
A COMPACTIFICATION OF IGUSA VARIETIES

ELENA MANTOVAN

Abstract. We investigate the notion of Igusa level structure for a one-dimen-

sional Barsotti-Tate group over a scheme X of positive characteristic and com-

pare it to Drinfeld’s notion of level structure. In particular, we show how the
geometry of the Igusa covers of X is useful for studying the geometry of its

Drinfeld covers (e.g. connected and smooth components, singularities).

Our results apply in particular to the study of the Shimura varieties consid-
ered in [3]. In this context, they are higher dimensional analogues of the clas-

sical work of Igusa for modular curves and of the work of Carayol for Shimura

curves. In the case when the Barsotti-Tate group has constant p-rank, this
approach was carried-out by Harris and Taylor in [3].
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1. Introduction

In the theory of modular curves, an important role is played by Igusa curves
([4]). These are moduli spaces of elliptic curves in positive characteristic p which
can be identified with the smooth components of the reduction modulo p of modular
curves. As schemes, they naturally arise as smooth compactifications of finite étale
Galois covers of the ordinary loci of the reduction of modular curves of level prime
to p.
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This classical approach was extended by Carayol ([1]) to study the bad reduction
of Shimura curves, and later by Harris and Taylor ([3]) to the context of some
simple Shimura varieties of (PEL)-type. (PEL)-type Shimura varieties arise as
moduli spaces of polarized abelian varieties endowed with additional structures.
In [3], Harris and Taylor isolate some simple Shimura varieties whose reduction
modulo a chosen prime w of positive characteristic could successfully be studied
via higher-dimensional analogues of Igusa curves. Their key assumption is that the
deformation theory of the abelian varieties classified by the Shimura varieties is
controlled by one-dimensional Barsotti-Tate groups. As the additional structures
on the abelian varieties induce additional structures on the associated Barsotti-
Tate groups, these are endowed with a compatible action of the ring of integers
OK of a local field K/Qp (and are accordingly called compatible Barsotti-Tate
OK-modules).

In this higher-dimensional context, the classical stratification of the reduction
of modular curves into ordinary locus and supersingular points is replaced by the
p-rank stratification of the reduction of Shimura varieties, whose strata are defined
as the locally closed reduced subschemes where the p-rank of the p-divisible part
of the abelian varieties is constant. Following classical Igusa theory, Harris and
Taylor formulate some new Igusa moduli problems in terms of level structure on
the étale part of the pertinent Barsotti-Tate OK-modules . These are representable
when restricted to the p-rank strata of the reduction of a Shimura variety of level
prime to w , and moreover finite étale and Galois (thus, in particular, also smooth).
Further more, each p-rank stratum of a Shimura variety with bad reduction at w
is the disjoint union of some distinguished smooth subvarieties (not necessarily
connected), each isomorphic (up to a inseparable map) to the Igusa variety of the
same level over the corresponding p-rank stratum of a certain Shimura variety with
good reduction. The explanation of how these smooth subvarieties piece together
inside the bad reduction of the Shimura variety remains unaddressed.

In this paper we provide an answer to this question, by introducing a notion
of Igusa level structure which does not require constant p-rank. This allows us
to extend the Igusa covers over the ordinary stratum (i.e. the maximal p-rank
stratum) to the whole Shimura variety. We prove that these compactified Igusa
covers are finite flat smooth covers over the underlying Shimura variety with good
reduction. Further more, in the cases of bad reduction, we show that each smooth
component of the Shimura varieties is isomorphic (up to an inseparable map) to the
corresponding Igusa variety. An explicit description of the intersections in terms of
the local coordinates at each point shows that these intersections are in general not
transversal, not even reduced. These results give an immediate understanding of the
number of geometrically connected components of the Shimura varieties in positive
characteristic. In the last section, we extend our analysis to the geometrically
connected components of the Shimura varieties in characteristic zero. In particular,
we show that the number of geometrically connected components of (the generic
fibers of) the Shimura varieties is independent of the level at w.

In an attempt to maintain notations and exposition as simple and self-contained
as possible, we take an “axiomatic approach” to the above questions and reformulate
them in a general context, for a scheme X of characteristic p and a one-dimensional
compatible Barsotti-Tate OK-module G over X. In this context, we introduce
the classical notion of Drinfeld covers and a generalization of Harris’ and Taylor’s
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notion of Igusa covers, and explain how the Igusa covers can be used to describe
the geometry of the Drinfeld covers. The connection with the Shimura varieties
studied in [3] is made explicit in the last section.

The author is very grateful to Richard Taylor and Brian Conrad for their help
with all the phases of this project, and to Ben Moonen for his useful comments on
an early version of this paper.

2. Preliminaries

We provide a short overview of the theory of one-dimensional Barsotti-Tate OK-
modules , for OK the ring of integers of a p-adic local field K, following [7],[2]. We
exclusively focus on those aspects of the theory which are relevant for this paper.

2.1. Barsotti-Tate OK-modules. Let K be a finite extension of Qp. We denote
by OK the ring of integers of K, by PK its prime ideal and by π ∈ PK a uniformizer
of OK . We write F = OK/PK for the residue field of OK , q = pf for the cardinality
of F. Finally, let K̂nr be the maximal unramified extension of K, OK̂nr its ring
of integers and k its residue field. In the following, for any F-scheme Y , we write
F = FY : Y → Y for its q-Frobenius.

Given an integer m ≥ 1, a finite flat OK/Pm
K -module over a scheme S is a finite

flat group scheme G/S, endowed with a faithful action of OK/Pm
K . A Barsotti-

Tate OK-module over a scheme S is a Barsotti-Tate group H/S, together with an
embedding OK ↪→ End (H). In the following, all the Barsotti-Tate OK-modules
are assumed compatible and one-dimensional (see [3], p. 59 for a definition).

2.1.1. By combining the classical theory of Barsotti-Tate groups ([7]) with Drin-
feld’s theory of elliptic modules ([2], by an elliptic modules we mean a formal
one-dimensional Barsotti-Tate OK-module ), one obtains the following classifica-
tion.

Proposition 1. (1) For any g ≥ 1 there is a unique one-dimensional com-
patible formal Barsotti-Tate OK-module ΣK,g over k of height g.

(2) Every one-dimensional compatible Barsotti-Tate OK-module over k is of
the form ΣK,g × (K/OK)h, for some g and h (the integer h is called the
p-rank of the Barsotti-Tate OK-module ).

2.1.2. Let H/S be a Barsotti-Tate OK-module over a locally noetherian OK-scheme
S where p is locally nilpotent. We regard the p-rank of H as a function on the closed
points of S. It is a result of Messing ([7]) that the p-rank is a lower semicontinuous
function. In particular, there exists a stratification of the reduced fiber of S, by
closed reduced subschemes,

0 ⊂ S[0] ⊂ · · · ⊂ S[h] ⊂ · · · ⊂ Sred

(which is called the p-rank stratification of S, associated with H) such that over each
open stratum S(h) = S[h] − S[h−1] the Barsotti-Tate OK-module H has constant
p-rank equal to h. Further more, over each S(h) there exists an exact sequence of
Barsotti-Tate OK-modules

0 → H0 → H → Het → 0

where H0 is formal and Het is ind-étale of height h (see [3], Lemma II.1.1, pp.
60-62, and Corollary II.1.2, p. 62).
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2.1.3. Let H0/k be a Barsotti-Tate OK-module . By a deformation of H0 to a local
ring A, with residue field k, we mean a pair (H, j) where H/Spec A is a compatible
Barsotti-Tate OK-module and j : H0 → H ×A k an isomorphism of Barsotti-Tate
OK-modules. By the deformation functor of H0 we mean the set-valued functor
from artinian local OK-algebras with residue field k, which sends an algebra A to
the set of isomorphism classes of deformations of H0 over A,

It is a result of Drinfeld that the deformation functor of ΣK,g is pro-represented
by a complete noetherian local ring Rg = RK,g with residue field k,

RK,g ' OK̂nr [[T1, . . . , Tg−1]]

([2], Proposition 4.2, pp. 570-572). We write (Σ̃K,g, j̃)) for the universal deforma-
tion of ΣK,g) over RK,g. Then, the deformation functor of Hg,h = ΣK,g×(K/OK)h

is represented by the formal RK,g-scheme Hom (THg,h, Σ̃K,g), which is formally
smooth of dimension h over RK,g (by THg,h we denote the Tate module of Hg,h)
(see [2], Proposition 4.5, p. 547, and [3], p. 64). We write Rg,h for the RK,g-algebra
pro-representing the above functor and (Hg,h, j̃) for the universal deformation of
Hg,h over Rg,h.

2.2. Drinfeld level structure. In [2] Drinfeld introduces a notion of level struc-
ture for elliptic modules; in [3], Harris and Taylor extend this notion to the context
of Barsotti-Tate OK-modules . Their definition is based on Katz’s and Mazur’s
notion of a full set of sections for a finite flat commutative group-scheme. A proof
of the equivalence between Drinfeld’s original definition and Katz’s and Mazur’s
one can be found in [3], Corollary II.2.3, pp. 79-80.

