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Abstract. —

In this paper, we study the local geometry at a prime p of a certain class of (PEL)
type Shimura varieties. We begin by studing the Newton polygon stratification of
the special fiber of a Shimura variety with good reduction at p. Each stratum can be
described in terms of the products of the reduced fiber of the corresponding Rapoport-
Zink space with some smooth varieties (we call the Igusa varieties), and of the action
on them of a certain p-adic group T, which depends on the stratum. (The definition
of the Igusa varieties in this context is based upon a result of Zink on the slope
filtration of a Barsotti-Tate group and on the notion of Oort’s foliation.) In particular,
we show that it is possible to compute the étale cohomology with compact supports of
the Newton polygon strata, in terms of the étale cohomology with compact supports
of the Igusa varieties and the Rapoport-Zink spaces, and of the group homology of
Tw. Further more, we are able to extend Zariski locally the above constructions to
characteristic zero and obtain an analoguous description for the étale cohomology of
the Shimura varieties in both the cases of good and bad reduction at p. As a result
of this analysis, we obtain a description of the l-adic cohomology of the Shimura
varieties, in terms of the l-adic cohomology with compact supports of the Igusa
varieties and of the Rapoport-Zink spaces.
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Résumé (Sur certaines variétés de Shimura associoées a4 des groupes uni-
taires)

Dans cet article, nous étudions la géométrie locale, en un premier p, d’une cer-
taine classe de variétés de Shimura de type PEL. Nous commencons par étudier la
stratification par le polygone de Newton de la fibre spéciale des variétés de Shimura
ayant bonne réduction en p. Chaque strate peut étre décrite en termes de produits des
fibres réduites des espaces de Rapoport-Zink correspondants avec certaines variétés
lisses, les variétés d’Igusa, et de ’action sur ces objets d’un certain groupe p-adique
Tw, qui dépend de la strate. Nous montrons en particulier qu’il est possible de cal-
culer la cohomologie étale a support compact des strates du polygone de Newton, en
termes de la cohomologie étale & support compact des variétés d’Igusa et des espaces
de Rapoport-Zink, et de I’homologie des groupes de T, . De plus, nous parvenons a
étendre localement (au sens de la topologie de Zariski) les constructions précédentes a
la caractéristique nulle et & obtenir une description analogue de la cohomologie étale
des variétés de Shimura, dans les cas de bonne comme de mauvaise réduction en p.
Comme conséquence de cette étude, nous obtenons une description de la cohomolo-
gie l-adique des variétés de Shimura, en termes de la cohomologie I-adique & support
compact des variétés d’Igusa et des espaces de Rapoport-Zink.
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1. Introduction

In this paper, we study a certain class of (PEL) type Shimura varieties. These
varieties arise as moduli spaces of polarized abelian varieties, endowed with an action
of a division algebra and a level structure. Their [-adic cohomology is the object of a
conjecture of Langlands.

In [29] Rapoport and Zink introduce local analogues of the Shimura varieties,
which are (PEL) type moduli spaces for Barsotti-Tate groups, in the category of rigid
analytic spaces. These spaces can be used to give rigid analytic uniformizations of
isogeny classes of abelian varieties inside the corresponding Shimura varieties. In
[28] Rapoport reports a conjecture of Kottwitz for the l-adic cohomology groups
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with compact supports of the Rapoport-Zink spaces. This conjecture is “heuristi-
cally compatible” (in the sense of the p-adic uniformization given in [29]) with the
corresponding global conjecture on Shimura varieties.

In [14] Harris and Taylor prove the local Langlands conjecture by studying a partic-
ular class of (PEL) type Shimura varieties. In their work, they analyse the reduction
mod p of the Shimura varieties via the notion of Igusa varieties. These varieties arise
as finite étale covers of the locus, inside the reduction of the Shimura varieties with no
level structure at p, where the Barsotti-Tate group associated to the abelian variety
lies in a fixed isomorphism class. Their analysis strongly relies on the fact that, for
the class of Shimura varieties they consider, the pertinent Barsotti-Tate groups are
one dimensional, and thus Drinfeld’s theory of elliptic modules applies.

For general (PEL) type Shimura varieties such an assumption on the dimension
of the Barsotti-Tate groups which control the deformation of the abelian varieties
does not hold. On the other hand, it might be possible to describe the geometry
and the cohomology of general (PEL) type Shimura varieties by combining together
Harris-Taylor’s and Rapoport-Zink’s techniques. We consider the Newton polygon
stratification of the reduction of the Shimura varieties, which is defined by the loci
where the Barsotti-Tate group associated to the abelian variety lies in a fixed isogeny
class. The idea is to analyse each Newton polygon stratum along two main “di-
rections”: one corresponding to deforming the abelian varieties without altering the
isomorphism class of the associated Barsotti-Tate group, the other corresponding to
varying the abelian varieties inside one isogeny class.

In this paper, we carry out this plan for a simple class of (PEL) type Shimura
varieties and, as a result, we obtain a description of the l-adic cohomology groups
of the Shimura varieties, in terms of the l-adic cohomology with compact supports
groups of the Igusa varieties and of the Rapoport-Zink spaces, in the appropriate
Grothendieck group, for any prime number [ # p.

More precisely, the class of (PEL) type Shimura varieties we are interested in arises
as the class of moduli spaces of polarized abelian varieties endowed with the action of
a division algebra and with a level structure associated to the data (E, B, *,V, <,>)
where:

— FEis an imaginary quadratic extension of Q in which the prime p splits (we write
(p) = u-uf);

— B is a central division algebra over E of dimension h? which splits at u;

— * is a positive involution of the second kind on B;

— V = B viewed as a B-module;

— <,>: V xV — Q is a non degenerate alternating *-hermitian pairing.

We denote by G the algebraic group over Q of the automorphisms of V' which
preserves <, > up to scalar multiple, and by G; the algebraic subgroup of G of the
automorphisms which preserves <, >, i.e. 0 = G; — G — G,, — 0. Finally, we also
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assume
G1(R) =U(g,h — q),

for some integer ¢, 1 < g < h — 1. (For ¢ = 0, h the corresponding class of Shimura
varieties has good reduction at the prime p.)

We remark that when g = 1 the above class of Shimura varieties is a subclass of
the one studied by Harris and Taylor in [14] (namely, the case when the totally real
part of the ground field is trivial).

For any sufficiently small open compact subgroup U C G(A*), we call the Shimura
variety of level U the smooth projective scheme Xy over Spec E, of dimension ¢(h —
q), which arises as the moduli space of polarized abelian varieties endowed with a
compatible action of B and with a structure of level U, classified up to isogeny (see
24]).

Our goal is to study the virtual representation of the group G(A>) x W, :

H(X,Q) =Y (—1)lim g H,,(Xu xg (E}7)™, Q).
i>0

We obtain the following theorem.

Theorem 1 (Main Theorem). — There is an equality of virtual representations
of the group G(A>) x Wq,:

HX, Q)% = 3 (=DMl v Exth, oo (HAMES,  Qu(=D)), H(Ja, Q)

a,k,i,j
where:

— D = q(h — q) is the dimension of the Shimura varieties;
— the action of Z,; on H(X,Z/I"Z) is defined via the embedding

Zy CQp x (BY)" = G(Qy) C G(A™);

— « varies among all the Newton polygons of height h and dimension q;

— for each o, T, is a p-adic group of the form Ty =[], GL,,(D;) for some finite
dimensional division algebras D;/Q,;

— Hi(Ja, Q) are representations of To, x G(A®P) x (QX /L)) x (Wq,/Ig,) associ-
ated to the l-adic cohomology with compact support groups of the Igusa varieties,
for all 3 > 0;

— Hf(./\/lg’gvp,(@l) are the l-adic cohomology with compact supports groups of the
rigid analytic Rapoport-Zink space of level V,, for all k > 0 and any open com-
pact subgroup V,, C G(Q,)/Qys; as the level V,, varies, they form a direct limit
of representations of To, x Wy, , endowed with an action of G(Q,)/Qys .

In the following, we outline in more detail the content of this paper.
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In [24] Kottwitz proves that the Shimura varieties without level structure at p, i.e.
associated to a subgroup U of the form

U:Up( ) Up XZX X OBop,

admit smooth integral models over Spec O, (Op, = Z,). We denote by X = X (g
the reduction Xyp(g) Xspecz, SpecF, of a Shimura variety with no level structure at
p and by A the universal abelian variety over X. It follows from the definition of the
moduli space and Serre-Tate’s theorem that the deformation theory of the abelian
variety A over X is controlled by a Barsotti-Tate group of height 4 and dimension ¢
over X, which we denote by G/X (G C A[p>]).

In [25] Oort studies the Newton polygon stratification of a moduli space of abelian
varieties in positive characteristic. This is a stratification by locally closed subschemes
which are defined in terms of the Newton polygons of the Barsotti-Tate groups asso-
ciated to the abelian varieties. (Newton polygons associated to Barsotti-Tate groups
were first introduced and studied by Grothendieck in [13] and Katz in [21]). For any
Newton polygon o of dimension ¢ and height h, the associated stratum X (%) is the
locus where the Barsotti-Tate group G has constant Newton polygon equal to a, i.e.
constant isogeny class.

The first step towards the main theorem is to notice that the decomposition of X
as the disjoint union of the open Newton polygon strata X(®) induces an equality of
virtual representations of the group G(A>) x Wo,:

DD H(X,Q) =) () H(X, Q) =Y > (~1)HI(X', Q).
i>0 i>0 o j>0
Thus, we may restrict ourself to study each Newton polygon stratum separately.
Since we are assuming g > 1, to each isogeny class of Barsotti-Tate groups of di-
mension ¢ and height h correspond possibly many distinct isomorphism classes. It
is a result of Oort that, for any given Barsotti-Tate group H over F,, with Newton
polygon equal to a, the set of geometric points = of X(® such that G, ~ H is a closed
subset of X(®) x ]Fp. Moreover, the corresponding reduced subscheme of X (@) x Fp is
a smooth scheme over Spec F,,, which is called the leaf associated to H and is denoted
In this work, we focus our attention on a distinguished leaf C\, = Cs;_, inside each
Newton polygon stratum, which we call the central leaf, and define the Igusa varieties
as covering spaces of the central leaf C. Before introducing the definition of Igusa
variety, we recall a result of Zink (see [30]). This result extends the classical result
in Dieudonné’s theory of p-divisible groups which states that any p-divisible group
defined over a perfect field is isogenous to a completely slope divisible one, i.e. to a
direct product of isoclinic slope divisible p-divisible groups. In [30] Zink shows that
over a regular scheme of characteric p any p-divisible group with constant Newton
polygon of slopes A\; > Ay > -+ > )\ is isogenous to a p-divisible group G which
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admits a filtration (called the slope filtration)
0=GCGiC--CGr=6

whose factors G¢ = G;/G;_; are isoclinic slope divisible p-divisible groups of slope ;.
In particular, it follows from Zink’s work that the Barsotti-Tate group G over C,
admits a slope filtration (see remark 2.14).

Definition 2. — For any positive integer m, we define the Iqusa variety of level m,
Ja.m, over Cq to be the universal space for the existence of isomorphisms

j':n . Ei[pm] N gi[pm]

which extend étale locally to any higher level m’ > m (we denote by ¥ the isoclinic
piece of Xy of slope \;, for each i).

The notion of Igusa varieties was first introduced by Igusa in [16] in the theory of
elliptic curves and used to describe the reduction at a bad prime p of modular curves
(see [22]). In [14], Harris and Taylor introduce and study a higher dimensional
analogue of the Igusa curves which they use to describe the reduction at a bad prime
p of Shimura varieties. We remark that, both in the classical theory of modular curves
and in the case of the Shimura varieties considered by Harris and Taylor in [14], the
Igusa varieties are finite étale covers of the whole open Newton polygon stratum, and
not of the central leaf. This is because, in the case when G is one dimensional, there
is a unique leaf inside each open Newton polygon stratum, namely the whole stratum
itself. We prove that, for any integer m > 0, the morphism J,, — C, is finite,
étale and Galois. (The definition of the Igusa varieties can be easily given over other
leaves of X (%) x IF‘p, namely over any leaf associated to a completely slope divisible
p-divisible group.)

As mentioned, our idea is to study the Newton polygon stratum along two “di-
rections”: one corresponding to deforming the abelian varieties without altering the
isomorphism class of the associated Barsotti-Tate group, the other to varying the
Barsotti-Tate group (and the associated abelian variety) inside its isogeny class. The
first one is related to the leaves of Oort’s foliation (and thus to the Igusa varieties),
the latter corresponds to the Rapoport-Zink spaces.

Following the work of Rapoport and Zink ([29]), to the Barsotti-Tate group %, we
associate a formal scheme M, = Myx_ over Z;” = W(F,), which is formally locally
of finite type. It arises as a moduli space for Barsotti-Tate groups H/S together with
a quasi-isogeny 3 : ¥4 x § — H x S over the reduction modulo p S of S, classified
up to isomorphisms of Barsotti-Tate group H/S (S is a scheme over Z;" on which p
is locally nilpotent). We call M,, the Rapoport-Zink space with no level structure,
associated to a. For any pair of positive integers (n, d), we denote by M™< the closed
formal subscheme of M, over which p” 3 is an isogeny with kernel contained in ¥, [p?],
and by M4 its reduced fiber over F,,.
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For any set of positive integers m,n,d, with m > d, and all integers N > d/dB
(where 6 € Q and B € N are two numbers which depend on the Newton polygon ),
we define some morphisms 7n : Ja,m XgpecF, M4 — X(@) x F,. (The definition of
the map my is based on the observation that the iterated action of Frobenius on a
Barsotti-Tate group makes the slope filtration more and more split.) Whenn = d = 0,
the morphism 7% is simply the structure morphism ¢y, : Jom — Co — X (@) x IF‘p
(the space M%9 is just a point, namely the point corresponding to the pair (X, id)
over F,). We prove that the morphisms 7x : Ju.m X SpecF, Mt — X(@) x F, are
finite, and surjective on geometric points for m, n, d sufficiently large. Moreover, they
are compatible with the projections among the Igusa varieties and with the inclusions
among the Rapoport-Zink spaces, and also mx11 = (F'rf x 1)y, for all N (we denote
by Fr the absolute Frobenius on X). Further more, there is a natural way of defining
a Galois action on the Igusa varieties and on the Rapoport-Zink spaces, which is
compatible under the morphisms 7 with the Galois action on the Newton polygon
strata.

One may hope to also endow the system of covers Ja,m XgpecF, M of X(@) x T,
with an action of the group T, of quasi-isogenies of ¥, over [F),, leaving the morphisms
7wy invariant (such an action exists for example on geometric points). From the
definitions we have an action of subgroup I', = Aut(3,) of T, on the tower of
Igusa varieties, and a natural action of T, on the space M,. We show that the
diagonal action of I on the system of covers Jo m XgpecF, M4 extends to an action
of a certain submonoid I', C S, C T, which leaves the morphisms wx invariant.
Moreover, the action of S, on the systems of covers Jo,m Xgpec, M4 induces an
action on the étale cohomology with compact supports groups, and this action extends
uniquely to a smooth action of the entire group 7T,. As a result of the analysis of the
action of T, on the cohomology groups, we prove the existence of a spectral sequence
of Galois representations

DitjknTors, gy (HY (M, ZJI'Z), H) (Jo, Z)I'Z)) = H} (X' x F,, Z/I"Z),

where HI(Jy,Z/1"7) = lim o, HI(Jom, Z]I"Z).

As we let the level structure away from p vary, the action of G(A*P) on the Shimura
varieties with no level structure at p preserves the above constructions. Therefore, the
above spectral sequences give rise to an equality of representations of G(A*?) x Wy,

> lim e Toryyq, ) (HE(Ma, Q) HL(Joue, Q1) =
i+j+k=n

= @ ur HS(X((JO;)(o) X ]FP?Ql)'
We are left to study the case of Shimura varieties with level structure at p. Our
idea is to extend the above construction to characteristic zero and to compare the
Shimura varieties with level structure to the product of some smooth lifts of the

Igusa varieties with the Rapoport-Zink spaces of the same level. More precisely, we
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are interested in studying the associated vanishing cycles sheaves as we can then use
them to compute the l-adic cohomology of these spaces in characteristic zero in terms
of the cohomology of their reduction in positive characteristic.

We denote by X (resp. €,) the formal completion of X along X x F, (resp.
Cy X ]F‘p), and by Ja,m the finite étale cover of €, corresponding to Jum/Co. We
denote by %R}g over X"& the rigid analytic space associated to the Shimura variety
with structure of level M at p and by MS%M over MZi& the Rapoport-Zink space of
level M.

For m > d + t, we construct some morphisms

() (Tom Xgprzpe M) (8) = X(0),

such that (mx(¢))**do (1 x FrVB) = my, for all N > (d+t)/§B, which are compatible
with the projections among the lifts of the Igusa varieties and with the inclusions
among the Rapoport-Zink spaces, and which extend Zariski locally to the formal
schemes in characteristic zero. (For any formal scheme ) over Spf Z;”, we write Y(t)
for the subscheme defined by the ¢-th power of an ideal of definition Z of Y, p € Z.)
For m > d +t + M, we prove that for any affine open V' of Jo m X spf Zpnr M4 there
exists a formally smooth morphism my over V' lifting 7x (t)y/+) with the property
that
3Ellr\ififg Xxrie,my Ve o Mrai,gM X MEE proy Ve,

The existence of the morphisms 7y(t), and of the corresponding local liftings to
characteristic zero, enable us to compare the vanishing cycles sheaves (in the sense
of Berkovich’s [2] and [3]) of the Shimura varieties and of the Rapoport-Zink spaces
when level structure at p is considered. More precisely, as the level at p varies, we
obtain a system of compatible equalities of representations of G(A>?) x Wg,

> (=) Ym g Torsy o,y (HE (Maar, RO (Q0), HE (Ja,ur, Q1) =
i,.4,k,q

= > (=1 lim g HY (X 0 % By R, (Q1)),
n,q

It is easy to see that, as « varies among the Newton polygons of dimension ¢
and height h, the right hand side computes the l-adic cohomology groups of the
Shimura variety of level M. It is more subtle to realise that the cohomology groups
of the special fibers of the Rapoport-Zink spaces, with coefficients in the vanishing
cycles sheaves, compute not the cohomology of the Rapoport-Zink spaces but its
contragredient dual, up to Tate twist.

As the level M varies, the above equalities piece together in the statement of the
main theorem.

The author will like to thank R. Taylor suggesting the topic of this paper, and for
his inestimable help with all the phases of its realization. She is also very grateful
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to B. Conrad, J. de Jong, L. Fargues, T. Graber and F. Oort for many enlighting
mathematical discussions and for carefully reading early drafts of this paper.

2. Preliminaries

In this section, we shall introduce the definitions and results which are the starting
point of our work. In particular, we shall define the class of (PEL) type Shimura vari-
eties we study. These are some smooth projective varieties defined over an imaginary
quadratic extension of QQ, which arise as moduli spaces of polarized abelian varieties
and which admit smooth integral models at p, in the cases when no level structure at
p is considered. (We shall follow the definitions given by Harris and Taylor in [14]).

In section 2.2, we shall focus our attention on the reduction in positive characteristic
of the Shimura varieties with no level structure at p and introduce in this context the
Newton polygon stratification. This stratification was defined by Grothendieck in [13]
and extensively studied by Oort in the general context of moduli spaces of abelian
varieties (see [25]). Inside each Newton polygon stratum, we shall distinguish some
smooth closed subschemes which are defined by fixing the isomorphism class of the
p-divisible group associated to the abelian variety. These are the leaves of Oort’s
foliation (see [26]). We shall also point out a certain isomorphism class of p-divisible
groups for any given Newton polygon, whose corresponding leaf (the central leaf) will
play an important role in our analysis.

From the theory of Barsotti-Tate groups, we shall recall the definition of some
(PEL) type moduli spaces introduced by Rapoport and Zink (in [29]) and also the
notion of slope filtration. The slope filtration of a Barsotti-Tate group over a perfect
field of characteristc p was first studied by Grothendieck (see [21]). Here, we shall
recall some recent results of Zink which study the case of a Barsotti-Tate group over
a smooth scheme of characteristic p (see [30]). We shall also introduce the notion
of level structure on a Barsotti-Tate group, as a specification of Katz’s and Mazur’s
notion of full set of sections on finite flat group schemes (see [22]).

Finally, we shall recall some results of Berkovich on the theory of vanishing cycles
in the context of rigid-analytic spaces associated to some special formal schemes (see

[2] and [3]).

2.1. Shimura varieties. — In this section we shall introduce the simple unitary
group Shimura varieties which are studied in this paper. This class is a sub-class of
the Shimura varieties introduced by Kottwitz in [23] and contains a sub-class of the
class studied by Harris and Taylor in [14] (see section 2.1.8).

We shall follow the exposition and notations of Chapter IV in [14].

2.1.1. Let E be an imaginary quadratic extension of Q in which the prime p splits.
We denote by ¢ the complex conjugation in Gal(E/Q) and by u, u° the two primes of
FE above p.
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Let B over E be a division algebra of dimension h? such that:

— F is the center of B;

— B splits at u;

— there is a positive involution of the second kind * on B.

(We recall that an involution on B, * : B — B°P, is said of the second kind if
2* = z¢ for all z € K, and is positive if tr/qg(zz*) > 0 for all z € B*.)

The above conditions on B imply that B, = B ®g E, is isomorphic to M, (Q,).
We fix such an isomorphism B, ~ M, (Q,) and denote by Op, the maximal order
of B, corresponding to M, (Z,) C M,(Qp). Then, there is a a unique maximal Z,)-
order Op in B which is stable under the involution * and such that (Op), = Og,.
We also define € € Op, to be the idempotent element which maps, under the above
isomorphism, to the matrix with entries equal to 1 in position (1,1) and 0 every where
else.

2.1.2. Let V denote the B ® B°P-module underlying B and choose a non-degenerate
x-hermitian alternanting pairing <, > on V. This choice defines an involution of the
second kind # on B°P by

(b @ bo)z,y) = (@, (b7 © bY )y)

for all z,y € V, by € B and by € B°P.

Let us denote by ¢ (0 < ¢ < h) the positive integer such that the pairing <, > on
V ®g R has invariant (g, h — ¢). We assume ¢ # 0, h. This is equivalent to assuming
that the corresponding class of Shimura varieties has bad reduction at p.

2.1.3. Let G be the algebraic group over Q (resp. A>°) defined by
G(R) = {(\g) € R* x (B?® R)* | gg” = A},

for any Q-algebra (resp. A*-algebra) R.
There is a distinguished normal subgroup G; of G, namely the subgroup of the
automorphisms of V' which preserves the pairing <, >, i.e.

0—-G —G—G, —0,
where the morphism v : G — G,, is defined by (A, g) — A. Then,
G1(R) = U(g,h = q)-
Let A* denote the finite adels of Q. We observe that G(A*°) naturally decomposes
as G(A*®P) x G(Qp). Moreover, since (p) = v - u in E, we can identify
B @g Q, = B x By,
and thus any (A

,9) € G(Q,) can be written uniquely as (X, g1,92) € Q, x BY x By¥
with (9193 . g297)

= (A, A). There is a natural isomorphism
(@Qp)* x (BF)* — G(Qp)
which is defined by (X, g1) — (A, g1, A(g7)™1).
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2.1.4. Let us recall the following definitions about abelian schemes (see [14], Lemma
IV.1.1, p. 93, and Section IV.4, p. 112).

Let S be a E-scheme and A/S an abelian scheme of dimension k2. Suppose that
there is a morphism i : B — End(A) ®z Q. Then Lie(A) is a locally free Og-module
of rank h? with an action of B and it decomposes as

Lie(A) = Lie™(A) @ Lie™ (A),

where Lie™ (A) (resp. Lie™ (A)) is the module Lie(A)®05rOs and the map E — Og
is the natural map (resp. the complex conjugate of the natural map). Both Lie™(A)
and Lie™ (A) are locally free Og-modules.

Definition 2.1. — We call the pair (A,7) compatible if Liet(A) has rank gh.

Suppose now that S is a Og, -scheme, A an abelian scheme over S and i : Op —
EIld(A) X7, Z(p)

Definition 2.2. — We call the pair (A, i) compatible if Lie(A)®z, 00, O, is locally
free of rank g¢h.

We remark that, if p is locally nilpotent on S, then the pair (A4,1) is compatible
if and only if the Barsotti-Tate group G = eA[u™] is a ¢g-dimensional Barsotti-Tate
group, (e € Op, is the idempotent defined in section 2.1.1). In fact, in this case, we
can identify Lie(A[u™]) = Lie(A) ®z,005 Op, as Op,-modules, and thus we have
Lie(G) = eLie(A[u™]) as O, = Z,-modules. It follows that saying that the pair
(A, 1) is compatible is equivalent to say that Lie(G) is locally free of rank ¢, since we
also have the equalities

Op, ®z, Lie(G) = Op, ®z, eLie(Alu™]) = Lie(A[u™]) = Lie(A).

On the other hand, saying that Lie(G) is a locally free Z,-module of rank ¢ is equiv-
alent to saying that the Barsotti-Tate group G has dimension gq.

It follows from the fact that A/S has dimension h? that A[u>] has height h? (half
the height of A[p>°]) and thus that G has height h.

2.1.5. Let U be an open compact subgroup of G(A*). We shall define a functor Xy
on the category of pairs (5, s), where S is a connected locally noetherian E-scheme and
s is a geometric point on S, to sets. We define Xy (S, s) to be the set of equivalence
classes of quadruples (A, A, i, i) where:
— A is an abelian scheme over S of dimension hZ;
— A: A — AV is a polarization;
— i : B — End(A) ®z Q such that (A, ) is compatible and Ao4(b*) = i(b)Y o A for
all b € B;
— [ is a m1 (S, s)-invariant U-orbit of isomorphisms of B ®g A>-modules i : V ®q
A — V A, which takes the pairing <, > on V®@gA> to a (A*°)*-scalar multiple
of the A-Weil pairing.
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Two quadruples (A, )\, 4,2) and (A’ N,i' ') are equivalent if there exists an
isogeny 5 : A — A’ which takes A to a Q*-multiple of X', i to ¢’ and [i to i’ (see [24],
p. 390).

If &’ is a second geometric point on S then X (S, s) is canonically in bijection with
Xuv (S, ') (see [24], p. 391). Therefore Xy can be viewed as a functor on the category
of connected locally noetherian E-schemes to sets. Moreover, we can extend Xy on
the category of locally noetherian E-schemes by setting Xy (S) = [[; Xv/(S;) for any
S =11, S; with S; connected for all 1.

2.1.6. We say that an open compact subgroup U of G(A*) is sufficiently small if
there exists a prime z in Q such that the projection of U in G(Q,) contains no
elements of finite order other than 1. If U is sufficiently small then the functor Xy
on the category of locally noetherian E-schemes to sets is represented by a smooth
projective scheme Xy /E (see [24], p. 391).

If V. C U then there is a natural finite étale morphism Xy — Xy and if V is
normal in U this map is Galois with Galois group U/V.

2.1.7. Moroever, there is a natural action of the group G(A*) on the system of
Shimura varieties defined by composition on the right with the isomorphism p : V ®q
A> — V A,. More precisely, for any g € G(A*) and any open compact sufficiently
small subgroup U of G(A>), there exists a natural finite étale morphism

g: XU — Xg—lUg

defined by setting (A4, A, i, 1) — (A, X, 4, 19).

2.1.8. We remark that when ¢ = 1 the class of Shimura varieties we have introduced
is a sub-class of the class of Shimura varieties studied by Harris and Taylor in [14]
(and thus the geometry and the cohomology of these Shimura varieties is already
known). More precisely, for ¢ = 1, we recover the sub-class corresponding to the case
when the totally real extension of QQ inside the ground field is trivial.

2.1.9. Let UP be a sufficiently small open compact subgroup of G(A*P) (i.e. there
exists a prime z # p in Q such that the projection of UP in G(Q,) contains no elements
of finite order other than 1). For any non-negative integer m we define

Up(m) =UP x Z; X ker(((’)ng)X — ((’)sz/um)x) .

It is a sufficiently small open compact subgroup of G(A°).
We call Xyyp () a Shimura variety with structure of level m at u (or with no level
structure at u if m = 0).

2.1.10. The Shimura varieties with no level structure at u admit smooth integral
models over Spec O, (see [24], chapter 5, pp.389-392). For completeness, we recall
Kottwitz’s construction in this context.



englishON CERTAIN UNITARY GROUP SHIMURA VARIETIES 13

We define a functor Xy» on the category of pairs (S,s), where S is a connected
locally noetherian Op,-schemes and s is a geometric point on S, to sets. We set
Xur (S, s) to be the set of equivalence classes of quadruples (A, A, 7, i?) where:

— A is an abelian scheme over S of dimension h?;

— A: A — AV is a prime-to-p polarization;

— i : Op < End(A) ®z Z,) such that (A, i) is compatible and Xoi(b*) = i(b) o A
for all b € Op;

— [P is a w1 (S, s)-invariant UP-orbit of isomorphisms of B ®g A°P-modules pP :
V ®g A®P — VP A, which takes the pairing <,> on V ®g A®? to a (AP)*-
scalar multiple of the A-Weil pairing (we denote by VP A, the Tate space of A,
away from p).

Two quadruples (A, A, i, zP) and (A’ N,i, (aP)’) are equivalent if there exists a
prime-to-p isogeny 3 : A — A’ which takes A to a Z(Xp)—multiple of M, i to4 and [ to
(i)'

Asin 2.1.5 Xy» (S, s) is canonically independent on s. We denote again by Xy» the
induced functor on the category of connected locally noetherian O, -schemes. We
also extend Xy» to all locally noetherian O, -schemes as in 2.1.5.

The functor AXpy» on the category of locally noetherian Opg, -schemes to sets is
represented by a projective scheme Xy» over O, and there is a canonical isomorphism

Xuw XSpec O, Spec E, = XUP(O) XSpec E SpeC E,

(see [14], p. 113).

Proposition 2.3. — Let UP be a sufficiently small open compact subgroup of
G(A®P). Let x be a closed point of Xuyr X0, k(u)*, associated to a quadruple
(A, N4, 5P).

The formal completion (Xyr Xop, (’)Em)Q s the umversal formal deformation
space of the Barsotti-Tate group G = eA[u*]/k(u)* =TF,, thus

(X x Oy V) = SpEW () [[Ths -, Tyumg]l.

A

2 is the formal deformation

Proof. — By definition, the completion (Xy» x (’)Em)
space for deforming (A, \, 7). By Serre-Tate Theorem this is the same as deforming
(A[p™], A, i), and since X : A[u™] — A[(u€)°°] is an isomorphism, this is also the same
as deforming (A[u®°],7). Finally, we observe that deforming the Op, -module A[u>]
is equivalent to deforming the Z, = eOp,-module G = eA[u™].

Since the Barsotti-Tate group G has dimension ¢ and height h, its formal defor-

mation space is isomorphic to Spf W (Fp)[[T1, . .., Tyn—q)] (see [17]). O

Corollary 2.4. — For any sufficiently small open compact subgroup UP of G(A>P),
the Shimura variety Xy» is a smooth projective scheme over OF,,.
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2.1.11. Tf VP C UP then there is a natural finite étale morphism Xy» — Xy» which
is compatible with the map Xyw» ) — Xy»(g) defined in 2.1.5. Moreover, if V? is
normal in UP then the map is Galois with Galois group U?/V? (see [14], Lemma
IV.4.1, part (6)).

There is a natural action of the group G(A®P) on the integral models of the
Shimura varieties, which is compatible with the action we previously defined on the
Shimura varieties. More precisely, for any g € G(A®P) and any open compact suffi-
ciently small subgroup UP of G(A®P), there exists a natural finite étale morphism

g: Xyr — Xy-1uwg

defined by setting (A, A, i, @) — (A4, \,4,7ig), and whose restriction to the generic
fibers is the morphism

9 Xyr0) = Xg-10r(0)g>
we defined in section 2.1.7.

2.1.12. We remark that the above action of G(A®P) on the integral models of the
Shimura varieties extends to an action of G(A*?) x Q) C G(A*), also compatible
with the previously defined action on the generic fibers.

In fact, let g € Q) and UP be an open compact sufficiently small subgroup of
G(AP). Then, we have g~1UP(0)g = UP(0). Let us assume val,(g) < 0 and define
a morphism

qg: XUp - XUp
by setting (A, \,4,1) — (A/A[(u)~?*»@] N i’ i), where the structures on the
abelian variety A/A[(u®)~v%»(9)] are induced by the ones on A via the isogeny g :
A — AJA[(u®) v (9)] e,

— X is the unique prime-to-p polarization such that g¥ o X o g = p~¥alr(9) );

— for all b € Op, we have g~' 04'(b) 0o g = i(b) € End(A) xz Z,);

- @' =pog.

Let us choose v € Op such that val,(v) = 0 and val,c(v) = —valy(g). Then
the isogeny v : A — A gives rise to an equivalence between the quadruples
(A/A[(u®)~ v @] X i' @) and (A, N\ i,iow). It follows that the morphism
g @ Xyr — Xyr is indeed an isomorphism and also that on the generic fibers it
restricts to the morphism

g Xuro) = Xg-1Ur(0)g>
defined in section 2.1.7.

2.1.13. Let us reinterpret some of the above definitions and results in terms of the
cohomology of the Shimura varieties.

