẑnr

p whose reduced fiber is the Igusa
variety Jb,Up,m/k. (The smoothness of the formal schemes Jb,Up,m is important for
our constructions.)

Before investigating the possibility of lifting the morphisms πN , for this choice of
formal liftings of the Igusa varieties, we replace the πN with some other morphisms
πN (1), also compatible with the transaction maps among the product of Igusa
varieties and truncated Rapoport-Zink spaces and with the action of Sb on them.
The πN (1) differ from the morphisms πN by some purely inseparable finite maps,
i.e. πN (1) ◦ (1 × φN ) = πN for φN a purely inseparable finite endomorphism of
M̄b. Because of the latter property, it is possible to reformulate theorems 12 and
13 in terms of the πN (1) in place of the πN . On the other hand, the advantage of
working with the new morphism πN (1) comes from the property

πN (1)∗G[pM ] ' p̄r∗H[pM ],

for any m,N sufficiently large with respect to M .
Let Σ = Σb/F̄p ⊃ k be our choice of a completely slope divisible Barsotti-Tate

group with additional structures in the isogeny class determined by b ∈ B(G). Let
λi denote the slopes of Σ, then we recall that there exists a positive integer B (f |B)
such that

ν = ⊕iF
BpλiB : Σ → Σ(pB)

is an isomorphism commuting with the additional structures on the Barsotti-Tate
groups. To the isomorphism ν : Σ ' Σ(pB) corresponds a purely inseparable finite
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map
Υ : M̄b → M̄b

defined as (H,β) 7→ (H(pB), β(pB) ◦ ν).
Let m,n, d,N be some positive integers such that m ≥ d, N ≥ d/δf , and consider

the scheme Jb,m × M̄n,d
b /F̄p. As in the proof of proposition 9 we denote by

j(N) : Σ(qN )[pd] → G(qN )[pd]

the isomorphism of truncated Barsotti-Tate groups with additional structures in-
duced by the Igusa structure on the universal Barsotti-Tate group G = A[p∞]/Jb,m.
We also write (H, β) for the universal family over M̄n,d

b .
For all N such that N ≡ 0 mod (B/f), we define

πN (1) : Jb,m × M̄n,d
b → X̄(b) ×k F̄p

to be the morphism corresponding to the abelian variety A/j(N)(νNf/B(ker pnβ)),
endowed with the additional structures induced by the ones on A via the projection
A → A/j(N)(νNf/B(ker pnβ)), and with level structure p−nµp.

It follows from the definition that

πN (1)(1×ΥNf/B) = πN

and that πN (1) commutes with the morphisms qb×1, 1×ib and with the action of Sb.
Moreover, let us fix an integer M ≥ 0 and assume m ≥ d+M and N ≥ (d+M)/δf .
Then, the isomorphism j(N) canonically extends to an isomorphism Σ(qN )[pd+M ] '
G(qN )[pd+M ] and this induces an isomorphism between the pM -torsion subgroups of
A/j(N)(νNf/B(ker pnβ)) and H, which is compatible with the induced additional
structures. Equivalently, there exists a canonical isomorphism

πN (1)∗G[pM ] ' p̄r∗H[pM ].

We show that it is possible to étale locally lift the morphisms πN (1) to charac-
teristic zero, and that moreover the morphisms πN (1) also extend to any subscheme
of Jb,Up,m ×Mn,d

b cut by a power of the ideal of definition. Further more, in both
cases, it is possible to choose these extensions of πN (1) such that the corresponding
pullback of XUp(M),g over Jb,Up,m ×Mn,d

b is isomorphic to the pullback of Mb,M,g

by the projection Jb,Up,m ×Mn,d
b →Mb, for any positive integers m,n, d.

Let t be a positive integer. For any formal scheme Y/Ẑnr
p , we choose an ideal of

definition I, p ∈ I, and denote by Y (t) the Ẑnr
p /(pt)-scheme cut by the t-th power

of I inside Y . Analogously, for any morphisms of Ẑnr
p -formal schemes f : Y → Z,

we write f(t) : Y (t) → Z(t) for the morphisms of Ẑnr
p /(pt)-schemes induced by the

restriction of f to Y (t).

Proposition 18. Let t ≥ 1 be an integer. For any m,n, d,N such that m ≥ d+t/2,
N ≥ (d + t/2)/δf and N ≡ 0 mod (B/f), there exist some morphisms

πN (t) : (Jb,m ×Mn,d
b )(t) → (X×W (k) Ẑnr

p )(t)

compatible with the projection among formal Igusa varieties and with the inclusion
among truncated Rapoport-Zink spaces such that

(1) (πN (t))(t− 1) = πN (t− 1);
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(2) there exists an isomorphism

πN (t)∗G[p[t/2]] ' pr(t)∗H[p[t/2]]

compatible with the induced additional structures.