2.2.1. Let S be a scheme and Z a finite flat S-scheme of finite presentation and
rank N ≥ 1. By definition, a full set of sections of Z/S is a set of N points (not
necessarily distinct) P1, . . . PN ∈ Z(S) such that for every affine S-scheme Spec R

and for every f ∈ B = H0(ZR,O), det (T − f) =
∏N

i=1(T − f(Pi)) ∈ R[T ] ([9],
section 1.8.2, p.33). In the case when Z is a S-group scheme, for A a finite abelian
abstract group of order equal to the rank of Z, Katz and Mazur also define the
notion of an A-generator of Z/S, as the datum of a group morphism φ : A → Z(S)
such that the set of points {φ(a) | a ∈ A} is a full set of sections of Z/S ([9], section
1.10.5, p. 44).

Definition 2. Let G be a finite flat OK/Pm
K -module, of rank qmn, over a scheme

S. A Drinfeld structure of G/S is a morphism of OK/Pm
K -modules

α : (P−m
K /OK)n → G(S)

such that α is a (P−m
K /OK)n-generator of G/S.

Let H/S be a compatible Barsotti-Tate OK-module of constant height n over
a scheme S. A Drinfeld structure of level m on H/S is a Drinfeld structure on
H[Pm

K ]/S (see [3], Section II.2, p. 73.)

In the following, we also regard a Drinfeld structure on G/S as a morphism of
S-groups schemes α : (P−m

K /OK)
n

S
→ G.

It follows from Proposition 1.9.1 in [9] (p. 38) that the set-valued functor on
S-schemes, which maps a scheme T/S to the sets of Drinfeld structures of G/S is
represented by a finite S-scheme. We call the representing S-scheme the Drinfeld
cover of S associated with G. For G = H[Pm

K ] and H/S a Barsotti-Tate OK-module
, we call it the Drinfeld cover of level m of S associated with H/S.
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Proposition 3. Let G/S be a finite flat OK/Pm
K -module, of rank qmn, over a

connected scheme S, and suppose given a short exact sequence

0 → G1 → G → G2 → 0

of finite flat OK/Pm
K -modules over S, with G2 finite étale.

Then, a morphism of OK/Pm
K -modules

α : (P−m
K /OK)n → G(S)

is a Drinfeld structure on G if and only if there exists a direct OK/Pm
K -summand

M ⊂ (P−m
K /OK)n such that:

(1) α|M : M → G1(S) is a Drinfeld structure on G1;
(2) α induces an isomorphism of S-group schemes

α2 : (P−m
K /OK)n/M

S
→ G2.

Further more, if we fix a choice of a complement of M in (P−m
K /OK)n, then

when G/S admits a Drinfeld structure there exists a canonical splitting over S

G ' G1 ×G2.

On the other hand, given such a splitting over S, the data of Drinfeld structures
on G1 and G2, as in conditions (1) and (2) above, give rise to a unique Drinfeld
structure on G/S which restricts to the given ones on G1 and G2.

Proof. The first part of the statement follows from Proposition 1.11.2 and Lemma
1.8.3 in [9]. We consider the second part of the statement. A choice of a complement
of M is equivalently to a choice of a section of the natural projection

s : (P−m
K /OK)n/M → (P−m

K /OK)n.

With abuse of notations, we denote the corresponding morphism of étale S-group
scheme also by s. To s we associate the group-theoretic section σ = α ◦ s ◦ α−1

2 :
G2 → G which gives rise to the splitting in the statement.

On the other hand, given s and σ as above, we define

α = (ι× σ) ◦ (α1 × α2) ◦ (i× s)−1 : (P−m
K /OK)n → G(S),

for ι (resp. i) the natural inclusions of G1 (resp. M) in G (resp. (P−m
K /OK)n). It

follows from Proposition 1.11.3 in [9] that, when α1, α2 are Drinfeld structures on
G1, G2 respectively, α is a Drinfeld structure on G. �

The above result applies in particular to Drinfeld structures on a Barsotti-Tate
OK-module H/S together with a short-exact sequence of Barsotti-Tate OK-mod-
ules 0 → H1 → H → H2 → 0 with H2 ind-étale (e.g. on a Barsotti-TateOK-module
of constant p-rank and its formal-étale short exact sequence, as in Parts (4) and
(5) of Lemma II.2.1 in [3], pp. 73–75).

2.2.2. It follows from the proposition 3, that in the case when S is not connected,
the datum of a Drinfeld structure of level m of a Barsotti-Tate OK-module H/S,
fitting in an exact sequence 0 → H1 → H → H2 → 0 with H2 ind-étale, defines
a canonical decomposition of S as disjoint union of closed subschemes (not all
necessarily non-empty), indexed by the direct summands of (P−m

K /OK)n, which
are free of rank equal to the height of H1 over OK/Pm

K . In the following, we write
SM for the closed (and open) subscheme of S associated with a direct summand
M .



6 ELENA MANTOVAN

2.2.3. In [2] Drinfeld studies the notion of level structure on deformations of the
Barsotti-Tate OK-module Hg,h. For any integer m ≥ 1, he considers the set-valued
functor from artinian local OK-algebras with residue field k, which sends an algebra
A to the set of isomorphism classes of deformations of Hg,h over A together with
a structure of level m, and proves that it is pro-represented by a regular complete
noetherian local ring Rg,h,m with residue field k, which is finite flat over Rg,h.
Moreover, Rg,h,m is formally smooth of dimension h over RK,g,m = Rg,0,m (see [2],
Proposition 4.3, p. 572, and Proposition 4.5, p. 574).

In the case of the formal Barsotti-Tate OK-module ΣK,g , let

α̃ : (P−m
K /OK)g → Σ̃K,g(RK,g,m)

denote the universal structure of level m on Σ̃K,g/RK,g,m, and {e(m)
0 , . . . , e

(m)
g−1}

the canonical basis of the OK/Pm
K -module (P−m

K /OK)g. We fix a parameter X of
Σ̃K,g/RK,g, and denote by fπ the power series corresponding to multiplication by
the uniformizer π ∈ OK on Σ̃K,g. Then the elements θ

(m)
i = X(α̃(e(m)

i )) ∈ RK,g,m,
0 ≤ i ≤ g − 1, form a system of local parameters of RK,g,m.

2.2.4. As an application of Drinfeld’s result in deformation theory one can deduce
the following two results regarding the geometry of Drinfeld covers.

Proposition 4. Let X be a noetherian OK-scheme and G a one-dimensional
compatible Barsotti-Tate OK-module over X, of constant height n.

(1) Suppose X satisfies “the versality condition”: at each closed point x ∈ X
the natural map from the formal completion of X at x to the formal space
of deformations of G(x) is an isomorphism. Then the Drinfeld covers Xm

of X are regular and flat, for all m ≥ 1.
(2) Suppose X is a reduced k-scheme and G/X has constant p-rank equal to h.

For any direct summand M of (P−m
K /OK)n, of rank n−h, let Xm,M be the

associated closed (and open) subscheme of Xm defined in section 2.2.2, with
respect to the formal-étale short exact sequence of G/X. Then, the scheme
Xm,M is finite flat over X, of degree #PM (OK/Pm

K )/#GLn−h(OK/Pm
K )

(where PM (OK/Pm
K ) denotes the parabolic subgroup of GLn(OK/Pm

K ) at-
tached to M).

Proof. The statement is a reformulation of some results in [3] (Lemma III.4.1, part
(4), p.112; Lemma II.2.4, p.82; Lemma III.4.6, p.116). We sketch a proof.

For the first part, both regularity and flatness can be detected on the formal
completion at closed points. Moreover, after replacing X by a faithfully flat exten-
sion, we may assume it is the spectrum of a complete local ring with algebraically
closed residue field. Then the statement is an immediate consequence of Drinfeld’s
result in deformation theory.

For the second part, again it suffices to check the statement for the formal com-
pletions at closed points, and moreover, without loss of generality, we may assume
the versality condition of part (1), since the general case would then follow from
this special case. Thus, finiteness and flatness follow respectively from Proposition
1.9.1 in [9] (p. 38) and part (1), and it is enough to verify that the degree is indeed
the one in the statement (which is done in [3] Lemma III.4.6, p.116). �
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2.3. Igusa level structure. In [3] (Section IV.1, p. 121), Harris and Taylor intro-
duce the notion of Igusa varieties in the context of certain simple Shimura varieties.
In this section, we recall their definition and results but we reformulate them away
from the context in which they arise. We remark that their work apply exclusively
to Barsotti-Tate OK-modules of constant p-rank. Also, in [3] there are two kinds
of Igusa varieties; in this paper we refer only to the first kind.