Let [ be a prime number, | # p, and consider the constant abelian torsion étale
sheaf Z/1"7Z, for any integer r > 1.
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For any level U C G(A®), we consider the étale cohomology of the Shimura vari-
eties over E, with coefficients in Z/I"Z, H!,(Xy xg (E")%,Z/I"Z), for any integer
1 > 0. They form an A-R [-adic system, we write

H,\(Xu xg (B})*, Q) = lim, H,,(Xu xg (B}")*, Z/U'Z) @z, Q.
For any U’ C U, the natural morphisms Xy — Xy give rise to some morphisms
H.,(Xu x5 (B}, Qi) — Hy(Xu x5 (EL7)™, Q).

The groups H?,(Xy x g (E'")%, Q;), together with the above morphisms, form an
inductive system. For all ¢ > 0, we write

H'(X,Qi) = lim v Hy(Xu x5 (E77)", Q).

For any g € G(A*), the morphisms g : Xy — X -1y, also give rise to some
morphism among the I-adic cohomology groups of the Shimura varieties, and morever
the induced morphisms piece together in an isomorphism of the direct limit H*(X, Q;).
These isomorphisms define an action of G(A>) on the groups H(X,Q;), for all i,
and moreover it is easy to see that this action commutes with the natural action of
the Weil group Wg, = Wy, (E. = Q). Further more, the H*(X,Q;) are admissible
representations of the product Wg, x G(A>).

In the following, we are interested in studing the virtual representation of Wg, x
G(A>)

H*(X, Q) =) (-1)'H' (X, Q).
1

We will also work with torsion coefficients and, for any integer » > 1, consider the

Z./1" Z-representations of Wq, x G(A>)

HY(X,Z/I'Z) = lim v H,(Xy x g (E}")", Z/I"L),

for all 4 > 0. Let us remark that these representations are smooth, but not a priori
admissible.

2.2. Newton polygon stratification. — In [25] Oort introduces a statification
on the reduction in characteristic p > 0 of a moduli space of abelian varieties. This
stratification is called the Newton polygon stratification and is defined in terms of
the Newton polygons of the Barsotti-Tate groups associated to the p-torsion of the
abelian varieties. In particular, each Newton polygon stratum is characterized by
the property that the Barsotti-Tate group over it has constant Newton polygon, i.e.
costant isogeny class. When Barsotti-Tate groups considered have dimension greater
than one, to each isogeny class correspond many isomorphism classes. In [26], Oort
defines some closed subvarieties inside each Newton polygon stratum, which are the
loci where the Barsotti-Tate groups associated to the abelian varieties have constant
isomorphism class. We refer to these varieties as the leaves of Oort’s foliation.
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In this section we shall recall the definitions of the Newton polygon stratification
and of the leaves, in the context of the Shimura varieties introduced in 2.1. Moreover,
we shall give an alternative proof of the fact that the leaves are closed and smooth
subvarieties of the Newton polygon strata.

2.2.1. Let UP be as in 2.1.10 and denote by X the reduction Xy» XSpecOy, Speck(u),
where k(u) is the residue field of Og, (k(u) =F,).

Let A be the universal abelian variety over X. It follows from the definition of the
moduli space that there is a natural action of Op on A and therefore an action of
Op, on A[p™]. Let € € Op, be the idempotent element defined in 2.1.1 and write
G = eA[p™]. G is a Barsotti-Tate group of height h and dimesion q over X (see section
2.1.4). For any point  of X we denote by a(x) the Newton polygon of G,.

Proposition 2.5. — (see [25], section 2.3, p. 387) Let « be a Newton polygon of
height h and dimension q. The set of the points x of X such that a(z) < « (i.e. such
that no point of a(x) is stricly below ) is a closed subset of X.

We denote by X1 the corresponding reduced subscheme of X and call it the closed
Newton polygon stratum determined by .
We also define the open Newton polygon stratum X(® = X[l — U5<a)_([ﬁ].

2.2.2. The following definition of a leaf is due to Oort, who also proved that the
leaves are closed smooth subvarieties of the Newton polygon strata (see [26]). Here,
we provide an alternative proof of these facts in our context. More precisely, we now
show that the leaves are locally closed smooth subvarieties of the Newton polygon
strata. Later, in proposition 4.7, we will prove that the leaves are indeed closed. We
thank A. Vasiu for suggesting to us the proof of proposition 2.7.

Lemma 2.6. — Let H be a Barsotti-Tate group defined over a finite extension ko of
F,. Let X be a scheme over F, D ko and G/X a Barsotti-Tate group.
Then, the set

Cn ={z € X[ Gy Xp(a) k(2)" = H xp, k(x)*}

s a constructible subset of X.

Moreover, if we further assume that X = Xo Xy, ]1_?,,, for some kg-scheme X, and
G is the pullback of a Barsotti-Tate group over Xg, then the set Cy is a constructible
subset of Xg.

Proof. — In [31], Zink proves that, for any positive integer N, the functor Yy =
Yy N, defined as

Yn(T/X) = { isomorphisms Gr[p"] ~ Hr[p"]},

is represented by a scheme of finite type over X.
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Thus, in particular, Cy y = im(Yx — X) is a constructible subset of X,
Con = {x € X| Gulp™] x k(@)™ = H[p] x k(z)}.

Moreover, Zink also proves that, for any algebraically closed field K /Fp, there
exists a positive integer N such that

CH7N(K) = OH,NK(K) = {a: S X(K)|GL ~ H x K},

for all N > Ngk.
In particular, for K = pr and Ny = Ng,, we have that for all NV > Ny

CH,N(F;)) = OH,NO(F[)) = {JZ S X(H}pﬂGJ; ~ H x Fp}

Since the subsets C'y, v are constructible, the above equalities imply that Cy n =
OH,Ng, for all N Z No, and thus

Cy = {.’L‘ S X‘Gw X k(m)ac ~ H x k(m)ac} = CH,NO

and is a contructible subset of X.
Finally, in order to show that the subscheme Cp is a constructible subset of Xy, it
suffices to observe that the set of closed points of Cpy is stabilized by the action of the

Galois group Gal(F,/ko) (which follows from the fact that the Barsotti-Tate groups
Go and H are defined over X(/ko and kg, respectively). O

Proposition 2.7. — Let H be a Barsotti-Tate group over a finite extension ko/Fp,
of height h and dimension q. We denote by o the Newton polygon of H, by X(®) the
associated open Newton polygon stratum and by G the universal Barsotti-Tate group
over X (@),
Then there exists a unique reduced locally closed subscheme Cg of X(® x ko such
that for any geometric point x € X(® x kg we have Gy ~ H if and only if v € C.
Moreover, the scheme Cy is smooth.

Proof. — By the previous lemma, we know that the set
Cr = {z € X x ko| Gy x k(x)% ~ H x k(z)*}

is constructible. Thus, it remains to prove that the set Cy is locally closed (in which
case it inherits a unique structure of reduced locally closed subscheme), and moreover
that, as a subscheme of X(®) x ko, C'y is smooth.

Let us fix an algebraically closed field Q/IF‘p with trascendence degree of the con-
tinuum (thus all the point of X(®) can be viewed as Q-points).

Since C' = C'y x Q is constructible, C' is a finite union of locally closed sets C; with
irreducible closure. Moreover, for each closed point x of C, the ring (’)%XQJ and the
restriction of G over it are independent of x. For simplicity, we denote this ring by A
and its Barsotti-Tate group by G/A. For any prime ideal P of A (neccessarly closed),
we choose a morphism fp : A — Q with ker fp = P (such a morphism exists since
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has degree of the continuum). We denote by J the intersection of all primes P of A
such that fp.G ~ H.

Let zg be a smooth closed point of C, i.e. g is in the closure of only one C;,
say Cp, and it is a smooth point of Cp. Let Iy denote the ideal in O% ., ,, defining
Ocy,z0- Then, a prime ideal P of O;\?xﬂ,wo contains I if and only if it contains Iy,
or equivalently if and only if fp,G ~ H. As Cy is by definition reduced we have

I(/)\ =Np>r1,P.
It follows that, under an isomorphism (G, 0% o, wo) ~ (G, A), the ideal I{} corresponds

to the ideal J. In particular, the ring A/J is formally smooth and a prime ideal P of
A contains J if and only if fp.G ~ H.

Now let « € C; — C; be a closed point such that x € C; (the closure of C;). Let
P’ be the prime ideal of Ox g , defining C; and let J, be the ideal of O% xq.o Which
corresponds to J under an isomorphism (G, O?’(xsz,x) ~ (G, A). Since P’ is a prime
in C we have P’ > J,. Thus, for any other prime P O P’, we have P" O J, and
so fpr«G ~ H,ie. P € C. Hence, there exists a neighbourhood U, of z in X such
that U, N C_'j is contained in C. We conclude that for any point x in C, there exists
a neighbourhood U, in X such that U, N C = C. Thus C is a locally closed subset
of X, and by definition is contained in X (% (thus, it is also a locally closed subset of
(@),

Moreover, if z is any point of C'and I C Ogq , is the ideal defining C, then (as
C is reduced) I is the intersection of the prime ideals of O)AZxQ,x
the intersection of prime ideals P such that fp,.G ~ H. Thus, under an isomorphism
(G, O%XQ’I) ~ (G, A), I" corresponds to J and we see that C is formally smooth at

x and hence smooth.

which contain I, i.e.

O

2.2.3. We remark that both the definition of the Newton polygon stratification and
the definition of Oort’s foliation of the Newton polygon strata are independent of
the level structure away from p. Thus, as the level UP of the structure away from p
varies, the corresponding morphisms among the reductions of the Shimura varieties
preserve the Newton polygon startification and also Oort’s foliation. Analogously, the
action of the group G(A®?) on the Shimura varieties with no level structure at p also
respects the Newton polygon strata and the leaves inside them. We thus obtain, by
restriction, an action of the group G(A°?) on the Newton polygon strata (resp. on
the leaves) via finite étale morphisms (see section 2.1.11).

2.3. Some distinguished Barsotti-Tate groups. — In this section we shall de-
fine a distinguished p-divisible group X, over F,, for each Newton polygon «a of
dimension ¢ and height h. The associated leaf C,, = Cx_ inside the corrisponding
Newton polygon stratum X () is called the central leaf and it will play an important
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role in our work. In this section, we shall also discuss some of the properties of the
group of the quasi-selfisogenies of %, (for all ).

2.3.1. We start by recalling the definition of a certain simple isoclinic p-divisible
group X over F,,, for any given slope A € Q (0 < A < 1). The definition of Xy is
introduced by de Jong and Oort in [19] (Paragraph 5.3, p. 227).

Let A be a rational number, 0 < A < 1 and write A\ = m?rn (with n, m relatively
prime). We describe the p-divisible group X over F, by its covariant Dieudonné
module M(Xy). This is the free Z,-module with basis eg, e, ..., emtn—1 on which
the actions of F' and V are given by F(e;) = €4, and V(e;) = €;4,, for all i (for any
non-negative integer j we write e; = ple; if j =i+ I(m+n) with0 <i<m+n—1
and [ > 0). The p-divisible group ¥, has height m + n and is isoclinic of slope .

We denote by t the endomorphism of M (X)) (and also the corresponding isogeny

on ¥,) which maps e; to e; 1 for all 4. It is an isogeny of degree p and t™*" = p.

Proposition 2.8. — (see [19], Lemma 5.4, p. 227) We choose r,s € 7 such that
rm + sn = 1. For every algebraically closed field k of characteristic p we have

End ((Z3);) = W (Epmin)[1]

where xt = to®~"(x) for all x € W(Fpm+n) (we denote by o the Frobenius map). The
ring End ((31),) is a non-commutative discrete valuation ring with uniformizert and
valuation define by log, deg(-)

We write Oy = W(F,m+n)[t] and Dy = Ox[1/p]. Dy is a central simple algebra
over Q, of rank (n +m)? and invariant A, and O, is a maximal order inside D,.

2.8.2. For convenience, we also recall de Jong’s and Oort’s Isogeny theorem. This
result illustrates one of the properties which make isoclinic p-divisible groups easier
to understand than general p-divisible groups.

Theorem 2.9. — (see [19], Corollary 2.17, p. 217-218) Let A be a noetherian com-

plete local domain with algebraically closed residue field k, normal and with field of

fractions K of characteristic p. Let G be an isoclinic p-divisible group over Spec A.
Then there exists a p-divisible group Go over Speck and an isogeny over A

Go XSpeck SpecA — G,

2.8.3. An isoclinic p-divisible group G of slope A is called slope divisible if there
exists an integer b > 0 such that p~**F? is an isogeny, or equivalently an isomorphism
between G and G®").

It follows from the definition that the p-divisible groups X, are slope divisible, for
all \.
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2.3.4. Let a be a Newton polygon of dimension ¢ and height h, and denote by
A1 > Ao > -+ > )\ its slopes. For each i, we denote by r; the multiplicity of the
slope A; in a and define the Barsotti-Tate groups

ni = Zi” and Yo = X%

Thus, for all i, ¥¢, are slope divisible isoclinic p-divisible groups of slope \; defined
over ), and ¥, is a p-divisible group over F, with Newton polygon equal to «.
Moreover, the p-divisible group 3¢ may be identified with the isoclinic pieces of 3,
(see section 2.4).

2.8.5. For every algebraically closed field k of characteristic p we have
(End 4 (Sa) @z, @) = [[GL., (D).

We write T,, for the group of the quasi-selfisogenies of X, i.e. T, =[], GL;, (Dy,),
and Iy, for the group of the automorphism of £,, i.e. I'y =[], GL,, (Oy,) Ta C Ty).

2.3.6. We now fix a Newton polygon a of dimension ¢ and height h (and write
¥ = %,). In the following, we analyse in more detail the group 7' = T,, and, in
particular, we introduce a certain submonoid S = S, of T, where S D T'=T,. (The
role of the submonoid S will be explained in section 3.4.)

Let p € T. For any i = 1,...k we denote by p; : £* — X? the quasi-selfisogeny of
%% induced by p and define:

e; =e;(p) =e(p;) =min{m € Z | p"™p; is an isogeny}
and
fi = filp) = f(ps) = max{m € Z | (p™p;) " is an isogeny}.

We also write e = e(p) = max;e;(p) and f = f(p) = min; f;(p). It follows from
the definitions that e and f are respectively the minimal and maximal integers such
that pp and (pfp)~! are isogenies.

It is easy to see that if p~! is an isogeny then f;, e; are respectively the maximal
and the minimal integers such that

S [p"] C ker(p; ') C B pc.
In particular, e; > f; for all 4.
Definition 2.10. — We define S C T to be the subgroup
S={peT|p'isanisogeny, e; < fi_1, 1 <i <k}.

2.3.7. For all i =1,...k, we denote by t; € End (2,) the uniformizer we defined in
section 2.3, and write 7; = " € End (X = Z?i”). We define fr to be the isogeny
of ¥ =@; %!

fr=a&r",
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where the a; denote the numerators of the slopes A; (written in minal form), for all
i. Equivalently, fr is the unique isogeny which fits in the following commutative

diagram (see section 2.3.7)

p)<72

where we may identify ¥ and (), via v, since the Barsotti-Tate group ¥ is defined
over IF,,.

2.3.8. If B = lem(by,...,b;), where the b; are the denominators of the rational
numbers A; (written in minimal form), then it follows from the definition of the
morphism fr that fr® = @;p*®? and, in particular, that fr? is in the center of T
(for all i, \;B € Z).

Lemma 2.11. — Maintaing the above notations.
The set S is a submonoid of T and has the properties that the quasi-selfisogenies
p~ L, fr=B € S and also that T =< S, p, frB

Proof. — To see that S is a submonoid of T', it suffices to remark that

ei(wp) < ei(p) + ei(w) and fi(wp) = fi(p) + fi(w),

which follow easily for the definitions.
It is also clear from the definition of S that p=!, fr=2 € S. In fact, we have

eilp)=1=fioi(p™") and e;(frP) = NB > fioa(fr~ ") = A\i21B,

foralli=2,...k.
We now show that T =< S, p, fr?

For any p € T, there exists m € Z>( such that p
—1

™p~! is an isogeny, i.e. such that

an isogeny (w = p~™p). Moreover, for any isogeny p we have
ei(p"p) = ei(p) —n and fi(p"p) = fi(p) —

and thus p satisfies the conditions e;(p) > fi—1(p), for all 1 < i < k, if and only if p"p
does for some integer n.

p=p"w with w

Then, it suffices to prove that for any isogeny p there exists a positive integer m
sucht that fr™8p satisfies the above inequalities. This fact follows directly from the
following inequalities:

ei(fr™Bp) < ei(p) + mA\;B and fi_1(fr™Pp) > fi1(p) + mN\i_1 B,

where \; < \j_q, foralli =2,...k. O
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2.4. Slope filtration. — Dieudonné’s classification of p-divisible groups implies
that any p-divisible group defined over a perfect field is isogenous to a direct product
of slope divisible isoclinic p-divisible groups. In [30] Zink investigates what remains
true if the perfect field is replaced by a ring of characteric p. In particular, Zink
shows that over a regular scheme of characteric p any p-divisible group is isogenous
to a p-divisible group which admits a filtration by p-divisible subgroups which factors
are slope divisible isoclinic p-divisible groups ordered with the decreasing order of the
slopes.

In this section we shall recall some of the definitions and results from [30]. For
completeness, let us mention that this result over a smooth curve was previously
established by Katz in [21], and also that, more recently, it was extended by Oort
and Zink to the case over a normal scheme (see [27]).

2.4.1. Let H be a p-divisible group over a scheme S of characteristic p and A € Q.
We say that H is slope divisible with respect to A if there are positive integers a,b
such that A = ¢ and the quasi-isogeny p°F": H — H®" is an isogeny. If H isoclinic
and slope divisible of slope A then the above isogeny is in fact an isomorphism.

Theorem 2.12. — (see [30], Theorem 7, p. 9) Let S be a regular scheme over F,.
Let H be a p-divisible group over S with constant Newton polygon. We denote by
A1 > Ay > - > A\ the slopes of H.

Then there is a p-divisible group G over S which is isogenous to H, and which has
a filtration by closed immersions of p-divisible groups:

0=GocGiC---CGr=G

such that for each i the factor G;/G;_1 is isoclinic of slope A\; and G; is slope divisible
with respect to \;.

We say a p-divisible group with the properties described for G completely slope
divisible and call its filtration the slope filtration.

We remark that any isogeny among two p-divisible groups endowed with slope
filtrations respects the filtrations.

In fact, suppose ¢ : G — H is an isogeny among p-divisible group endowed with
a slope filtration over a reduced scheme S of characteristic p. When k = 1, the
statement is trivial, so we may assume k > 2. Moreover, using induction on k, it
suffices to prove the statement for k = 2.

First, we assume S = Spec K and we consider the morphism

Qsl:Gl(%G—)H—»HQ.

By Diedonné’s theory, there is no non zero morphism between two isoclinic Barsotti-
Tate groups with different slopes (see [30], p.13). Thus, the morphism ¢; is identically
zero, or equivalently the isogeny ¢ maps G to Hj.
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For obtaining the same result in the general case, it suffices to remark that the
above considerations imply that (¢;), vanishes for any point = in S. Thus, the
morphism ¢ over S is zero.

Finally, we remark that from the existence of an isogeny 1 such that ¢ = p?, for
some d, we deduce that the induced morphisms ¢; are isogenies, for all i.

2.4.2. We conclude this section with the following two remarks which will play a key
role in our definition of Igusa varieties (see section3).

Remark 2.13. — (see [27]) Let G be a Barsotti-Tate group over a field K of positive
characteristic p. Then, G is completely slope divisible if and only if G xg L is
completely slope divisible, for some L D K.

Remark 2.14. — (see [30], proof of Theorem 7, p. 15) Let G be a Barsotti-Tate
group over a connected regular scheme S over F,. Let n be the generic point of S
and assume that G, is completely slope divisible (i.e. admits a slope filtration as in
theorem 2.12).

Then, the Barsotti-Tate group G over S is also completely slope divisible.

2.5. Rapoport-Zink spaces. — In [29] Rapoport and Zink formulate moduli
problems of (PEL) type for Barsotti-Tate groups, associated to any decent Barsotti-
Tate group over a perfect field k of characteristic p. They prove that the corresponding
moduli spaces exist in the category of rigid analytic spaces over the fraction field of
the Witt vectors of k£ and, in the cases when the moduli problems impose no level
structures, they admit integral models in the category of formal schemes over W (k).

In this section we shall recall their constructions together with some of the main
results in the case which is our interest.

2.5.1. Let X be a decent Barsotti-Tate group over a perfect field k of characteristic p.
(We recall that a Barsotti-Tate group is called decent if it arises by base change from
a Barsotti-Tate defined over a perfect field.) To X we associate a functor M = Mx
on the category of schemes S over W = W (k) such that p is locally nilpotent on S to
sets. For such a scheme S, we denote by S the closed subscheme defined by the sheaf
of ideals pOg, and we view it as a scheme over Speck.

We define M(.S) to be the set of equivalence classes of pairs (H, 3) where:

— H is a Barsotti-Tate group over S;
— B:Xg5 — Hjg is a quasi-isogeny.

Two pairs (H, 3) and (H', 3) are equivalent if the quasi-isogeny 3'of~! : Hg — Hy
lifts to an isomorphism between H and H' over S.

Theorem 2.15. — (see [29], Theorem 2.16, p. 54) The functor M is represented
by a formal scheme over Spf W, which is formally locally of finite type.
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For any other Barsotti-Tate group X’ and isogeny ¢ : X’ — X, there is a canonical
isomorphism between the corresponding Rapoport-Zink spaces

¢* My — My
(H,B) = (H,B09).

2.5.2. For any pair of positive integers n,d, we denote by M™% the subfunctor of
M defined by the condition that p™/ is an isogeny and its kernel is contained inside
X[p?] (or equivalently, both p"3 and p?~"3~! are isogenies). The functor M™% is
represented by the p-adic completion of a scheme of finite type over Spf W and can
be identified to a closed formal subscheme of M, of finite type over Spf W. Moreover,
it follows from the definitions that, in the sense of Zariski sheaves, we have

M = lim ,, g M™

We call the spaces M™? the truncated Rapoport-Zink spaces. (Let us remark that
the truncated Rapoport-Zink spaces we use are not exactly the ones introduced in
[29], paragraph 2.22, p. 58. For any pair of positive integers n,d, Rapoport and
Zink consider the closed subfunctor M,, 4 of M defined by the condition that p" 3
is an isogeny of degree less than or equal to p?. Thus, there are natural inclusions
Mg C M™C My, an.)

We observe that, for any other Barsotti-Tate group X’ and isogeny ¢ : X' — X,
the corresponding isomorphism ¢* : Mx — Myx does not preserve the truncated
Rapoport-Zink spaces (nor the open subspaces we define below).

2.5.8. For any pair of positive integers n,d, we define:
Ul ={te M™ |3V Cc Mopen, t € V. C M™?}.
It follows from the fact that M is formally locally of finite type that the U™? form

an open cover of M, i.e.
M = Un,d Un’d7
where the U™ are open formal subschemes of M, of finite type over Spf .

2.5.4. Let us assume from now on that the field & is algebraically closed and write K
for the fraction field of W. We denote by M8 the rigid analytic space associated to
the formal scheme M. In [29] Rapoport and Zink introduce a tower of rigid analytic
coverings of M8 over Spm K. We now recall their construction (see [29], paragraph
5.34, pp. 254-256).

We first recall the following result.

Proposition 2.16. — (see [29], Proposition 5.17, p. 237). The rigid analytic space
M8 over Spm K is smooth.

Let 2 € M™8(L) be represented by the pair (H,3) € M(Or). The p-adic Tate
modules T},(H), for the points x € M8, piece together in a locally constant Z,-sheaf
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for the étale topology on M8, We denote this sheaf by 7. Namely, for all integers
n>0,T,(H)®Z,/p" is the generic fiber of the finite flat group scheme H [p"], which
is étale.

For any open compact subgroup U C GL,,(Z,), we define Mgg to be the finite étale
covering of M'® parametrizing the classes modulo U of trivializations of 7 /M8,

a:T —Z,; (modU).
We remark that if
U=UM)={AcGL,(Z,)|A = 1,(mod p™)}

the space Mgg(; M) parametrizes the classes of trivializations of the generic fiber of the

pM-torsion of the universal Barsotti-Tate group over M.

2.5.5. T U’ C U, then there is a natural morphism M} — M. More generally,
for any two subgroups U’,U, an element g € GL,(Q,) such that g~'U’g C U gives
rise to a morphism
g: Mﬁ}% — M;}g .
2.5.6. Let T denote the group of quasi-selfisogenies of X over k and ¢ the Frobenius
automorphism of W (we also denote by o its extension to K and the Frobenius
automorphism of k).
There is a natural action of the group

GL,(Qp) x T x Frob”

on the system of Rapoport-Zink spaces, where the action of GL,(Qp) x T is linear
and the action of F'rob” is o-semilinear.

2.5.7. We first define the action of T" on the formal scheme M defined by

(H,B)— (H,Bop), peT

(see [29], section 2.33, p. 64). We remark that, for any other Barsotti-Tate group X’
and isogeny ¢, the isomorphism ¢* : Mx — Myx/ commutes with the action of the
group of the quasi-selfisogenies, where we identify Tx with Tx/ via the isomorphism
p— ¢ Lpo, for all p € Tk.

The action of T on M induces an action of 7' on M8, which extends canonically
to an action of T on the covers /\/lgg , for all level U C GL,(Z,). In fact, for any
level U, let us denote a point t € ./\/11;]ig (L), for some extension L of K, by a triple
(H,(,]a]), where H is a Barsotti-Tate group defined over the ring of integers Of,
of L, f : X - H Xp, k a quasi-isogeny, and [a] the U-orbit of an isomorphism
a:Ty(H) — Zy. Then, for any p € T', we define

. rig rig
p: My — My

(H, 5, [e]) = (H, B o p,[a]).
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It is clear that the above action of T on the system of the Rapoport-Zink spaces
M® commutes with the previously defined action of GL, (Qy).

2.5.8. We now introduce the o-semilinear action of Frobenius. Let us recall that
defining a o-semilinear automorphism of the formal scheme M is equivalent to defining
an isomorphism of formal schemes over W

Frob: M — MW,

where M®) denotes the pullback under ¢ of M.

If we identify the space M®) with the Rapoport-Zink space associated to the
Barsotti-Tate group X(®) /k, then we can describe the morphism Frob in terms of its
universal property. The morphism F'rob is defined by

(H’B) = <H7/60F_1)7

where F : X — X® is the Frobenius morphism of the Barsotti-Tate group X (see
[29], section 3.48, pp. 100-101).

We observe that F'rob is indeed an isomorphism, since we can define its inverse by
setting

(G,p) = (G,po F).
Moreover, it is easy to see that this action commutes with the action of 7. In fact,
for any quasi-selfisogeny p € T, the equality F o p = p®) o F implies
Frobop=p® o Frob: M — M®.

Finally, we remark that the automorphism Frob of M gives rise to an auto-
morphism of M8, which is also o-semilinear and which extends canonically to o-
semilinear automorphisms of the covers M;}g, for all level U C GL,,(Z,). If we denote
a point on Mgg by a triple (H, 3, [a]) as before, then, for all level U, we define

Frob: Mp# — (M3g)®)

(H.B.[a]) = (H,50F~", [a]).
It is clear that the action of Frob on the system of the Rapoport-Zink spaces M;}g
commutes with the previously defined action of GL,(Q,), and thus gives rise to an
action of the group GL,(Q,) x T x Frob”.

2.5.9. Let us remark that, if we restrict our attention to the reduced fiber M of M
over k, then the action of T' x Frob” extends to an action of the product

T x Frob” x FrY,

where Fr is also a o-semilinear endomorphism of M, namely the relative Frobenius.
As before, we describe F'r as a k-linear morphism

Fr:M— M®P),
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where M) is the pullback under o : k — k of M. If we identify the space M®) with
the reduced fiber of the Rapoport-Zink space associated to the Barsotti-Tate group
X®) /k, then the morphism Fr is defined by setting

(H,B) — (H(p)ﬁ(p)),

where H® and 3 : X() — H®) are the pullbacks under o of H and : X — H,
respectively.
We observe that indeed the relative Frobenius Fr commutes with the action of

T x Frob”. For any p € T,
(ﬁp)(p) — ﬁ(p)p(p)7
and also
(ﬁFx—l)(P) - ﬂ(p)(px—l)(p) - 5(p)FX—<i)’
where Fx and Fy(» are the Frobenius morphism on X and X®)| respectively.

2.5.10. We now focus our attention of the Rapoport-Zink space M, = Msx_ over
W (F,), associated to the Barsotti-Tate ¥, /F,, for any given Newton polygon a of
dimension ¢ and height h (see section 2.3.4).

Let T, be the group of the quasi-selfisogenies of EQ/IF‘Z,. In section 2.5.7 and 2.5.8,
we defined the action of T, x Frob” on M,. It follows from the definition that this
action does not preserve the truncated Rapoport-Zink spaces M™% C M,. In the
following, we analyze how this action moves the truncated Rapoport-Zink spaces.
(We remark that, in particular, the action of the subgroup I' = Aut (X,) preserves
the truncated Rapoport-Zink spaces.)

2.5.11. Let p € T, and write e = e(p) and f = f(p) (see section 2.3.6). It is not hard
to see that if (H, 3) € M™< then (H, 3p) € M"+edte=f In fact, it follows from the
definitions that both p"™Bp = (p"B)(p°p) and p*~/ =" (Bp)~' = (p/p) " (p* "B~
are isogenies.
Thus, for each p € T, and any pair of integers n, d, the action of T, on M, give
rise to morphisms
p: Mg,d N Mg+e,d+eff
such that for any positive integers n’,d’, with n’ > n and d’' > d,
i pop=poin,
where we denote by iz;fld, the natural inclusion of M9 in Mg,’d/.
Moreover, the restrictions of the above morphisms associated to p € Ty, give rise
to morphisms
p: U s grtedte=S
which are open embeddings of formal schemes over W (F,).
On the other hand, from the equality p = F'V = V F we deduce that, for all positive
integers n, d,
Frob: M — (Mg+1,d+1)(p) = (M(ap))”“’d“,
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and also that
Frob: U™ — (Unthd+lye),

In fact, if p"3 and p?~"B~! are isogenies, then p"t!BF~1 = p"@BpF~! and
p¢~"FB~1 are also an isogenies.

2.5.12. Let us now consider the reduced fibers M, and M?™? of M, and M™?
respectively, for all n,d. Then, M, and J\;IZ’d are reduced schemes over IF‘p (the
latter of finite type over pr, for all n, d), and there is an action of T'x Frob” x Fr™ on
M. From the above discussion, we already know how the action of T' x Frob* moves
the spaces M™?, let us now remark that the action of F'r respects the truncated
Rapoport-Zink spaces.

In fact, if a quasi-isogeny ( : ¥ — H is such that p™(8 with kernel contained in
¥[p], then the same holds for the quasi-isogeny 3 : ¥(P) — HP) Equivalently, for
all positive integers n, d, the relative Frobenius morphism maps the scheme M™4 to
Mgvd ()

Let us also remark that the action of I on the reduced fiber ngd of the trun-
cated Rapoport-Zink spaces is particularly simple. More presecisely, for any n, d the
subgroup I'y C T' of the automorphisms of 3, which induce the identity on X, [p?]
acts trivially on M™<. Indeed, for any v € 'y and any (H,3) € M™9, there exists
7 € Aut (H) such that (p"3) oy = 5o (p™f), thus the pair (H, ) is equivalent to the
pair (H, 3o 7).

2.5.13. We observe that, depending of the choice of the Barsotti-Tate group ¥/F, in
its isogeny class, there is another natural isomorphism frob between M, and M,(XP ),
namely the isomorphism defined as

frob: My — MP)

(H.B) = (H,Bov™1),
where v : £, — S%) is the natural identification over F, (see section 2.3.7).
Differently from F'rob, the action of frob preserves the truncated Rapoport-Zink
spaces M™? (and thus also the open U??) inside M,, but is not compatible with
the action of T,. In fact, for any p € T,, we have

v Lo p® v = fropo frl,
which is equivalent to
pP) o frob= frobo (fropo fr7t): My — MP),

On the other hand, since fr® is in the center of 7', the same equality shows that
the morphism frob? does commute with the action of 7.
Finally, it follows from the definitions that

Frob= frobo fr=1,
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since the equality v o fr = F implies that
BoF ™' =Bofrtor,
for any Barsotti-Tate group H and any quasi-isogeny (§ : ¥ — H.

2.5.14. We reinterpret the above definitions in terms of the I-adic cohomology
with compact supports of the Rapoport-Zink rigid analytic spaces associated to the
Barsotti-Tate group X,,.

Let | be a prime, [ # p, and consider the constant abelian torsion étale sheaf
Z/1"Z, for some integer r > 1. For any open compact subgroup U of GL,(Z,) and
any integer ¢ > 0, we consider the ¢-th étale cohology group with compact supports
of the rigid analytic space M?Jig with coefficients in Z/I"Z,

HI(MGE xx K Z/I"Z).

For any U’ C U, the natural projection Mg% — Mgg give rise to a morphism
between the corresponding cohomology groups and therefore the cohomogoly groups
of the Rapoport-Zink spaces piece together in a direct limit

lim ¢ H(M® xx K, Z/I"Z.).