Proof. We remark that it follows from Serre-Tate theorem that defining some mor-
phisms πN (t) lifting πN (1) is equivalent to defining a Barsotti-Tate group with
additional structures lifting πN (1)∗G over (Jb,m ×Mn,d

b )(t).
For the moment we focus our attention on the underlying Barsotti-Tate groups.

A theorem of Grothendieck (see [12], Thm. 4.4, p. 171 and Cor. 4.7, p. 178) shows
that any deformation of the Barsotti-Tate group πN (1)∗G/(Jb,m×Mn,d

b )(1) defined
over (Jb,m ×Mn,d

b )(t) is uniquely determined by its [p[t/2]]-torsion subgroup and
moreover any deformation of its truncation πN (1)∗G[p[t/2]] extends (uniquely) to a
deformation of the entire Barsotti-Tate group.

Under the assumptions m ≥ d + t/2 and N ≥ (d + t/2)/δf , there exists an
isomorphism

πN (1)∗G[p[t/2]] ' pr(1)∗H[p[t/2]],

and moreover there is a canonical deformation of pr(1)∗H[p[t/2]] defined over (Jb,m×
Mn,d

b )(t), namely pr(t)∗H[p[t/2]].
Thus, there exists a unique deformation Ĝ/(Jb,m×Mn,d

b )(t) of the Barsotti-Tate
group underlying πN (1)∗G, which satisfy the condition Ĝ[p[t/2]] ' pr(t)∗H[p[t/2]].
We show that Ĝ can be endowed with additional structures lifting the ones on
πN (1)∗G.

A theorem of Drinfeld ([14], Lemma 1.1.3, part 3) shows that there exist unique
quasi-isogenies on Ĝ which lift the quasi-polarization and the action of OBQp

on
πN (1)∗G. Thus, it suffices to prove that these quasi-isogenies are indeed well-defined
isogenies. This is a property which may be checked on their restrictions to Ĝ[p[t/2]].
The existence of an isomorphism Ĝ[p[t/2]] ' pr(t)∗H[p[t/2]] lifting πN (1)∗G[p[t/2]] '
pr(1)∗H[p[t/2]], implies that the truncated Barsotti-Tate group Ĝ[p[t/2]] can be en-
dowed with additional structures extending the ones on πN (1)∗G[p[t/2]]. By unique-
ness these have to agree with the restrictions of the quasi-isogenies on Ĝ (lifting the
additional structures of πN (1)∗G), which are therefore well-defined morphisms.

Finally, it follows immediately from the construction that the morphisms πN (t)
satisfy properties (1) and (2) of the statement. �

Corollary 19. Let t be positive integer. For any M ≥ 1 and g ∈ G(Qp)+ such
that e(g) ≤ M ≤ t/2, there exists a system of isomorphisms

XM,g ×X×Ẑnr
p ,πN (t) (Jb,m ×Mn,d

b )(t) 'Mb,M,g ×Mb,pr(t) (Jb,m ×Mn,d
b )(t),

indexed by all m,n, d,N such that m ≥ d + t/2, N ≥ (d + t/2)/δf , N ≡ 0
mod (B/f), which are compatible under the natural transaction maps and com-
mute with the action of G(Qp)+, as M, g vary.

Proof. The corollary follows from the existence of compatible isomorphisms

πN (t)∗G[pM ] ' pr(t)∗H[pM ]

over (Jb,m ×Mn,d
b )(t), for all m,n, d,N . �
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Corollary 20. Maintaining the above notations. For any m,n, d, t as above, there
exists an open cover V = Vm,n,d of (Jb,m ×Mn,d

b ) such that for any V ∈ V there
exists a morphisms

πN [t, V ] : V → X× Ẑnr
p

such that πN [t, V ](t) = πN (t)|V and also

XM,g ×X×Ẑnr
p ,πN [t,V ] V 'Mb,M,g ×Mb,pr|V V,

for all M, g, e(g) ≤ M ≤ t/2, compatibly with the action of G(Qp)+.
Moreover, the πN [t, V ] are formally smooth.

Proof. The existence of morphisms πN [t, V ] as in the statement is equivalent to the
existence of a Barsotti-Tate group Ĝ/V lifting πN (t)∗|V G and such that Ĝ[p[t/2]] '
pr∗|VH[p[t/2]]. The smoothness of the Shimura varieties X = XUp(0)/OEv

implies
that there are no local obstructions to these deformations.