2.3.1. Let S be a k-scheme and H a one-dimensional compatible Barsotti-Tate OK-
module over S, of constant height n and constant p-rank h. Then, H fits in a short
exact sequence of Barsotti-Tate OK-modules

0 → H0 → H → Het → 0

where H0 is formal of height n− h and Het is ind-étale of height h.

Definition 5. For any positive integer m, we call an isomorphism of OK-modules

j : (P−m
K /OK)

h

S
= (K/OK)h

S
[Pm

K ] → Het[Pm
K ]

an Igusa structure of level m on H/S.

For any integer m ≥ 1, we call the Igusa cover of level m of S the S-scheme
Im which represents the set-valued functor on S-schemes mapping a scheme T/S
to the sets of Igusa structures of level m on H/S (and write jm for the universal
isomorphism over Im). The S-scheme Im is a finite étale GLh(OK/Pm

K )-torsor (see
[9], Proposition 1.10.13, Part (2), p. 47).

2.3.2. The notion of Igusa covers is useful to study the geometry of Drinfeld covers.
We maintain the above notations and assumptions. Let Sm be the Drinfeld cover

of level m of S. Then, Sm decomposes as Sm =
∐

M Sm,M where M ranges among
the direct OK-summands of (P−m

K /OK)n, of rank n− h (see section 2.2.2).
For any such M , write PM (OK/Pm

K ) for the parabolic subgroup of GLn(OK/Pm
K )

corresponding to M , and we choose an epimorphism of kernel M

pM : (P−m
K /OK)n � (P−m

K /OK)h.

Proposition 6. Assume S is reduced. Then the map jM = F (n−h)m ◦ jm ◦ pM

jM : (P−m
K /OK)

n

S
� (P−m

K /OK)
h

S
= (K/OK)h

S
[Pm] → Het[Pm] → Het (q(n−h)m)[Pm]

defines a morphism j∗M : Im → Sm,M , which is an isomorphism and fits in the
following commutative diagram.

I(h)
j∗M //

��

Sm,M

��
S

F (n−h)m
// S

Proof. This statement is a reformulation of a result in [3] (Section IV.1, p. 124).
We sketch a proof. The assumption that S is reduced implies that Im is reduced,
thus the natural projection H → Het gives rise to an isomorphism

H(q(n−h)m)[Pm](Im) ' Het (q(n−h)m)[Pm](Im).

Composing its inverse with the map jM in the statement, we obtain a morphism

α : (P−m
K /OK)n → Het (q(n−h)m)[Pm](Im) ' H(q(n−h)m)[Pm](Im).
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Proposition 3 implies that α is a Drinfeld structure of level m on H(q(n−h)m), which
moreover vanishes on M by construction. It follows that it defines a morphism
j∗M : Im → Sm,M which makes the above diagram commute. It is an easy obser-
vation that j∗M is a monomorphism. Finally, both schemes are finite flat over the
scheme S in the bottom right corner of the diagram, thus to conclude that j∗M is
an isomorphism it suffices to check that they have the same degree. �

Corollary 7. Maintaining the above notations. Assume S is smooth.
Then, both the Igusa and Drinfeld covers of S are smooth of the same dimension.

3. Compactified Igusa covers

In [3] Harris and Taylor define the Igusa covers in the case when the p-rank
of the Barsotti-Tate OK-module is constant over the base. In this section, we
investigate the possibility of defining Igusa covers over a general base in positive
characteristic, i.e. when the p-rank is not necessarily constant. Since for any
connected k-scheme X and any Barsotti-Tate OK-module G over X, the locus
where the p-rank of G is maximal is a dense open, we regard this question as the
problem of extending the Igusa covers defined over such open to the whole X,
which is why we refer to the generalized Igusa covers as compactified (or proper)
Igusa covers. We also investigate how the Igusa covers can be used to describe the
geometry of the corresponding Drinfeld covers in general, extending the results of
proposition 6.

3.1. Deformations with bounded p-rank. Before considering the question of
defining Igusa covers in general, we address a question in deformation theory of
Barsotti-Tate OK-modules in positive characteristic.

It follows from the definition that the p-rank h of a Barsotti-Tate OK-module is
always bounded by its height, more precisely h ≤ n − 1 if n is the height. On the
other hand, we also know that it increases under deformation (see section 2.1.2).
In the following, we study the deformation theory of Barsotti-Tate OK-modules in
equal characteristic, when a (strict) bound on the p-rank is imposed.

For any g, h, we write Rg,h (resp. RK,g) for the rings Rg,h ⊗OK̂nr k (resp.
RK,g ⊗OK̂nr k).

Proposition 8. Let n, h, h′ be positive integers, 0 ≤ h ≤ h′ ≤ n − 1, and write
g = n− h ≥ g′ = n− h′.

(1) n = g: the set-valued functor from reduced complete noetherian local k-
algebras, with residue field k, which sends an algebra A to the set of defor-
mations of ΣK,g over A of p-rank less than or equal to h′, is represented
by a reduced complete noetherian local k-algebra Rg′

K,g, formally smooth

of dimension h′ = g − g′. Rg′

K,g naturally arises as a quotient of RK,g

and the isomorphism RK,g ' k[[T1, . . . , Tg−1]] induces an isomorphism
Rg′

K,g ' k[[Tg′ , . . . , Tg−1]].

We write Σ̃g′

K,g for the universal deformation of ΣK,g over Rg′

K,g.
(2) n 6= g: the set-valued functor from reduced complete noetherian local k-

algebras, with residue field k, which sends an algebra A to the set of defor-
mations of Hg,h = ΣK,g × (K/OK)h over A of p-rank less than or equal to
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h′, is represented by the formal Rg′

K,g-scheme Hom(THg,h, Σ̃g′

K,g), which is

formally smooth of dimension h over Rg′

K,g.

We write Rg′

g,h for the Rg′

K,g-algebra representing the above functor and

Hg′

g,h for the universal deformation of Hg,h over it.

Proof. We start by considering the case of a formal Barsotti-Tate OK-module (i.e.
h = 0, n = g). It follows from section 2.1 that for any h′ the above functor is
represented by a reduced quotient of RK,g. Moreover, for h′ = n − 1 (g′ = 1) we
have R1

K,g = RK,g, and also for h′ = h (g′ = g) Rg
K,g = k.

Let us consider the case of a general h′. Bounding the p-rank of a Barsotti-Tate
OK-module from above is equivalent to bounding the height of its formal part from
below. Then, Rg′

K,g is the unique reduced complete local quotient of RK,g ⊗OK̂nr
k

with the following universal property:
• for any (reduced) complete noetherian local ring R and k-morphism φ :

RK,g ⊗OK̂nr
k → R (not necessarily local), the Barsotti-Tate OK-module

G0
R = φ∗(Σ̃K,g)0 has height greater than or equal to g′ = n− h′ if and only

if the morphism φ factors through the quotient RK,g ⊗OK̂nr
k → Rg′

K,g.

We recall that the height of the formal part of a Barsotti-Tate OK-module can
be read off the power series representing the multiplication by a uniformizer of OK ,
namely as the q-logarithm of the exponent of the lowest non-vanishing monomial
of the power series.

We fix a parameter X of Σ̃K,g and an isomorphism RK,g′ ' k[[T1, . . . , Tg−1]].
Then, over RK,g′ , the power series fπ representing the multiplication by the uni-
formizer π ∈ OK on Σ̃K,g satisfies the congruence relation

fπ ≡ T1X
q + T2X

q2
+ · · ·+ Tg−1X

qg−1
modXqg

(T1 . . . , Tg−1)2

(see [2], Section 4, Part (A), p. 570–572). Therefore, for any k-morphism φ :
k[[T1, . . . , Tg−1]] → R, the multiplication by π on φ∗(Σ̃K,g) is defined by the power
series φ∗(fπ) satisfying the congruence relation

φ∗(fπ) ≡ φ(T1)Xq + φ(T2)Xq2
+ · · ·+ φ(Tg−1)Xqg−1

modulo the ideal Xqg

(φ(T1) . . . , φ(Tg−1))2.
We deduce that in the reduced quotient Rg′

K,g the parameters T1, . . . , Tg′−1 nec-
essarily all vanish. On the other hand, the quotient k[[T1, . . . , Tg−1]]/(T1, . . . Tg′−1)
is a reduced complete local ring and moreover the restriction of Σ̃0

K,g to such quo-
tient has height equal to g at the generic point. Thus, the isomorphism RK,g′ '
k[[T1, . . . , Tg−1]] induces an isomorphism Rg′

K,g ' k[[Tg′ , . . . , Tg−1]].
Finally, it is an easy consequence of the result of section 2.1.3 that the case

of a general Barsotti-Tate OK-module follows directly from the case of a formal
Barsotti-Tate OK-module .