We remark that, since the open subgroups U(M) (for all integers M > 0) form a
cofinal system of compact opens of GL,(Z,), the above limit can be also computed
as a direct limit over the open subgroups U of the form U = U(M), for some positive
integer M, i.e.

lim ¢ Hi(Mp® x i K, Z/1"Z) = lim ay Hi(MSy ) xx K Z/1'Z).

The action of GL,,(Q,) x T, X Frob” on the system of Rapoport-Zink spaces gives
rise an action of the GL,(Q,) x T, x Frob” on étale cohomology groups, which
naturally extends to an action of GL,(Q,) x T, x Wg,, where Wq,, is the Weil group

of Qp (K =Qp").

Proposition 2.17. — For all integers i > 0, the Z /1" Z-representation
lim ¢ HA(M® xx K, Z/1"Z)

of GL,(Qp) x Ty, is smooth.

Proof. — Let us write H* = lim UHé(MEg x i K%, 7/I"Z). Then, it follows from
the definitions that, for any open subgroup U of GL,(Q,), we have
(H)Y = H(M}E xx K9 Z/I"Z).

Moreover, let us consider the opens V = U™¢ C M, (for all integers n,d > 0), which
form a cover of opens of finite type of M. Then, for any level U, the associated
open cover of My (whose opens V¢ are the pullbacks under the natural projection
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M;}g — M8 of the rigid analytic spaces associated to the opens Vof M,) is also
formed of opens of finite type and we have

Hi(M® x g K, Z/1"Z) = lim e HY (Ve x i K, 21" ),
a direct limit of finite modules. FInally, we remark that the action of the subgroup

I'y, C T, on H® preserves the subspaces Hé(V;g x e Ke, ZJU"7), for all opens V and
all levels U, and thus

(H)T =1lim v HJ(V® x K, 2/I"Z)",
for any level U and any open compact subgroup IV C T',,. O

Maintaining the notations introduced in the above proof, for any integer ¢ > 0 and
open compact subgroup U C GL,,(Q,), we defined the i-th [-adic cohomology group
of My as

HAME x ¢ K%,Q;) = lim g (lim, H (VE x ¢ K%, Z)1"Z7) @, Q).
— VYU —
As the level U varies, the [-adic cohomology groups of the Rapoport-Zink spaces

form a direct system, endowed with an action of GL,(Qp) x T,. Further more, the
corresponding l-adic representations of GL,(Qy,) x Ty

hm UH;(MEg XK [A(ac7 Ql)
are smooth. (This fact is a direct consequence of the definition.)

2.6. Full set of sections. — In [9] Drinfeld introduces the notion of full level
structure in the context of his theory of elliptic modules. In [22] Katz and Mazur
develop this notion in the context of finite locally free commutative group-schemes.

In this section we shall recall the definition and some basic properties of their
notion of a full set of sections of a finite flat scheme of finite presentation.

2.6.1. Let S be a scheme and Z a finite flat S-scheme of finite presentation and rank
N > 1 (or equivalently Z is finite locally free over S of rank N > 1). For every affine
S-scheme Spec R, the R-scheme Zrp = Z X g Spec R is of the form Spec B where B
is an R-algebra which is as an R-module locally free of rank N. Any f € B defines
an R-linear endomorphism of B. We denote by Norm (f) its determinant and by
det (T' — f) its characteristic polynomial, which is a monic polynomial in R[T] of
degree N.

Definition 2.18. — (see [22], section 1.8.2, p.33) A set of N points (not necesserally
distinct) Pi,... Py € Z(S) is a full set of sections of Z/S if either of the following
equivalent conditions is satisfied:
1. for every affine S-scheme Spec R and for every f € B = H%(Zg,O) we have
det (T — f) = [[,,(T = f(P)) in RIT};
2. for every affine S-scheme Spec R and for every f € B = H°(Zg,O) we have
Norm (f) = Hfil f(P) in R.
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2.6.2. 1If Z is a finite étale S-scheme of rank N the above conditions are equivalent
to the following ones:

1. the morphism [ [, S — Z defined by the N-sections P, ... Py is an isomorphism
of S-scheme;

2. for every geometric point Speck — S the N points (FP;), € Z(k) are all distinct
(see [22], Lemma 1.8.3, pp. 33-34).

Proposition 2.19. — (see [22], Proposition 1.9.1, p.38) Let Z be a finite flat S-
scheme of finite presentation and rank N > 1. Let Py,... Py € Z(S) (not necesserally
distinct).

Then there exists a unique closed subscheme W of S which is universal for the
relation “Py, ..., P is a full set of sections of Z/S”, i.e. such that for any S-scheme
T the induced points Py r,...,Pyr € Z(T) are a full set of sections for Zp /T if and
only if the structure morphism T — S factors through W.

2.6.3. Suppose now that Z is a finite flat S-group scheme of finite presentation and
rank N > 1 and let A be a finite abelian abstract group of order N (e.g. Z is the
p™-torsion of a Barsotti-Tate group over S of height h and A = (Z/p™)").

Definition 2.20. — (see [22], section 1.10.5, p.44) A group morphism ¢ : A — Z(5)
is an A-generator of Z/S if the set of N points {¢(a) | a € A} is a full set of sections
of Z/S.

It follows directly from proposition 2.19 that the functor on S-schemes to sets which
maps T'/S to the sets of A-generators of Zr /T is represented by a closed subscheme
W(A,Z/S) of Z xg -+ xg Z. In particular, W(A, Z/S) is finite over S.

Moreover, if Z,Z' are two isomorphic finite flat S-group schemes of finite presen-
tation and rank N > 1 then W(A,Z) ~ W (A, Z").

We remark that there is a natural action of the group Aut(A) on the S-scheme
W (A, Z/S), namely the one defined by ¢ — ¢ o g, for any g € Aut(A).

2.7. Vanishing cycles. — In [2] and [3] Berkovich constructs and studies the
vanishing cycles functor from the category of étale sheaves on the generic fiber A&,
of a formal scheme X to the category of étale sheaves on the closed fiber X5 of X,
when the formal scheme X is locally finitely presented over the ring of integers W
of a non archimedean field K with residue field k. In this case, the generic fiber &,
is an analytic space over K and the closed fiber X, is a scheme over k. Berkovich
proves that for each pair of formal schemes X,) over W there exists an ideal of
definition Z of Y such that, if two morphisms ¢, : Y — X coincide modulo Z, then
the morphisms between the vanishing cycles sheaves induced by ¢ and i coincide.
In this section we shall recall the definition of the functor that associates to a
formal scheme X locally finitely presented over W a K-analytic space &, together
with the definition and some of the relevant properties of the vanishing cycles functor.
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Finally, we shall focus on the construction and properties of the vanishing cycles of
Z/I"Z, for a prime number | # p and an integer r > 1 (see [14], pp. 46-47).

2.7.1. We now describe the functor from the category of formal schemes locally
finitely presented over W to the category of K-analyitc spaces which associates to a
formal scheme X its generic fiber &, over K.

If X = Spf A where A is topologically finitely presented over W, then X, = Spm Ag
where Ax = A ®w K is naturally a stricly K-affinoid algebra.

We define the reduction map 7 : &; — X by sending a seminorm |- |, on Ax to
the prime ideal ker |- |, of Ay = A®yw k. If J is a open subset of X, then 77 1()) is a
closed analytic domain of &), and in particular, when ) is a open formal subscheme,
we have 771()) = Y.

2.7.2. Let X be a formal scheme locally finitely presented over W, we recall the
following two facts.

Proposition 2.21. — (see [2|, Lemma 2.1, pp. 542-543, and Proposition 2.3, p.
543)
1. The correspondence Y — Yy induces an equivalence between the category of étale
formal schemes over X and the category of étale schemes over Xj.
2. If ¢ : Y — X is an étale morphism of formal schemes, then the induced mor-
phism ¢, 1 Y — X between the generic fibers is quasi-étale.

2.7.8. For simplicity, we suppose the field K separably closed. The functor Vs — YV,
which we obtain by composing the functors Vs +— ) and Y — ), induces a left exact
functor ¥,, from the category of étale sheaves over X), to the category of étale sheaves
over X, (we recall that any sheaf on the étale site of &, extend uniquely to a sheaf
on the quasi-étale site of &,)). ¥, is called the vanishing cycles functor of X, and we
denote by R?¥,, its right derived functors on the category of étale abelian sheaf on
X,

Proposition 2.22. — (see [2], Corollary 4.5, p. 549 and Corollary 5.4, p. 555; and
[3], Corollary 2.5, p. 373 and Theorem 3.1, p. 874) Let X be a formal scheme locally
finitely represented over W and F an étale abelian sheaf on X,.
L. For any étale morphism Y — X, RIW, (F)y, ~ RV, (Fy,), for all ¢ > 0.
2. For any morphism ¢ : Z — X of formal schemes locally finitely represented
over W, we have

RV, (R ¢pF) ~ R s (R, (F)).
3. If X is a smooth formal scheme and n is relatively prime to chark, then
U, (Z/nZ)x, = (Z/nZ)x, and R, (Z/nZ)x, =0 for q > 1.
4. For any subscheme Y C X,, we denote by XG, the formal completion of X
along Y and by .7-'6, the pullback of F over (X|/)\1)77f then (X‘/)\))nzs canonically
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isomorphic to 7= 1(Y). If F is constructible with torsion orders prime to chark,
then there are canonical isomorphisms

R, (F)py = R, (Fy)

for all g > 0.
5. If X is locally of finite type and all the irreducible components of Xs are proper,
then there is a spectral sequence

B = H (X, R, (F)) == HZ™(Xy, F).

2.7.4. Let T be a scheme of finite type over W and F be an étale abelian torsion
sheaf on 7,. Suppose X and X’ are schemes of finite type over 7, and let Y C X
and )’ C X! be subschemes. Then, any morphism of formal schemes ¢ : X /’3/}, — X //\y
over 77 induces some morphisms of sheaves on V.

Uy, F) + 05 (BRI, (Fia,)ly, — BRIy (Fa)ly:
for all integer ¢ > 0.

Proposition 2.23. — (see [3], Theorem 4.1, p. 382) Let F be an abelian étale
constructible sheaf on T, with torsion orders prime to chark.

Given the schemes X = X/’JA,, and X' = X//\y over T, there exists an ideal of
definition ' of X' such that for any pair of morphisms ¢, ¢ : X' — X over T" that
coincide modulo T', we have

¢77(<)07f) :wn(éba}-)

for all ¢ > 0.
Further more, let f : ) — Y. Then, any finite étale formal scheme q : Z — X /'9,7
with degree relatevely prime to the torsion orders of F, and any morphism ¢ : Z —

X /’\y such that ¢3 = f o q, induce a morphism

1 g
0(p, F) = MTTOQS*%(%J’) oi: [TR(Fix, )y, = BRIy (Fiay)lyy,

where Tr : g5« R1Vy (F)z) = s @i RTVy (Fia, )|y, — BTV, (Fja;)|y; is the trace map.
By closely following the argument in [3], one can prove the following mild general-
ization of proposition 2.23.

Proposition 2.24. — Maintaining the notations of proposition 2.23. Given T, F,
X = X/’JA,, and X' = X/Ay over T, there exists an ideal of definition ' of X' such that
for any finite étale formal scheme q : Z — X' and any pair of morphisms ¢, ¢ : Z — X
over T/ that coincide modulo I', we have

Troqs«¥n(p, F) =Tr o qs«thn(0, F)

for all ¢ > 0, where Tr : qs RV, (F)z) = qs«qs RV, (F/xr) — RIV, (F/x:) is the
trace map.
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In particular, if there exists a morphism f : X, = Y — X, = Y such that ps =
¢s = [ oqs and deg(q) is relatively prime to the torsion orders of F, then

0(p, F) = 0(, F)
for all ¢ > 0.

Proof. — Let us first remark that it suffices to find such an ideal Z’ separately for
each ¢, since all the sheaves are constructible and equal to zero for ¢ > 1+2dim(%,,).
For any étale morphism U, — X, (resp. U, — X, Vs — Z,), we denote by U — %
(resp. U' — X', ¥V — Z) the corresponding étale morphism of formal schemes under
the equivalence of category stated in proposition 2.21.
Our first step is to remark that there exists a finite étale covering {uy : Us o — X5}
such that the canonical morphisms

@aus H Uy, F) — qu’n(j:/x)
is surjective. For any Us = Us o — X5, we write U, = filU; and V, = ¢iU.. Then, the

two morphisms ¢, ¢ : Z — X extend to two morphisms from V to U, and V — U’ is
a finite étale morphism with degree equal to deg(gq). Moreover, in order to prove the
statement, it is sufficient to show that the associated morphisms ¢*, ¢* : H4(U,,, F) —
HA(V,, F) satisfy the condition Trop* = Tro¢*, where T'r : HI(V,, F) — H(U,, F)
denote the trace map. Further more, we can assume U = Spf (A), U’ = Spf (B) and
VY = Spf (C).

Let a (resp. b) be the maximal ideal of definition of A (resp. B). We observe that
bC is an ideal of definition of C. For any 0 < r < 1, we set

U(r) = {z ety||f(z)| = rVf € a},

and analogously define U'(r) C U, and V'(r) C V;. Then, the U(r) (resp. U'(r),
V(r)) are some affinoid domains which exhaust ¢, (vesp. Uy, V;). For each r, the
morphisms ¢, ¢ : V — U and ¢ : V — U’ induce some morphisms ¢,., ¢, : V(r) — U(r)
and g, : V(r) — U’(r). Moreover, it follows from Lemma 6.3.12 in [4], that there exists
7 such that the canonical morphism j : HY(U,,F) — H?(U'(r),F) is an injection.
We fix such a number r, 0 < r < 1, and consider the following commutative diagram.

Hq(unvj:) Hq(vmf) s Hq(u:]’f)
s
HY(U(r), F) HI(V(r), F) ——= HY(U'(r), F)

ér

By Theorem 7.1 in [2], there exists € € S(U(r)) such that ¢f = ¢ on HY(U(r), F)
if d(py, @) < €. Moreover, without loss of generality we may assume that € is defined
by triple (U(r),{f:},{t:}), for some elements f; € A and some t; > 0, 1 < i < m,
ie. d(op, ¢r) < € if maxycy oy |(0rfi — ¢5fi)(y)| < ti, for all i. Then, the ideal of
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definition b™, for any n > 1 such that ™ < ¢; (for all i), possesses the property that,
for any pair of morphisms ¢, ¢, : V(r) — U(r) which coincide modulo b™, one has
d(¢r, ¢r) < € (see Lemma 8.4 in [2]).

It follows that for J = b™ we have ¢} = ¢} and thus also T'r o ¢ = Tr o ¢}. Since
the morphism j is injective, we deduce that Tr o p* = Tr o ¢*. O

Finally, let us remark that if the morphism v, (¢, F) is an isomorphism then such
is also the induced morphism 6(p, F) on the vanishing cycles sheaves over )’ (one
can define its inverse as @TT oy (p, F)~L o).

2.7.5. Let | be a prime number, [ # p, and r > 1 some integer.
We recall the following result on the vanishing cycles RV, (Z/I"Z).

Lemma 2.25. — (see [14], Lemma I1.5.6, p. 47) Suppose that R is a complete
noetherian local W -algebra. The natural map

R (Z)1"Z)spt r — RYN,(Z /1" Z)spt r([1:,...T,))

s an isomorphism.
The above lemma can be reformulated as follows

Proposition 2.26. — Let X,Y be two formal schemes, locally finitely represented
over W, and mw:Y — X be a smooth morphism.
Then the map:

Uy(m, ZJ)I" L) : 7 R, (Z/1"Z) x,, — R, (Z/1"Z)y,
is an isomorphism.

Proof. — It suffices to check that ¢, (m,Z/I"Z) induces an isomorphism on fibers.
Thus, let y be a point of ), and consider the map

wn(mZ/lTZ)y : (qujn(z/lrz)?{n)ﬂ(y) - (qujn(z/lrz)yn)y
It follows from part 5 of proposition 2.22 that

(RO (Z/1"Z) 2, ) n(y) = ROV, (Z/1"Z) 0

X, (y)
and
(R,,(Z/I"D)y,), = R1V,(Z/I'Z)oy .
To say that the morphism 7 is smooth at the point y is equivalent to say that there

exists an isomorphism O3, ~ O} 211, T;]], compatible with the morphism
™ 0% n(y) Og\,’y. Therefore the previous lemma suffices to conclude. O
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3. Igusa varieties

In [14] Harris and Taylor introduce natural analogues of the Igusa curves in the
theory of elliptic modular curves and call them Igusa varieties. These form towers
of finite étale coverings of the open Newton polygon strata in the reduction of the
Shimura variety.

In this section we shall define some varieties we shall also call Igusa varieties which
are the natural generalization of the ones introduced in [14]. These form a tower of
finite étale coverings not of an open Newton polygon stratum but only of the central
leaf inside it. (In the case considered by Harris and Taylor in [14], i.e. when the
dimension of the pertinent Barsotti-Tate group is one, there is a unique leaf inside
each open Newton polygon stratum, which is the stratum itself.)

3.1. The general case. — We shall recall the general construction underlying the
notion of Igusa variety which was introduced by Harris and Taylor in the context of
[14] (see section III.1, pp.70-71).

3.1.1. Let X be a p-divisible groups defined over Fp (eg. X=3%,,0< A< 1,asin
section 2.3).

The functor on F,-schemes to groups which maps S to Aut (X[p™]/.S) is represented
by a scheme Aut (X[p™]) of finite type over SpecF, (for all m). If m; > mso then
there is a natural map Aut (X[p™]) — Aut (X[p™2]).

For each m we define Aut'(X[p™]) to be the intersection of the scheme theoretic

images of Aut (X[p"']) in Aut (X[p™]) over all m/ > m. Then the scheme thoeretic
image of Aut'(X[p™]) in Aut (X[p™2]) for m; > my is in fact Aut *(X[p™2]).
3.1.2. Suppose now that S is a reduced F,-scheme and H a p-divisible group over
S. We now consider the functor on S-schemes to sets which maps T'/S to the set of
isomorphisms over 1" j, : X[p™'] Xgpecr, T — H[p™] X sT. This functor is represented
by a scheme X,,, (X, H/S) of finite type over S.

We define Y, (X, H/S) to be the intersection of the scheme theorestic images of

X (X, H/S) = X (X, H/S)
over m' > m and write J,,(X, H/S) = Y,,,(X, H/S)**d. We denote the universal
isomorphism over J,,,(X, H/S) by
g X[p™ — Hp™).

It follows from the definitions that there is a natural action of the group of automor-
phism of X/F, on the schemes J,,,(X, H/S), for all m, which is defined via composition
on the right of the restrictions to the p™-torsion with the universal isomorphism j'"v.

3.2. Igusa varieties over the central leaves. — We maintain the notations
established in sections 2.1, 2.2 and 2.3. Inside each open Newton polygon stratum of
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the reduction in characteristic p of the Shimura variety, we consider the central leaf
and define the Igusa varieties as covering spaces of the central leaves.

3.2.1. Let UP be a sufficiently small open compact subgroup of G(A>?). We denote
by X the Shimura variety Xy» ) over Spec B, and write X = AXpy». Then, X =
X Xspec 0y, Spec E,. We denote by X the reduction X' Xgspec 0y, Speck(u), where
k(u) is the residue field of Og, (k(u) =TF,).

Let a be a Newton polygon of height A and dimension ¢ and ¥, be the Barsotti-
Tate group over F, definede in section 2.3.4. We denote by X (@) the open Newton
polygon stratum inside X associated to o and by C, the central leaf inside X(®),
i.e. the leaf associated to 3,. We define the Igusa varieties as covering spaces of the
central leaves C,, (for all a) as follows.

8.2.2. We breifly recall the notation introduced in 2.3.4. Let \; > Ao > -+ > g be
the slopes of the Newton polygon «. For each i, we denote by r; the multiplicity of
the slope ); in a. We define ¥/ = i = E?i” and ¥ =Y, = &; 2.

Lemma 3.1. — Aut'(X'[p™]) is finite over F,, and
Aut! (Sp™)" " = GL,, (05, /p"Oy,)

Proof. — The same proof of Lemma I11.1.5 of [14] (pp.70-71) applys to this lemma
using the result in Proposition 2.8. O

We also see that
T (21,5 /Spec,) = Aut ' (Sp™]) ! ~ GL,, (Ox, /p™O5,) .

In fact if S is any reduced scheme over Spec ]Fp then
. . . . _ red
I (20, 21/5) = (Jm (2, %%/SpecF,) XSpecF, S)

= ((GLM (O/M /meM))S)red
= (GLTz (O)u /pmo)\i))s
(see [14], section IIL.1, pp.70-71).

3.2.3. Let us consider the central leaf C' = C,, i.e. the leaf of X(®) associated to the
Barsotti-Tate X = X,.

We focus our attention on the Barsotti-Tate group G = eA[u] over the central
leaf C' = C. We denote by C,. the irreducible components of C, by n = 7,. the generic
point of C, and by 77 = 7}, the associated geometric point (for all 7).

It follows from the definition of C' that G; ~ ¥ x k(1) and thus, in particular, that
G5 is completely slope divisible (for any 77 = 7,). We deduce, by remark 2.13, that
the Barsotti-Tate groups G, are completely slope divisible, and also, by remark 2.14,
that G/C, is complete slope divisible, for all ». Thus the same it is true for G over C
(by definition C' = U,.C,. , but indeed C' = [],. C, since it is smooth).
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We denote by (0) C Gy C --- C G, = G the slope filtration of G over C' and by G*
the subquotients G;/G;_1 (i = 1,...,k). The G are slope divisible isoclinic Barsotti-
Tate group of slope \;, and for all geometric points z € C' we have G, ~ X¢. (This
follows from the fact that, for any geometric point x of C, G, ~ ¥ and any isogeny
between Barsotti-Tate groups endowed with slope filtrations respects the filtrations.)

Definition 3.2. — For each positive integer m we define the Igusa variety of level
m

I = Jm(21,G1/C X Fp) Xour, Im(B2,G2/C X Fp) Xy, - Jm(Zk, Gr/C x Fy)
and denote by ju : ¥'[p™] — G'[p™] the universal isomorphisms over J,.

If m’ > m then there is a natural surjection qu, m : Jpm — J, over C X IF,,. The
Igusa varieties J,,, together with the morphisms g, ,, form a projective system of
schemes over C' x I_Fp. Moreover, there is a natural action of the group I' on the tower
of Igusa varieties, which is defined by composition on the left. If we write I',, =
[L; GL;, (O, /p™Os,) then the action of I on J,, factors via the natural projection
I —-»1T,,.

Proposition 3.3. — The Igusa variety J,, over C x F, is finite étale and Galois
with Galois group T'y,.

Proof. — 1t is sufficient to show that for any closed point x of C' x I_Fp the following
two conditions hold

— the group I';,, acts faithfully and transitively on the points of (Jm)/\'

— if y is a point of (J,,)} then (J,)) ~ (C x F,)2;

or equivalently that J,, Xcyg, Spec Of 5 =~ (Tn)gpec on
Py

CxFp,

Following the argument of Proposition II1.1.7 in [14] (pp.73-74) in order to conclude
it suffices to prove the following lemma. O

Lemma 3.4. — Maintaining the notations as above. For any closed point x in Cxﬁ‘p
and for all i

i _ A s ) A
G' Xcxw, SpecOCXFP’Z ~ ¥' XxF, Spec OCXFP’I,.

Proof. — By the Isogeny Theorem of de Jong and Oort (theorem 2.9), and the fact
that over F,, any two Barsotti-Tate groups with equal Newton polygons are isogenous,
there exists an isogeny

RSy _ A i _ A
VX XoxE, Spec OCpr,z -G XCxF, Spec OCpr,w

/\ —
CxFp,x

is contained in the p?-torsion subgroup.

over Spec O . We choose an integer d > 0 such that the kernel of the isogeny v
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Let /\;l%id be the reduced fiber of the Rapoport-Zink space M2 and denote by H
the universal Barsotti-Tate group over Mo’fl . We consider the subset

Y = {t € MU | Hy x k()2 ~ B x k(1))

It follows from lemma 2.6 that Y is a constructible subset of ./\;l%fl . We now show
that Y is finite. In fact, if ¢ € Y, then H; x k(t)*¢ ~ 3% x k(¢)* and thus there exists
an isogeny ¢; € End (X¢ x k(1)) = EndFP(Ei) with kernel contained in %¢[p?] such
that

t= (Hhﬁt) =~ (Zl7¢t)
Thus the map which takes ¢ to ¢; defines a bijection between Y and the set

Ende (El) n pdEnd]P_‘p (Ei)_l/Aut F, (Zl) = MTi (OM) N deTi (O)\i)_l /GLH (O/\1) .

Since the set of matrixes
T
T Ti,j

0 Tar:

where a1 > ag > - > a,, > 0 are integers such that a; < d for all 7, and x; ; € O, are
such that x; ; = 0for ¢ < j and val ,(x; ;) < a; for i > j, is a system of representatives
of the coset space M, (Ox,) N p?M,, (O,) " /GL,. (Oy,), this set (and therefore Y)
is finite. It follows that there is a reduced finite subscheme Y of ./\71%51 such that, for
any geometric point ¢ of M%E ey if and only if H; ~ 3¢,

i
0,d

By the universal property of the Rapoport-Zink space My.;', we have that the pair

i _ A . o . .
(g X CxF, Spec OCXFp,z’ w) defines a morphism of schemes
~0,d
u : Spec Oé'x]?p . M%i .

Moreover, if we denote by 7 the generic point of Spec Oéfo ,» then u(n) € Y and
Py

thus, since Y is finite and O}z _ a domain, the map u has to factor via a (closed)
s

point in Y. O
Corollary 3.5. — The Igusa varieties are smooth schemes over Spec]Fp.

Proof. — Tt follows directly from propositions 2.7, and 3.3. O
8.2.4. We remark that the definition of the Igusa varieties can be easily given over

any leaf of X(®) x Fp which is associated to a completely slope divisible Barsotti-Tate
group, and moreover the result of proposition 3.3 also holds for those Igusa varieties.
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3.3. The action of G(A*?) on the Igusa varieties. — We defined the Igusa
varieties as covering spaces of the central leaf of an open Newton polygon stratum
inside the reduction of a Shimura variety with no level structure at p. In this section,
we shall investigates how the Igusa varieties vary as the level structure away from p
on the Shimura variety varies.

3.3.1. Let a be a Newton polygon of dimension ¢ and height h. For any open compact
(sufficiently small) subgroup U? of G(A®P) and any positive integer m, we denote
by

JUP,m = Ja,UP,m

the Igusa variety of level m over the central leaf Cy» = Cy y» of the open Newton
polygon stratum X ((](’;) inside the reduction of a Shimura variety with no level structure
at p and structure of level UP away from p, XUP(O)'

For all open compact subgroup VP C UP, the natural projections between the
Shimura varieties )_(Vp(o) — )_(Up(o) preserve both the Newton polygon stratification
and Qort’s foliation. Equivalently, they induces some morphisms X‘(,O;,) — XI(JO;,) be-
tween the open Newton polygon strata and

qvre,ur : Cyr — Cy»

between the corresponding central leaves. Moreover, these morphisms are finite and
étale (see section 2.1.10).

It follows from the definition of the Igusa varieties that, for any level m, the mor-
phisms qyr yr : Cyr — Cy»r give rise to some finite étale morphisms between the
corresponding Igusa varieties of level m,

qve,ur @ Jvem — Jurm,

such that qm m 0 qye,ur = Qve,ur © G/ m, for any integers m’ > m and for any open
compact subgroups VP C UP of G(A>P).

In fact, for all levels V¥, m, let us denote a point = on the Igusa variety Jy» ,, by a
(4 + k)-tuple (A, N, %, [i; jm.1,- - - Jm,k), Where (A, A, ¢, i) is the quadruple associated
to the point q,,(x) € Cy» and jp,,; : B p™] — Gp™] (for all i = 1,...,k) are the
isomorphisms defining the Igusa structures on the isoclinic subquotients G* of the
Barsotti-Tate group G = eA[u™]. Then, the morphisms qy» yr : Jyrm — Jurm are
defined by

(A7 )\7 ia /j;jm,la v a.jm,k) = (Aa /\a i7 ; jm,h s 7jm,k)7
where the VP-orbit i of i determines a unique UP-orbit (which we still denote by f).

3.3.2. Analogously, for any g € G(A>P), the corresponding morphisms between the
reductions of the Shimura varieties

g: XU;D — Xg—lUpg
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(see section 2.1.11) preserve the Newton polygon stratification and Oort’s foliation,
and induce some morphisms between Igusa varieties of the same level m,

g: JUP,m - Jg*IUPg,ma

for all m > 0 and UP C G(A°P), which commutes with the projections g, and
qve,ur. The morphisms g : Jyr m — Jg-1uyrgm are defined by

(Av)\ai7ﬁ;jm,lv cee 7jm,k) — (A7)‘77:7/1' Og;jm,lv R 7jm,k)a

where UP-orbit [i of 1 determines a unique g~ 'UPg-orbit of 1o g, which we denote by
‘LL o g

3.4. The groups acting on the Igusa varieties. — In this section we investigates
which abstract groups naturally act on the tower of Igusa varieties. More precisely,
we shall show that there is a natural action of the submonoid

Q) x 8o x Frob" x Fr

of Q¥ x T, x Frob” x Fr” on the Igusa varieties, where the action of Q) x S is linear
and the actions of Frob and Fr are o-semilinear (cfr. section 2.5). We also prove
that this action commutes with the previously defined action of G(A®?) on the Igusa
varieties.

Let us remark that the action of the monoid S = S, C T = T, (see definition
2.10) on the Igusa varieties J,,,/C x ]Fp extends the action of the group I' = I',, and
also that the action of Q on the Igusa varieties is compatible with the action of
Q; C G(Qp) on the Shimura varieties (see section 2.1.12).

8.4.1. Let (g,p,1,1) € Q) x S x Frob™ x FrY and write e; = e;(p) and f; = fi(p),
for all 7 (see section 2.3.6), and e = e;. We also assume that —val,(g) > e.
For any positive integer m, such that m > e, we shall define a morphism

(9,0, 1,1) : Ty = Jp—e, -

We recall that defining such a morphism (g,p,1,1) on J,, is equivalent to give
a (44 k)-tuple (B, N, 7, I, jm—e1,- -1 Jm—ek) Over J,, which represents a point of
Im—e.

Let (A, A, i, [, j1,-..,Jk) be the universal object over J,,, we write G = eA[u*]
and denote by G° its isoclinic subquotients.
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Since p € S, then p~! is a well define isogeny and S[p/i] C ker(p; ') C Z[p®] C
Y[p€]. We consider the following commutative diagram:

i it om—e Jjiopi m—e gi
b)) <—)E [p ] Jl(kcr p; 1)) [p } j,;(kcr(p,;l))

S

yi<—p; X p" ") —— ji(p: 2 [p" ) G

|

ker (p; 1) Si[p] ——L s Gifpm] ~——ji (ker(p; 1))

where p; : X' — X? is the quasi-isogeny induced by p on the isoclinic subquotients and
jiop; is defined as the isomorphism induced by j; on the quotients, for each i =1, ... k.
(The inclusion p; %! [p™~¢] € Si[p™] follows from the inclusion ker(p; ') C ¥¥[p®] C
Yi[p°].) Tt is clear that since the isomorphism j; are extendable to any higher leverl
m/, the same holds for the isomorphisms j; o p;.

For simplicity, we now write K7, = j;(ker(p; M cg.

Remark 3.6. — If p € S, then there exists a unique subgrop KC, of G such that the
corresponding subgroups inside the isoclinic subquotients of G are the IC;', (for all 7).
Moreover, we have G[p/*] C K, C G[p°].

Let us argue by induction on k. If k =1, then K, = IC; and thus there is nothing
to prove.

If k > 1, we denote by K, the corresponding subgroup of G’ = G/G', then G'[pf*] C
K, C G'[p*2]. We define K, = pr| g’[pez]*l(lc;)) +01(K}), i.e. K, is the unique
subgroup which fits the following commutative diagram with exact rows. (We remark
that we use the inequality es < f; to deduce that gl[pe"’] C IC;.)

04>g1 eo Hg[ 62} 4>g’[p62]4>0

I

0—=G'p f ’Cf K, 0
0 Kl K, K, 0

It is clear from the definition that G[p/*] C K, C G[p°'], and thus we conclude.
8.4.2. We define the morphism
(9,0, 1,1) 2 Ty — T
to be associated to the (4 + k)-tuple (A/(Kp), X', i', i's jr_c 15+ -+ s Jrn_e i) Where:
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1. (A/(K,), N, ') is the quadruple induced by the universal quadruple on .J,,, via
the projection A — A/(K,), where (K,) C A[p~v%»(9)] is a finite flat subgroup
associated to K, C G[p¢] C Glp~val»(9)];

2. ji,_e denotes the isomorphism j; o p; : ¥ [p™~¢] — (G'/KL)[p™¢].

The subgroup (KC,) C A[p?] is defined as

(Op, ©z, K,) © (0, @z, K,)* C Alu™""" 9] @ A(u®) "],

and the structures on A/(IC,) are the ones induced by the structures on A. More
precisely, the polarization X’ on A/(K,) is induced by p~v@»(@)\ : A — AV, and the
level structure is defined as

Ve Aer Lsyry VP(A/(K,)).