In order to prove that the morphisms πN [t, V ] are formally smooth, it is enough
to show that the morphisms

p1 × πN [t, V ] : V → Jb,m × X× Ẑnr
p ,

where p1 : V → Jb,m is the projection on the first factor, are étale. Property (2) of
proposition 18 implies that the restriction (p1×πN [t, V ])(t) = p1(t)×πN (t) induces
isomorphisms on the completed local rings, and this suffices to conclude. �

The existence of a system of morphisms πN [t, V ] with the properties listed in
proposition 20 enable us to apply the constructions of section 7.4 in [20] to deduce
that the push-forwards of the vanishing cycles of the formal schemes XM,g and
Mb,M,g, for all M, g, satisfy the hypothesis of theorem 13. More precisely, one can
prove the following statement (cfr. [20], Thm. 7.13, p. 313).

Proposition 21. Let Up be a level away from p and b ∈ B(G).
For any M ≥ 1 and g ∈ G(Qp)+, there exist a system of quasi-isomorphisms of

complexes

πN (1)∗RΨηR(fM,g)∗(Z/lrZ) ' p̄r∗RΨηR(φb,M,g)∗(Z/lrZ) ∀m,n, d,N,

compatible with the action of WEv
× Tb.

Moreover, they are also compatible with the action of G(Qp)+, as M, g vary.

The main ingredient behind this result is a theorem of Berkovich’s which enable
us to use the equalities πN [t, V ](t) = πN (t)|V to show that the morphisms

πN [t, V ]∗ : πN (1)∗RΨηR(fM,g)∗(Z/lrZ)|V → RΨηR(1× φb,M,g)∗(Z/lrZ)|V

glue together, as V varies in V, to a morphism ζ over Jb,m × Mn,d
b , for any

m,n, d. Further more, the morphisms πN [t, V ]∗ (and thus the resulting mor-
phism ζ)) are isomorphisms. This follows from the fact that the formal schemes
XM,g ×X×Ẑnr

p ,πN [t,V ] V and Mb,M,g ×Mb,pr|V V, are isomorphic over V , for all M, g,
and that the morphisms πN [t, V ] are smooth.

On the other hand, the projections pr : Jb,m ×Mn,d
b,M,g →Mb,M,g induce some

morphisms

pr∗ : p̄r∗RΨηR(φb,M,g)∗(Z/lrZ) → RΨηR(1× φb,M,g)∗(Z/lrZ),

which are also isomorphisms since the projections pr are smooth (because the lift-
ings Jb,m of the Igusa varieties are formally smooth).
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Finally, it follows from the constructions that the corresponding isomorphisms

πN (1)∗RΨηR(fM,g)∗(Z/lrZ) ' p̄r∗RΨηR(φb,M,g)∗(Z/lrZ)

form a system, as m,n, d,N vary, which is compatible with the action of WEv
×Tb;

and also they commute with the action of G(Qp)+, as M and g vary.

8. A final formula for proper Shimura varieties

In this last section, we focus our attention on the Shimura varieties in our class
which are proper. E.g, in [18] (p. 392), Kottwitz shows that PEL type Shimura
varieties attached to some data (B, ∗, V, 〈, 〉, h) are proper if V is a simple B-module.

In the case of proper Shimura varieties, the theory of vanishing cycles enable us to
deduce from the previous results regarding the geometry in positive characteristic
and, in the case of bad reduction, the vanishing cycles sheaves of the Shimura
varieties a formula which describes their l-adic cohomology in terms of the l-adic
cohomology of the corresponding Rapoport-Zink spaces and Igusa varieties.

For expository reasons, we choose to formulate the main theorem of this section
as an equality in the Grothendieck group of the representations attached to the
l-adic cohomology groups. We prefer this over a statement in terms of quasi-
isomorphisms in the derived category, even if the existence of such a compatible
system of quasi-isomorphisms (which is established in the proof) is a stronger result
than the theorem as stated. Further more, we should remark that the underlying
quasi-isomorphisms exist also for Zl-coefficients and Z/lrZ-coefficients (this is also
established in our proof), while the corresponding equalities do not make sense in
the pertinent Grothendieck’s groups as the associated representations are not (at
least not a priori) admissible.

We denote by D the dimension of the Shimura varieties.

Theorem 22. There is an equality of virtual representations of the group G(A∞)×
WEv ∑

t≥0

(−1)tlim
−→ U⊂G(A∞) Ht(XU ×Ev Ēv, Ql) =

=
∑

b∈B(G)

∑
i,j,k≥0

(−1)i+j+klim
−→ K⊂G(Qp) E i,j,k

b,K ,

where for all b ∈ B(G) and i, j, k ≥ 0 we write

E i,j,k
b,K = ExtiTb−smooth(Hj

c (Mrig
b,K ×Enr

v
Ēv, Ql(−D)),Hk

c (Jb, Ql)).