�

3.2. Drinfeld covers. We establish some notations and results for Drinfeld covers
over a general base. Let X be a reduced k-scheme and G a one-dimensional com-
patible Barsotti-Tate OK-module over X, of constant height n and maximal p-rank
h. (We remark that an upper bound on the p-rank always exists).
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For any m ≥ 0, let Xm be the Drinfeld cover of X of level m, and write

α : (P−m
K /OK)n → G[Pm

K ](Xm).

for the universal Drinfeld structure of level m on G/Xm.
Let M be a direct summand of (P−m

K /OK)n, of rank n − h over OK/Pm. We
consider the set-valued functor on X-scheme which sends a X-scheme T to the set
of Drinfeld structures

αT : (P−m
K /OK)n → G[Pm

K ](T )

which vanish on M . The lemma below proves that this functor is represented by a
closed subscheme Xm,M of Xm.

Lemma 9. Let S be a scheme, G and H two finite, flat, commutative group
schemes over S, and f : G → H a morphism of S-group schemes. Then, there
exists a closed, finitely presented subscheme W in S such that, for any S-scheme
T , the base change morphism fT : GT → HT vanishes if and only if the morphism
T → S factors as T → W ↪→ S.

Proof. We prove the lemma by arguments as in Chapter 1 of [9]. Since the question
is Zariski local on S, we may assume S = Spec (R), G = Spec (A) and H =
Spec (B), where A and B are two R-algebras which as R-modules are free, of finite
rank N and N ′ respectively. We choose {b1, . . . bN ′} (resp. {a1, . . . , aN}) an R-basis
on B (resp. A), such that the group identity on H/S corresponds to the morphism
B → R which sends b1 to 1 and bi to 0 for all i > 1.

Let f∗ : B → A be the morphism between the affine algebras induced by f .
Then, f∗ corresponds to a matrix C = (cij) ∈ MN ′×N (R), and the subscheme W
is the closed subscheme of S cut by the ideal (cij | j > 1). �

Let X(h) denote the open subscheme of X where the p-rank of G is maximal,
and write X

(h)
m for its Drinfeld cover of level m. Since the p-rank of G on X(h)

is constant, X
(h)
m decomposes as the disjoint union of closed subschemes X

(h)
m,M

indexed by the direct summands of (P−m
K /OK)n, of rank n− h over OK/Pm

K .

Remark 10. Maintaining the above notations.

(1) Xm,M ∩X
(h)
m = X

(h)
m,M .

(2) (Xm)red =
⋃

M Xm,M .

The first remark is a simple consequence of the definition. As for the second, for
any closed point x of Xm, let us consider the map

α(x) : (P−m
K /OK)n → Gx[Pm

K ](k(x)) ' Get
x [Pm

K ](k(x)).

Since the height of Get
x is less than or equal to h, it follows that kerα(x) is a direct

summand of (P−m
K /OK)n of rank at least n−h. Therefore, for any x there exists at

least one (and exactly one if x ∈ X
(h)
m ) direct summand M of rank n−h contained

in kerα(x).

Proposition 11. For all m and M as above. The morphism Xm,M → X is finite
flat of degree #PM (OK/Pm

K )/#GLn−h(OK/Pm
K ).

Proof. The above properties can be detected on the formal completions at closed
points. Moreover, we already know that the result holds over the open X(h) of X
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(see proposition 4). Thus, it suffices to study the formal completion of Xm,M at all
geometric closed points x of Xm such that h(x) < h.

Let x be a geometric closed point of Xm,M , such that h(x) = h′ < h, and
denote by x̄ its image in X. We fix an isomorphism G0(x) = G0(x̄) ' ΣK,g′

(g′ = n− h′). Then, the natural map from the formal completion of X at x̄ to the
formal deformation space of G(x) gives rise to a morphism of k-algebras

φ(x) : Rg
g′,h′ = k[[X1, . . . , Xh′ ;Tg, . . . , Tg′−1]] → O∧

X,x̄

which allows us to identify the Barsotti-Tate OK-module Gx = G/O∧
X,x̄ with the

pushforward under φ(x) of the universal Barsotti-Tate OK-module H = Hg
g′,h′ ,

0 → Σ̃g
K,g′ → H→ Get

x → 0.

Without loss of generality we may assume that φ(x) is an isomorphism (the
general case would then follow from this special case).

By definition, the complete local ring of Xm,M at x is the unique finite local ring
over O∧

X,x̄ where Gx is endowed with a universal Drinfeld level structure α which
lifts α(x) and vanishes on M . We choose an epimorphism

p : (P−m
K /OK)n � (P−m

K /OK)h′

which vanishes on the submodule M , together with a splitting s of p. Then, it
follows from proposition 3 that the datum of a Drinfeld structure α of level m on
G over O∧

Xm,M ,x̄ is equivalent to the following data:

(1) a structure of level m on Get
x

αet : (P−m
K /OK)h′ → Get

x [Pm](O∧
Xm,M ,x);

(2) a structure of level m on Σ̃g
K,g′ of the form

α0 : ker p → Σ̃g
K,g′ [P

m](O∧
Xm,M ,x),

which vanishes on M ;
(3) a splitting of the short exact sequence

0 → Σ̃g
K,g′ [P

m] → Gx[Pm] → Get
x [Pm] → 0.

Moreover, the condition that the level structure α on Gx reduces, modulo the
maximal ideal of O∧

Xm,M ,x, to α(x) uniquely determines the datum (1). With this
in mind, we proceed to explicitly compute O∧

Xm,M ,x as a finite extension of O∧
X,x̄.

First we construct the finite extension B of O∧
X,x̄ over which the Barsotti-Tate

OK-module Σ̃g
K,g′ is endowed with the universal level structure of the kind as in da-

tum (2). Then, we define the extension B′ of B over which the group scheme Gx[Pm]
splits as Get

x [Pm]× Σ̃g
K,g′ [Pm]. The above considerations imply B′ = O∧

Xm,M ,x.
We choose an isomorphism ker p ' (P−m

K /OK)g′ such that the epimorphism
ker p � (P−m

K /OK)g′−g which maps ei 7→ 0 for 0 ≤ i ≤ g − 1 and ei 7→ e′i−g

g ≤ i ≤ g′ − 1 (for e0, . . . , eg−1 and e′0, . . . , e
′
g′−g the canonical basis of the modules

(P−m
K /OK)g′ and (P−m

K /OK)g′−g respectively) vanishes on M .
Then Drinfeld’s result reviewed in section 2.2.3 implies that

B = k[[X1, . . . Xh′ ; θ(m)
g , . . . θ

(m)
g′−1]]
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and is finite and flat over O∧
X,x̄ ' k[[X1, . . . X

′
h;Tg, . . . Tg′−1]]. We claim

B′ = k[[Y (m)
1 , . . . Y

(m)
h′ ]][[θ(m)

g , . . . θ
(m)
g′−1]] ⊃ B = k[[X1, . . . Xh′ ; θ(m)

g , . . . θ
(m)
g′−1]],

where the parameters Y
(m)
i (0 ≤ i ≤ h′) satisfy the recursive equations:

fπ(Y (m)
i ) = Y

(m−1)
i , Y

(0)
i = Xi ∀i.

In fact, let us consider the following diagram

Ext1(Get
x , Σ̃)

·πm
//

��

Ext1(Get
x , Σ̃)

res //

��

Ext1(Get
x [Pm

K ], Σ̃[Pm
K ])

Hom(π−mT, Σ̃)
res // Hom(T, Σ̃)

where the first row is exact and the two vertical maps are isomorphisms (we write
T = TGet

x and Σ̃ = Σ̃g
K,g′).

We deduce that the existence of a splitting as in condition (4) is equivalent to
the existence of a morphism

β′ : π−mT → Σ̃
whose restriction β = β′|T : T → Σ̃ corresponds, under the above identifications, to
Gx regarded as an extension of Get

x by Σ̃.
Let v1, . . . vh′ be the basis of the OK-module T , corresponding to the parameters

Xi of O∧
X,x̄ (i.e. Xi = X(β(vi)), for X the chosen parameter on Σ̃). The existence

of a morphism β′ which restricts to β (and thus, of a splitting isomorphism as in
condition (4)) is equivalent to the existence of solutions Y

(m)
i to the equations

fπm(Y ) = Xi.

In fact, for a set of solutions {Y (m)
1 , . . . , Y

(m)
h′ }, the morphism β′ defined by the

conditions X(β′(π−mvi)) = Y
(m)
i , for all i, obviously satisfies the condition β′|T = β.

We remark that the ring B′ = O∧
X̄

[h]
m,M ,x

is indeed regular, finite and flat over B,

and thus over O∧
X,x. �

The above proof also implies the following proposition.

Proposition 12. Maintaining the above notations. Suppose that G/X satisfies
“the versality condition”:

• at each point x ∈ X the natural map from the formal completion of X at
x to the formal space of deformations in equal characteristic of G(x) with
p-rank bounded by h is an isomorphism (thus, in particular X is smooth).