3.4.3. Tt follows from the definition that for any m > m’ > e

mee,m’fe o (ga P, ]-7 ]-) = (Q»P» ]-7 ]-) o Qm,m’a

and that that the above definitions give rise to an action the submonoid

{(9,p) € Q) x S| —valy(9) = ex(p)} CQ; xS

on the system of Igusa varieties.

We claim that the above action extends to an action of the monoid Q; x S. To
prove it, it suffices to show that the element (p~! 1) € Q, x S acts invertibly on
the Igusa varieties. More precisely, we claim that the element (p~!,1) acts on J,,, as
the element v¢ € EX C G(Q) C G(A*P), for any v € E* such that val,(v) = 1,
val,e(v) =0 and v =1 mod (u®)™.

In fact, the pertinent subgroup K1 C G[p] is simply (0) and ((0)) = A[u®] C Alp].
Thus, the multiplication v¢ : A — A gives rise to an isomorphism .4/((0)) ~ A, and
under this identification the polarization )\’ is simply A, the level structure 7’ = v¢o

and the isomorphisms j;nl =00 Jim,i = Jm,i-
3.4.4. We remark that the above argument also shows that the action of Q; on

the Igusa varieties is compatible, under the projections d,/ ,, with the action of
Q, € G(Qp) on the reductions of the Shimura varieties (see section 2.1.12).

8.4.5. Let us now define the action of Fr. As in section 2.5.9, we define the o-
semilinear action of F'r on the Igusa variaties as a linear morphisms

Fr:Jy, — JP),

where Jﬁf ) are the pullbacks under the Frobenius o : F, — F,, of the Igusa varieties

Jm/Fp, for all m.
Let us denote by C'P) the pullback of the central leaf C' under o. Then, C®) can
be identified with the leaf Cy, ), and J},’; ) with the Igusa variety of level m over Cy, ).
Under the above identifications, the relative Frobenius on the central leaf

Fr:C—Cc®
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is defined by setting
A= (AN i) — AP = (AP @) @) @)y

where A®) denotes the pullbacks of A under o, endowed with the structures induced
from the ones of A.

If G denotes the Barsotti-Tate group associated to an abelian varieties A, then
G is the Barsotti-Tate group associated to A®) and, for all i

(G = ()P,

Then, for any level m, the relative Frobenius on the Igusa variety of level m

Fr:Jy, — JWP

is defined by setting

(Aﬂjm,17 oo 7jm,k) = (A(p)ajy(f:,)la oo 7j7(5?k)7

and its action commutes with the action of the monoid Q. x S on the Igusa varieties,
ie.

(Go(9,0,1,1)® =i o (g,p,1,1)?),
for all (g,p) € Q; x S.
3.4.6. We define the action of Frob on the Igusa varieties, as an analogue of the
action of Frob on the Rapoport-Zink spaces (see section 2.5.8). As before, we define
the o-linear action of Frob as a linear morphism

Frob: Jp, — J,(,fll,

for all m > 0.
Let us consider the following diagram:

yi Oy [p’rn] 43 gi [pm]% gz

: Jm,i
iF lF
v '

i (p) <—O% (p) [pm—l] ;1) G (p) [pm—l}C—> )
.jm,iF_

1 (p)

The isomorphisms jm,—1,F " are simply the restriction of the isomorphism j,*;
to the p™~!-torsion. Moreover, the subgroups G'[F| = j,,.:(X‘[F]) naturally piece
together as the subquotients of the finite flat subgroup G[F].

Furthermore, we have G[F| C G[p] and A[F]| = (G[F]) C Alp]. Thus, analogously
to the above definition of the action of Q; x S, we set the action of the element

(p~%,1, Frob, 1) to be defined by the morphism associated to the (6 + k)-tuple

(A0 AP ) g) @) )

or equivalently (p~1,1, Frob,1) = qum—1 0 Fr.
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It follows that the action of F'rob on the Igusa varieties is defined as
FTOb = (pa 17 17 1) o Qm,m—l o F,r‘7
i.e. by the morphism associated to the (6 4 k)-tuple

(A(p)7)\(p),i(p),ﬁ(p) ° (,UC)—17]~£5)_171, . ,jgll’k)’

where v € E* is an element such that val,(v) = 1, val,c(v) =0and v =1 mod (u®)™
(see section 3.4.3).

It is clear that the action of Frob commutes with the previously defined action of
Qy x SxF rN, and therefore there is an action of the monoid

Q; x S x Frob™ x FrN

on the system of Igusa varieties. Moreover, it is easy to see that this action commutes
with the previuosly defined action of G(A>P).

8.4.7. Let us remark that, as in section 2.5.13, depending of the choice of the Barsotti-
Tate group ¥/F,, in its isogeny class, there is a natural isomorphism between J,,, and
JP) (for any m > 0), which arise from the fact that the Barsotti-Tate group X is
defined over IF,,, namely
frob: Jy, — JP)
(A7 jmJ) = (A’jm,i © V;L,li)a

where v, ; denotes the restriction to X/[p™] of the identification v : ¥ ~ () (see
section 2.3.7).

As in the case of the Rapoport-Zink space, the action of frob is invertible (and

thus defines an effective descent datum on the Igusa varieties), but does not commute
with the action of T}, (though frob® does, see section 2.3.8).

Proposition 3.7. — Maintaining the above notations. We remark that e(p~t) = 1
and we write a = e(fr=8) = A\ B.

1. If m > 1, the element (p~1,p~1,1,1) € Q) x 8 x FrobY x FrN acts on J,, as

VO Qm,m—1,
where v € E* C G(Q) C G(A*®P) is an element such that val,(v) = 1,
valye(v) =0 and v =1 mod (u®)™.
2. If m > a, the element fr=2 € S acts on J,, as
(", 1,1,1) 0 dpmm—q © frob=" o FrP,
where Fr : J,, — Jy(f;) denotes the Fp—linear relative Frobenius on the Igusa
variety.
3. If m > B (and thus m > a since a = \1B < B), we have

Frob®? = Um—a,m—B © frobB o fr_B,
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Proof. — Part (1): By considering the diagram in section 3.4, when p[l = p, and
the induced isomorphisms j; o p are simply the restrictions of j; on the p™~!-torsions.
Moreover, (G[p]) = A[u] C A[p] and thus the multiplication v : A — A gives rise to
the necessary identifications.

Part (2): We shall prove the element (p~Z, fr=5,1,1) acts as qm m—a © frob=5 o

FrB. Let us consider the following commutative diagram.

wi FE Zi(pB) )Ei(PB)[pm]
(v)E
P
iy
L L vB . By~
i [pm] ,,,,,,,,,,, >3 [pmfa} — Zi(p )
jwt,i jm”iofriB

gilpm] > G sl S i)

g’L
) FB (B (B
g git" °Gi P [pma]

By definition of fr® = @;7% € S, we have that v o fr® = FB on %, or
equivalently that

(Vi)B o Ti)\iB =FB

on X%, for all 7. In particular, it follows that ker(F?) = ker(7;*?) as subgroups of 7,
for all i.

Thus, maintaining the notations as in section 3.4, IC;}T,B = G'[FP], and K5 =
G[FP], i.e. there exists an isomorphism between G/Ks,-5 and g<PB>, compatible
with the projection G — G/K¢,-5 and FB.G— g@B). Moreover, the isomorphisms
®®) . B

ov

Jm.i o fr~B can be identified with the restrictions of the isomorphisms Jmi el

over the p™~“%-torsion subgroups (we denote by l/ﬁ)i the restriction of (v¥) to the
p"-torsion subgroups).

Finally, we also have that (G[FP]) = A[FP] C A[pP] and thus, the Frobenius
morphism FB : A — A®") gives rise to an isomorphism A/(G[FB]) ~ A®”) which
is compatible with the structures induced on the two quotients by the one on A.
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Part (3): The equality follows from part (2) and the equality
Frob® = (p®,1,1,1) O Um,m—B o FrB.

O

3.5. The cohomology of the Igusa varieties. — In this section, we shall rein-
terpret some of the above results in terms of the cohomology with compact supports
of the Igusa varieties.

We shall observe that the cohomology groups of the Igusa varieties naturally form a
direct limit, under the morphism corresponding to the projections g,/ ,», and qv» y»,
and also that the action of G(A%P) x Q) x S x Frob" on the system of Igusa varieties
give rise to an action on the direct limit of the cohomology groups, which extends to
an action of the group G(A®P) x Qy x T' x Frob”.

Thus, the cohomology groups of the Igusa varieties are representations of the group
G(A>P) x QF x T x Frob*, or equivalently of G(A") x QX x T x Wg,, where the
action of the Weil group is unramified.

8.5.1. Let [ be a prime number, [ # p, and r > 1 an integer.

For any integer i > 0, we consider the i-th étale cohomology groups with compact

supports of the Igusa varieties Jy» ,, over ]17‘,,, with coefficient in Z/I"Z,

H (Jyem, Z)I"Z),

for any positive integer m and any open compact subgroup UP C G(A®P).
The finite étale morphisms

dm’,m - JUP,m’ - JUP,m
and
qve,ur : Jvem — Jurm,

for all positive integers m’ > m and all open compact subgroups V? C UP of G(A>P),
induces some morphisms between the cohomology groups

(A m )« + He(Juwms L)L) — Hi(Juo s, L)),
and
(qve.us)s : H-(Juom, L)L) — HA( Iy m, Z)1"Z).

It is easy to see that the i-th cohomology groups of the Igusa varieties, together
with the above morphisms, form an inductive system and we refer to the direct limit

H(J,ZJ1"Z) = i 1, g» H(Ju n, Z/1"Z),

as the i-th cohomology group of the Igusa varieties, with Z /" Z-coefficients.
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3.5.2. Let us now consider the action of G(A®P) x Q) x S x Frob™ x Frl on the
system of Igusa varieties (see sections 3.4 and 3.3). It induces an action of G(A™P) x
S x Frob™ x FrYN on the direct limit of the cohomology groups, Hi(J,Z/I"Z), and
moreover the action of F'r is trivial.

In fact, for any (g, p) € Q; x S, the morphism (g, p) : Jur m — Jur m—. induces a
morphism

(9, ) : Hi(Jup m—e; L)L) — Hi(Jup m, Z/I'Z),
for any integer m > e (where e = e(p)) and any open compact subgroup U?.

Morover, since (g, p)0Um/,m = Am/—e,m—e°(g, p) and (g, p)oqvs.ur = qve,uro(g, p),
the morphisms (g, p). give rise to an endomorphism of the direct limit.

Analogously, for every g € G(A°*?), the morphism g : Jyr,m — Jy-1yrgm induces
a morphism

g HA(Juw m, ZJU'Z) — HL(Jy=100g.m: L)L),
for any positive integer m > 0 and any open compact subgroup UP, and, since g o
qQve,ur = qg-1ypg g-1Urg © g and g o qm’ m = Qm/,m © g, the morphisms g. give rise to
an automorphism of the direct limit.

Similarly, the o-semilinear morphisms Frob, Fr : J,, — J,, gives rise to an action
on the étale cohomology groups, and moreover, since F'rob and F'r commute with the
projections q,.m and qys pe, it induces an action on the groups H(J, Z/I"Z).

We remark that the above action of F'r on the étale cohomology groups is trivial,
since Fr : J,, — J,, is the absolute Frobenius.

Remark 3.8. — The action of G(A®?) x QX x S x Frob" on H\(J,Z/I"Z) can be
extended to an action of the group G(A®*) x QX x T x Frob” (S C T).

Indeed, since T' = (S, p, fr?), in order to prove that the action of S extends to an
action of T it suffices to observe that the elements p~', fr—2 € S act invertibly, or
equivalently that the actions of (p™,p™1), (p=5, fr=F) € Q) x S are invertible. Since
the action of (p~!,p~!) on the Igusa varieties is given by the morphism v o -1,
where v € E* C G(Q) acts isomorphically, the induced action on the cohomology
groups becomes invertible once one passes to the direct limit. On the other hand, the
element (p~Z, fr=B) acts on the Igusa varieties as qy m—q o frob=Z o FrB, and thus
the induced action on the direct limit HZ(J,Z/I"Z) is invertible. (Since the action
of frob on the Igusa varieties is invertible, such is also the induced action on the
cohomology groups. On the other hand, we already remarked that the action of Fr
on the étale cohomology groups is trivial and, therefore, in particular invertible.)

The same argument proves that to the action of Frobon H:(J,Z/I"Z) is invertible,
since F'rob = qpym—1 0 F'r.

In the following, we shall refer to the cohomology groups with compact supports of
the Igusa varieties with coefficients in Z/I"Z as a representation of G(A*?) x Q) x
T x Wq,, where the action of the Weil group is unramified (i.e. it factors through the
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projection Wg, — oZ) and the action of o on the above spaces is defined to be equal
to the action of Frob~!.

Remark 3.9. — Let UP C G(A®P) be an open compact subgroup. For any integer
q > 0, the Z /1" Z-representation of T' X Wa,

Hi(Jye,Z)I"Z) = hgl m HI(Jue m, Z]1"Z)
is admissible.

In fact, for any integer m > 1, let '™ C T" be the subgroup of automorphisms of
Y. which restrict to the identity on X[p™]. As m vary, they form a cofinal system of
compact open subgroups of 7" and we have

HI(Jyo, ZJITN" = HI(Jyo m, Z)I"Z),

which is finite. (The latter equality follows from the existence of a trace map on
cohomology and the fact that the morphisms gy, ,, are finite étale, of I-prime degree.)
Let us remark that, on the other hand, the Z/I"Z-representations H(J, Z/I"Z) of
G(A>P) x Q) x T x Wg, are smooth, but not a priori admissible (cfr. section 2.1.13).
For all integers g > 0, we define the [-adic cohomology groups of the Igusa varieties

HI(J, Qi) = lim g m lim, HE (Jue m, Z/1"Z) @z, Qr.

It follows from the definition and remark 3.8 that they are [-adic representations of
G(A>P) x Q) x T x Wg, and, moreover, are admissible.

4. A system of covers of the Newton polygon strata

In this section we shall study the geometry of the open Newton polygon strata X ().
For each Newton polygon «, we shall consider the product of the Igusa varieties J,,
over the central leaf C' = C, with the reduced fiber M™¢ of the truncated Rapoport-
Zink space M™? = M™? (see section 2.5.10). For any positive integers m,n, d, such
that m > d, we shall construct some morphisms

. . Aned X n
TN+ Jm XgpecF, M x (@) Fp,

for all positive integers N sufficiently large. (In the special case of n =d = N =0,
the morphisms 7 are simply the morphisms

A I — C x Fy = X x T,

for all m > 0.)

We shall show that the morphisms 7 are finite and surjective on geometric points
for m,n,d > 0. As m,n,d, N vary, the morphisms 7y commute with the natural
projections between Igusa varieties and the inclusions between the Rapoport-Zink
spaces, and also 11 = (FrP x1)omy, for all N (Fr denotes the Frobenius morphism
of X(®) over F, and B the positive integer we defined in section 2.3.8, which depends
only on «).
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4.1. The action of Frobenius on the slope filtration. — The definition of the
morphisms 7y is based of the following key observation regarding the action of the
powers of Frobenius on the slope filtration of a Barsotti-Tate group.

4.1.1. If G be a Barsotti-Tate group over a scheme S in characteristic p we denote
by G®) its twist by Frobenius and by F : G — G®) the Frobenius map.

Lemma 4.1. — Let G be a Barsotti-Tate group over a scheme S in characteristic
p. Assume that G has constant Newton polygon o with slopes Ay > --- > A\ and for
each i denote by b; the denominator of A; (written in minimal form). We also write
B =lem(by,...,b;) and 6 = min (A1 — Agy ..., Ak—1 — Ag).

Suppose also that G has a slope filtration

0O)cGicCc---CG,=G

over S as in theorem 2.12, and denote by G the corresponding subquotients.
Then, for any integer n > 0, there is a canonical isomorphism:

G(P"B)[pnéB] ~ ﬁ Gi(i”"B)[pnéB]_
i=1
Proof. — We prove the lemma by induction on the lenght & of the slope filtration of
G. The case k =1 is trivial as G = Gy = GL.

For k > 2 we write H = G*, G/ = Gj_1, A= A\, and N = \;_1. As G is completely
slope divisible, the quasi-isogeny p~*?F® is in fact an isogeny of G, H and G’. In
particular, it is an isomorphism of H, since H is isoclinic of slope .

We consider the following commutative diagram

0 G’ G H 0
\LPABFB lpABFB ipABFB
0 G/ Gq°%) —— go®) ——0.

where the rows are exact and the vertical maps are isogenies. Since the last verti-
cal morphism H — H *”) is an isomorphism, it follows by the snake lemma that
G/[pfABFB] — G[pfABFB].

As G’ is slope divisible with respect to A’ we can factor the isogeny p~*BFZ on G’
as p  BFB = pN'=NB o p=NBRB  Thyg G'lp~*BFB] o G'[p(X_A)B] and we have

G[p()\'f)\)B] G G
= G/ [pN VB - G/pN—NE] - G/lp~ B FB]

where the composite map is a section of the natural projection

H[pW VB ~ ")

GO [pN=NB) _, go®)[p(N=NB) ~ fg[pN-NB),

We conclude that
G [pN=VB] o /7 [N =NB) o 7 [N =N B
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and therefore by inductive hypothesis (as X' — X\ < §)

k
G(pB) Lp(SB] ~ H Gi(PB)[péB].
i=1
Since the above argument holds also if we replace B by nB (for any integer n > 0),
we obtain the stated result. O

Corollary 2.14 allow us to apply the previous theorem to the Barsotti-Tate group
G = eA[p™] over the central leaf C.

Corollary 4.2. — Maintaining the notations of section 3, we denote by G the
Barsotti-Tate group e A[p™] over the central leaf C. Let d be a positive integer.
Then, for any integer N such that N > d/dB, there is a canonical isomorphism

k NB
g(pNB)[pd] ~ Hgi(P )[pd].

=1

4.2. The morphisms 7. — We denote by M™% over Spec Fp the reduced fibers
of the truncated Rapoport-Zink spaces associated to the Barsotti-Tate group ¥ (see
section 2.5.10). For all set of indexes (m,n,d) € Z3, such that m > d, we shall
introduce a system of maps -

TN JIm X Spec, My X (@) o prv
indexed by the positive integers N > d/JB.

4.2.1. By the universal property of X(® to define such a map is equivalent to define
a quadruple (A, \, 4, i) over Jp, Xgpec F, M™% such that the Newton polygon of the
Barsotti-Tate group eA[p>] is constant and equal to a.

We denote by (A, A, i, i) over Jp, Xgpec Fp./\;l"’d the pullback of the universal quadru-
ple over .J,,/C and by (H’, %) the pullback of the universal pair over M™%, Over
JIm Xspeck, M™4 we also have the data of the universal isomorphisms

Js S — G
which, by corollary 4.2, induce an isomorphism
-univ -univ NB NEB i(pNE NB
Fumv — @(jm,i )I([I;d] ).y )[pd] N Hg (p )[pd] ~ gl )[pd]
for any N > d/éB.

By the definition of the space M™¢, the kernel of the isogeny p™ 3™V : ¥ — H/ is
contained in X[p?], and thus ker(p"ﬁ“ni")(pNB) C Z(pNB)[pd].

We set

K = ICN — jx[niv(ker(pnﬁuniv>(pNB)) C g(pNB)[pd]-
We also write K, = (Op)y ®z, K C AP [yd], and KL ¢ APYD[(ue)d] for the
annihilator of K, ¢ A®"”)[u?] under the A-Weil pairing.
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We set
(KYy=K,® K c A(PNB)[pd]
and define the morphism 7y to be determined by the quadruple which is the quotient
of the universal quadruple (A, A, 4, i) via the isogeny

A(pNB) . A(pNB)/<IC>.

It is clear that the abelian variety A(pNB)/ (K) inherites the structure of A@YP),
More precisely, the induced polarization on A@Y?) /{K) is defined as the unique po-
larization p?\ which fits the following commutative diagram
NEB)

dy(p
piA
A(pNB) v

|

AP 1) —= (AP (1))

A@YP)

and the induced level structure away from p is defined as

»NEB)

VeoA©rEt o VP (AP

v (Uc)fd«#n

) —————= VP(AC)) —— yr(4@™7) /(KY),

NB)

where v € E* is an element such that val,(v) = 1, valye(v) = 0 and v = 1
mod (u®)™.

4.2.2. We remark that the above constructions and definitions hold for any finite
flat p?-torsion subgroup K of the Barsotti-Tate group associated to an abelian variety
endowed with a polarization, an action of Op and a level structure away from p.

4.2.3. We observe that in the case n = d = 0, the space M%? is just a point (namely,
the point corresponding to the pair (X,id) over Fp) and the morphism 7y on the Igusa
variety J,, is simply the structure morphism

Am : I — C x Fy = X(@
for any m > 0.

4.2.4. Let us denote by Fr the Frobenius morphism of X (® over Fp, i.e. the Fy-linear
morphism defined by

(Aa )‘7 i7 .D“) e (A(p)’ A(p)v i(p)v ﬂ(p))7
and by o the Frobenius of F,,.
Proposition 4.3. — Let m < m,n < n’,d < d,N < N’ be some positive integers
and U?P a level away from p.
Let (g7, g9p) € G(A™P) x Q) C G(A™), (p, F'rob”, Fr®) € S x FrobY x FrN, and
write e = e(p) and f = f(p).
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1. Ifm>d and N > d/6B, then on Jy x5, M™?
WNO(Qm’,m X 1) =TN.

2. Ifm>d,N>d/iB and d —d > (n' —n)h, then on Jp Xgpeck, Mmd

o (1 x iZ}‘fd/) =7N.

3. Ifm >d and N > d/6B, then on Jy, Xgpecr, M™?

N'—N)B

e = (Frl x 1) omy.

4. If m>d and N > d/6B, then on Jys m X5, M
mn o (975 gp) x 1) = (9", 9p) x 1) 0 7.
5. Ifm>d+2e—fand N > (d+2e— f)/6B, then on Jp Xgpeck, Mmd
7 o ((p, Frob”, Fr) x (p, Frob”, Fr®)) = (Fr® x " %) o1y

Proof. — Part (1): It is straight forward that the definition of 7wy (i.e. the definition

-univ

of the isomorphism j3™V) depends only on the restrictions the isomorphisms j

univ
m,i

over the p?-torsion, for all i. Thus, 7y o (Am/m X 1) = 7N

Part (2): Proving that mno(1x iZ}fld,) = 7y is equivalent to proving that the defini-
tion of the abelian variety .A/(KC) and its structures, associated to 7y, is independent
on n,d.

Let us denote by K™% (resp. K"l’d/) the subgroup of G®"") associated to the
morphism mx on Jy, Xgpec, M4 (resp. on J, X Speck, M,

It suffices to consider the two cases (n/,d’) = (n,d+1) and (n/,d’) = (n+1,d+1).

Let us first consider the case (n/,d’) = (n,d + 1). The definition of K¢ = K does
not depend on d, but the definition of () does. In particular, we have

(K;z,d)J_ _ UC(ICZ’d+1)J_.

Thus, the isogeny v° : AP A7) (where we choose an element v € E* such
that val,(v) = 1, val,e(v) =0 and v =1 mod (u°)™) induces an isomorphism

AT /() o AR jggm ).

Moreover, the following diagrams commute:

NB)

Pt AN )

AR —m A (AP o (AT

L] |

~ dy \ ~ \
A(PNB) ~ _A(PNB) PA (A(pNB)) ~ (A(pNB)>>

(’Cn,d+l> <K:n,d> ]Cn,d) <]Cn,d+1

\\\\\‘\‘5‘___—_____1__—~””’/2,

JRASSY
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where (v¢)Y = v, and

—_n ,Uc)fd+n

V®Aoo,p4”>vp(A(pNB)) Y VP(A(PNB))HVP(%)

oo () -1 T ) NT

®NB)
VP(AEPTD) — V().
Equivalently, the isomorphism

NB) NB)

Al Al
<Kn,d+1> <[Cn,d>
gives rise to an equivalence between the two corresponding quadruples.

Let us now consider the case (n/,d’) = (n+1,d+ 1). By definition of 7y, we have
that

K:n,d _ p(’Cn+1’d+1),
and also
et = w(iC ) amd (K = ()L
Thus, the multiplication by v on AP gives rise to an isomorphism between
A@YP) A@YP)
(ICn+T.d+1y = (ICrdy
which indeed gives rise to an equivalence between the two corresponding quadruples

(by an argument completely similar to the previous one).
Part (3): The equality 7y = (FrN'=NB x 1)ry follows from the fact that

: : (N'—N)B
-univ __ -univ (p
Nt = (N )( ).

Part (4): By the very definition of the action of G(A®?) on the Igusa varieties,
we have that mg o (¢? x 1) = (¢ x 1) o g on Jyr m, for any level UP, m.

It suffices to remark that, for all g* € G(A*P), we have gP o Fr = FrogP on X[(]?
to deduce from part (3) that my o (g x 1) = (¢? x 1) oy on Jur m Xg, M4 for all
UP, m>dand N >d/§B.

Analogously, the equality 7y o (g, x 1) = (g, x 1) o 7y, for any g, € Q,f, follows
easily from the definitions and the observations in section 3.4.3.

Part (5): Let p € S (i.e. (1,p,1,1) € S x Frob™ x FrY), then the action of p € S
on the spaces Jm XgpecF, M™? is defined by the morphism

R - A4 _ g nte,d+e—f
pXp: Jm XSpecIFp M — Jm—e XSpec]Fp M .

Let us denote by K, the unique subgroup of G such that K¢ ~ ji(ker(pi_l)), for all
i (i.e. the morphism p on the Igusa varieties is associated to the Barsotti-Tate group

G/K,).
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In order to conclude that mx o ((p,1,1) x (p,1,1)) = 7, it is enough to observe
that

Gy ker(3p) ™)) = V@) jnlker(@)7D) G )

P I = T By

and that the induced structures on the quotient abelian variety are the same.

Let us now consider the action of the element Frob = (1, Frob,1) € S x Frob" x
FrY. We remark that both 7 o (Frob x Frob) and (1 x o) o my are o-semilinear,
and thus it suffices to compare the associated linear morphism (which can be done in
terms of the universal property of X ().

Indeed, it suffices to observe that the following diagram commutes, where H and H
denote respectively the Barsotti-Tate groups associated to the morphisms (1 x o)omy
and 7y o (F'rob x Frob).

NB)

H! (P

s
(p)

H\
P | SOV RN pm-a) s geN T e G

\\ TF A | A )/

2OV ———n0" ) [pm] — " .g NB)[pm]C—> g(pNB)

ZH\Z

Finally, the equality 7y o (Fr x Fr) = (Fr X o) oy is obvious. O

4.3. The morphism II on Fp-points. — In this section, we shall focus our atten-
tion on the fibers of the morphisms my over the Fp—points of X (@),
Let us first establish some notations. It follows from the definitions that we have

XO(F,) = {(4,A i, 1) /Fp| a(eAlu™]) = a}/ ~,

where the abelian varieties A are considered up to prime-to-p isogenies,

J(Fp) = lim, Jon (Fp) = {(B, A, i, 25 5)/Fp| j : g, — eB[u™] isomorphism }/ ~,

where the abelian varieties B are also considered up to prime-to-p isogenies, and

M(Fp) =lim ,, gM™*(F,) = {(H',8)| 3 : £5, — H' quasi-isogeny }/ ~,

where the Barsotti-Tate groups H’ are considered up to isomorphisms.
We observe that the spaces X(®)(F,) and M(F,) are naturally endowed with the
discrete topology and J(F,) with the inverse limit topology.
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4.8.1. Let us remark that the action of the group T' of the quasi-selfisogenies of Xg,
on M (resp. the action of the monoid S C T on the Igusa varieties .J,,,, for all m)

gives rise to a continuous action on M(F,) (resp. on J(F,)). These two actions are
defined as

p: M(]Fp) - M(FP)

(H',B) = (H', Bp),
for any p € T, and

p:J(Fy) — J(Fp)

(B, iy iz j) = (B/(jker(p™ 1)), X' s ),
for any p € S, where the Igusa structure on the abelian variety B/(jker(p~!)) is
defined by the following commutative diagram

|

- eB[u™] ¢
EFP jp  Jker(p~1) (j ker(p=1))>

ZFP I GB[UOO]C—> B
B

the polarization X’ is defined as the polarization induced by the polarization p¢A on B

(where e = e1(p)) and the level structure i’ is induced by the level structure (v¢)=¢u
on B (for v € E* is such that val,(v) = 1 and val,.(v) = 0.).

It is easy to see that the action of S on J(F,) extends to a continuous action of T
(S CT). In fact, the above definition extends directly to all the quasi-isogenies whose
inverse is an isogeny, and moreover the action of p~! € S is invertible. (Indeed, the

element p~! € S acts as

(B7 A? i? ﬂ?]) = (B/B[u]’ Al7 i/’ ﬁ/7 jp) ~ (B7 A? i? /U(/Uc)_lu’ j/l}pil)’
where the above equivalence is induced by the multiplication v : B — B.)

4.8.2. Let (y,2) € J(Fp) x M(F,), and y,, € J,,(F,) be the image of y under the pro-
jection J(F,) — Jm(Fp)). Let n,d be two positive integers such that z € M™%4(F)).
Then, for any m > d and N > d/6B, we define the point Fr N8y (ym,,z) €
X(@) (]Fp). It follows from proposition 4.3 that this point does not depend on the
choice of the integers m,n,d, N. Thus, we can define a map

1: J(F,) x M(F,) — X(©(F,),

(y,2) — Fr NBay(y,, 2) € X(@(F,),

for any set of integers m,n,d, N such that m > d, N > d/6B and (ym, 2) € Jpm(Fp) x
MAE).
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The morphism IT can be also described as follows. Let y = (B, \,4,[1;5; H',3) €
J(F,) x M(F,), and choose two positive integers n, d such that p"3 and p?~"3~! are
two isogenies. We define the abelian variety A as

ZFF —_— eB[uOO]C—>

-l

eBlu™] ¢
H' j ker(p™ ) (j ker(pmB))

H A

where the subgroup (j ker(p™3)) of B is defined as
(OB, ©z, jker(p"B)) ® (O, ®z, jker(p"F))" C Blu] & B[(u)1].

Then, the point TI(y) € X(*)(F,) is the class of the abelian variety A endowed with
a polarization, a Og-action and a level structure away from p induced by the ones
of B. More precisely, the polarization p?\ of A is the unique prime-to-p polarization
which fits the following commutative diagram

pIA

B BY

P

prA

B/(jker(p"B)) —— (B/(j ker(p"5)))"

and the level structure of A is defined as

v~ " (vC —d+n
Ve ar e v (B) S VP (B) —— VI(B/{jker(p" )
4.3.3. It follows from the definition that the morphism II is continuous and invariant
under the action of T on J(F,) x M(F,), since the my are invariant under the action
of the submonoid S C T.

Proposition 4.4. — Let x be a point of X(O‘)(Iﬁ‘p). Then, the fiber II=1(z) is a free
principal homogeneous space for the continuous action of T'.

Proof. — Let us remark that the action of T on J(F,) x M(F,) gives rise to an action
of T on the fiber II7!(z), since ITo (p x p) = II, for all p € T. Moreover, since the
action of T on J(F,) x M(F,) is continuous thus is the action of T' on II"1(z).

Let us denote by (A, Aa,i4,f4) a quadruple associated to z and by H = eA[u™]
the corresponding Barsotti-Tate group.

We articulate the proof in three steps.
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1. If (B, AB,iB,jip;j; H',3') is a T-tuple associated to an element y € I171(x),
then the Barsotti-Tate group H' is isomorphic to H, or equivalently

(B,Ap,ip,fip:j, H', ') ~ (B, Ap,ip, ip: j, H, ),

where 3 = §/’, for any isomorphism ¢ : H' — H.
2. Any 7-tuple (B, \p,ig,jig;Jj, H,[3), associated to an element y € II-1(z), is
equivalent to a 7-tuple of the form

(A/(yker(p™B)*), N\, i, s 7, H, ),

where n,d are any two integers such that p"3 and p? "3~! are two isogenies,
(p"p)* : H— Y, denotes the unique isogeny such that p" 3o (p"B)* = (p"B)*o
p"3 =pl v € Aut (H), 7 : ZF, — H/~vker(p™3)* is the isomorphism induced
by 7, and the structures of A/(yker(p™3)*) are induced by the ones of A.

3. To any 7-tuple of the form (A/{yker(p"B)*),7, H,3) one can associate a quasi-
isogeny B 1 ¥, — H in the same equivalent class of 3, and the so defined map
between IT-1(x) and QIso(Xg, , H) is indeed an homeomorphism of T-spaces.
(In particular, II-!(z) is a free principal homogeneous space for the continuous
action of 1" since Qlso(Xg , H) is.)

Step (1): It follows from the definition of II that the isomorphism j : ¥ — G

induces an isomorphism between the quotients H' — H.