In proposition 21 we established that the vanishing cycles sheaves, associated to
Shimura varieties and Rapoport-Zink spaces with level structure at p, satisfy the
hypothesis of theorem 13. A formal argument combines the corresponding results,
as the level at p varies, in the previous formula. For a detailed proof of theorem
22, we refer to section 8 in [20]. Here we simply outline the main steps.

Let us first focus on the term on the left hand side of the above formula. We
fix a level U = Up(M) ⊂ G(A∞). Then, for each integral model XUp,M,g of the
Shimura varieties XU , i.e. for each g ∈ G(Qp)+ such that e(g) ≤ M , there is a
quasi-isomorphism of complexes in the derived category

RΓ(XU ×Ev
Ēv, Z/lrZ) ' RΓ(X̄Up,M,g ×k k̄, RΨη(Z/lrZ)).

As we let U, g vary, the above complexes form two systems, each one endowed
with an action of G(A∞)×WEv

, and these actions are compatible under the above
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quasi-isomorphisms. (Let us remark that a priori the system on right hand side
is only endowed with an action of the sub-monoid G(A∞,p) × G(Qp)+ × WEv ⊂
G(A∞)×WEv . It is by observing that the above quasi-isomorphisms are equivariant
for the actions on the two sides and that on the left hand side the action extends
to an action of the whole group that we are able conclude.)

On the other hand, there exist natural quasi-isomorphisms

RΓ(X̄Up,M,g ×k k̄, RΨη(Z/lrZ)) ' RΓ(X̄Up(0) ×k k̄, RΨηR(fM,g)∗(Z/lrZ)),

also compatible with the action of G(A∞)×WEv
, as Up,M, g vary.

We thus may focus our attention on the latter complexes. By iteratively applying
the Mayer-Vietoris long exact sequence for an open subscheme (see [7], Theorem
I.8.7(3)) to the complements of the closed strata, one can show that the New-
ton polygon stratification of the reductions of the Shimura varieties give rise to
sequences of exact triangles in the derived category, which relates the complexes
RΓ(X̄Up(0) ×k k̄, RΨηR(fM,g)∗(Z/lrZ)) to the complexes

RΓc(X̄
(b)
Up(0) ×k k̄, RΨηR(fM,g)∗(Z/lrZ)|X̄(b)

Up(0)
) ∀b ∈ B(G),

for all Up,M, g, and which are equivariant for the action of G(A∞) × WEv , as
Up,M, g vary. Thus, we can reduced ourself to consider the latter complexes for
each b ∈ B(G) separately.

Before proceeding let us observe that, for g = 1, the above constructions in the
derived category translates into an equality of virtual representations of G(A∞,p)×
K0 ×WEv

⊂ G(A∞)×WEv∑
t≥0

(−1)tlim
−→ U Ht(XU ×Ev

Ēv, Ql) =

=
∑

b∈B(G)

∑
s,p,q≥0

(−1)s+p+qlim
−→ Up,M Hs

c (X̄(b)
Up(0) ×k k̄, RqΨηRp(fM )∗(Ql)).

We remark that the right hand side does not make sense in the Grothendieck group
of G(A∞)×WEv

, although the corresponding complex in the derived category can
be endowed with an action of G(A∞)×WEv .

For simplifying the exposition, we reduce our discussion here to the case g = 1
and speak in terms of equalities of virtual representations of G(A∞,p)×K0×WEv

.
This approach proves the formula of theorem 22 when restricted the Grothendieck
group of G(A∞,p)×K0 ×WEv

. In order to prove theorem 22, one should consider
the corresponding quasi-isomorphisms in the derived category, as both the level
Up(M) and g vary.

For any b ∈ B(G), we consider∑
i,j,k≥0

(−1)i+j+klim
−→ M ExtiTb−smooth(Hj

c (Mrig
b,KM

×Enr
v

Ēv, Ql(−D)),Hk
c (Jb, Ql)).

A first step is to prove that these are well defined elements in the Grothendieck
group of G(A∞)×WEv

(see section 4.3 of [6]).
Then, for each b ∈ B(G), we compare the above representation with∑

s,p,q≥0

(−1)s+p+qlim
−→ Up,M Hs

c (X̄(b)
Up(0), R

qΨηRp(fM )∗(Ql)).

For any level U = Up(M), the spectral sequence of theorem 13, applied to the
vanishing cycles sheaves, translates into an equality between the U -invariants of the
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virtual representations. The fact that the Tor-groups appearing in the statement
of theorem 13 are substituted in the final formula by Ext-groups reflects the fact
that the cohomology groups with compact supports of the reduced fiber of the
Rapoport-Zink spaces with coefficient in the vanishing cycles sheaves compute not
the cohomology groups with compact supports of the corresponding rigid analytic
spaces, but its contragradient dual, up to Tate twist (see Theorem 90 in [20]).
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