Then, the scheme Xm,M is a smooth k-scheme.

3.3. Igusa covers. We extend Harris’ and Taylor’s notion of Igusa structure to
the case when the p-rank of the Barsotti-Tate OK-module is not constant.

Let X be a reduced k-scheme and G a one-dimensional compatible Barsotti-Tate
OK-module over X, of height n and maximal p-rank h.

We denote by F : G → G(q) the q-th power of Frobenius morphism of G (q = #F).
Then F is an endomorphism of Barsotti-Tate OK-modules and not just of the
underlying Barsotti-Tate groups. For any integer r ≥ 0, we write G[F r] for the
kernel of the isogeny F r. For r = (n− h)m, G[F (n−h)m] ⊂ G[Pm

K ] and the quotient
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G[Pm
K ]/G[F (n−h)m] is a finite flat group scheme over X, of order qhm, with inherits

a structure of OK-module.

Definition 13. For any integer m ≥ 1, we call an Igusa structure of level m on
G/X the datum of a Drinfeld structure on G[Pm

K ]/G[F (n−h)m].
We define the Igusa cover of level m of X, Im/X, to be the reduced subscheme

underlying the Drinfeld cover of X associated with G[Pm
K ]/G[F (n−h)m].

3.3.1. It is a simple remark that in the case of constant p-rank equal to h the newly
defined Igusa covers of X agree with the previous ones. Indeed, in this case, the
Barsotti-Tate OK-module G fits in a formal-étale exact sequence

0 → G0 → G → Get → 0.

By restricting the above sequence to the corresponding Pm
K -torsion subgroups, we

obtain a short exact sequence of finite flat OK/Pm
K -modules

0 → G0[Pm
K ] → G[Pm

K ] → Get[Pm
K ] → 0

where G0[Pm
K ] = G[F (n−h)m], since G0 is one-dimensional formal of constant height

n − h (see [3], Lemma II.2.1, Part (2), p. 74). In particular, the above sequence
gives rise to a canonical isomorphism of finite étale OK/Pm

K -modules

G[Pm
K ]/G[F (n−h)m] ' Get[Pm

K ].

The existence of this canonical isomorphism implies that the two definitions agree.
It follows, in particular, that the pullback of the (compactified) Igusa cover Im/X

over the open X(h) (where the p-rank of G is maximal) can be identified with the
(open) Igusa cover of Im/X(h) defined by Harris and Taylor.

Proposition 14. Maintaining the notations as above. Let m be a positive integer.
The Igusa cover of level m is finite flat over X, of degree #GLh(OK/Pm

K ).

Proof. Since Im restricted to X(h) can be identified with the ”old” Igusa cover,
it is, in particular, finite étale of the correct degree over X(h) (see section 2.3.1).
Therefore, it suffices to study the restriction of Im over X −X(h).

Let x be a geometric closed point in Im, such that the height of G(x) is h′ =
h(x) < h. We denote by x̄ its image in X, and by α(x) the corresponding level
structure on G(x)[Pm

K ]/G(x)[Fmg]. We also write (Gx, αx) for the restriction of G
over O∧

Im,x together with its Igusa structure. We fix an isomorphism G(x) ' Hg′,h′

(g′ = n−h′). The natural map from the formal completion of X at x̄ to the formal
deformation space of Hg′,h′ gives rise to a morphism of k-algebras

φ(x) : Rg
g′,h′ → O∧

X,x̄.

Without loss of generality we may assume φ(x) is an isomorphism, and identify
O∧

Im,x with the finite Rg
g′,h′ -algebra Bm representing the set-valued functor from

reduced complete noetherian local k-algebras, with residue field k, which sends an
algebra A to the set of deformations over A of Hg′,h′ , of p-rank less than or equal
to h, together with an Igusa structure of level m.

We claim that the Bm is finite and flat over Rg
g′,h′ , of degree #GLh(OK/Pm

K ).
Let H = Hg

g′h′ be the universal Barsotti-Tate OK-module defined over Rg
g′,h′ .

For simplicity, we also write R = Rg
g′,h′ and Σ̃ = Σ̃g

K,g′ . The group scheme
H[Pm

K ]/H[Fmg] fits in the short exact sequence

(∗) 0 → Σ̃[Pm
K ]/Σ̃[Fmg] → H[Pm

K ]/H[Fmg] → Het[Pm
K ] → 0.
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We consider the standard splitting (P−m
K /OK)h = (P−m

K /OK)g′−g⊕ (P−m
K /OK)h′ .

Then the datum of a level structure on H[Pm]/H[Fmg] over a local R-algebra A is
equivalent to the following data (see proposition 3):

(1) a splitting isomorphism

H[Pm
K ]/H[Fmg] ' Σ̃[Pm

K ]/Σ̃[Fmg]×Het[Pm
K ];

(2) a level structure

α0 : (P−m
K /OK)g′−g →

(
Σ̃[Pm

K ]/Σ̃[Fmg]
)

(A)

We denote by α̃ the universal Igusa structure defined over Bm and by α̃0 its
local component (defined as in condition (2) above).

We explicitly compute Bm/R as follows. We first construct the extension B/R

over which the group scheme Σ̃[Pm
K ]/Σ̃[Fmg] is endowed with the universal Drinfeld

structure, as in condition (2). Then, we define a finite extension B′/B over which
the short exact sequence (∗) splits, as in condition (1). The above data give rise to
a morphism of R-algebras Bm → B′, which is by construction an isomorphism.

We choose a parameter X on H and identify R ' k[[X1, . . . Xh′ ;Tg, . . . Tg′−1]].
Claim (1): The universal Drinfeld level structure α̃0 on Σ̃[Pm

K ]/Σ̃[Fmg] is defined
over the finite extension

B = k[[X1, . . . Xh′ ;ϕ(m)
g , . . . ϕ

(m)
g′−1]] ⊃ R = k[[X1, . . . Xh′ ;Tg, . . . Tg′−1]],

where the parameters ϕ
(m)
i are defined as follows.

Let X be a parameter on Σ̃ and fπ the power series corresponding to the mul-
tiplication by π on Σ̃. There exists a unique power series φπ ∈ R[[X]] such that

fπ(X) = φπ(Xqmg

).

Furthermore, for any m ≥ 1, the power series φπm = φ◦mπ satisfies the condition

φπm(Xqmg

) = fπm(X).

For e
(m)
g , . . . e

(m)
g′−1 the canonical basis for (P−m

K /OK)g′−g, we define the param-

eters ϕ
(m)
i as the solutions to the following recursive equations:

• for m = 1: hr(ϕ
(1)
r ) = 0 where

hr(X) =
φπ(X)∏

x∈Mr−1
(X − α̃(x))

and Mr−1 = 〈e(1)
g , . . . , e

(1)
r−1〉 (g ≤ r ≤ g′ − 1);

• for any m > 1: φπ(ϕ(m)
i ) = ϕ

(m−1)
i (g ≤ i ≤ g′ − 1).

To prove our claim we consider the following exact sequence over R

0 → Σ̃[Fmg] → Σ̃[Pm
K ] → Σ̃[Pm

K ]
Σ̃[Fmg]

→ 0.

Then Σ̃[Fmg] = Spec R[[X]]/(Xqmg

) and Σ̃[Pm
K ] = Spec R[[X]]/(fπm(X)).

Thus, the previous short exact sequence gives rise to the identification

Σ̃[Pm
K ]

Σ̃[Fmg]
= Spec R[[X]]/(φπm(X)),
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where the projection l : Σ̃[Pm
K ] → Σ̃[Pm

K ]/Σ̃[Fmg] corresponds to the morphism of
Hopf R-algebras

l∗ : R[[X]]/(φπm(X)) → R[[X]]/(fπm(X))

mapping X to Xqmg

.
To conclude that B = k[[X1, . . . Xh′ ;ϕ

(m)
g , . . . ϕ

(m)
g′−1]]/R has the required univer-

sal properties, as well as being regular, finite and flat, we argue as in [2] (Lemma
following Proposition 4.3, pp. 572–573). In order to apply those arguments to our
case, it suffices to remark that the power series hr(X) satisfy the congruences

hr(X) ≡ Tr mod (X, Tg, . . . Tr−1),

for all g ≤ r ≤ g−1, and that the above construction lies uniquely over the subring
k[[Tg, . . . Tg′−1]] ⊂ R.

Claim (2): The finite extension B′/B defined by the existence of a splitting of
the short exact sequence (∗) is

B′ = k[[Z(m)
1 , . . . Z

(m)
h′ ]][[ϕ(m)

g , . . . ϕ
(m)
g′−1]] ⊃ B = k[[X1, . . . Xh′ ;ϕ(m)

g , . . . ϕ
(m)
g′−1]],

where the new parameters Z
(m)
i (0 ≤ i ≤ h′) satisfy the recursive equations:

φπ(Z(m)
i ) = Z

(m−1)
i , Z

(0)
i = Xi ∀i.