Step (2): Let us choose a prime-to-p isogeny

v : B/(j(kerp"B)) — A

which gives rise to an equivalence between the corresponding two quadruple associated
to the point « = II(y), and consider the following commutative diagram, where ~ is
the unique automorphism of H which makes the diagram commute.

by GC B
/ AN
/
o \
n/a | > J G c B
s { ker(p™ B3) j(ker(p™B3)) (G (ker (p™ B))
\ PG %]
l 1
p? ‘ H 2l [—IC A : e
\ / i |
( nﬂ * | H ’7 H C A
P tker(p™3)* ~(ker(pm3)*) A ker(p"B)*)
A /
\ Yic v/
2

by , G© B
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It follows from the commutativity of the diagram that there exists an isogeny

¢ : B — A/{yker(p"B)")

which fits in the diagram and also that ¢ has degree prime to p (since the restriction
of ¥ to G give rise to an isomorphism between the pertinent Barsotti-Tate groups).
The isogeny 1) gives rise to an equivalence of 7-tuples

(B7>\B7iBaﬂB;j;H7 /8) ~ (A/(Wker(p”ﬁ)*%X,uﬂ',’?, Ha /8)7

where ) is the polarization on the quotient A — A/{yker(p”3)*) induced by the p?\ 4
and fi’ is the level structure induced by p~9v™(v)4 "4 = v 4(v) "4 (Where
v € E* is an element such that val,(v) = 1 and val,.(v) = 0).

Step (3) We now consider the following commutative diagram.

>ﬁ

A= A/(yker(p"B)*) — A/A]p?]

A
L*» H/~ker(p™B)* ——= H/H|[p"] L
A A

v ¥ A w
"B

(pnﬁ)* B Y T

\t

It exists a unique quasi-isogeny B : Z]FP — H in the same equivalent class of [,
which fits in the diagram (i.e. in the diagram 8= ~v0).
In order to show that the map

f 17 (@) — Qlso(Ss,, H)
(A/ (v ker(p"B)"), Ni, 137, H, B) v B
is a bijection, it suffices to construct its inverse.
We define the map

g:Qlso(Z, H) — T (z)

B (Af(ker(p"3)"), N, i, i's 1, H, 3),
for some integers n,d > 0 such that p"@ and pd_"ﬁ_l are isogenies.

We check that the definition of g(ﬁ) does not depend on the choice of the integers
n,d. It suffices to consider the two cases when we replace n,d by n,d + 1 and by
n+1,d+ 1.

Let us denote by (p"ﬂA)* and ¢ the two isogenies such that (p"B)*(p”B)

(" B)(p"B)* = p* and §p"F = p"F5 = p*'. Then, we have p(p"5)*(p"5) =
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(p"B)p(p"B)* = p**!, or equivalently § = p(p™B)*. Thus, the multiplication by p on
H gives rise to an isomorphism

H/vkerd ~ H/vker(p"B)*,
i.e. p(ykerd) = yker(p"f)* C H[p%. It follows that
(O, @z, vker )" = (Op, ©z, yker(p"B)*)*" C Al(u)7],

and therefore u(ykerd) = (yker(p"()*) C A[p?], i.e. the multiplication v : A — A
gives rise to an isomorphism

A/(yker8) =~ A/(yker(p"3)").

It is easy to check that, under the above identification, the induced structures on
the quotients abelian varieties agree.

Let us suppose now that p™ and p® "3~! are isogenies, then also p"*t'3 and
pld+t)=(=1) 3=1 are isogenies. Let (p™3)* be the isogeny such that (p™3)*(p"3) =
(p"B)(p"B)* = p?, then (p"B3)*(p"*1f) = (p"*15)(p"B)* = p™*".

Let us write K; = (O, ®z, yker(p"B))*t C A[(uc)!] for i = d,d + 1, then

Ki=uKas1,

and therefore the multiplication v¢: A — A gives rise to an isomorphism

A/(vker(p"B) ) a1 = A/ (vker(p"B)")a.

Again, it is easy to check that, under the above identification, the induced struc-
tures on the quotients abelian varieties agree.

The same diagram we used to define the quasi-isogeny 3 shows that the maps f
and g are inverse of each others. Moreover, it is a direct consequence of the definitions
that the morphisms f, g are continuous, i.e. homeomorphisms.

Finally, in order to prove that the bijection f is compatible with the action of
the group T, we consider the following diagram, for any p € T. (Without loss of

generality, we may assume that both Bp and p~! are isogenies.)

’
pd

A== A/ (ker(B)") —= A/ (kex(Bp)") —=

T

)" — H/ker(8p)" —>

=
=
5
a>

Bp

D ——
P

The commutativity of the diagram implies that the quasi-isogeny associated to the
image of (A/(ker(p"3)*), N ,i,i’;1, H, ) via p maps to the quasi-isogeny 3p. O
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Let us remark that it follows from the above proposition that IT~!(z) is not empty,
for any z € X(@)(F,). In fact, for any = € X(®)(F,), the associated Barsotti-Tate
group over F, has Newton polygon equal to o = «(X), and any two Barsotti-Tate
groups over a perfect field of characteristic p with the same Newton polygon are
isogenous.

Moreover, under the identification I17!(z) =~ QIso(Xz,, H), the natural map
-1(z) - M(F,) corresponds to the projection

Qlso(Eg,, H) — Aut (H)\Qlso(Xg , H).
4.3.4. Let us also remark that it follows from proposition 3.3 that, for any integer
m > 0, the projection
doo,m I (Fp) = Jm (Fp)
is surjective and the action of I' = Aut (X5, ) C T on J(F,) is such that
Jm(Fp) = J(Fp)/rrm

where I';,, C T is the subgroup of the automorphisms of Z]pp which induce the identity

m

on the p™-torsion subgroup.

4.8.5. Finally, we remark that all the above results remain true is in place of F,, we
consider any algebraically closed field k over ]Fp.

4.3.6. The following results are implied by the previous analysis of the fibers of II.

Proposition 4.5. — For any positive integers m,n,d, N such that m > d and N >
d/0B, the morphism 7y : Jp, X SpecF, Mmd — X (@) % F, is quasi-finite.

Proof. — Let x be a point of X(®) x F,, defined over an algebraically closed field k,
and denote by H the corresponding Barsotti-Tate group. We claim that 77;,1 (x) is
finite.

It follows from the equality II = Fr~VBry and the surjectivity of the projection
Qoo,m that

T () = (Aoo.m X DATH(Fr—NBz) 0 J(k) x M™2(K)),
where we can identify
I Y(Fr—NBz)n J(k) x M™% (k) =~ Qlso(S, H® " ymd = Qe

the subset of quasi-isogenies 3 such that p™3 and p?~"3~! are isogenies. Moreover,
under the above identification, the projection mx" () — M™9(k) corresponds to the
projection

QI — Aut (H® " InQro.

We claim that the quotient Aut (H(prB))\QI"’d is finite. In fact, if we choose
an element By € QI, then under the corresponding isomorphism T ~ QI (which is
defined by p — Bop), the subset QI™? corresponds to a compact subset K of T and
the quotient Aut (H(prB))\QI”’d to the quotient SyAut (H(TFNB))BOA\K.
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Since FyAut (HU”_NB))BO_1 is an open subgroup of T, the quotient
—NB
BoAut (HP ")) 55\ K

is indeed finite.
7NB)

)3

is finite, for any 8 € QI™?®. Equivalently, it suffices to know that there is an open
subgroup R of Aut (H (prB)) such that the image of RS is constant. Indeed, the sub-

group Aut (H® ""))m+d of the automorphisms of H® ") which induce the identity
m-+d

It remains to prove that the image under e, X 1 of the coset Aut (H (»

over the p -torsion subgroup has such property. O

Proposition 4.6. — If the positive integers m,n,d, N are sufficientely large (m > d
and N > d/6B), the morphism my is surjective on geometric points.

Proof. — Since the scheme X(® x F, is of finite type over F,, it suffices to show
that for any geometric point = of X (%) x IF’p there exist some integers m,n,d, N > 0
(m >d and N > d/dB) such that the set

N (@) = {(y,1) € Jim Xspecr, M™ | T (y, 1) = o}
is not empty. Let us recall that
T3 (@) = (doosm x VAT (FrNBa) 0 J (k) x M™4(k)),
and that, for all 2/ € X(®)(k), the fibers II-'(2') are not empty. Since M(k) =

lim n.aM™(k), it follows that the set mx'(2) is also not empty. O
4.4. The leaves are closed. — From the fact that the morphisms 7y are quasi

finite we can deduce that the leafs are closed subschemes of the Newton polygon
strata. (We recall that the following result is originally due to Oort, see [26].)

Proposition 4.7. — For any Barsotti-Tate group H/F, the corresponding leaf Cry
is a closed smooth subscheme of X(® x Fp.

Proof. — By proposition 2.7, we already know that the leaves are smooth locally
closed subschemes of X (@) x F,. We now show that they are also closed, by showing
that all the leaves have the same dimension and that if a given leaf C'y is not closed,
then there exists a Barsotti-Tate group H'/ ]l_i‘p7 not isomorphic to H, such that Cyz D
Cp (which implies that Cpr € Cy — Cp since Cyr N Cy = @). These two facts are
clearly in contradiction, therefore we conclude that all the leaves of X(® x F, are
closed.

Let H be any Barsotti-Tate group defined over IF‘p with Newton polygon equal to
a, and choose an isogeny v : ¥ — H. We also choose a positive integer d such that
p?y~1 is an isogeny.

Let N be an integer such that N > d/6B and define H' = H® ") and 3 =
~®™") Then, the pair (H’,3) defines a point t € M%4(F,).
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Let m > d and consider the morphism
f=7rNO(1><t):Jm—>X(a) XFP.
It follows from the definition that, for every point y € J,,,, we have
* _(c®"®) ~ (N E) PN ~ V) _
(f g)y (G /’Cﬁ)y ~ Y / ker 8 ~ H H.

Thus, the morphism f factors through the leaf Cy ¢ X(® x F,. Moreover, f :
Jm — Cp is quasi-finite and surjective.

In particular, we deduce that the dimension of C'y is equal to the dimension of J,,,,
or equivalently to the dimension of the central leaf C' = C\,.

Let us now suppose that there is a leaf C'y which is not a closed subspace of
X(®) x F,. Then, there exists a Barsotti-Tate group H'/F, (H' not isomorphic to
H) such that Cy» N Cp is not empty (e.g. for any closed point = (Ay, Ay, iz, fiz) €
Cg — Cy the Barsotti-Tate group H' = G, satisfies the above assumption). We claim
that C'y C CH

Let 2 be a point of CgNCp. Then there exists a point y € C'y which specializes to
z, or equivalently (by Serre-Tate’s Theorem) there exists a local domain R/F,, with
residue field k(z) and fraction field k(y), and a morphism p, : Spec R — X(®) x F,
associated the data of the quadruple (A;, Az, iz, i) and a deformation G/R of the
Barsotti-Tate group H’, such that Gry) =~ H.

Then, for any other point z = (A,, A, 4., i,) € Cy, let us choose an isomorphism
G. ~ H’ and define p, : Spec R — X (@) x IF‘,, to be the morphism associated the
data of the quadruple (A,, \,, 1., i) and the Barsotti-Tate group G/R, viewed as a
deformation of G, via the choosen isomorphism G, ~ H’. Then, the generic point 5
of Spec R give rise to a point t € Cgy which specialises to z, and thus Cgyr € Cy. O

It follows from the fact that the central leaf is closed that the morphisms 7wy are
proper.

Proposition 4.8. — For any positive integers m,n,d, N such that m > d and N >
d/6B, the morphism 7y : Jpm X SpecF, M — X(@) xR, is proper.

Proof. — By the Valuative Criterium of Properness (see [15], Theorem 4.7, p. 101)
it suffices to show that:

— if R is a complete discrete valuation ring over IF‘p, K its fraction field and 7 :
Spec K — Spec R the morphism corresponding to the natural inclusion of R in
K, then for any pair of morphisms (F, f) such that 7 o F' = fon there exists a
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map ¢ : Spec R — Jm Xgpec F, M™% such that the following diagram commutes.

P _
Spec K —— Jin XgpecF, M

Spec R X@ xF,

A morphism f : SpecR — X x F, corresponds to a quadruple (A,\,i,fi)
defined over R, and a morphism F = (F},Fy) corresponds to a (6 + k)-tuple
(B, N8 |75 dmas - dmk; H', B) defined over K. The equality fon = ay o F
implies that the quadruple (Ax,Ak,ik,fK) is equivalent to the quotient of the
quadruple (B, N, iﬂﬂ’)“’NB) via the projection B®"") B(pNB)/UC), where
K= jN(kerp"ﬂ)(pNB). Indeed, we may substitute the quadruple associated to f so
that its generic fiber is isomorphic to the quotient of the quadruple corresponding to
BV

Finally, defining a morphism ¢ such that the above diagram commutes is equivalent
to defining an integral model (B, N, 7, ﬂ’;jm,l, . ,j}mk; H, B) over R of the (6 + k)-
tuple (B, X,¢',@';im1,- -, Jmk; H',3), with the propety that there exists a prime-
to-p isogeny between A and B(pNB)/UC) (where K= jN(kerp"B)(pNB)), compatible
with the given structures on the abelian varieties. In particular, this property implies
the existence of an isomorphism between the quotient G/K of G = eB[u™] and
H = eA[u*] over R.

Let us consider the isogeny

¢ B o BN J(K0) ~ A,

then plp=1: A — B *"") i also an isogeny, of degree a power of p, with kernel con-
tained in the p?-torsion subgroup. If we consider the subgroup F C H[p?] which is the
closure of ker(pdwl_Hl) C H[p%k in H[p%], then the quotient A/(F), endowed with the

induced structures, has generic fiber equivalent to the quadruple (B, X', #', i )(pNB).

This fact implies the existence of a quadruple (é, N, i, ii'), defined over R, whose
generic fiber is equivalent to (B, X', i/, i’) and such that (B, X', 7/, ﬂ’)(pNB) is equivalent
to the quadruple associated to A/(F). In fact, the quadruple associated to the abelian
variety A/(F) over R defines a morphism g : Spec R — X(®) x F, such that gon =
(FrNB x1)o(qmoFy). Since the morphism Fr x 1 on X(®) x F, is finite, there exists
a morphism ¢’ : Spec R — X (@) x F, such that ¢’ o = (q,, o F1), or equivalently a
quadruple (B DR ), defined over R, with the above properties.

We remark that, since the abelian variety B is isogenous to A, the Barsotti-Tate
group G=eB [u*°] has constant Newton polygon equal to « and thus the quadruple
(B, X,i,/')/R defines a morphism

g1 : Spec R — X (@) x F,
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such that g1 on = q,, © Fi.

Moreover, since the map g; on = q,, o F; factors through the central leaf C' x Fp C
X (@ x IFP, which is a closed subscheme of X(®) x pr, we deduce that the morphism
g1 also factors through the C' x F,,.

Finally, from the equality ¢; o n = q,, o Fi1, where q,, : J;, — C X ]Fp is finite, we
deduce that the morphism ¢; can be lifted to a morphism

¢1:Spec R — Jp,

(i.e. such that q,, o ¢1 = g1) with the property that ¢; o n = F;. Equivalently, the
quadruple (B, X, i, f')/R can be extended to a (4 + k)-tuple

(Bv 5‘/3 ’2/7 ﬂ/;jm,la cee 7jm,k)/R
whose generic fiber is (B, N, ¢, /5 jm.1s- -+ Imk)-
Let us now consider the isogeny

VR {CARD IR A,

NB)

whose generic fiber is ¢, and define K = ker(\Illé(,,NB)) c G [pd).

Then, the isogeny
Sr = Zr/jy' (K)
defines a morphism ¢ : Spec R — M™? such that ¢ 01 = Fj.
Therefore, the morphism ¢ = (¢1, ¢2) makes the above diagram commute. O

Corollary 4.9. — For any positive integers m,n,d, N such that m > d and N >
d/éB, the morphism 7ty : Jp, X SpecF, M — X (@) F, is finite.

Proof. — Tt follows from propositions 4.5 and 4.8, together with the general fact that
a morphism is finite if it is proper and quasi finite. O

5. Group action on cohomology

In this section we shall show that the action of S on the systems of covers J;, X gpecF,
M™4 induces an action on the corresponding étale cohomology with compact sup-
ports, which extends to an action of T'. Moreover, we shall see that via such an action
of T it is possible to recover the cohomology with compact supports of X(® from the
cohomology with compact supports of the spaces J,, X SpecF, M™?. More precisely,
we shall prove that for any abelian torsion étale sheaf £ on X (@) x Fp (with torsion
orders prime to p), there exists a spectral sequence involving the group homology of
T and the étale cohomology with compact supports of the covers Jp, Xgpecr, Mmd,
with coefficients in the pull back of £, which converges to the étale cohomology with
compact supports of X(® with coefficient in L.

We are especially grateful to J. de Jong for his help in finding correct statements
and proofs of the following results.
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5.1. The cohomology of étale sheaves with the action of a group. — In
the following, we shall introduce some general results regarding the cohomology with
compact supports of an abelian torsion étale sheaf, endowed with the action of an
abstract p-adic group which acts trivially on the scheme.

5.1.1. We first recall some notations and results from the theory of representations
of a p-adic group over Z/I"Z, for a prime number ! # p and an integer r > 1. (see [5]
for a survey of the theory over C).

Let G be a p-adic group (e.g. G = T). Thus, G is a topological group such
that the unit element has a basis of open neighborhoods consisting of open compact
subgroups K of G. Further more, there exists an open compact subgroup Ky of G
which is a pro-p-group, i.e. for any open subgroup K’ C K the index [K : K] is a
power of p. In the following, any time we consider a open compact subgroup of G we
always mean a open compact subgroup contained in Ky. (In the case of G = T, one
can choose Ky = I'1). Finally, let us choose a left invariant Haar measure p on G,
with coefficients in Z/I"Z, such that u(Ky) = 1, i.e. for any open compact subgroup
K C Ko, we set u(K) = [Ko: K7t

We define the Hecke algebra of G with coefficients in Z/I"Z, H,.(G), to be the space
of locally constant compactly supported functions on G with values in Z/I"Z. Then
H,-(G) has a natural structure of algebra without a unit on Z/I"Z. Let f € H.(G),
then there exist an open compact subgroup K of G, finitely many elements g; € G
and constants ¢; € Z/I"Z such that f = ). c¢ixq,x, where we denote by x¢ the
characteristic function of C', for any open compact subset C' of G.

Let V be a representation of G, with coefficients in Z/I"Z. We say that V is
smooth if V = th xk VX, where K varies among the open compact subgroups of G
and V¥ denotes the submodule of the K-invariant elements of V. If V is a smooth
representation of G, with coefficient in Z/I"Z, then there is a natural action of H,.(G)
on V. (If we write f = Y, ¢ixg;x € Hr(G) and v € VE, for some open compact
subgroup K of G, then f-v = pu(K) ", cigiv.)

5.1.2. We say that a H,(G)-module V is non degerate if the natural map
Hi(G) @y, ) V=V

is an epimorphism. Any G-smooth representation V' is non degenerate as H,(G)-
module.
In general, for any H,(G)-module V, the above morphism gives rise to an isomor-

phism
H, (G) ®3,(c) V—lim gexV,
where K varies among the open compact subgroups of G and ex = u(K) lyxxk.

In fact, for any f € H,(G) there exists an open compact subgroup K such that
f = fex = ek f, which implies that the image of H,(G) @, (g V in V is exactly
th ke - V. Moreover, suppose Y, f; ® v; is an element in the kernel of the map,
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and choose K an open compact subgroup such that f; = fiex = ex f; for all ¢, then
Yo fi®vi=ex®), fi-v;. Saying that the image is zero is equivalent to saying that
(>, fi - vi) = 0, which implies that ex ® >, fi - v; = 0.

It follows, in particular, that H,.(G) is a flat H,.(G)-module (for all K, the functors
V — eV are exact and the direct limit functor is also exact).

5.1.3. For any smooth representation V of G, we denote by Vi the module of the
coinvariants of V', then

Vo~ A®@n. )V,

where A = Z/1"Z is the trivial representation of G (thus the action of f = >, ¢ixg,x €
H,(G)on1le Aisdefined as f-1 = pu(K)(>,c)). In fact, let us consider the natural
morphism V' — Vg, v — [v]. For any f = Y, cixg,x € H,(G) and v € VE, the
equality fv = u(K)>, c;giv implies that [fv] = u(K)(>, ¢i)[v]. We deduce that the
morphism V' — Vg gives rise to a morphism A ®4, (@) V' — Vg, which is obviously
surjective. Indeed, it is an isomorphism. Let 1®v € A®4, (o) V be an element in the
kernel of the above map, then there exist finitely many g; € G and v; € V such that
v =7 .(9i—1)v;. Let K be an open compact subgroup of G such that v; € VE_ for all
i. Then p(K)v =>,(Xg,k — XK )i, and thus 1® p(K)v = 0. Since u(K) € (Z/I"Z)*,
it follows that 1 ® v = 0.

5.1.4. Let W be a Z/I"Z-module, we denote by ¢ — Ind?l}(W) = C*(G,W) the
space of locally constant functions G — W with compact supports. Then,

c— Ind?l} (W) ~H,.(G) Qz/irz w.

(The natural morphism of G-representations H,(G) ®z -z W — chnd?l} (W), which
sends any element f ® w to the map g — f(g~!)w, is indeed an isomorphism.)

It follows that ¢ — I nd?l} is an exact functor. (It is clearly left exact and, from the
above equality, it is also right exact.)

We deduce from the above isomorphisms that, for any Z/I"Z-module W, we have
c— Ind?l}(W)G ~ W. Moreover, the G-representation ¢ — Ind?l}(W) is acyclic for
the coinvariant functor. In fact, let us consider the two functors W +— ¢ —1I nd?l}(W)
and V — V. Since ¢ — I nd?l}() is exact, in order to compute the derived functors of
Oc ocflndfl} () as the composition of the derived functors of ()¢ and C*I”d%}()’ it
is enough to check that, for any free Z/I"Z-module L, ¢ — Ind?l}(L) is a flat H,(G)-
module (and indeed ¢ — Ind?l}(L) ~ H,(G) ®z)1rz L is flat, since H,.(G) is a flat
H,(G)-module ). Since (Jgoc— T nd?l}() is simply the identity on the category of
Z/!"Z-modules, it follows that all the higher derived functors of () vanish on the
image of ¢ — Indﬁ}().

5.1.5. We denote by G —2Ab(X) the category of abelian {"-torsion étale sheaves over
X, together with an action of G which is trivial on X.
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Definition 5.1. — We say that a sheaf F € G — Ab(X) is smooth if
F =lim g FX,

where K varies among the open compact subgroups of G and FX € G — Ab(X) is
the subsheaf of the K-invariants section of F.

We denote by G — &Gm2b(X) the full subcategory of G — Ab(X) whose objects are
the smooth objects of G — 2Ab(X).

5.1.6. We write G — b for the category of abelian ["-torsion groups, together with
an action of G, and G — Gm2Ab for the full subcategory of G — b whose objects are
smooth for the action of G.

Then, the functors of étale cohomology with compact supports on X on 2b(X)
give rise to some functors

H;

(X,—):G—6mAL(X) — G — 6GmAb.
In fact, for any sheaf F € G — Gm2b(X), we have
HU(X,F) = H{(X,lim F¥) = lim x H(X, F5),
and the action of K on H(X, FK) is trivial, for all open compact subgroups K.

5.1.7. Let us denote by H,(G) — Mod(X) the category of sheaf of H,(G)-modules
over X. Then, there is a natural inclusion

G — GmAB(X) — H,(G) — Mod(X).

In fact, let F,G € G — GmAb(X) and ¢ : F — G. For any étale open U of X,
F(U),G(U) are two smooth representations of G and ¢(U) a morphism compatible
with the action of G, thus F(U),G(U) are also two H,(G)-modules and the morphism
¢(U) a morphism of H,.(G)-modules.

5.1.8. We remark that, if F is a smooth G-sheaf, then the sheaf C(F), which is
defined as
CRU)={f:U— [] Ful f(2) € FuVa},
reX
for any étale open U of X, is not a smooth sheaf, but it is naturally an object of

H,(G)—Mod(X). For any open compact subgroup K of G, it follows from the equality
exFs = (exF), that exC(F) = C(exF), and indeed C(F) # lim xC(exF).

5.1.9. Let us consider the derived functor
A% ) ()1 D7(X, Hp(G) — Mod) — D™ (X, H,(G) — Mod).

If A is a flat resolution of A, then A ®%T(G) K.~ A ®4,(c) K. (see [1], proposition
4.1.7, p.73). We remark that it is possible to choose a flat resolution of A such that
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all the modules A; are of the form L ®z;-7 H,(G), for some free Z/I"Z-module L.
Let us also remark that, for any F € H,(G) — Moo and x € X, we have

(A @7, (@) Flz = A®% () Fo

Theorem 5.2. — (see 7], Section 4.9.1, pp. 95-96.) Let K. € D~ (X, H,(G) —
Mod), then

A®% () RAK) ~ R AN @], (o) K)

Proof. — In [7] (Section 4.9.1, pp. 95-96), this statement is proved under some
conditions on the algebra which are not satisfied by H,(G). Nevertheless the same
argument works.

Deligne’s first remark is that we can assume without loss of generality that f is
proper. In fact, for any f, we have Rfi = Rf.ji, for some open embedding j and
some proper map f. Since taking the tensor product commutes with the extension
by zero, it suffices to prove the statement for f.

Given any complex of sheaves of H,.(G)-modules K., we can replace K. by the com-
plex of its truncated Godement resolutions, which has the property of being acyclic
for the functor Rf..

Let L be a free Z/1" Z-module and consider the H,.(G)-module L ®z;-7H,(G). Let
us first assume L of finite type. Then

L ®z)1rz Hr(G) @n,(a) BF(K) = Rf(L ®z1r72 Hi (G) @14, K.)

In fact, for any H,(G)-module V, we have L ®z,;rz H,(G) @1,y V =~ L Qz)1rz
lim gexV =~ h_rr} ek (L ®z/rz V). Since L is free of finite type over Z/I"Z and the
functor Rf, commutes with direct limits and finite direct sums, it suffices to check
that Rf.(exK.) ~ exRf.(K.). Such an equality follows from the observations of
section 5.1.8 (which apply since the sheaves of the complex K. are all of the form
C(F), for some sheaf F of H,(G)-modules). In particular

Rf(L ®z/1r2 Hir(G) @1, @) K) = fu(L @21z Hie(G) ®@3,(a) K.

By passing to the direct limit, one shows that the same holds for any free Z/1"Z-
module L.

We now consider a flat resolution A. of the H,(G)-module A, such that all the
modules A; are of the form L ®z/;-7 H,(G), for some free Z/I"Z-module L. Then

R fo(A@F, () K) = R fu(A @p, 0y K.) = fo(A @3,0) K) =

~ A @y, (0 [ (K) 2 A @7 () R ().
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5.1.10. We are interested in applying the above theorem to the following case.

Definition 5.3. — We say that an object F € G — Gm2b(X) has property P if
Fo~c— Ind?l}(Lm),
for any geometric point x in X and some abelian ["-torsion group L,.

Let F be an object in G — &Gm2b(X), which has property P, and consider the
complex H.(G,F) :== A ®7L{ @) F. Then, it follows from the acyclicity of the stalks
of F that
A QK (@) F for i =0,

e 7= {0 for i # 0.

Corollary 5.4. — Let F be an object in G—Smb(X) which has property P. Then
there is a spectral sequence

EYY = H,(G, HI(X,F)) = H'* (X, Fe).

Proof. — By applying theorem 5.2 to the sheaf F, we obtain a quasi-isomorphism of
complexes

A @5, ) BAF) = R AN @3 ) F) = R ilA @, a) F).

On one hand, the homology of the complex R fi(A®;, (o) F) is simply H (X, Fg). On
the other hand, the homology of A ®%T(G) R fi(F) is computed by the two spectral

sequences associated to the double complex. In particular, the spectral sequence
EY? = H,(G,Hi(X,F)) abuts to it. O

5.2. The étale sheaf F. — We now return to the study of the Newton polygon
stratum X () for some polygon a. Let £ be an abelian torsion étale sheaf over
X(®) x F,, with torsion orders prime to p. Let m,n,d (m > d) be some posivite
integers. In section 4.2, for any integer N > d/§B, we constructed a morphism
TN ¢ I Xgpeck, Mt X(@) Fp. We now consider the restrictions 7 of the
morphisms 7y to the open Jp, Xgpecw, Ut in J, X SpecF, M™2 (The need for
substituting the morphism 7wy with its restriction on the open J,, Xspeck U™ is
purely technical. It corresponds to the fact that the description of M as the union
of an increasing sequence of opens, namely the U™%, is the appropriate one to be
considered when computing the cohomology with compact supports.)
For each m,n,d (m > d), we define the abelian étale sheaf over X(®) x Fp

Fpd = (Fr¥B x 1)* (w1 (7in) " (FrNE x 1),(L),

for some index N sufficiently large (e.g. any N > d/0B). We shall see that the
definition of F¢ does not depend on N. We shall also prove that the sheaves F7¢
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form a direct system and thus, to the abelian torsion étale sheaf £ over X(®) x ]F,77
we may associate the abelian étale sheaf over X (®) x F,:

F= h_r,n m’n,df:rlﬂ
together with a natural morphism F — L.

We shall show that the action of S on the covering spaces Ji, XgpecF, M™4 induces
an action on the sheaf F (trivial on X(® x F,), which extends to a smooth action
of the group T' O S with the property of leaving invariant the morphism F — L.
Moreover, we shall prove that, if the sheaf £ is endowed with an action of Wg,, which
is compatible with the action of Frobenius 1 x o on X (@) x F,, then the action of
Frob™ on the Jy, Xgpecs, M™¢ enable us to define an action of Wy, on the sheaf F,
also compatible with the action of Frobenius 1 x o on X(®) x F,, which commutes
with the morphism F — £ and with the action of 7" on F.

Finally, for any point z in X(® x ]Fp, we shall prove that

Fpo=C®MI Hx),Ly) ~c— Ind?l}(ﬁm).
In particular, for all £, the associated sheaf F € T — &Gm2b(X(®)) has property P
(see definition 5.3).

5.2.1. We start by showing that it is possible to define a sheaf F as as above.

Proposition 5.5. — Let L be an abelian sheaf over X, with torsion orders rela-
tively prime to p. For any m,n,d (m > d), we define
Frd = (FrVB x 1)* (7n )i (7)) (FrV P x 1)1(L),
for some integer N > d/éB.
1. The sheaves Fv¢ are independent on the integers N.
2. The sheaves Fu¢ form a direct system under the morphisms
(A X 1) Fiod — F11
and
(U i) Fot = Fa
for all integers m’ > m,d' —d > (n’ —n)h > 0.

3. There exists a natural morphism ¢ : F — L.

Proof. — Part (1): Let m,n,d be some positive integers such that m > d. For any

integers N’ > N > d/0B, we have an equality of morphisms on .J,,, x U™
e = (Fr'=N)B
Thus, (7y/ ) = (FrN' =MB 5x 1),(xy ) and (7ny)* = (nn)*(FrV =NB x 1)*,
In particular, it follows that
Frod = (FrN'B x 1)* sy 1 (in ) (FrN B x 1),(£) =

= (FrV'B x 1) (FrN' =B 5 1), (e (7 ) (Fr =B 5 1) (FrN'B % 1),(L) ~

Xl)Oﬂ'N.
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~ (FrVB x 1)*(an ) (7n)* (FrNB x 1),(L)
(since F'r is a purely inseparable finite morphism, there are canonical isomorphisms
1~ Fr*Fry ~ FrFr*).
Part (2): From the equality 75 0 qpm/ .m = 7y (for all m’ > m) and the existence of
a canonical morphism ¢* : D — q¢*D, for any étale sheaf D and any finite morphism
q, we deduce the existence of a morphism
(Qmrm X 1)* 0 Fiod — Fof,
In fact, from the equality 7n © (qm/,m X 1) = 7n we deduce that (7n )10 (qms m)1 =
(7™ and (qmr m)* © (7in)* = (77)*. Thus, there is a morphism
Fpd = (PP 1) (i) (Fr VP x 1y (£) —
= (FrNE o 1) (7)1 (@) (e ) * (7o) (FrV P < 1)4(L) =
— (FVE X 1) (), (i) (FrVE x 1),(L) = Frd.
nd o (1 x " ,d,)—wN (for any N > d’'/6B) and
the existence of a canonical morphlsm i : 111" D — D, for any étale sheaf D and any
open embedding ¢, we deduce the existence of a morphism

(1><led/) fndﬁfnd/

Analogously, from the equality 7,

It is straight forward that these morphism respect the required commutativity rules
and thus that the sheaves 774 form a direct limit.

Part (3): For any positive integers m,n,d, N (m, N > d), there is a natural mor-
phism

(7n)r s Fod = (FrVB s 1) (w1 (7)) (FrVB x 1)0(L) —
— (FrVB x 1)*(FrVB x 1)1(L) ~ L.

It is clear that the morphism (7x); does not dependent on the integer N. We

define ¢ = [JTI:Jl](#N)!' Then, it is straight forward that the morphisms ¢ on F7¢

commutes with the morphisms (g, X 1)* and (1 x iZ;dd,)g, and thus give rise to a
morphism ¢ : F — L. O

It follows from the above proposition that, to any abelian torsion sheaf £ over
X (@) I_Fp, with torsion orders prime to p, we can associate a sheaf

F =lim 0 0 Frd,
together with a morphism F — L.

Proposition 5.6. — Let L be an abelian étale torsion sheaf over X(®) x T, (with
torsion order prime to p), and consider the associated étale sheaf F — L.

The action of the monoid S on the systems of covering spaces Jym Xgpeck, M
induces an action of S on the étale sheaf F, which extends to a smooth action of the
group T on F.