We consider the following diagram

Ext1(Het[Pm
K ], Σ̃[Pm

K ])
l∗ //

F mg

��

Ext1(Het[Pm
K ], Σ̃[Pm

K ]

Σ̃[F b]
)

ι∗
ttiiiiiiiiiiiiiiiii

Ext1(Het (qmg)[Pm
K ], Σ̃(qmg)[Pm

K ])

where the morphism l∗ (resp. ι∗) is induced by the projection l : Σ̃[Pm
K ] →

Σ̃[Pm
K ]/Σ̃[Fmg] (resp. by inclusion ι : Σ̃[Pm

K ]/Σ̃[Fmg] → Σ̃(qmg)[Pm
K ]) via push-

forward on extensions, and Fmg maps to an extension its mg-th q-Frobenius twist.
We observe that the map i∗ is injective. In fact, the inclusion ι fits in the exact

sequence

0 → Σ̃[Pm
K ]

Σ̃[Fmg]
→ Σ̃(qmg)[Pm

K ] → Σ̃[πmFmg]
Σ̃[Pm

K ]
→ 0,

thus the corresponding morphism i∗ fits in the long exact sequence

Hom (Het[Pm
K ], Σ̃[πmF mg]

Σ̃[Pm
K ]

) // Ext1(Het[Pm
K ], Σ̃[Pm

K ]

Σ̃[F mg]
)

ι∗ //

ι∗ // Ext1(Het (qmg)[Pm
K ], Σ̃(qmg)[Pm

K ]).

On the other hand, multiplication by πm on Σ̃[πmFmg] induces an isomorphism

Q =
Σ̃[πmFmg]

Σ̃[Pm
K ]

' Σ̃[Fmg].

It follows that the group scheme Q is connected and Hom (Het[Pm
K ], Q) = 0, which

implies that the morphism ι∗ is injective. From the injectiveness of the map ι∗,
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we deduce that the existence of a splitting of (∗) is equivalent to the existence of
splitting of the short exact sequence

0 → Σ̃(qmg)[Pm
K ] → H(qmg)[Pm

K ] → Het(qmg)[Pm
K ] → 0.

We move our focus from H to H(qmg), and regard H(qmg) as a deformation of the
Barsotti-Tate OK-module H

(qmg)
g′,h′ /k. We denote by k[[X ′

1, . . . , X
′
h′ ;T

′
g, . . . , T

′
g′−1]],

the universal deformation ring for H
(qmg)
g′,h′ /k, where the parameters X ′

j and T ′
i are

defined in the usual way. Then H(qmg) corresponds to the morphism

(Fmg)∗ : k[[X ′
1, . . . , X

′
h′ ;T

′
g, . . . , T

′
g′−1]] → k[[X1, . . . , Xh′ ;Tg, . . . , Tg′−1]]

which maps X ′
j 7→ Xqmg

j and T ′
i 7→ T qmg

i . Arguing as we did for proposition 11, we
deduce that defining a splitting isomorphism of the extension structure underlying
H(qmg)[Pm

K ], corresponds to defining an extension

k[[Y ′
1 , . . . , Y ′

h′ ;T
′
g, . . . , T

′
g′−1]] ⊃ k[[X ′

1, . . . , X
′
h′ ;T

′
g, . . . , T

′
g′−1]],

where the new parameters Y ′
j satisfy the equations f ′πm(Y ′

j ) = X ′
j , for f ′π the power

series of the multiplication by π on H(qmg).
Therefore, we deduce that constructing a splitting as in condition (1) over

k[[X1, . . . , Xh′ ;Tg, . . . , Tg′−1]] is equivalent to constructing the unique extension B′′

of k[[X1, . . . , Xh′ ;Tg, . . . , Tg′−1]] which completes the following cartesian diagram.

B′′ k[[X1, . . . , Xh′ ;Tg, . . . , Tg′−1]]oo

k[[Y ′
1 , . . . , Y ′

h′ ;T
′
g, . . . , T

′
g′−1]]

OO

k[[X ′
1, . . . , X

′
h′ ;Tg, . . . , Tg′−1]]oo

(F mg)∗

OO

Equivalently, B′′ = k[[Z1, . . . , Zh′ ;Tg, . . . , Tg′−1]], where the new parameters Zj

are defined by the equations

(Fmg)∗fπm(Zj) = Xqmg

j for all j.

Since (Fmg)∗fπm = (φπm)qmg

, we deduce that the parameters of B′′ satisfy the
equations

(Fmg)∗(fπm(Zj))−Xqmg

j = (φπm(Zj)−Xj)qmg

= 0,

for all j = 1, . . . , h′.
Finally, since the ring B′′ is assumed reduced, this implies that φπm(Zi) = Xi

(for all i), and thus B′′ is regular, finite and flat over k[[X1, . . . , Xh′ ;Tg, . . . , Tg′−1]].
It follows that B′ = Bm = k[[Z1, . . . , Zh′ ;ϕ

(m)
g , . . . ϕ

(m)
g′−1]] is regular, finite and

flat over R ' k[[X1, . . . X
′
h;Tg, . . . Tg′−1]]. �

The above proof also implies the following proposition.

Proposition 15. Maintaining the above notations. Suppose that G/X satisfy “the
versality condition”:

• at each point x ∈ X the natural map from the formal completion of X at
x to the formal space of deformations in equal characteristic of G(x) with
p-rank bounded by h is an isomorphism (thus, in particular X is smooth).

Then, the Igusa cover Im is a smooth k-scheme.
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3.3.2. We compare Igusa and Drinfeld covers over X. The following proposition
extends the result of Harris and Taylor in the case of constant p-rank (see propo-
sition 6) to the general case.

Let X be a reduced k-scheme and G a one-dimensional compatible Barsotti-Tate
OK-module over X, of constant height n and maximal p-rank h. We denote by
X(h) the open subscheme of X where the p-rank is equal to h.

For any m ≥ 1, we consider the Igusa and Drinfeld covers of level m of X, which
we denote respectively by Im and Xm, and the closed subschemes Xm,M ⊂ Xm,
associated with the direct summands M of (P−m

K /OK)n, of rank n−h over OK/Pm
K .

Proposition 16. Let M be a direct summand of (P−m
K /OK)n, of rank n−h. We

choose an epimorphism of kernel M

pM : (P−m
K /OK)n → (P−m

K /OK)h.

Then, associated with pM , there exists an isomorphism j∗M : Im → Xm,M which
makes the following diagram commute.

Im

j∗M //

��

Xm,M

��
X

F mg
// X

Proof. We define the morphism j∗M in a manner which generalizes the construction
of proposition 6. By definition, a morphism j∗M which makes the above diagram
commute is equivalent to the datum of a Drinfeld structure on the group scheme
G(qm(n−h))[Pm

K ] defined over Im vanishing on the submodule M ⊂ (P−m
K /OK)n.

Let β be the morphism:

(P−m
K /OK)n

pM // (P−m
K /OK)h α // G[Pm

K ]

G[F m(n−h)]
(Im) ι // G(qm(n−h))[Pm

K ](Im)

where α is the universal Igusa structure defined over Im, and ι the natural inclusion
induced by the (m(n−h))-th power of the q-Frobenius. We claim that β is a Drinfeld
structure.

To check this statement it suffices to prove that β induces a Drinfeld structure
over the completions of Im at a point x, for all geometric closed points x ∈ Im.
For all point x of Im which lies above a point x̄ ∈ X(h) ⊂ X, this follows from
proposition 6, thus it suffices to consider the points x of p-rank h(x) < h.

Let x be a geometric closed point of Im with h(x) = h′ < h, and denote by
x̄ its image in X. We choose an isomorphism G0(x) ' ΣK,g′ , where g′ = n − h′.
and consider the natural map φ(x) from the completion of X at x̄ to the space of
deformation in equal characteristic of G(x̄) with p-rank bounded by h. Then, it
suffices to prove our statement in the case when φ(x) is an isomorphism, in which
case, after choosing a parameter X on Gx = G/O∧

Im,x, we can identify

O∧
Im,x = k[[Z1, . . . , Zh′ ;ϕ(m)

g , . . . , ϕ
(m)
g′−1]]

where the parameters Zi’s and ϕ
(m)
j ’s are defined as in proposition 14, and regard

Gx as the universal extension of Get
x by Σ̃ = Σ̃g

K,g′ .
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We consider the following commutative diagram (we write N = P−m
K /OK)

Nh
α //

(f1,f2)

��

Gx[Pm
K ]

Gx[F mg] (O
∧
Im,x) ι //

s(O∧
Im,x)

��

G(qmg)
x [Pm

K ](O∧
Im,x)

σ(O∧
Im,x)

��

Nh−h′ ×Nh′ //
(

Σ̃[Pm
K ]

Σ̃[F mg]
× Get

x [Pm
K ]

)
(O∧

Im,x)
(ι0,ιet)//

(
Σ̃(qmg) × Get

x

)
[Pm

K ](O∧
Im,x)

where:
• (f1, f2) is the canonical splitting of Nh,
• s is the splitting isomorphism induced by the datum of a level structure on
Gx[wm]/Gx[Fmg] (see proposition 3),

• σ is the splitting isomorphism on G(qmg)
x [wm] induced by s (see the proof

of proposition 14).
We remark that, in particular, all the vertical maps are isomorphisms.
We denote by (α0, αet) the morphism in the diagram

Nh−h′ ×Nh′ → (Σ̃[Pm
K ]/Σ̃[Fmg]× Get

x [Pm
K ])(O∧

Im,x),

and write (β0, βet) = σ ◦ βx.
Proposition 3 implies that in order to check that βx is a level structure it suffices

to check that both β0 and βet are level structures. Since βet clearly is a level
structure, we are left to consider the morphism

β0 : ker p → Σ̃(qmg)[Pm
K ](O∧

Im,x)

where p = f2 ◦ pM : Nn � Nh′ (and thus ker p ⊃ M).
We choose a basis {e0, . . . , eg′−1} of ker p such that M = 〈e0, . . . , eg−1〉. Then,

the morphism β0 maps the vectors ei to 0 for 0 ≤ i ≤ g − 1, and for g ≤ i ≤ g′ − 1
to vi = ι(α0(ei)), where X(vi) = (Fmg)∗(ϕ(m)

i ) for X the chosen parameter on Σ̃.
In order to conclude it suffices to prove that, for all i, (Fmg)∗(ϕ(m)

i ) = θ
′(m)
i

(where we use the ′ to extend the notations established in section 2.2.3 for the
Barsotti-Tate OK-module Σ̃ to its Frobenius twist Σ̃(qmg)). Equivalently, we need
to verify that the (Fmg)∗(ϕ(m)

i ) satisfy the following equations defining the local
parameters θ

′(m)
i (see [2], p. 572–574)

• g′r(θ
′(1)
r ) = 0, for g′r(X) = f ′π(X)Q

x∈Mr−1
(X−α̃(x)) and Mr−1 = 〈e(1)

0 , . . . , e
(1)
r−1〉,

for m = 1 and all r;
• f ′π(θ′(m)

i ) = θ
′(m−1)
i for m > 1 and all i.

By definition (see claim (1) in the proof of proposition 14), the parameters ϕ
(m)
i

satisfy the equations

• hr(ϕ
(1)
r ) = 0 for m = 1 and all r,

• φπ(ϕ(m)
i ) = ϕ

(m−1)
i for m > 1 and all i,

where (Fmg)∗(φπ) = f ′π and (Fmg)∗(hr) = g′r), for all r.
Thus, β0 is a level structure on Σ̃(qb). In fact, more precisely, it is the universal

level structure on it. This not only proves that the morphism j∗M is well defined,
but also that it is an isomorphism since it induces an isomorphism on complete
local rings. �
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3.4. The branched locus of a Drinfeld cover. So far, we have described how the
Drinfeld covers Xm of X decompose as unions of proper subschemes Xm,M , each
of them isomorphic, up to an inseparable morphism, to the corresponding Igusa
cover. We conclude this section by shedding some light on how the subschemes
Xm,M intersect. In the case when the Barsotti-Tate OK-module G/X satisfies
the appropriate “versality condition”, this question amounts to investigating the
intersection of the smooth components of the singular fiber of the Drinfeld covers.
(The following results are the analogue in this context of Section 13.2 in [9].)

3.4.1. Let X be a reduced k-scheme and G a one-dimensional compatible Barsotti-
Tate OK-module over X, of height n and maximal p-rank h. Let X(h) denote the
open subscheme of X where the p-rank is maximal. We already established that
the subschemes Xm,M are disjoint when restricted over the open X(h) ⊂ X, thus
we focus on their restrictions over the proper closed subscheme X [h−1] = X−X(h).

It is an easy consequence of the definitions that for any positive integer m and
any M direct summand of (P−m

K /OK)n, of rank n− h, we have

(Xm,M )red|X[h−1] =
⋃

M ′⊃M

X
[h−1]
m,M ′

where M ′ varies among the direct summands of (P−m
K /OK)n, of rank n − h + 1,

containing M . Thus, for any two direct summand M1,M2 of (P−m
K /OK)n, of rank

n− h, we have

(Xm,M1 ∩Xm,M2)
red = Xm,L,

where L is the minimal direct summand of (P−m
K /OK)n, containing M1 + M2. By

definition the closed subscheme Xm,L of Xm/X is supported only over X [hL] ⊂ X,
for hL the corank of L.

In the cases when X satisfies the “versality condition”, using the explicit com-
putations of local parameters as they appear in the proof of proposition 11, it is
possible to describe the complete local ring of the intersection Xm,M1 ∩Xm,M2 at
a point x in terms of the linear equations describing the transition matrix between
two basis of M1 and M2 inside (P−m

K /OK)n.
It is an easy observation that these intersections are in general non transversal,

not even reduced. On the other hand, they are reduced (resp. transversal) when the
module M1 +M2 is a direct summand (resp. direct summand of rank 2n−h1−h2).
In fact, if we assume L = M1 + M2, then we can choose a base of (P−m

K /OK)n of
the form {e, u, v, t} such that M1 = 〈e, u〉, M2 = 〈e, v〉 and L = 〈e, u, v〉. Let us
choose local parameters θ’s as in proposition 11 corresponding to the above basis,
i.e. such that O∧

x,Xm,M1
' k[[Y, θv, θt]] and O∧

x,Xm,M2
' k[[Y, θu, θt]]. Then, the

complete local ring at a point x ∈ Xm,M1 ∩Xm,M2 ⊂ Xm is

O∧
x,Xm,M1∩Xm,M2

' k[[Y, θv, θt]]/(θv) = k[[Y, θu, θt]]/(θu).

We give an example in the case when M1+M2 is not a direct summand, for n = 2
and h = 1. Let e, f denote the canonical basis of (P−m

K /OK)2, we consider M1 = 〈e〉
and M2 = 〈e + πf〉. Then Xm,M1 ∩Xm,M2 is zero dimensional non-reduced. For a
point x of this intersection we have

O∧
x,Xm,M1∩Xm,M2

= k[[θf ]]/(fπ(θf )) ' k[[θf ]]/(θq
f ).
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4. On the number of connected components

We conclude this paper with an application of the above description of the ge-
ometry in positive characteristic to counting number of connected components of
Drinfeld covers. Our results will apply in particular to the class of Shimura varieties
studied by Harris and Taylor in [3].

4.1. On Drinfeld covers. Let X be a reduced k-scheme and G/X be a one dimen-
sional compatible Barsotti-Tate OK-module , of height n. We assume that G/X
satisfies the “versality condition”:

• at each point x the map from the formal completion of X at x to the formal
space of deformation in equal characteristic of G(x) is an isomorphism.

Thus X is smooth of pure dimension n− 1.
Then, the results in the previous section imply the following remark.

Remark 17. For any m ≥ 1, the Drinfeld cover Xm of X decomposes as a
union of q(m−1)(n−1)(qn−1 +qn−2 + · · · q2 +q+1) smooth closed subvarieties of pure
dimension n− 1.

Indeed, Xm =
⋃

M Xm,M where each Xm,M is a smooth closed subvariety of pure
dimension n− 1, and M varies among the direct summands of (P−m

K /OK)n which
are free of rank 1. Thus it suffices to check that there are exactly q(m−1)(n−1)(qn−1+
qn−2 + · · · q2 + q + 1) such M ’s.

For m = 1, the number of all direct summands of (P−1
K /OK)n, of rank 1, is

simply the number of all k-subspaces of kn of dimension 1, i.e.

#Pn−1(k(w)) = qn−1 + qn−2 + · · · q2 + q + 1.

For m ≥ 2, we count the number of direct summands of (P−2
K /OK)n by grouping

them accordingly to their reduction modulo PK . Given M0 = 〈v0〉 ⊂ (P−1
K /OK)n,

there are q(m−1)n possible lifts of the vector v0 in (P−m
K /OK)n, and any two of

them span the same submodule if and only if they are multiple of each other by
a 1-unit. Thus, for any M0, there are exactly q(m−1)(n−1) direct summands which
reduce to M0 modulo PK .

4.1.1. Let us further assume that the locus X [0] ⊂ X is not empty, i.e. that there
exists a point x ∈ X such that G(x) has p-rank equal to 0 (such a point is called
supersingular). Then

(1) for any m ≥ 1, the Drinfeld cover Xm is the union of smooth closed subva-
rieties crossing at all supersingular points x ∈ X

[0]
m ;

(2) the map Xm → X is totally ramified at all supersingular points x ∈ X̄
[0]
m .

These two remarks together directly imply the following proposition.