The morphism F — L is invariant under the action of T.
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Proof. — Let p € S and write e = e(p) and f = f(p), then, for all m > d+2e— f and
N > (d+e— f)/0B, the morphism p x p : Jp XgpecF, M J o x Mrtesdte—f
restricts to a morphism

pidm x U — J,_ x Untedtef

such that iy 0 p = 7y, since Ty (p X p) = 7N .
Let us also remind that on the Rapoport-Zink space M the action of p is invertible.
In particular, there are morphisms
-1. Un',d’ - Un/—f,d/+e—f
such that p~lop=1iand pop~! =i.
We consider the following diagram (where we right s = e — f).

_ px1 — _
I X Un+f,d—s > Jm—e X Un+f’d s

/ \lepl 1xp~ 1

_ px1 _
1xi|  J, x UMt ——— ] ox U™ Jixi

pPXPp
\lep 1xp

_ px1 _
N J. x Un+e,d+s s Jm—e X Un+e,d+s

m
\ N

X(@) x F, ——— X x F,

We define the action of p on the direct system of sheaves F9
p=(1xpVyo(px1): Fptlba=e=h _, Fnd
as follows (where we write f = FrV8 x 1 on X(®) x F))
Frbfd=(e=N — (PpNB x 1) (i) (in) (FrVB x 1),(L) —
= SHEN (o x Di(p x 1) (7n)" fi(£) =
P % D05 x Da(p x 1) (1 x 0)* () (L) =
— P Gip X D x D01 x 0)(p x 1) ()" (L) =
= fr(En)(px (L x ph(L x p~ (L x p~1)* (1 x o7 (p x 1)*(7n)* fi(L) —

= SHEN(p X D1 x p)i(1 x p)"(px 1) (7n) " (L) =
= JT@ENh(px ph(px p)*(7n)"H(L) =
= [rENnEN) (L) = Fd.
It follows from the definition that, for all p € S, the morphisms p commute with the
structure morphisms of the direct limit (¢x1)* and (1x4)y, and also that 7y 10p = 7y ).
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Therefore, the above construction gives rise to an action of S on F, under which the
morphism F — L is invariant.

Since T = (S, p, frP), the action of S on F extends to an action of T if the elements
p~ !, fr=B € S act invertibly on F. The element p~! € S acts isomorphically on the
space M and on J,, via the morphism v(v¢) ™! 0 s 1, for some element v € E* such
that val,(v) = 1, val,e(v) =0 and v =1 mod (u¢)™. Thus, the induced action on
the sheaves F% becomes invertible once one passes to the direct limit . On the
other hand, the element fr—2 € S also acts isomorphically on the space M and on J,,
we have fr=F = (v°) "B oqum—q o frob=B o FrB where Fr is the relative Frobenius
morphism on the Igusa varieties over ]Fp (a purely inseparable finite morphism). We
can therefore deduce that the induced action of fr— on F is also invertible.

Finally, in order to prove that the action of T" on F is smooth, it suffices to check
that for any m,n,d (m > d) the action of I'™ on the sheaf F7-? is trivial, which
follows from the fact that the action of I'" on the space Jim Xgpecs, M s trivial
(see section 2.5.12 and proposition 3.3). O

5.2.2. We are interested in the case when the sheaf £ is naturally endowed with
an action of the Weil group Wq,, which is compatible with the action of Wg, on
X(@) F,, e.g. £ the pullback over X (@) % F, of a sheaf over X (@) or some vanishing
cycle sheaf.

Definition 5.7. — We say that a sheaf £ on X(® x F, has an action of Wy,
compatible with the action of Wy, on X (@) x ]Fp if, for all 7 € Wy, , there are some
isomorphisms (1 x 7)*£ ~ £, where 7 denotes the image of 7 in 0Z C Gal(F,/F,),
such that 7 o7/ = 7/7.

Proposition 5.8. — Maintaining the notations of propositon 5.6. Let us further
assume that the étale sheaf L is endowed with an action of the Weil group Wy, .

Then, there is an induced action of Wg, on the étale sheaf F, which commutes
with the action of T on F and with the morphism F — L.

Proof. — Let us consider the action of Frob on the covering spaces Jm XgpecF, M,
From the equality mx o (Frob x Frob) = (1 X o) o my, we deduce that

(FrNB x 1)*(n )1 (Frob x Frob)(Frob x Frob)* (wn)*(Fr¥8 x 1),(£) =

= (1 x o) (FrVB x 1)*(an)i(7n) (FrV8 x 1),(1 x 0)*(L).
Let us also recall that the action of F'rob on the Rapoport-Zink space is invertible.
In particular, we have
Frob=t . y™d — U”/’durl,

where Frob=! o Frob =i and Frobo Frob~—! =i.
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Let 7 € Wg, and assume for the moment that 7 = ¢”, for some r > 0. We define
the action of 7 on the system of sheaves F7»? as

70 (1x Frob™ ") (Frob” x 1)*: (1 x ¢")* Frd-r

— (Ixo")*(FrVE x 1)*(an)1((Frob” x Frob" ) (Frob” x Frob")*(7n)*(FrN? x 1)1(L)
= (1 xo")* (1 x "W (FrVB x 1)*(an)i(7n)* (FrVB x 1)1(1 x 0")* (L) ~
~ (I xo")*(1 x ") Frod ~ Frd,
Thus, the action of 7 on F,? satisfies the equality
gor=T1og:(Ix7)*Fud L.

The compatibility of the action of F'rob with the morphisms g,/ », x 1 and 1 x iz;?d,
and with the action of S on the spaces J, Xgpecs, M™? implies that the above action
of 7 on the étale sheaves F7¢ gives rise to an action of 7 on the direct limit JF,
(1 x 7)*F — F, which commutes with the action of T' on F and with the projection
F — L.

Moreover, since the action of F'rob on the Rapoport-Zink space M is invertible and
on the Igusa varieties Jy, is defined by the morphisms Frob = qy, m—1 0 Fr (where F'r
is a purely inseparable morphism), we deduce that the action of 7 on F is invertible,
and thus we can extend the above action to an action of Wg, on F. O

5.2.3. We now focus our attention of the stalk F, of the sheaf F, at a point = of
X (@) x Fp. It follows from the fact that the morphisms 7y are finite that

Foo= dm((FrNE 1) G )(en) (FrYE x (L)), =
- h—H>1 m,n,d ((ﬁN)!(ﬁN)*(FTNB x l)l(c))FrNB(I) -
= hj} m,n,d H ((WN)*(FTNB X 1)'(£))y -
7N (y)=FrNEB(z)
= lim 11 (FrZ 5 (L)) 40 =
N (y)=FrN5(z)
= lim o H ((FrVB x 1),(5))FTNB($) =

7N (y)=FrNB(z)

— m,n,d
7N (y)=FrNB(z)

Under the above identification, the morphisms

(mram % 1) 2 (FeD)e = (Fi)a
is defined as

(@mrm X 1) (8)y = S(apr  x1) (W)
for all y € J,,y x U™ and the morphisms

(1% i% ) (Fahe — (Frd),
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as

s ify e J, x U™,
(Uil nls)y =4 e
0 otherwise,

for all y € J,,, x gn'd,
The projection ¢ : (F9), — L, is defined as
1
als) = [T = J1] Z s(y),
T N (y)=FrVB(2)

for y € J,, x U™,
Finally, the action of T on F, is defined as

p(s)y = Sp(y)
forall pe T, s € Fp, y € Jpp x U™ and m,n,d > 0.

Proposition 5.9. — Let £ be an abelian torsion étale sheaf on X x F,, with
torsion orders prime to p, and x a geometric point of X(®) x Fp. We denote by F the
sheaf on X (@) x ]Fp associated to L, F — L.
Then,
Fr = C?(Hil(x)aﬁm)

as representations of T (see section 4.3).
Proof. — We use the identification
Fp = lim 11 (L),
N (y)=FrNB(z)
Then, there is a natural isomorphism of T-modules
0:F, - CxM (), L,)
defined by
O(8)(Y) = S(quemx1)(y) (3M > 0),
for all y € II~1(x).
In fact, let s € F, and y = (y1,%2) € 1" (z) C J(k) x M(k). Then, there exist
two integers n,d > 0 such that y» € U™%(k). Then, for any m > d and N > d/§B,
N (doom % 1)(y) = FriPIl(y) = FrivP(z).

Further more, if m, n, d are sufficiently large (e.g. such that s € F, is the image of
an element of (F71%),), then s . x1)(y) € La-

It is also clear that the value s(q_, ,, x1)(y) € L2 is independent on the choice of the
integers m,n,d, N (since, for all m’ > m, qoo,m = Am/,m © doo,m’)-

In order to prove that the map O(s) is indeed an element of C2°(II71(x), £,) (for
any s € F,), it remains to prove that it has compact support and is invariant under
the action of an open subgroup of T'.
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Let s € F, and denote by m,n,d (m > d) some positive integers such that s
arises as the image of an element in (F79),. Then, it follows from the definition
that the support of O(s) is contained in I~ (x) N J(k) x M™%(k), which is compact,
and thus is itself compact. Moreover, the function O(s) factors through the quotient
(Qoo,m x 1)II7Y(z) and in particular takes non zero values only on the set

(doo,m X DT (2) N T (k) x M™ (k) € (Qoo,m x DI (),
which is finite (see the proof of proposition 4.5). Therefore, for all p € '™ we have
O(s)? =0O(s) o p=0(s).

It also follows directly from the definitions that the the map © is injective. To
prove that © is surjective, it suffices to show that for any f € C*(I1Y(z),L,)
there exist some positive integers m,n, d such that the support of f is contained in
-1 (z) N J(k) x M™%(k) (which is equivalent to say that f has compact support)
and f factors via the quotients (qoo m x 1)II~(2) C J,n (k) x M (k) (and in fact, it is
enough to choose m such that I'"" is contained in the open subgroup of I' which fixes
)

Finally, the map © is a morphism of T-modules, because, for all s € F, and
y € II71(x), we have

O(5)”(y) = O(5)P(Y) = 5(que,mx1)p(y) = Sp(Goe,mx1)(y) = Px(5)y-

O
Corollary 5.10. — Maintaining the above notations. For any geometric point x €
X (@ x pr, there is a mon canonical isomorphism of T-representations
Fo2c— Ind{Tl}(Lx).
In particular, the sheaf F /X (®) x F, has property P (see definition 5.3).
Proof. — By proposition 4.4, there exists a non canonical isomorphism I17!(z) ~ T
and thus
Fo=CE(M (), Ly) = CX(T, Ly) = ¢ — Indf}y (Ly).
O

5.3. The cohomology of the Newton polygon strata. — We shall now apply

the results of section 5.1 to the case when G =T, X = X(® x ]Fp and F is the sheaf

defined in section 5.2, attached to an abelian torsion étale sheaf £ over X (@) x IF‘p.
Corollary 5.4 may be applied to obtain the following result.

Theorem 5.11. — Let L be a torsion abelian étale sheaf over X () xF, (with torsion
orders prime to p), endowed with an action of the Weil group Wq,. Then, there is a
spectral sequence

qu = HP(th_n,l m,n,d Hg(‘]m X Speck, Umdv ("n)"L)) = H£+Q(X(Ot) X FPVC)’
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which is compatible with the action of the Weil group W, .
Proof. — Let us consider the the abelian torsion étale sheaf over X (®) x F,
F =1 a Foy =1 a(FrP s 1) (Gn )i (7o) (FrVP < 1)1(L).

Then, corollary 5.4 applied to the case we are considering implies the existence of
a spectral sequence

H,(T,HI(X® x F,, F)) = H*(X™ x F,, Fr).

Let us focus on the terms of the above spectral sequence. It follows from the
definition of the sheaf F and from the fact that the morphisms 7y are finite that

Hg(X(a) x Fp, F) = Hg(X'(O‘) X IF‘p,l'in m,n,df,:}l’d)
= lim g HI(X® x F,, Frod)
(X1 x By, (Fr™ x 1) (i) (BrYP < ()
= lm g HH(X Y X Fyp, (7n)1(73)* (L))
(

= hﬂ} m,n,d ch Jm xSpcchp ﬁn,d7 (WN)*([’))v

= lim oy na HE

where the above identifications are compatible with the action of the group 7' x W,
(see propositions 5.6 and 5.8).

On the other hand, the morphism F — L gives rise to a morphism Fp — £ which
is also compatible with the action of Wy, . Indeed, the morphism Fr — L is bijective,
since such are the induced maps on stalks (Fr), = (F;)r — L, for all z € X (@) % pr
(this fact follows from corollary 5.10). O

5.4. Using Kiinneth formula. — In the following, we use Kiinneth formula for
étale cohomology with compact supports to rewrite the result of the previous theorem
in terms of the cohomology groups of the Igusa varieties and the Rapoport-Zink
spaces, separately.

5.4.1. Let us first establish some general results relative the tensor product of smooth
representations with coefficients in Z/I"Z of a p-adic group G.

Let M, N be two smooth Z/I"Z-representations of G. Then, the Z/I"Z-module
M ®zr7 N in naturally endowed with an action of G, namely g(v ® w) = gv ® gw.
(Indeed, for all i > 0, the Z/I"Z-modules Tory ., (M, N) also have a natural smooth
action of G.)

We remark that the ,(G)-module associated to M ®z/-z N is not the module
M ®44, (@) N. On the other hand, there is a natural isomorphism

M @44,y N = A @y, a) (M @z/172 N),

where M°P denotes the right H,(G)-modules associated to the right Z/I"Z-represen-
tation of G which underlying Z/I"Z-module is M and the right action of G is defined
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Im, for all ¢ € G and m € M. Indeed, let us consider the natural

asm-g =g~

epimorphism
M ®z/rz N — M @4,(a) N.

For any m € M, n € N, g € G and open compact subgroup K of G, we have

Xgr(m®@n) = u(K)gm @ gn € M Qg7 N. and also

men=gm-gon=puK) 'xgxgm@n=puK) 'xgx(gm@n) =

=gm® u(K) 'xyxn = gm @ gn € M ®n,.(a) N-

Thus, the above morphism induces a morphism between A ®y, (@) (M ®z/-z N) and
M°P @44, (@) N. Such a morphism is clearly surjective and indeed is also injective.

Proposition 5.12. — Let M., N. be two complexes, bounded from above, of smooth
Z]U" Z-representations of G, then

A®7 (6) (M. ®F)rg N.) = MP @ () N..

Proof. — First, we replace the complex N. with its Cartan-Eilenberg resolution P..
Since any smooth representation of G admits a resolution by projetives of the form
L ®z1rz Hr(G), for some free Z/1"Z-module L, we can assume without loss of gener-
ality that P. = L. ®z/;r7 H,(G).

We remark that, if L is a free Z/I"Z-module, then P = L ®z;r7 H,(G) is a flat
Z/1"Z-module, and thus

M. ®% ez N. = M. @107 (L. ©g107 He(G)) = (M. @z107 L.) @z1r2 He(G)),

where the latter is a complex of acyclic objects for the functor A®4, () () (see section
5.1.4). Therefore,

A ®7L{,,(G) (M. ®z1rz, L. ®z/1r7, Hr(G)) ~

~ A ®H.,.(@) (M. Qz/irz L. Qz107 M, (GQ)) ~
~ M @y, ) (L ®z/rz Hr(G)) =~
~ M°P ®%'(.7~(G) (L ®Z/ZTZ HT‘(G))
O

5.4.2. We apply the above proposition to the study of the cohomology of the open
Newton polygon strata. To avoid ambiguities, let us reintroduce in our notation the
datum of the level UP C G(A®P) of the Shimura variety we are studying. In the
following, X [(]O; denotes the Newton polygon stratum associated to a Newton polygon
a, and J,, yr denotes the Igusa varieties of level m over the central leaf of X ((Jo;)

For all 1 > 0, we write

H(Jur, ZJI"Z) = Yim p, H(Jyv n, /1" )
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for the cohomology groups with coefficients in Z/I"Z of the Igusa varieties of level UP,
viewed as a module endowed with an action of T x (Wq, /I,) (see section 3.5).

We also write

Hé(./\;t, g) = hi{l n,d Hé(Un’d, g|[_]n,d)

for the cohomology groups with coefficients in an abelian torsion sheaf G (with torsion
orders relatively prime to p) of the reduction of the Rapoport-Zink space without level
structure. If the sheaf G is endowed with an action of the Weil group, we view the
above cohomology groups as modules endowed with an action of T'x Wy, (see section
2.5.14), where the action of T on the cohomology groups arises from the opposite
action of T on M.

Finally, we denote by pr : J,, x U™% — M the projection to the second factor of
the product.

Theorem 5.13. — Let U? be a sufficiently small open compact subgroup of G(A°P),
r > 1 an integer, L (resp. G) an étale sheaf of Z/1" Z-modules over X(®) x F, (resp.
M), endowed with an action of the Weil group.

Suppose that, for any m,n,d (m > d), there exist an integer N > d/0B and an
isomorphism of étale sheaves over J,, x U™?

L~ pr*g
invariant under the action of the Weil group, and also that, as m,n,d vary, these

isomorphisms are compatible under the natural trasition maps.
Then, there is a spectral sequence of Z/1"Z-modules, compatible with the actions of

Weil group,
D Torl, ooy (H3(M.G), Hi(Juw, ZJI'Z)) = HIVI(X{Y) x F,, L),
t+s=q
Proof. — Let us consider the abelian torsion étale sheaf F over X (@) x ]Fp associated

to the sheaf £ (see section 5.2). We also write f : )_([(;;) xFp — Fpy gm : Jmuw — Fp
and hd . U4 — IF‘p for the structure morphisms. Then, as we remarked in the proof
of theorem 5.11, it follows from the definition of F (and the equality R x| ~ 7in1)
that
R fi(F) =1 g R (g X B (FRL).

Since 7y L ~ pr*G, one can use Kiinneth formula for étale cohomology with com-

pact support to obtain
i g B (G % W™ (AR L) 2 W0 00 B g1 (Z/17Z) @ RB(G)

~ lim R g 1(Z/172) @% lim g RB(G).
Thus, by proposition 5.12; we have
A®f oy RAF) = Aof ) (lim g REG) @ lim o R g 1(Z/1Z))
(lim ,q R 04G)) % @5 (py Ui R g (Z/1Z).

12
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Finally, by theorem 5.2 be conclude that there is a quasi-isomorphism
R A(L) ~ R fiIA&F, ) F) ~
~ (lim g REPG) @ 7 (i o B gr(Z/ D)),

or equivalently that there exists a spectral sequence
D Tort, o (H(M.G), H(Juro, Z)I"Z)) = HIYU(X) x Fy, L),
t+s=q
The compatiblity of the above spectral sequence with the actions of the Weil group

follows from the fact that all the above quasi-isomorphisms commute with the action
of the Weil group. O

The following description of the cohomology groups of the open Newton polygon
strata is a special case of the theorem above.

Theorem 5.14. — Let UP be a sufficiently small open compact subgroup of G(A>P),
and r > 1 an integer.
Then, there is a spectral sequence of Z/1"Z-modules, endowed with an unramified
action of Weil group,
P Torl, ) (H:(M,Z/I"Z), H (o, L)L) = HPY(X) X F,, 21" Z).
t+s=q

Proof. — The corollary follows directly from theorem 5.13, applied to the sheaves
L=7/I"7 and G = Z/I"Z. O

6. Formally lifting to characteristic zero

In this section we shall investigate the possibility of lifting the constructions of
sections 3 and 4 to characteristic zero.

First, we shall lift the varieties over SpecF, (resp. SpecF,) to formal schemes
over SpfZ, (resp. Spf Z;”? where ZZT = W(F,)). The truncated Rapoport-Zink
spaces M™? are by their very definition the reduced fibers of the formal schemes
M™? over Spf Z,. The open Newton polygon stratum X (@) and the central leaf C'
also have natural lifts to formal schemes over Spf Z,, namely the formal completions
along them of the Shimura variety X over Spec Op,. We shall write 2(®) and € for
the lifts of X(® and C respectively.

For the Igusa varieties J,,, over ]F‘p, a natural choice of lifts 7, over Spf ZZT are
their images under the equivalence between the category of finite étale covers of C xIF,,
and the category of finite étale covers of € x Spf Z;”. Thus, the varieties J,, are by
definition equipped with morphisms ¢, : J» — € x Spf ZZT which lift the morphism
Qm : Jm — CxSpeclF,. In this section we shall investigate the possibility of extending
the morphisms 7y on the formal schemes 7, X gpt e M™4 for all positive integers

m,n,d,N (m >dand N > d/éB).
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Let us remark that for the purpose of all the following constructions, it suffices
to assume that Jj is any formally smooth formal scheme over Spf Z;”' which reduces
modulo p to Jy = C x F,, (not necessarily € x Z;“”), and J,, — Jo are the finite étale
covers corresponding to J,, — Jp.

6.1. From ]Fp-schemes to formal Zgr-schemes. — The goal of this section is
to introduce some formal schemes over Spf ZZT whose reduced fibers are naturally
identified with the schemes over F, we studied in sections 3 and 4. We shall maintain
the notations established in section 3.2.

6.1.1. By definition, X(®) (resp. C) is a locally closed subscheme of the reduction X
of the Shimura variety X over Spec O, (and under our assumptions Og, = Z,). We
define X (resp. X(®), €) to be the formal completion of X along X (resp. X(®) ().
Then X (resp. X(®), €) is a formal scheme over SpfZ, with reduced fiber X (resp.
X (@), (). Moreover, there are natural inclusions € — x(® < X which lay above
C— X X,

We observe that since X is a smooth variety over Spec O, the formal schemes X,
X(®) and ¢ are formally smooth over Spf L.

6.1.2. By a result of Grothendieck (see [12], Exp. I, 8.4), there is an equivalence
between the category of finite étale covers of C' x IF'p and the category of the finite
étale covers of € x ZZ". For any m > 0, we define the formal scheme 7, over € X ZZ"
to be the image of J,,/C x F, under the equivalence of categories. Then 7, is
characterised by the following properties:

1. J,, is finite étale and Galois over € x Z;,”' with Galois group I';,;
2. the reduce fiber of 7, is J,, and (gmn)" = qm, where g, : Tm — € X Z;”” is
the structure morphism.

It also follows from the above equivalence of categories that there exist unique
morphisms

qm’,m * jm’ - jm
such that (qm/,m)red = Qm/.m and ¢m/ = Gm O Gm/ m, for all m' >m .

Moreover, by Artin’s Approximation Theorem, the formal schemes 7, have the
following universal property (for all m).

Remark 6.1. — For any formal Z;}T—scheme S and any two morphisms f: S — €
and f,, : 5™ — J,, such that qu, o f,, = f™¢ there exists a unique morphism
fm 8 — Jm such that g, o fr, = f and (frn)™d = frn.

6.1.3. In the next sections, we shall use extensively some results of Grothendieck in
the theory of deformations of Barsotti-Tate groups. For conveniency we report them
here below.
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Theorem 6.2. — (See [17], Theorem 4.4, pp. 171-177, Corollary 4.7, pp. 178-179.)
Leti: S — S be a nil-immersion of schemes, where S’ is affine.
Suppose G is a trunctated Barsotti-Tate group over S of length n. Then

1. There exists a truncated Barsotti-Tate group G' over S’ of length n such that
*(G") =G.

2. If there exists a Barsotti-Tate group H over S such that G = H(n) (where H(n)
denotes the n-th truncate of H ), then for any deformation G' over S' of G there
exists a deformation H' over S" of H such that G' = H'(n).

3. For any r < n, the natural map

Def (G,i) — Def (G(r),1),

which maps a deformation G'/S" of G to its r-th truncate G'(r), is a surjection.
4. Let N be an integer > 1. Suppose that the nil-immersion i is defined by an ideal
T such that % = (0) and p™ € Z. Then the map in part (3) is a bijection for
allmn>r>N.
5. Under the assumtion of parts (2) and (4), the map

Def (H,i) — Def (H(r),1)

which maps a deformation H'/S" of H to its r-th truncate H'(r), is a bijection
forallr > N.

Let us remark that parts (4) and (5) of the above theorem hold also without
assuming that the scheme S’ is affine.

6.2. The morphisms 7y (t). — We now investigate the problem of lifting the
morphism 7y : Jm XgpecF, M4 — X(®) to a morphism over Sprgr, ie. toa
morphism 7, X gpt Zgr./\/l"’d — x(@) % spf 7, Spf ZZ’T, for any positive integers m, n, d, N
(m>dand N >d/0B).

We shall show that, for any positive integer ¢ such that m > d 4+ ¢/2 and N >
(d+t/2) /0B, it is possible to define a morphism 7y (t) on the subscheme of Jp, X g ¢ i

M™ cut by the t-th power of the maximal ideal of definition Z (p € T), such that
(mv(B)" o (1x Fr)™® =y,
where Fr = frob=t o Fr on M™9 and also
o (1) ) = )

where H and H’ denote the universal Barsotti-Tate groups over X(®) x Spf Z;” and
M™4 respectively. (For any positive integer ¢, we denote by [t/2] the minimal integer
greater than or equal to t/2.) Moreover, the morphisms 7y (¢) are compatible with
the projections ¢,/ ., x 1 and with the inclusions 1 x iZ}fld,.
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6.2.1. Let t be a positive integer and ) a formal scheme over Spf Z;”. We denote
by Y(t) the closed subscheme of ) which is defined by the t-th power of its maximal
ideal of definition Z (Z D (p)) and regard Y(t) as a scheme over Spec Z;”/(pt) =
Spec Zgr(t). For any ¢’ > t, we denote by i the natural inclusion Y(t) — J(t').
For any morphism f : )1 — ) between formal schemes over Z;“”, we denote by
f(@#) : Yi(t) — Ya(t) the restriction of f to Vi (t), viewed as a morphism between

Zy" (t)-schemes.

6.2.2. For any slope A = Aq,...,\;, we fix a Barsotti-Tate group fb\ over Z, such
that 3, Xsptz, SpeclF, ~ X\, We define

SoS md o8, -
for all i = 1,... k. Thus, we have i Xspt 7z, SpeclF, ~ Y and & Xspfz, SpeclF, ~ 3.

Proposition 6.3. — Maintaining the same notations as in section 3.2.53. Let t be
a positive integer and set mog = [t/2] (i.e. mo = min{m € Z|m > t/2}). For all
i=1,...,k, there exists a unique deformation G* of G* over Jp,(t) such that

— for all m > myg, there is an isomorphism jm.i = X' p™ — G'p™] over Jm(t)
which lifts jury ;

— for any m' > m > my, the isomorphism jns; : Sp™ ] ~ Gip™'] restricts on
the p™-torsions to the pullback of}m,i.

Proof. — As a direct consequence of part (5) of theorem 6.2 (when N = m), we know
that for any m > t/2 there exists a unique deformation QA}n over J,(t) of G¢ such that
Gl.[p™] is the deformation of G*[p™] defined as (3*[p™], (") ™1).

It also follows from the uniqueness of construction that, for any m > my, gA}n over
Jm (t) can be identified to the pullback of the Barsotti-Tate group G' = G, /T, (t).
Moreover, under these identifications, we obtain a compatible system of isomorphisms

Jmai 2 E " = G ™)
defined over J,,(t), for all m > /2, which has the stated properties. O

6.2.3. We remark that the Barsotti-Tate group G may be also interpreted as a de-
formation of the group G? ") via the isomorphism

(p*AiBFB)*T . gl (»"B) - gi'

We write G¢ ") = Gi when viewed as a deformation of the Barsotti-Tate group
G @™ (for each i = 1,...k).

Corollary 6.4. — Maintaining the notations of proposition 6.3. Let t be a positive
integer and set mg = [t/2].



englishON CERTAIN UNITARY GROUP SHIMURA VARIETIES 85

For all positive integers r such that rd6B > t/2, there exists a unique deformation
@) of gWB) over Jm,(t) such that

k
B)[pT(SB] ~ HgAZ (pTB)[p";B].
i=1
Proof. — In lemma 4.1 we proved the existence of a canonical isomorphism
g 'B) réB ng TB) réB

over the central leaf C' x F,, (and therefore also over J,,, ).
Thus, the finite flat group scheme [], G (pTB)[p“sB} over Jm,(t) can be viewed as
a deformation of G(*™") [pr9B] g™,
It follows fr(;m part (5) of theorem 6.2 that, if 6B > t/2, then the above defor-
)[pr6B]

mation of G" determines a unique deformation QA(prB) of the Barsotti-Tate

group G*") over Tmo (t). O
6.2.4. We remark that the previus corollary can be reformulated as follows.

Corollary 6.5. — Let m,t be two positive integers and assume m > t/2. To any
choice of a Barsotti-Tate group X as in 6.2.2, we can associate some liftings of powers

NB _semilinear

of the Frobenius morphism on the Iqusa variety J,, over F,, i.e. some o
morphisms
Frob™B : J.(t) = Tm-np(t),

for all integers N > t/26 B, which reduces to the morphisms Frob™?

on Jp, over IFp.

Proof. — Let us recall that the o-semilinear morphism Frob : J,, — J,,_1 is defined
as the map associated to the linear morphism Frob : J,, — J}f:ll which maps (A, jm.i)
to (A®, 5 ).

Let us denote by j,%p ) the pullback of 7, under the Frobenius on Z;““. Then,
NB_gemilinear morphism Frob™® : 7,.(t) — Jm_n~5(t), which reduces
to Frob™B over J,,, is equivalent to defining a linear morphism

Tlt) = TP (8),

defining a o

which reduces to the morphism F' robNB . J,, — Jr(f Ng (we remark that j,Sf’ ) reduces

to the scheme J over Fp).

By the universal property of the formal Igusa varieties (see remark 6.1), defining
a morphism J,, — gf:;), which reduces to the NB-th power of the Frobenius
morphism on the Igusa varieties over ]F‘p7 is equivalent to defining a deformation of
the Barsotti-Tate group Q(pNB)/Jm over Jp,.

We define the morphism Frob™Z on 7,,(t) to be the lifting of the morphism

Frob™ B on J,, associated to the deformation G(pNB) of the Barsotti-Tate group g@NB)
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defined in corollary 6.4 (which depends on a choice of the Barsotti-Tate group ¥ as
in 6.2.2). O

6.2.5. Let us focus our attention on the morphism Fr = frob=Y o F'r on M. We
remark that, although Fr does not commutes with the action of 7 on M, its B-th
power does (see section 2.5.13).

Proposition 6.6. — Let t be a positive integer. For any integers m,n,d such that
m > d+t/2, there exist some morphisms

T (1) (Ton Xyt e MP)(E) — (XD x SpEZ") (1),

for all N > (d+1t/2)/0B, with the following properties:

— mn(1)o (1 x Fr)NB = 1y,

—an(1)o(pxp)=an(1l), forallpe S,

— wn () H[plt/2] ~ H [plt/2],

- WN(t)(t — 1) = 7TN(t — 1),

— N (t) o (gm/m X 1)(t) = wn(t), for allm' > m.

— wn(t)o (1 x iZ:&d/)(t) =apn(t), foralld—d >n—n'>0.

Proof. — Let us start by constructing some morphisms
7TN(1) tdm Xspec]@p ./\;ln’d — X(a) X Fp

such that mn (1) o (1 X l::r)NB = 7n, for any set of positive integers m,n,d, N with
m>d+1/2 (ie. m>d+1)and N > (d+1)/6B.

We consider the following commutative diagram where we use the notations of
section 4.2 and also write K = jy (vV ker(p"3)) and v = @;p~ B FB | the B-th power
of the natural identification between ¥ and X(*) over Fp.

Ia)

oY (ker (")) ———= K

N

SN ] — 2 G ) )

~

n@"F) G ———— ")
IJN
X
"B
H/ ,F[:g(PNB)(_)A:B(pNB)
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We define
mN(1) T Xgpeer, M — X x F,
to be the morphism associated to the abelian variety A endowed with the structures
induced from the ones of B. It follows from the definition that

mn(1) o (1 x Fr)NB = zy,

and also that the morphisms 7y (1) are compatible with the projections g, m x 1
and the inclusions 1 x 4" (’id,.
Finally, we remark that the isomorphism
. NB
jn 2T [pdt - g

Tt

induces an isomorphism on the quotients H'[p] ~ H[p] = 7n (1)[M]*H[p)].

We claim that the morphisms 7y (1) are invariant under the action of S C 7. In
fact, since the morphism Fr commutes with the action of 7 on M and 7 N 1s invariant
under the action of S, the equality my = mn(1)o (1 x I:'V’T)NB implies that for all p € S

mn(1) o (1 x Fr)NB =qan(1) o (px p)o (1 x Fr)NE.
Since all the schemes we are considering are reduced, we deduce that 7y (1) = mn(1)o
(pxp).
We now construct the morphisms
TN ()t (T Xprzgr MPD)(E) — (X x SpfZ7) (1)
as extentions of the morphisms 7y (1), when m > d+t/2 and N > (d +¢/2)/6B.
By the universal property of X(®) x Spf Z;”, defining a morphism 7 () is equivalent
to defining a deformation over (Jy, Xg ¢ jnr M™4)(t) of the Barsotti-Tate group H, or
also (by part (5) of theorem 6.2) to defining a deformation over (Jm X g - M) (1)
of the truncated Barsotti-Tate group H[p[t/ 2]].
For all i = 1,...k, the isomorphisms j,,; : 3/ [p"] — G'[p™] over T (t) give rise
to an isomorphism

k

A S 5(mNB 5i (pN B

N 2[pd+[t/2}] — g )[pd+[t/2]] ~ I | Ggi )[pd+[t/2]],
i=1

which induces an isomorphism on the quotients
Jv s H ] = HIp ] = oy (1) H[p!/ ).
We define 7y (t) to be the morphisism associated to the deformation H[p*/2] of
the truncated Barsotti-Tate group H([pl*/?] defined as (H'[plt/?]], j57 ).
It is therefore tautological that H/[plt/2] ~ H[plt/2] = 7y (¢)*H[pl/2], and more-
over it is a direct consequence of the definition that the morphisms 7y (t) com-

mute with the projections (g % 1)(¢) and the inclusions (1 x iZ:;ld,)(t), and that
an(t)(t—1) =7nn(t —1). 0O
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Proposition 6.7. — Let t,m,n,d, N be some positive integer such that m > d+1/2
and N > (d+1t/2)/6B.
The morphism

dxan(t): (Tm X Spf Mn,d)(t) — (Tm X spt 2" x(@) « Spf ZZT)(t)

is étale.

Proof. — Let y = (y1,2) be a geometric point of .J,, x M™% and z = 7n(t)(y) €
X xF,.
We need to prove the morphism

(idemn ()" : 0F,, 4 Sapr Ok xiyr o/ & = OFnin @ Oty /T

where a and Z denote the maximal ideal of definitions of the respective algebras, is
an isomorphism.

Let us denote by B (resp. A) the abelian variety associated to the point y; (resp.
x), and by G (resp. H) the corresponding Barsotti-Tate group e B[u®] (resp. €A[u*]).
We also write j,; : 3[p™] — G'[p™] for the isomorphisms associated to y; (i =
1,...k) and 8 : 3 — H' for the quasi-isogeny associated to yo.

We recall that the complete local rings Og and (’)JA\,W2 are by definition

(@) xZnr
the deformation rings of the Barsotti-Tate groups Hp and H', respectively. We denote
by H and H’ the corresponding universal objects.

We now choose an isomorphism j : ¥ — G®"®) which extends the isomorphism
®; jm,i between the p™-torsion subgroups. Then j induces an isomorphism j" between
H and H', i.e.

0 —— ker(p"f) py— ’ H’ 0
0 Kip a0"?) > g ——>0.

By the very definition of the morphism 7y (), over Oz, 4, ©5,.ON 4./ T" there ex-

n :
ists an isomorphism my (t)*H[plt/?] ~ H'[plt/?]], which reduces modulo Z to j"[p[m]]7
and moreover (by part (5) of theorem 6.2) such an isomorphism extends to an iso-

morphism 7y (£)*H ~ H', which reduces modulo Z to j’. This fact is equivalent to
saying that the morphism (id®my (¢))* is an isomorphism. O

6.3. The morphisms 7y|[t,V]. — In this section, we shall discuss the possibility
of extending the morphisms 7y (¢) on the formal schemes 7, X Spf nr Mme

We shall prove that the morphism 7y (¢) may be extended Zariski locally to a mor-
phism over Spf Z;”, i.e. for any open affine V C J,, x U™? the morphism TN (v
lifts to a morphism on V.
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Proposition 6.8. — Let m,n,d, N,t be some positive integers such that m > d+1t/2
and N > (d+1t/2)/6B.
For any affine open V. of Ty x U4 C Tp, Xgpt 7nr M™4 there exists a morphism
P

anlt, V]V — %@ x Z;”
such that my[t, V](t) = 7 (t)|v ) and also mx[t, V]I*H[pl/H] = H'[plt/?]].
Proof. — Let us recall that over (7, X gpf fnr M™®)(t) there exists an isomorphism

oy (8) Hp! 2] o /[l /],

Under such an identification, the finite flat group scheme H’ [p[t/ 2]] over Jp, X M@
gives rise to a deformation of the group H[pl"/?] /(T Xgpf nr MmA)(2).

Moreover, it follows from part (2) of theorem 6.2 that over any open affine V' of
Tm X gpt i M4 there exists a deformation H/V of the Barsotti-Tate group H/V (t)
such that H[plt/2] ~ H/[plt/2].

We define mx[t, V] on V to be the lifting of the morphism 7y (£)|1(;) associated to
the Barsotti-Tate group H/V. O

Proposition 6.9. — Maintaining the notations as above, we assume t > 1. Then,
the morphism Ty [t, V] : V — X x Zy" is formally smooth.

Proof. — Let y = (y1,y2) be a geometric point of V and « = wn[t, V](y) = nn(t)(y) €
X xF,.
In order to conclude, it suffices to prove the morphism

WdETN L V) O 85,0 = 00y = 07,5923 Ol

x(a) XLRT @

is an isomorphism. In fact, we may then deduce that the morphism 7y [¢, V] is smooth
at the point y from the smoothness of the formal scheme J,,,/Z;" (see section 6.1.2).
From the equality my[t, V](t) = 7 (t)|v (), we deduce that

(idomyt, V])*(t) = (idomn (t)"

and therefore, in particular, is an isomorphism (see proposition 6.7). For ¢ > 1, this
suffices to deduce that (id@mx[t, V])* is an isomorphism, since the complete local rings
O\/}mﬂh ®Zgr Og(a) XZnr @
closed field, of the same dimension. (Indeed, it is a general fact that, if A, B are
two power series ring over an algebraically closed field k, of the same dimension,
and ¢ : A — B a morphism of k-algebras, such that the morphism induced modulo

the squares of the maximal ideals of definitions of A and B, A/a? — B/b?, is an

and (9(}@ are both power series rings over an algebraically

isomorphisms, then ¢ is also an isomorphism.) [
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6.4. The morphisms §y. — In this section, for any integers n,d > 0 and N > 1,
we shall associate to a point y € J(F,) a compatible system of points y/, € T (Z;”)
and some morphisms §y : U™¢ — X() x " which canonically lift the morphisms
7N (1) 0 (Y, id) and such that g (t) = mn(t) o (y),,id) over U™%(t), for all t > 0. We
maintain the notations introduced in section 4.3.

6.4.1. Let y € J(F,) be a point associated to a quintuple (B, \,1, fi; ), and write
G = eB[u*]. Thus j: ¥ — G is an isomorphism.
To the point y € J(F,), we associated a compatible system of morphisms
Y : SPEZE" = Ton,
for all m > 0. Each y)), is defined by the data of the point ¥, = doom(y) € Jm(Fp)

and the deformation G = (f],j)/Z;” of the Barsotti-Tate group G/F,,.
For any integers n,d > 0, we define the morphisms

g s U™ — x(@) x Spf 71"
for all N > 1, as follows. For any m > d + 1, we consider the morphisms
In(1) = 7N (1) 0 (ym,id) : U™ — Jpy x5, U™ — X x F,.
We remark that the morphisms ¢ (1) do not depend on the choice of the integer
m > d+ 1. If (H',3) denotes the universal object over U™¢ and H the universal

Barsotti-Tate group over X(®) x F,, then it follows from the definitions that the
isomorphism j : ¥5 — G give rise to an isomorphism

JiH x U ~ H = (ypm,id) mn(1)*H.

Thus, to extend the morphism 7x(1) o (Y,,id) to a morphism from U™? to X(*) x
Spf Zgr, it suffices to define a deformation H over U™? of the Barsotti-Tate group
H/U™. We set H= (H',7) and denote the corresponding morphism by 7.

The following properties of the morphisms gy are direct consequences of the defi-

nition.

Proposition 6.10. — Maintaining the above notations. Let n,d be two positive in-
tergers and y € J(F,).
Then, for all N > 1, the morphisms §n : U™ — X(®) x Z;”“ satisfy the conditions
1. over U™ we have §iH ~ H';
2. for any integers t > 1, m > d+1t/2 and N > (d +t/2)/6B, over U™%(t) we
have gy (t) = wn(t) o (y;\n’ id)(t);
3. for any p € T, over U™ we have {ix o p = pyy-

Finally, let us remark that the same argument we used in the proof of proposition
6.7 shows the following fact.

Proposition 6.11. — Let n,d be two positive intergers and y € J(Fp). Then, for
all N > 1, the morphisms n : U™ — X(®) x Z," are étale.
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7. Shimura varieties with level structure at p

In this section we shall focus our attention to the study of Shimura varieties with
level structure at p. Our goal is to compare the rigid analytic spaces associated to
the Shimura varieties with level structure at p to the the Rapoport-Zink spaces with
level structure.

In order to do it, we shall first define some integral models for the Shimura vari-
eties and the Rapoport-Zink spaces, as formal schemes over X and M, respectively.
These integral models naturally form a system, as the level varies, and they are
endowed with an action of a certain submonoid GL;(Q,)* C GL,(Q,) (such that
(GLr(Qp) T, ply) = GLK(Q,) and p~'1;, € GL,(Q,)™), which is compatible with the
action of the group GL;,(Q,) on the corresponding rigid analytic spaces.

For any integer m,n,d,t > 0, we shall consider the morphisms

TN (1)t (T Xgppzpr MO = (X x Z57)(1)

(for all N) and the projections pr(t) : (Jpm X gpt e M) (t) — M(t), and compare
the two towers of covering spaces over (T, Xg ¢ i M™®)(t) which are obtained as the
pullbacks of the Shimura varieties (via mn(t)) and of the Rapoport-Zink spaces (via
pr(t)), with level structure at p. In particular, we shall prove that, for all level M <
t/2, the corresponding two spaces over (J,, X Spf nr M™4)(t) are indeed isomorphic
and that these isomorphisms are compatible with the action of GL,(Q,)" on the two
sides.

Moreover, for any open affine V' of J,, X spt Zip M4 and any level M < t/2, we

shall consider the morphisms 7y[t, V] : V — %(®) x Z;” and pry : V. — M, which
reduce over Z;”(t) to the restrictions of 7y (t) and pr(t) on V(¢), respectively. We shall
prove that the two covering spaces of V"8 which are obtained as the pullbacks of the
Shimura variety with structure of level M at p and of the Rapoport-Zink space of the
same level, are also isomorphic and that, as in the previous case, these isomorphisms
are compatible with the action of GL,(Q,)".

As a consequence of these two facts, we shall deduce that the pullbacks of the
vanishing cycles of the Shimura varieties with level structure at p are isomorphic to
the pullbacks of the vanishing cycles of the corresponding Rapoport-Zink spaces, and
that such isomorphisms are compatible with the group actions.

7.1. Integral models for Shimura varieties with level structure at p. —
In [22] Katz and Mazur develop Drinfeld’s notion of full level structure for elliptic
modules into the notion of full set of sections and A-generators for finite flat group
schemes, where A is a finite abstract group.

In this section, we shall use their work to define some integral models for the
Shimura varieties with level structure at p.
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7.1.1. We first introduce some notations. Let A = (Q,/Z,)" be the abstract p-
divisible group of height h and denote by A[p™] its p™-torsion subgroup (then
h
Al = (Z2/pMZ)").
Let us consider the group of the quasi-isogenies of A, GL,(Qp), and define

GLh(Qp)+ ={g¢ GLh(Qp) |9_1 € Mh(Zp>}'

Then GL;,(Q,)" is a submonoid of GL,(Q,) such that (GL,(Q,)", ply) = GLx(Qy)
and p~1I;, € GL,(Q,) ™.

For any g € GLp(Q,)", we denote by A[g~'] the kernel of the isogeny g~
A — A, by e = e(g) the minimal integer such that A[g~!] C A[p¢] and write d(g) =
log,,(#A[g~"]) (thus d(g) < e(g)h). The morphism g~ induces an inclusion of groups

1.

ApM =) — ApM]/Alg7].

If g € GLp(Zy), then Alg~'] = (0), e(g) = d(g) = 0, and the corresponding
inclusion A[p™] — A[p™] is simply the automorphism of A[p*] induced by restriction
from g7 : A — A. In particular, if g7! = I;, mod (p™), this inclusion is just the
identity.

7.1.2. For any positive integer M, we define Xy; over X to be the scheme
Xar = W(APM], 1M/ X),

where H/X is the Barsotti-Tate group eA[u*] associated to the universal abelian
variety A over X. We recall that the scheme W (A[pM], H[p™]/X) is the universal
space for the existence of a set of A[p?]-generators {Py,...P,} of H[p™]/X and
is endowed with a natural action of the group of automorphisms of A[p™], namely
GLp(Z/pM7Z) (notations as in section 2.6.3).

For any M > 0, we regard the scheme X); as endowed with the action of the group
GLy(Z,), via the projection GLy,(Z,) - GLy(Z/pM 7).

Proposition 7.1. — Let M be a positive integer.
1. The scheme X is finite over X /Spec O, , and we have
XM XSpeCOEu SPeC Eu = XM XSpec E SpeC Eu

2. For any M' > M, there is a natural morphism ¢pp pr + Xppr — Xag over X
which, is induced by the map p™M —M : H[pM'] — H[pM] (or equivalently by the
inclusion H[pM] < H[pM']), and we have

omr v X 1g, =ty m X 1E,,

where far v 2 Xy — X is the natural projection.
3. For any g € GL,(Z,) and any M' > M, we have

goodm M= Pm/MOG-
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Moreover, the restriction of the action of GLy(Zy,) on X to the generic fiber
XM Xspec E Spec E,, coincides with the restriction to GLy,(Z,) of the action of
G(Qp) the Shimura varieties X ;.

Proof. — Part (1): The fact that X is finite over X follows from the more general
fact that W (A, Z/S) is finite over S, for any finite abstract group A and finite flat
group scheme Z/S (see section 2.6.3).

We observe that the E,-scheme Xy X0, Fy is the universal space for the existence

of a set of (Z/pMZ)n—generators on H[pM] over X xp, Ey,=X xg E,, ie.
Xnr X0, By = W(APY], HpM]/X x5 E,).

Since p is invertible in F,,, the group scheme H[p™] is étale over X x g FE,. Thus
the datum of a set of (Z/p™Z)"-generators of H[p™] is equivalent to the datum of
an isomorphism

(Z/pM'Z) — HPpM),
defined over Xy X, Ey by setting e; = (0,...,1,...0) — P;, fori = 1,...,n (see
section 2.6.2).

We conclude that X, X0p, Eu= Xy Xg E, over X xg E,, since they are defined
by equivalent universal properties.

Part(2): If the morphism @y a exists, then it follows directly the definitions that

its generic fiber over E, agrees the natural projection between Shimura varieties.
Moreover, by the defining universal properties, proving the existence of the morphism
o¢m, M s equivalent to showing that, if {Py,. .. P,} is the universal set of (Z/leZ) "
generators of H[pM'] over Xy, then {pM' =M py ... pM' =M P Vs aset of (z/pMzZ)"-
generators of H[p?] over Xy;. We postpone the proof of this fact to lemma 7.2.
Part (3): It follows directly from the definitions. O

Lemma 7.2. — Let M be a positive integer and H a Barsotti-Tate group of height
h over a scheme S.

Suppose that Py, ..., P, € HpM*(S) form a set of (Z/pMHZ)n—genemtors of
H[pM+Y]. Then {pPy,...,pP} is a set of (Z/pMZ)n—genemtors of HpM]/S.

Proof. — For any affine S-scheme Spec R, we write B’ = H°(H[pM*1]g, O) and
B = H°(H[pM]g, ). The morphism p : H[pM*1] - H[pM] induces a morphism of
R-algebras p* : B — B’ such that B’ is a locally free B-module of rank p”. Thus, for
any g € B, we have detg/ /r(T — p*(g)) = (detB/R(T — g))ph

The points Pi,...,P, € H[p™*1(S) form a set of (Z/pM“Z)h—generators of
H[pM*1]. Thus, for any f € B’, we have

h
detB/R(T—f): H T—f(ZazPl>

(ai)€(Z/pM+1)"
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In particular, for any g € B, we have

h
detp /r(T —p*(9)) = 11 T —p*(9) (Z aiPZ-)
i=1

(a:)€(z/pM+1)"

(ag)€(Z/pM+1)"
h P
= II 7-9 (Z az‘PPz)
(ag)e(z/pM)" i=1

n ph,
e (0t~ = ([ (5 sosp)) i i

h
detgr(T—g)= [ T-g¢ (Z aipPi> :
(a)e@/p™)" i=1
O

7.1.3. In order to extend the above action of GLj;(Z,) on the integral models of the
Shimura varieties to an action of GLj,(Q,)", we need to introduce some other integral
models over OF, .

Let g € GLp(Qp)", we write e = e(g) and d = d(g). Let M be a positve integer,
M > e. We consider the space Xj; and denote by ap : Ap™] — H[p™](Xar) the
universal A[pM]-generator over X);.

We define Xy 4/Xn to be the universal space for the existence of a finite flat
subgroup £ C H|[p®], of order d, such that

an(Alg™"]) € E(Xar,g),
and the induced morphisms on the subquotients
APpM ) = (H/E) ™ 1(Xarg)

is a A[pM~¢]-generator.
Proposition 7.3. — Mantaning the above notations.
1. The scheme ¢pr.g : Xar,g — Xnr exists and is proper. Moreover,
X0, XSpec 0, Spec By = X1 Xspec £ Spec By,

and (bM,g X 1E'u. = ].XM X 1E'u.'
2. For any M' > M, there is a natural morphism ¢ ng @ Xnrg — Xar,g over
X, which is induced by the inclusion H[p™]| — H[pM'], and we have
PM,g © P/ Mg = PMr g © PMr M

and thus also ¢nr vg X 1g, =t v X 1g,.
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3. There is a natural proper morphism
g: XM,g - XM—e

such that g o opr mg = damr om0 g, for any M > M and g X 1g, =g X 1g,.
4. For any v € GLy(Z,), there is a natural identification

Xntg > Xnr gy

over Xy and, under such identification, we have

OM,gy =7 ° P g-

5. For any positive integer r < M, the morphism
¢M,p*"]lh . XM,p*T]Ih — XM

is an isomorphism and fyrp—r =p~ "I 0 ‘bJT/[lp—THh'

Proof. — Part (1): It follows from the general theory of Hilbert Spaces and from
proposition 2.19 that the scheme X); , exists and is proper over X3s;. Moreover, the
remark of section 2.6.2 implies that the generic fiber of X7 4 can be identified with
XM XE Eu.

Part (2): The statement follows from lemma 7.2, using the same argument of part
(2) of proposition 7.1.

Part (3): Let A be the universal abelian variety over X, and consider the sub-

group (&) C A[p°], associated to & C H[p®]. We define the morphism
g: XM,g - XM—e

to be associated to the quintuple (A/(E), N, ,';a’,_.) where there structures on
the abelian varieties A/(£) are induced by the ones on A via the isogeny A — A/(E):

— X is the polarization induced by p©\;

— ¢’ is the B-action induce by i;

— ' is the level structure induced by pov®, for v € E* such that val,(v) = 0 and
valye (v) = 1;

—dy_. + APM) — (H/E)[pM~¢)(X,y) denotes the A[pM~¢]-generator in-
duced by ay; on the p™~¢-torsion subgroup of the Barsotti-Tate group H/E =
eA/{(E)u™>].

It follows from the definition that the morphisms g commute with the projec-
tions among integral models of the Shimura varieties of different levels and that
their restrictions to the generic fibers agree with the previously defined action of
GL,(Qp,)*t C GLy(Q,) on the Shimura varieties.

It remains to prove that the morphisms g : Xy — Xar—. are proper. By the
Valuative Criterium of Properness (see [15], Theorem 4.7, p. 101) it suffices to show
that:
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— if R is a complete discrete valuation ring over IF‘p, K its fraction field and 7 :
Spec K — Spec R the morphism corresponding to the natural inclusion of R in
K, then for any pair of morphisms (F, f) such that g o F = f o n there exists a
map ¢ : Spec R — X)r 4 such that the following diagram commutes.

Spec K —— > Xurg

!

Spec R T) Xni—e

Let (A, N\, 4,15 E C H[p%,ap) (where H = eA[u™]) be the sixtuple defined over
K, associated to the morphism F, and (B, \,#,i';b p—.) the quintuple over R,
associated to f. Then, the equality go F' = f on implies that there is an equaivalence
of quintuple

(BN, 156 )k = (A/(E), N, @', s aly )
We fix an isogeny ¢ : Bx — A/(E), giving rise to the above equivalence (then, 1
induces an isomorphism eBg ~ H/E).

Let us now consider the projection ¢ : A - A/(E). Since E C H|[p®], it follows
that there exists an isogeny ¢’ : A/(E) — A such that go ¢’ = p°.

Let us write F' = ¢ ~!(kerq') C Bg[p?] and F = F C B[p°] its Zariski closure.
Then, F is a finite flat subgroup of the abelian variety B and the quotient B/F,
together with the appropriate induced structures, defines an integral model over R
for the quadruple (A, A, 4, ). Moreover, the finite flat subgroup & = e(B[p®]/F)[u]
restricts over K to the subgroup E. Finally, it follows from proposition 2.19 that it
is possible to define an A[p?]-generator by of €(B/F)[pM] over R, compatible with
apnr.

The morphism ¢, associated to the abelian variety B/F together with the finite
flat subgroup € and the A[p?]-generator by, has the required property.

Part (4): Let v € GLp(Z,). Then, for any g € GL,(Q,)", gv € GL,(Q,)" and
moreover Alg™1] = A[(gy)™!] (thus also e(g) = e(gy) and d(g) = d(gv)).

Now, suppose £ is a subgroup of H[p¢] such that an(A[g~]) = an(A[(gy)7Y]) C €
and denote by

dyr—e + ApM ) = (H/E)P™ (X g)
the morphism of groups induced by ap; via g. Then, @}, _ o~ is the morphism
induced by aps via gvy. It follows, in particular, that a, _ is a A[p™~¢]-generator of
(H/E)[p™~°] if and only if a),_, o~ is one. Thus, we may identify Xnry ~ Xargy
and under this identification we have ¢ gy = 70 dpr,g-

Part (5): Let r be an integer, 0 < r < M. Then p~"I;, € GL,(Q,)" and we have
e(p~"I;) = r and d(p~"1},) = rh. Let € be the universal finite flat subgroup of H over
Xarp-r1,- By definition, £ C H[p"] and has order rh, i.e. the same order of H[p"].
Therefore £ = H[p"]. (This equality of subgroup implies that the morphism ¢y -1,
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is a closed embedding.) Moreover, it follows from lemma 7.2 that the subgroup
H[p"]/ X has all the required universal properties. We therefore conclude that the
morphism ¢ -y, is an isomorphism.

Finally, the equality fasar—r = p~ "l © ¢prp-—r1, is a direct consequence of the
equality € = H[p~"]. O

7.1.4. In the following we will refer to the data of the morphisms g : X7y — Xp—e,
for g € GL;,(Q,)™, as the action of GL,(Q,)" on the integral models of the Shimura
varieties.

We remark that the above action of GLj(Q,)" preserves the Newton polygon
stratification of the special fibers.

7.1.5. For all M > 0 and g € GLp(Q,)T (M > e = e(g)), we denote by parg :
Xmg — Xm (resp. @pr: Xp — X) the formal scheme over X associated to Xar,g —
Xar (vesp. Xy — X), and by oar ar,g : Xmrg — Xaryg (vesp. a2 X — X
and g : Xpr,y — Xp—e) the morphism induced by éar ag (resp. ¢ar p and g), for
any M’ > M.

7.2. Integral models for Rapoport-Zink spaces with level structure. —
In the following we define some formal schemes over M, which are the analogues of
the formal schemes X,/ /X, such that the associated rigid-analytic spaces are the
covering spaces M?é[g /Mi& by defined Rapoport and Zink (see section 2.5).

7.2.1. Let us recall that Zarisky locally the Rapoport-Zink space M is defined as the
p-adic completion of the a closed subscheme U of a Grassmanian variety associated
to the algebra of functions of X[p?], for some positive integer d.

For any such scheme U/ Z;”", let us denote by H’ the universal Barsotti-Tate group
over U. For any integer M > 0, we define

U = W(APM), H' [p™)/U)

and denote by 057 : Upr — U the natural morphism and by by = A[pM] — H'[pM]
the universal A[p?]-generator over Up.

Moreover, for any g € GL,(Q,)* and M > e = e(g), we define Ups4/Uns to be
the universal space for the existence of a finite flat subgroup &' C H'[p€], of order
d = d(g), such that

bar(Alg™"]) € €' (Unrg),

and the induced morphisms on the subquotients
APpM=] = (M€Y ) (Xarg)

is a A[p™~¢]-generator. We denote by On,g : Unm,g — U the natural morphism.
As the p-adic completion of U varies among an open cover of M, the p-adic com-
pletions of the spaces Uns,g (resp. Uar) describe a formal scheme a7,y : Mag,g — M
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(resp. Oar : Mpyr — M), for all M,g. It follows from the construction that all the
formal schemes My, and My are formally locally of finite type over Z;".
It is also a direct consequence of the definitions that the above spaces naturally

form a system, i.e. there are some morphisms dpr ar,g : Marr.g — Mar,g and s ar -
My — My, associated to the inclusions H/[p] < H'[p™'], which satisfy the
obvious commutativity laws.

7.2.2. For any positive integers n,d, we denote by M?V’Iflg and MTI(/’[d the pullbacks
over M™? C M of the spaces My, and My, respectively, for all g, M.
Then, for any n’ > n and d' —d > (n’ — n)h, the inclusions i = Z'Z})dd, Mt

/ ’ . . .
M™4 naturally give rise to some morphisms

and

. .n,d . n,d n',d’
‘M,g = (Zn',d')M,g : MM,g - MM,g

. -n,d n,d n’,d
ing = (0 )ar Mt — My

and the restriction of the morphisms 6y ar and dps/ a9 to some morphisms

and

.d .d .d
St arg s Mo — My

n,d . n,d n,d
St gy M M

Proposition 7.4. — Mantaing the above notations.

1.

The formal schemes oar : Mar — M (resp. dnrg : Mg — Mar) are finite

(resp. proper).
Moreover, there are natural identifications

(Marg)"® = (M) = M2,

which are compatible with the natural projections.

. For any M > 0, there is an action of GLy(Zy,) on My, which is compatible with

the action of GLp(Z,) C GLyp(Q,) on the corresponding rigid analytic space,
and commutes with the projections dps a, for any m' > M.
For any M > e(g) = e, there exist some proper morphisms

g: Mpyg — Maur—e

which are compatible, under the above identifications, with the action of
GLL(Qp)t C GLy(Qp) on the rigid analytic Rapoport-Zink spaces.

For any v € GLy(Zy), there is a natural identification Mg ~ Mz g over
M, and, under such identification, we have dnr,gy = 70 Onr g-

For any positive inter r < M, the morphism dpr p—r1, : Magp—r1, — Mo is an

isomorphism and dps pr—r = p~ "I 0 51\_/11p—r]1, .
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6. There exist some o-linear automorphisms
Frob: My — My and Frob: My g — Magg

such that dpr o Frob = Frobo dar, Oprg 0 Frob = Frobo dyg and g o Frob =
Frobog.
7. For any p € T, there exist some automorphisms

p: My — My and p: Maurg — Marg

which define an action of T' on the integral models of the Rapoport-Zink spaces
compatible with the action of T' on the corresponding rigid analytic spaces.

Moreover, for any p € T, we have dpr 0 p = podu, dp,g0p = podn,g and
gop=pog.

Proof. — Part (1): The same arguments of propositions 7.1 and 7.3 apply but, in
order to deduce the above identifications among the corresponding rigid analytic
spaces, one should also check that the construction of the space Isom(X,Y)/S, for
X,Y two finite flat group schemes over S, commutes with analytification (and this is
proved in [6],Theorem 3.5.6, p. 61).

Part (2): Let M be a positive integer and v € GLy(Z,). We first define, for all
n, d, some morphisms

A My — M

Let (H,0:% — H: apr) be the universal triple over M}\L/’Id (where H denotes the
restriction of H to the locus p = 0). Then, we define 7 to be the morphism
associated to the triple

(H.,B:% — H;an oy apm))-

It follows from the definition that the morphisms ™% commutes with the inclusions
inm, and thus give rise to a morphism v : M — My, Moreover, it is easy to see that
the morphisms v define an action of GL(Z;) on the My, with the required properties.

Part (3): As in part (2), we first define, for all n, d, some morphisms

n,d n,d+e
g: MM,g - MM:; .
Let (H,8:% — H;E C H[p®],anr) be the universal quadruple over Mﬁ/ﬁg (where

H denotes the restriction of H to the locus p = 0). Then, we define g to be the
morphism associated to the triple

(H/E,Bope: X — H/Eay )

where € denotes the restriction of £ to the locus p = 0, pg : H — H/E the natural
projection and @, _ the induced A[p™~¢]-generator of (H/&E)[p~¢].

It follows from the definition that the morphisms g commutes with the inclusions
im,g and ipr—e, and thus give rise to a morphism g : Mg — Mar—e.

The same argument we used to prove part (3) of proposition 7.3 shows here that
the morphism g we have defined is proper. It is also an easy consequence of the
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definition that the above morphism is compatible with the previously defined action
of GL,(Q,)" C GLK(Q,) on the rigid analytic Rapoport-Zink spaces.
Parts (4) and (5): The same arguments used to prove parts (4) and (5) of propo-

sition 7.3 apply here.

Part (6): Let us identify My, = My, and define the o-linear morphism on
Mg, for all M,g (M > e(g)). We use the universal property of Mz, to define
Frob to be the morphism

(H,B;am, E) — (H,B 0 F~ 5 an, E).
It is clear that the morphism F'rob as all the required properties.
Part (7): Asin part (6), we identify My, = M1, and define, for any p € T', some

automorphisms p of My 4, for all M, g (M > e(g)). We set p to be the automorphism
of Myy,q defined by

(Hvﬂ;aM’E) = (H,5°PQGM,E)-
Again, it is a direct consequence of the definition that the above morphisms define an
action of T" with the required properties. O

7.2.8. We refer to the data of the morphisms g : Mas,g — Mpr—e, for g € GLp(Qp) T,
as the action of GLj,(Q,)" on the integral models of the Rapoport-Zink spaces.

7.3. Comparing the spaces X, X Z;”" and M, 4. — The goal of this section
is to compare, for any Newton polygon « of dimension ¢ and height h, the spaces
Xarg X Z;”“ and My, (for any g € GL,(Q,)* and integer M > e(g)), in terms of
the associated covers over (7, X spt M) (t) (for all t > 0) and over any affine

open V of T, X gpt 7nr M,

In the first case, we shall consider the morphisms

AN ()t (T Xgppznr MP(E) = X X 27 C X x L7,
for N > (d +1t/2)/6B, and the projection onto the second factor
pr(t) (T Xgpezpe MM)(1) = M,

and we shall compare the two systems of spaces mn (t)*(Xas,g X Z;”’) and pr(t)*Mar,q
over (JTm Xgpggnr M™4)(t), as g, M vary.

In the second case, for any affine open V of 7, X gpf Znr M™% we shall consider
the morphism

N[t V]V = X < 20 C X x 27
for N > (d+1t/2)/0B, and the projection
prv =priy V=M,

and compare the spaces T [t, V]* (X4 X Z;”') and pri; M4 over V.
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We shall prove that, in both cases, when [t/2] > M, the pullbacks of X4 X Z;"
and My 4 we consider are indeed isomorphic.

7.3.1. Let a be a Newton polygon of dimension ¢ and height h, and m,n,d be some
positive integers. Let g € GL,(Q,)* and M > e = e(g) and assume m —d > M. For
any positive integers ¢, N such that m —d > [t/2] > M and N > (d+t/2)/6B, we
consider the spaces

" > 5 d
TN () (Xarg X Z27) = Xarg X L7 X g xdipr e (8)[M] (Tm X Spf 2 M (1)
and
pr(t)*MMg = MM,g X./\/[,pr(t) (jm XSpfi;”' Mn,d)(t)

We also denote respectively by farq(t) and garg(t) the natural projections to

(Tm X gps gnr M) (t). (Let us remark that the morphisms gas 4(¢) are the restrictions
P

of some morphisms defined over Spf Z;", namely gnr 4 : pr* Mg — Tm X gpt Zgr./\/l”’d7

but this is not true for the morphisms fas 4(t).)

Proposition 7.5. — Maintaining the notations as above.
There exist some isomorphisms

ENIM, g] s TN () (Xarg x Z27) — pr(t)* Mg,

such that garg(t) o En(t)[M, g] = fag(t), which are compatible with the actions of
GLL(Qp)t on the two systems of spaces.

Proof. — Let us first consider the case g = 1;,. We write Xps 1, = X and My, =
M.

We recall that, for any S-scheme T, we have W(A,Z/S)r = W(A, Zr/T) (see
section 2.6.3). Thus, it follows from the definitions that

WN(t)*(xM X Z;”) — W((Z/pMZ)n,'}:[N[pM]/(jm XSpfi;}T' Mn,d)(t))

and
pr(t)*/\/lM = W((Z/pMZ)",H/[pM]/(jm XSpr;"T M",d)(t)),

where Hy = mn(t)*H, and H and H’ are the universal Barsotti-Tate group over
X x Z;”' and the Rapoport-Zink space M™?, respectively.

We recall that, for any two finite flat group schemes Z, Z’ over a scheme S, we
have W(A,Z/S) ~ W(A,Z'/S) it Z ~ Z' (see section 2.6.3). Therefore, in order
to conclude, it suffices to show that there exists an isomorphism of finite flat group
schemes over (J,, X spt 2 M) (t)

Hylp™] — H'[p™].
Indeed, such an isomorphism exists by the very definition of the morphisms 7y (¢),
since we assumed [t/2] > M. The corresponding isomorphism

EN(OIM] = En ()M, ] = mn (8)" (X x Z37) — pr(t)* My
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has the required properties.