Proposition 18. Let X be a connected k-scheme and G/X a one dimensional
Barsotti-Tate OK-module of height n. Suppose

(1) G/X satisfy the versality condition given above;
(2) X has at least one supersingular point.

Then Xm is connected and the subschemes Xm,M are its irreducible components.

Further more, the above proposition extends to the analogous result in charac-
teristic zero.
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Proposition 19. Let X be a connected smooth OK̂nr -scheme and G/X a one
dimensional Barsotti-Tate OK-module of height n.

Suppose

(1) G/X satisfy the “versality condition” at each point x ∈ X ×OK̂nr k the
natural morphism from the formal completion of X at x to the formal space
of deformations of G(x) is an isomorphism;

(2) X ×OK̂nr k has at least one supersingular point.

Then, for any m ≥ 1, the generic fiber of Drinfeld cover Xm of X of level m is
irreducible.

Proof. Under the above assumptions we know that the scheme Xm is regular, its
generic fiber smooth and its special fiber connected. In fact, more precisely, the
special fiber Xm×OK̂nr k consists of smooth irreducible components crossing at the
supersingular points. The regularity of Xm at the supersingular points implies that
the generic fiber Xm is also connected and thus irreducible since smooth. �

4.2. On some simple Shimura varieties. We conclude by applying the above
results to the Shimura varieties studied in [3]. We refer to [3] (I.7 and III.1) for the
technical definition of this class of Shimura varieties, and limit ourself to outline
how they fit in the context of this paper.

The Shimura varieties in [3] belong to a certain subclass of the class of PEL-type
Shimura varieties. In particular, these Shimura varieties arise as moduli spaces of
abelian varieties together with certain additional structures (namely, a polarization,
the action of a simple division algebra B/Q and a level structure). In some cases,
when the Hasse principle fails, these PEL-type moduli spaces give the Shimura vari-
eties only after passing to connected components. In the following, we temporarily
ignore this problem and refer to these moduli spaces as “Shimura varieties”, post-
poning the discussion of this issue to the very end. In particular, we shall see that
even in those cases, our result on the number of the connected components of the
moduli spaces implies the analogous result for the Shimura varieties.

4.2.1. Let F be the ground field. We assume F = E.F+, for E a quadratic imagi-
nary extension of Q where p splits completely and F+ a totaly real field. Then F
is a CM-field with maximal totally real subfield F+. Let u be a place of E above p
and w = w1, . . . , wr the places of F above u. The completion Fw of F at our chosen
prime w|p plays the role of the local field K in this context. In the following, we
write OFw for the ring of integers of Fw, and kw for its residue field. We also choose
F̂nr

w the completion of a maximal unramified extension of Fw, and write OF̂ nr
w

for
its ring of integers and k for its residue field.

4.2.2. Let G/Q be the algebraic groups associated with one of these Shimura vari-
eties and B the central division algebra over F appearing in the moduli data. We
write Bop for the opposite algebra of B. Under the hypotheses in [3], we have

G(Qp) = Q×
p ×

r∏
i=1

Bop
wi

.

For i = 1, . . . , r, let Oop
Bwi

be a maximal ideal of Bop
wi

. We assume B is split at w,
and choose an isomorphism Oop

Bw

∼= Mn(OFw
).
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4.2.3. Let U be a level, i.e. a sufficiently small open compact subgroup U of G(Af ),
where Af denotes the finite adeles of Q. We always assume U has the form

U = Up(m) = Up × Z×p ×
r∏

i=1

ker((Oop
Bwi

)× → (Oop
Bwi

/wmi
i )×)

inside G(Af ) = G(Ap
f )×Q×

p ×
∏r

i=1 Bop
wi

(where Ap
f denotes the finite adeles away

from p), for some positive integers m1, . . . ,mr.
We call the integer m = m1 the level at w and we say that w does not divide

the level (resp. p does not divide the level) if m1 = 0 (resp. if m1 = m2 = · · · =
mr = 0). Further more, for any given level U = Up(m1,m2 . . . , mr), we define
U1 = Up(0,m2, . . . mr) and U0 = Up(0, 0, . . . , 0). Thus U ⊂ U1 ⊂ U0.

4.2.4. Let XU denote the Shimura variety of level U associated with G. It is a
smooth projective scheme defined over F . Moreover, it admits a integral model XU

over OFw with the following properties ([3], Lemma III.4.1, p.111-112):

(1) XU is regular and flat over OFw
(for any U);

(2) if w does not divide U (m1 = 0), then XU/OFw is smooth and the natural
morphism XU → XU0 is finite étale and Galois;

(3) if w divides U (m1 6= 0), then XU → XU1 is finite flat.

These results are based on the following important observation ([3], III.4 p. 108).

Remark 20. Let V ⊂ G(Af ) be a level not divisible by w, X = XV the associated
integral Shimura variety over OFw

and A the universal abelian scheme over X .
There exists a canonical compatible one-dimensional Barsotti-Tate OFw

-module
G ⊂ A[p∞] such that

• ∀x ∈ X ×OFw
k: the natural morphism from the completion of X ×OFw

OF̂ nr
w

at x to the formal space of deformations of G(x) is an isomorphism.

Moreover, for a general level U , the scheme XU → XU1 is the Drinfeld cover of
level m = m1 associated with G.

The above remark is the key for translating the results of section 3 into the
context of the Shimura varieties studied in [3]. In particular, the following result
can be obtained as corollary to Proposition 19.

Corollary 21. The number of connected components of the Shimura varieties is
independent of the level at w.

Proof. In order to deduce this corollary, we need to show that all the connected
components of the reduction of the Shimura varieties, of level not divisible by w,
contain at least one supersingular point. In fact, it suffices to check this for levels
U0 not divisible by p, since the general case of levels U1 not divisible by w will then
follow using the fact that the morphism XU1 → XU0 is finite étale and Galois.

In [3] (Lemma III.4.3, p. 114) Harris and Taylor prove the existence of at least
one supersingular point. In the lemma below we prove that, for any level U not
divisible by p, the group of automorphisms of the integral model XU , preserving the
p-rank stratification (associated with G) of the special fiber X̄ of X and thus map-
ping supersingular points to supersingular points, acts transitively on the connected
components. These two results combined allow us to conclude. �
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In the following lemma, we consider the Shimura varieties XU as varieties over
the complex numbers C, via an embedding of the CM-field F in C which extends a
fixed embedding τ : F+ ↪→ R characterized by the conditions G(F+

τ ) ∼= U(1, n−1),
and G(F+

σ ) ∼= U(0, n) for all other real places σ of F+ (see Lemma I.7.1 pp.52–55).

Lemma 22. Maintaining the above notations. Let Z1, Z2 be any two connected
components of the Shimura variety XU/C, for any level U not divisible by p.

Then, there exists an automorphism of its integral model XU/SpecOFw
such that:

• its restriction to the generic fiber maps Z1 isomorphically to Z2;
• its restriction to the special fiber preserves the p-rank stratification.

Proof. In [6] (Section 8, pp. 398-400) Kottwitz describes the generic fiber XU of
the integral models XU as

XU (C) =
∐
i∈I

S
(i)
U , ∀i : S

(i)
U = G(Q)\G(Af )/U ×G(R)/U∞,

for U∞ a subgroup of G(R) determined by the data defining the moduli problems of
the Shimura varieties ([6], p. 386) and I the (finite) set of locally trivial elements in
H1(Q, G) (see [6], section 7, p. 393 and ff., where I = ker1(Q, G)). The definitions
of U∞ and I play no role in our proof. Using this decomposition, we deduce the
statement of the lemma from three known facts.

(1) For each i ∈ I, there exists an automorphism σi of the integral model
XU/SpecOFw which restricted to the generic fiber XU maps S

(1)
U isomor-

phically to S
(i)
U , and which restricted to the special fiber X̄U preserves the

p-rank stratification (see [6], p. 400).
(2) The action of G(Ap

f ) on XU/SpecOFw when restricted to the generic fiber

XU stabilizes each S
(i)
U and induces a transitive action on G(Q)\G(Af )/U .

Moreover, when restricted to the special fiber X̄U it preserves the p-rank
stratification (see [3], Section III.4, pp. 109-110).

(3) the space G(R)/U∞ is connected (in fact, U(1, n − 1) � G(R)/U∞ and
U(1, n− 1) is connected).

�

4.2.5. Finally, let us consider the cases when the PEL moduli spaces XU give the
Shimura varieties only after passing to connected components. More precisely, the
PEL moduli spaces XU/C decompose as XU (C) =

∐
i∈I S

(i)
U , where each S

(i)
U is a

canonical model for the Shimura variety of level U associated with G, and #I 6= 1
when the Hasse principle for H1(Q, G) fails. On the other hand, since the set I
is independent of the level U , our result on the number of connected components
of the moduli spaces XU implies the analogous result for the canonical models SU

even in cases when #I 6= 1. Thus, corollary 21 still holds.
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