Let g € GLy(Q,)". The above isomorphism &y (¢)[M, 1], together with the iso-
morphism of finite flat group schemes Hy[p™] — H'[p™], enables us to identify the
schemes 7y ()" (Xar,q X ZQT) and pr(t)* My g, as spaces defined by the same univer-
sal property. Moreover, it is clear that these identifications are compatible with the
action of GL,(Qp)™. O

7.8.2. Let V be an affine open of 7,,, x U™%. We proved (see proposition 6.8) that,
for any positive integers ¢, N such that m > d 4+ ¢/2 and N > (d + t/2)/§B, there
exists a morphism 7y[t,V] on V which restricts to mx(t)|v ) on V(t). Thus, if we
consider the spaces

7TN[ta V}*(:{M,g X Z;LT) = xM,g X Z;W XxXZgT,wN[M,t,V] 14

and
pryMurg = Mg X mpry V,

then over V(t) we have

(mn [, VI (Xarg X Zp"))ivy = (v (6 (g X 237wy
and

(pry Marg) vy = (pr(t)" Marg) v -
We investigate the possibility of extending the restrictions over V(¢) of the isomor-

phisms &n(¢)[M, g] to an isomorphism over V.

Proposition 7.6. — Maintaining the notations as above. For any affine open V' of
Tm X U™ there exists an isomorphism of formal schemes over V.

Ent, VIIM, g] : mn[t, VI* (Xarg X Z27) — priyMasg

which extends the isomorphism {n (t)[M, gy ) and is compatible with the actions of
GL,(Qp)t on the two systems of spaces.

Proof. — The statement follows directly from the definitions of the morphisms
nn(t, V] and En(t)[M, g]. In fact, to extend the isomorphism {n(t)[M, gy ) to an
isomorphism over V, compatible with the action of GL,(Q,)", it suffices to extend
the isomorphism over V(t)

v () H[pM] — H'[p"]

to an isomorphism over V between the pM-torsion subgroups of the Barsotti-Tate
group 7y [t, V]*H/V and H'/V. Such an isomorphism exists by the very definition of
wnlt, V] and the assumption [t/2] > M. O
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7.8.8. Finally, let us recall that, in section 6.4, for all n,d, we introduced some
morphisms

g U™ — %) x Spf Z1" C X x Spf Z"
associated to a point y € Joo(Fp), for all N > 1, such that over U™ we have §j (t) =
7n(t) o (yp,,id)(t), for all ¢ > 1 and m, N sufficiently large, and also yyH ~ H'.

Arguing as in the proofs of propositions 7.5 and 7.6, we conclude that there exist
some isomorphisms over U™¢

A~k onr n,d
€y,N[Ma g} : yN(xM,g X Zp ) - UM,g7

which extends the isomorphism (y,,,id)(t)*En (¢

(ym, i) (0 TN (8) (Xarg % Z57) t0 (ym, id) () pr
compatible with the action of GL,(Q,)™.

)M, g] from gin(t)"(Xarg x Z07) =
(t)* Mg = U}\I/[’flg(t), and which are
7.4. The vanishing cycles sheaves on Shimura varieties. — We shall now
use Berkovich’s theory of vanishing cycles for rigid analytic spaces to prove that
the vanishing cycles sheaves R?W, (Z/I"Z) on a Shimura variety with level structure
at p and the vanishing cycles sheaves R?¥, (Z/I"Z) on the Rapoport-Zink space of
the same level are isomorphic once pulled back over the covering spaces J,,, x U™,

Moreover, such isomorphisms between the vanishing cycles sheaves are compatible
with the action of the Weil group and GL,(Q,)*.

7.4.1. Let [ be a prime number, [ # p. We fix an integer » > 1, a level M > 0 and
g € GL,(Q,)" (where M > e = e(g)), and study the vanishing cycles of the constant
étale sheaf Z/I"Z on the Shimura variety Xz, 4.

7.4.2. Let m,n,d be some positive integers, m > d + M. We choose a finite cover V
of affine opens V of 7, x U™?, and write Vs, for the pullback of 7, x U;’/[’i} over
V,forall Ve.

Let Z denote an ideal of definition of 7, x U;l/[’fig, and choose a positive integer
t = tamry > 2M such that, for all W = V4 NV, for some V3, Vo € V (possibly
Vi = V3), the ideals I‘tW satisfy the property in the statement of proposition 2.24 for
X' =Wy and X =X g X Z;”" respectively.

Let m’ > m such that m’ > d+1¢/2 and choose N > (d+1t/2)/0B. For each V € V,
we write Vs (resp. Vi amg) for the pullback of 7,/ x U™ (resp. Jpmr X U;\Z’Z) over V.
Then, for each V € V, Vyr 1,9 — Vg is finite étale with degree equal to [Jn, @ Jpn],
which is a p-power (and thus, in particular, relatively prime to [). For simplicity, we
write my = N[t Vil v = En[t, Vi ][M, g] and T = 7w (1).

For any V € V, we use the isomorphism &y to identify the spaces Vs a4 and
o (Xnr,g X Zgr) and write

. nr
wy - Vm’,M,g - x]ﬂ,g X Zp



104 englishELENA MANTOVAN

for the pullback of the morphism 7y : V,,,y — X X Z;”, under the projection Xps g x
Zim — X X LT . i

We remark that the morphism (v ); : V;r — X factors as Ty o (qu,m X 1)y, and
thus the morphism (wy )s factors via the projection Vm/,Mg — ‘_/Mg, ie.

(wv)s =WN © (Qm,m’ X 1)|VM_’97

where @wy @ Jpy, X U}\z/[’fjg - X M,g X pr denotes the pullback of the morphism 7.
We deduce that the morphism wy gives rise to a morphism of objects in the derived
category of étale sheaves over Vs 4
Oy : ﬁ}kvR‘I’n(Z/ZTZ/(aeM,gxzy)n)lVM,g - R\P"(Z/ZTZ/(J"LXUXZ’Z)n)WMvQ

(see proposition 2.24).

Proposition 7.7. — The morphisms 0y, for V €V, piece together in an isomor-
phism between the vanishing cycles sheaves over Jp, X UJT\L/[’,dq

0 =bag: DNRYY (LD x,, xigey ) = REL/ULy g iy, ),

Moreover, the isomorphisms 0y, 4 are compatible with the morphisms induced by
changes of level and by the action of GLy(Qp)™ on the Shimura varieties Xp,4 X Zy"

and on the spaces T, X U}&’i, respectively.

Proof. — First, we prove that the morphisms 6y, V € V, give rise to a global mor-
phism between the above vanishing cycles sheaves over J,, X U;L/[’jlg.

Indeed, for each W = Vi NV,, Vi, Va € V, we consider the restriction to Wy, a4 of
the two morphism wy,, i = 1,2. By definition, we have (7v,)|w, ,(t) = (7v,)jw,, (t)
which implies that we also have (v, )w,,, ,, . (t) = (@v,)|w,, ., (t). It follows from
proposition 2.24 and from our choice of the integer ¢ that the induced morphisms
AT (i = 1,2) between the vanishing cycles sheaves agree.

Moreover, since for all V' € V the morphisms wy are formally smooth (because
such are the morphism 7y ), it follows from proposition 2.26 that the corresponding
morphisms between the vanishing cycles of Z/I"Z over the special fiber V,,,/ a4 of
Vin',m,g are isomorphisms and thus such are also the morphisms 6y .

Finally, the compatiblity of the 0, , with the morphisms associated to changes
of level and the action of GL,(Q,)" follows from the corresponding property of the
isomorphisms &y, for all V. O

Corollary 7.8. — Letp: Ty X U]T/[’:ig — Myy,g be the natural projection.
There exists an isomorphism of objects in the derived category of étale sheaves over
Jm X U8
C= Catg  DNREY L/ Lz, ey ) = eV (BT Lty ),
which is compatible with the morphisms induced by changes of level and by the action
of GL,(Qp)™ on the Shimura varieties and the Rapoport-Zink spaces, respectively.
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Proof. — Since the formal Igusa varieties are formally smoth over Z;}T, it follows
from proposition 2.26 that the morphism p gives rise to an isomorphism between the

vanishing cycles

P:R‘I’W(Z/ZTZ/MM,Q,,) = R\IIW(Z/ITZ/(jm xU};ji)n)'

It is also clear from the definitions that such isomorphisms is compatible with
the morphisms induced by changes of level and by the action of GL,(Q,)" on the
Rapoport-Zink spaces My, and on the Jp, X U;I’)‘f], respectively.

Thus, proposition 7.7 implies the existence of an isomorphism as in the statement.

O

Under some further assumptions on the integer ¢ > 0, it is possible to describe the
stalks of the isomorphisms ¢ in terms of the morphisms gy (see section 6.4).

7.4.3. Let us assume that the affine opens V' € V are of the form V = V! x V2,
where V2 varies in an open cover U of U™“. Then, for any V? € U, we write Vi , for
the pullback of V2 over U}\}’z — U™%). We also assume that the integer ¢ we chose
is sufficiently large such that, for any open V? € U/ and any two morphisms from
Vi 10 Xarg X Z;”, which coincide modulo the ¢-th power of the maximal ideal, the
induced morphisms between the vanishing cycles of Z/I"Z agree.
Let y € J(F,) and N > d/§B. We denote by
in UNS — Xarg x 277

the pullback under X,s,4 X Z;}T — X X ZZT of the morphism gy : UM% — X x Zgﬁ
composed with the isomorphism &, n[M,g]™' : UJT\L/[’fig ~ ghn (Xarg X ZZT) (see section

7.3.3).

Proposition 7.9. — Maintaining the above notations and assumptions. Let (Y, z)
be a geometric closed point of J,, X (_]x[’:f].
The morphisms

Sy ENEY (LI Ly, ey Vo) = DS RY (LI L Moy, ) )
agree with the morphisms

wn(gN> Z/V’Z)Z : g?\l sR\IJTI(Z/ZTZ/(xM,gxZgT)n)Z - R\IIW(Z/ZTZ/MM,M)M
when we choose y € J(F,) such that qoom(y) = Ym (and thus Gn(2) = @N(Ym, 2)
and p(Ym, z) = z).
Proof. — Let us choose V = V! x V2 € V such that y), € V! and (ym,2) € Varg-
Then, over V2, we have

mn[t, Vo (yp,id) = §n v

modulo the ¢-th power of the maximal ideal of definition of U™9. Since pr o (y,,id) =
id on U™?, we conclude. O]
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We remark that the above description of the stalks of the morphism ¢ provides an
alternative proof of the fact that the isomorphisms 6y piece together, as V varies in

V.

7.4.4. We now focus our attention on the action of the inertia group I, on the van-
ishing cycles sheaves ﬁj‘VR\I/n(Z/Z”Z/(xM‘gXi;)”.)n) o~ pZR\Iln(Z/lTZ/(MM’g)n). In par-
ticular, we are interested in the possibility of extending its action to an action of the
Weil group Wo, D I,

Let us remark that it is a direct consequence of the definitions that the action of
the inertia group I, on these vanishing cycles sheaves commutes with the isomor-
phisms (7,4 and with the morphisms induced by changes of level and by the action of

GLy(Qp)". We are interested in defining an action of Wg, with the same property.

Remark 7.10. — Maintaining the above notations.

1. Let us consider the natural identification

Ry (2T, gy ) = RV L2 ,),)
over Xp74 x Fp. Then, the action of I, on the left hand side is simply the
restriction to I, of the action of Wg, on the right hand side.

Moreover, the action of the Weil group on the right hand side is compatible
with the morphisms induced by changes of level and by the action of GL,(Q,)"
on the Shimura varieties.

2. The action of I, on the vanishing cycles R\IJH(Z/ZTZ/(MM,Q)H) over My 4 nat-
urally extends to an action of Wg,, which is compatible with the morphisms
induced by changes of level and by the action of GL,(Q,)" on the Rapoport-
Zink spaces.

Indeed, the first statement is obvious. (To conclude the compatibility between the
action of Wg, and the morphisms induced by changes of level and by the action of
GL,(Qp)T, it suffices to recall that both the projections X/ 4 XZZT — X9 X Z;,”", for
M’ > M, and the action of GL;(Q,)" on the Shimura varieties X7 4 X Z;”" arise from
morphisms defined over Z, C Z;””, and thus the corresponding induced morphisms on
the vanishing cycles sheaves R‘Pn(Z/er/(xM,g)n) over Xps,q x F, commute with the
action of Wo,.)

As for the second statement, the possibility of extending the action of I, on the
vanishing cycles sheaves to an action of Wy, , which is compatible with the morphisms
induced by changes of level and by the action of GL;,(Q,)", follows from the existence
of a descent datum for the Rapoport-Zink spaces My 4/ Z;”,
natural projections and with the action of GL;(Q,)", namely the o-linear automor-
phism F'rob of My 4 (see part (6) of proposition 7.4).

which commutes with
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7.4.5. Let us remark that the actions of Wy, on the above vanishining cycles sheaves
give rise to an action of Wy, on their pullbacks over J,, x U}\l/[’i.

In fact, let 7 € Wy, and define r = r(7) to be the integer such that the image of 7
in the absolute Galois group of F,, is 7 = o"("). Then, the actions of 7 € Wg, on the
above vanishing cycles sheaves are defined by some isomorphisms

(1 X UT>*R\I’77(Z/ZTZ/(%M,9)W) ~ RWW(Z/ZTZ/(XM,;;)T,>
over Xpry x F, and
(FTObT)*R\I’n(Z/ZTZ/(MMﬂ)n) ~ R\PH(Z/ZTZ/(MM,Q)")

over My,
Let us assume m > d+2+t/24+ M and N > (d+1+t/2+ M)/éB, and consider
the morphism
Frob x Frob : J,, x U;\L/[’i} s Ty X U]T\L/[T;’dﬂ_

Then, we have @y o (F'rob x Frob) = (1 x o) oy and po (Frob x Frob) = Frobop.

Thus, for » = r(7) > 0, the above isomorphisms on the vanishing cycles sheaves
over Xy, x F, and My, give rise to some isomorphisms on the pullbacks over
I X U}&[’Z, namely

@y (T): (Frob” x Frobr)*ﬁva\I'n(Z/ZTZ/(XM’Q)W) ~
=~ @7\](1 X Ur)*R\IIW(Z/er/(f{M,g)n) = Z%?‘VR\DW(Z/ZTZ/(XM,_LJ),])
and
p*(7) : (Frob” x Frobr)*ﬁ*R\I/n(Z/ZTZ/(MMYQ)U) ~
~ ﬁ*(FTObT)*R\IJn(Z/ZTZ/(MM’Q)N) ~ R\I/n(Z/lTZ/(MM’g)n).

Proposition 7.11. — Maintaining the above notations. Let T € Wgy, such that
r =r(r) > 0. The isomorphism

C : @NR\IJU(Z/ZTZ/(:{M,E; XZST)T;) - ﬁ*R\IJn(Z/lTZ/(MM’g)n)
satisfy the equality ¢ o @i (1) = p*(7) o (Frob” x Frob")*(().
Proof. — First, let us remark that we already know that the statements holds for

any 7 € Ip, i.e. when r(7) = 0. Thus, it suffices to check that the statement for a
single element & € Wg, such that r(6) = 1, (i.e. for a lift & of the Frobenius element

9),

Let D = Dyrg = @}‘VR\IIU(Z/VZ/(%M,Q)W) ~ ﬁ*R‘I’n(Z/er/(MM,g)n)' We need to
show that the two morphisms

@wn(6),p"(6) : (Frobx Frob)*D — D

agree.
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By the universal property of Xy 4, the descent datum on X/ 4 x ZZT is equivalent
to the datum of an isomorphism

o:(I1xo)"A— A,

where A is the universal abelian variety over (Xas4)s X Fp, such that o induces
isomorphisms (1 X 0)*H ~ H and (1 X 0)*€ ~ &, where H and £ (£ C H C A) are
respectively the universal Barsotti-Tate group and flat subgroup over Xz 4 X Z;”.

Analogously, the descent datum on M, 4 is equivalent to the datum of an isomor-
phism

o: Frob*H — H’,

where H’ is the universal Barsotti-Tate group over My g, which restricts to an iso-
morphism Frob*€’ ~ £’ on the subgroup & C H'.

Moreover, the identification between the vanishing cycle sheaves

’fU}kVR\I/n(Z/lTZ/(xM’g) ) ~ ﬁ*R\IIW(Z/lTZ/(MM,g)TI)

n

arises from the isomorphism
Hp") = p*H'[p"] =~ @y H[pM],
over the affine opens V,,,; of Jp X U}\lf;, Vevy.

Thus, the two actions of & € Wy, on the vanishing cycles can be interpreted as
arising from the descent data

@i (0) s @y (1 x o) Hp™] — wi H[p"]
and
p*(0) b FrobH [p] — p"H (o],
On J,, x (_];\2’2 we have
@n(1 x o) = (Frob x Frob) @y,
p*Frob* = (Frob x Frob)*p*,

and also, under the identification H[p*] = p*H'[p M)

M~ @y Hlp
@ (0)s = p*(0)s : (Frob x Frob)*H[p™] — H[pM].

)

Therefore, the isomorphism
@y (6) " 0p*(8)  p Frob*H'[p"] — @i (1 x o) “H[p"]
can be viewed as an isomorphism between two deformations of the group scheme
(Frob x Frob)* H[pM], which reduces to the identity on the special fiber. It follows
that it gives rise to an identification of the two deformations, and thus, equivalently,
that the morphism @%(6)~* o p*(5) on the vanishing cycle sheaves is simply the
identity. O
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7.4.6. We now investigate the action of T" on the vanishing cycles sheaves we studied.

From the equality Ty o (p X p) = 7y, for any p € S, we deduce that @y o (p X p) =
@y and thus @y ~ (p X p)* o wy. It follows that there is a natural action of S on
the vanishing cycles sheaves @NR‘I’n(Z/ZTZ/(xM,yxZg/r)n)’ i.e. for any p € S there is

an isomorphism
p:(px P)*ﬁ}k\/R\I’n(Z/ZTZ/(xM,gxZgr)") ~ @*I‘VR‘IJ”(Z/Z’"Z/(%Mngr)n)v

such that (p1p2)* = pip7, for any p1,p2 € S.

Clearly, the above action of S commutes with the action of I, x GL,(Q,)", and
indeed it commutes also with the action of Wg,, since the action of p € S on the
schemes J,, X U;l/[’i] commutes with the morphism F'rob x Frob.

On the other hand, from the equality po (p X p) = pop, for any p € S, we deduce
that there is an isomorphism

(0% p) P BUY(Z/UL (M p),) = 07" RYy (Z/U Ly (Mo y),,)-

Moreover, since the action of the monoid S C T on the reduced fibers of the Rapoport-
Zink spaces extends to an action of the group T on the Rapoport-Zink spaces over
Zy" (see part (7) of proposition 7.4), there are also some isomorphisms

p*R\IJW(Z/ZTZ/(MM,g)n) = R\IIW(Z/ZTZ/(MM’H)W)'

Thus, by composing the above two isomorphisms, we define an action of S on the
vanishing cycles p* RV, (Z/I"Z j(m,, ), ), i-e. for any p € S we define an isomorphism

p(px p) P RYY (LI Ly (Mg y),) = P RY(Z/U Ly My ),)»

such that (p1p2)* = psp7, for any p1,ps € S.

Proposition 7.12. — Maintaining the above notations. Let p € S C T. The iso-
morphisms

CaNRYY(Z/ Ly (x4,),) — P RYY(Z/T Ly (0o ),)

satisfy the equality Cop = po (p x p)*(().

Proof. — Clearly, it suffices to check that the above equality on the stalks of the
geometric points of J,, X U]T\L/I’z. Without loss of generality we may assume that our
choice of the integer ¢ is compatible with the properties stated in section 7.4.3, and
thus we can apply the description of the stalks of the isomorphism (, we gave in
proposition 7.9.
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Let p € S and (ym, z) be a geometric point of J,, X U}Q’Z. We need to prove that
the following diagram commutes, for all ¢ > 0.

RV (Z)ULy(200), ) o (pym o) == BIVY(Z/U Ly (201,) ) o (g 2)
\Lc(pym,pZ) \Lc(yva)
Rq\IJT](Z/er/(MM,g)n)pZ A RQ\IIT](Z/ZTZ/(MM‘Q)’”)Z

Let y € J(F,) be a point such that qeom(y) = ym. Then, p(y) € J(F,) and
Uoo,m (PY) = pYm. By proposition 7.9, we know that ((,,. .) = ¥, (Jn,Z/I"Z). and
Cloymopz) = Un(Pyn, Z/1"Z),.. Thus, the commutativity of the above diagram follows
from the equality §n © p = pme, y (in the diagram we denote by p, the morphism

Un(p, Z)I"Z)z). D

7.4.7. The results of this section on the vanishing cycles sheaves of the Shimura vari-
eties and of the Rapoport-Zink spaces can be summarised in the following proposition.

In the following, we write Wéﬁp = {r € Wo,|r(r) > 0}. Thus, Wo, = (W&p,&), for
some & € ng such that r(6) = 1 (see section 7.4.5).

Theorem 7.13. — With the above notations. There exist some quasi-isomorphisms
of complexes in the derived category of abelian torsion étale sheaves over J,, x U™?

N RYy R(onpn o)« (Z/V Ly (s ),) = P RYnR(O0 00 0)« (Z/ 1Ly (Mr y),,)
compatible with the actions of W&p x S x GLp(Qp)* and the changes of level M, g.

Proof. — In propositions 7.7, 7.11 and 7.12, we proved that the quasi-isomorphisms
) Frn,d
(s over Jy, X Uy

@NR\IIW(Z/VZ/(%M,Q)N) = ﬁ*R\I]"](Z/ZTZ/(MALg)n)7

have the required properties. By applying the derived functor associated to the
(proper) projections J,, X Uﬁjfig — Jn x U™? we obtain the quasi-isomorphisms in
the statement (after using the proper base change theorem and part (2) of proposition
2.22). O

8. The cohomology of Shimura varieties

In this last section, we shall compute the [-adic cohomology of the Shimura va-
rieties as a (virtual) representation of G(A>) x Wq, (I # p), in terms of the I-adic
cohomologies of the Igusa varieties and of the Rapoport-Zink spaces.

More precisely, we shall apply theorem 5.13 to the complex of A-R [-adic étale
sheaves

L= (RYyR(pnom,g) (L)1 Ly(x,,), )| X () xF, )
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over X (@) x IF‘p, for each Newton polygon «, to relate the cohomology groups with
compact supports of the Newton polygon strata to the cohomology of the Igusa va-
rieties and of the Rapoport-Zink space, in the case of level structure at p. As the
Newton polygon stratum varies in the stratification of the reduction of the Shimura
varieties and the level (both at p and away from p) changes, the above descriptions
combine into a formula which computes the cohomology of the Shimura varieties, in
terms of the cohomologies of the Igusa varieties and of the Rapoport-Zink spaces.

We choose to formulate the main result of this section (Theorem 8.11) as an equal-
ity of virtual l-adic representations of G(A*) x Wq, , even though what we really prove
is a stronger version of this result which regards the corresponding Z;-representations
and can be formulated as the existence of quasi-isomorphisms in the derived cate-
gory of A-R [-adic systems, compatible with the action of G(A>) x Wg,. Indeed,
we prove more, as we prove the existence of such quasi-isomorphisms for ["-torsion
coefficients, for all » > 1 (which translates in a result regarding the corresponding
Z 1" Z-representations).

On the other hand, since the cohomology groups of Shimura varieties both with
Z]1" Z-coefficients and with Z;-coefficients are not a priori admissible representations
of G(A*>) x Wq,, the above two results in the derived categories can not be stated
as equalities in the appropriate Grothendieck groups, which is why we prefer to state
the theorem for [-adic coefficients.

8.1. The Newton polygon decomposition. — We shall start by explaining how
it is possible to compute the l-adic cohomology of the Shimura varieties in terms of
the cohomology of the Newton polygon strata of their special fibers, with coefficients
in the [-adic vanishing cycles sheaves.

8.1.1. We recall that our final goal is to study the virtual Q;-representation of
G(A™>) x Wy,

HY(X, Q) =Y (-1)'H'(X,Q),

7

where
HY(X,Q) =lim g H,(Xu xg (E;7),Q),

and U varies among the sufficiently small open compact subgroups of G(A*). (In
the following we shall consistently use the upper index e to denote the corresponding
alternating sum of representations inside the appropriate Grothendieck group.)

Let us also observe that if we restrict our attention to the open compact subgroups
of G(A*) of the form

U=UP(M)=U"xZS x ker(Opor — (Oper [u™)*),
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for some integer M > 0 and some sufficiently small open compact subgroup UP C
G(A°P), then we compute

H*(X,Q)% = im y» v H (Xue(ar) XE (Emm)ae, Q).
8.1.2. In the following we restict our attention to such levels U = UP(M), and relay
on the theory of vanishing cycles to express the cohomology of the Shimura varieties
in terms of the the cohomology of the special fibers of their integral models.
Let r» > 1. For any level UP(M), we consider the integral models of the Shimura
varieties Xy» pr = Xpp a1,- Then, there exist quasi-isomorphisms

iUP,M : RF(XU XE (EA’LLT)&C,Z/ZTZ) ~ RF(XUP’]\/[ X]FP FP’RWW(Z/er/(XUP,M)n))’

such that g* oiye v = iye a0 g™, for all g € GLp(Z,) and p~ '} oiye p = fue p—10
p~ Iy, for M > 1.

Further more, for any g € GL,(Q,)* and M > e = e(g), let us consider the
integral models Xy» pr 4, together with the projections ¢ur ar,g @ Xur m,g — Xur,m
and the morphisms g : Xy»r a7,y — Xur,p—e. They give rise to quasi-isomorphisms

o g RU(Xu» XF, FpaR‘I’n(Z/lTZ/(XUp,M)n)) ~

~ RT(Xur,mg XF, Fyp, R (Z)U Ly (xyn r1,4)0))s

and to some morphisms

g* : RF(XUp,M_e XFP FWR\IIU(Z/ZTZ/(XUP,M) )) i

— RU(Xu» g XF, ]Fp,R\pn(z/zrz/(xmm)n)),

such that (d);};’lMie’g 0 g*) oiyr,m = tur,M—c © g*, for all g € GL,(Q,)" and M >
e = e(g). We deduce that the morphisms qzﬁ’[];,lM_e’ , © 9" define a quasi-action (i.e.
an action via quasi-isomorphisms) of GL,(Q,) on the direct limit, as M varies, of
the complexes RI'(Xy» ar X, IF‘p,R\IIU(Z/ZTZ/(XUPVM)W)). It is also clear that this
quasi-action extends the previously defined action of (GLy(Z,),pl)) C GLp(Qp).

On the other hand, as the integer r varies, the above complexes form an A-R [l-adic
system, also endowed with a quasi-action of GLj(Q,), as the level M varies. We us
denote by

H'(RT(Xuv,m XF, Fp, RV (Zi) (2 01),)))

the i-th cohomology group of the A-R [-adic complex. Then, for all i, the Q;-vector
spaces

lim o ar H'(RT(Xuo ar Xv, Fpy RY(Ziy (200 40),))) @2 Q

are admissible representations of G(A>) x Wg,, and there is an equality in the
Grothendieck group of virtual [-adic representations of G(A>) x Wg,

H'(X) Ql)Z; = h_H}l Ur,M H.(RF(XUPJM XFP FP7R\II77(Z1/(X0P,M)W,))) ®Zl Ql-
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We remark that as virtual representations of G(AP) x Q) x (GLn(Zp), pln) x
W@p - G(Aoo) X W@p

hﬂ)l Ur,M H.(RF(XU;D’M X[[rp ]FP?R\DW(ZZ/(XUIJ,MM))) ®Zl Ql -

= hLIl Ur,M H.(XUp,M XF, Fp; R"I’n(Zl/(XUpyM)”))) ®z, Q.

8.1.3. 'We now consider the Newton polygon stratification of the reductions modulo
p of the integral models Xy» a7, of the Shimura varieties. For any level UP, M, g,
the stratification gives rise to a sequence of exact triangles in the derived category
computing the cohomology of the special fibers of the Shimura varieties in terms of
the cohomology with compact supports of the corresponding Newton polygon strata
(see [11], Theorem 1.8.7(3), pp. 91-94). Since both the morphisms corresponding to
changes of level and the action of G(A?) x Q) x GLx(Qp)" x Wy, preserve the
Newton polygon stratification of the special fibers, the corresponding exact triangles
in the derived category are compatible under the morphisms ¢z, 5/ ., 9* (for any
g € GL,(Q,)") and the group action.

We deduce that, for all Newton polygons «, the morphisms ¢‘[};}M7 09" define a
quasi-action of GL,(Q)) on the direct limit (as the level M varies) of the complexes

RFC(XI(J?,M XFp vaR\IJW(Z/ZTZ/(XUP.MM)\X(") );

Ur,M

and also of the corresponding complexes of A-R Il-adic systems

RPC(X[(]O;))M XF, Fpa Rq}n(Zl/(XUp,M)n)p’((a) )

UP,M

Thus, we obtain the following decomposition of the cohomology of Shimura varieties.

Proposition 8.1. — There is an equality of virtual Q;-representations of G(A>) x
Wo

P

H*(X, Q)% =
= > lim uoar HY(RE(XG 07 X5, By RY (Za ) 000, ) ) 92, Qo

where UP varies among the sufficiently small open compact subgroup of G(A*P) and
M among the positive integers.

We remark that as virtual representations of G(A*?) x Q) x (GLn(Zy),ply) x

hﬂ} ur,M H* (RFC(X((JO;’),M XFp FP’ RWW(ZI/(XUP,MM)\XS’;) M)) ®z, Qi =

= lim UP7MHC.(X((]O;),M xg, Fp, R'\I/n(Zl/(ggUpyM)n)‘Xﬁ) M) ®z, Qr.
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8.1.4. We now focus our attention on the cohomology groups

HY(RTo(X$3 v <, Fpy RY(Zt (2 11),)

%60,
and use theorems 5.13 and 7.13 to relate them to the cohomology of the Igusa varieties

and of the Rapoport-Zink spaces of the same level.
First, we recall some notations. For all ¢ > 0, we write

HZ,(J@7UP,Z/ZTZ) = hﬂ} 7,LH2(JO¢7Up7m, Z/ZTZ)

for the cohomology groups with coefficients in Z/I"Z of the Igusa varieties of level UP
and Newton polygon «, viewed as a module endowed with an action of T, x W, (we
recall that the action of the Weil group is unramified).

We also write My ag (and Moy = Mo ag,) for the formal Rapoport-Zink
space, of level M, g (M > e(g)) and Newton polygon «, and {Ug,g/[,g}n,d for our usual
choice of an open cover of M a 4. Thus, for any abelian torsion étale sheaf F (with
torsion orders prime to p), we have

Hi(Maatg: F) = lim o aHIUZS 3o Figns, ).

We view the above cohomology groups as representations of T, x Wy, , where the
action of T}, is the one induced by the opposite of the action of T, we considered so
far (see section 2.5.14).

Theorem 8.2. — Let a be a Newton polygon of dimension q and height h. For any
sufficiently small open compact subgroup UP C G(A*P), and any integers M > 0 and
r > 1, there are some isomorphisms of /1" Z-representations of G Ly(Zy) x Wo,
H'(RT o(Maats RYy(Z)UZ (Mo ri),) %17y B e(Javw, 21 Z)) =
~ H'(RUe(X(7) ar x5, By Ry (/1 T pxym 10, 560 )
for alli > 0.

As the levels UP, M wvary, the above representations are endowed with an action of
G(A>) x Wq,, and the two actions on the direct limit representations are compatible
under the above isomorphisms.

Moreover, the above isomorphisms are compatible with the natural projections as
the integer r > 1 wvaries.

Proof. — The equality 7yo(1x Fr)NB = 7y, together with the fact that Fr is purely
inseparable and finite, implies that, for any abelian étale sheaf £ over X (@) x ]Fp (with
torsion orders relatively prime to p), we have

T Lo~ Ay (1 x Fr)NB(1 x Fr)NB*zi Lo~ 7y 7 L.

Thus, in all the constructions of section 5, we can replace 7 with 7.
Let g € GL,(Q,)" (M > e(g), and consider the complex of torsion abelian sheaves

L= R\IIW(R(()DM()DM,Q)*<Z/FZ/(XMq)n))
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over X (@) x IF‘,,. Then, theorems 5.13 and 7.13 (together with Berkovich’s comparison
theorem which allows us to identify classical vanishing cycles with rigid analytic van-
ishing cycles) imply the existence of quasi-isomorphisms, compatible with the action
of W@p

RTo(Ma, RY, R(600001,9)«(Z/U L j Mg o)) @517y BT e(Javw, Z/1I7L) ~

-~ RFC(X[(]C:’)(O) X vaR\I/nR(SDI\/ISDI\/I,g)*(Z/ZTZ/(%M,Q)W))|X(Q) 7 )

up(0) X

By part (2) of proposition 2.22, we can rewrite the above quasi-isomorphisms as

RT (Mg, RV (Z/1" Ty, ) @, 7y RUe(Jur, LI Z) ~

~ RT(X{3 vy % Fo, RU,(Z/ULyx,,)) 560 o5, )-

These quasi-isomorphisms commute with the action of GLy(Z,) on the two hand
side when g = I, and also with the maps induced by the projections das g, u» a9,
and by the morphisms associated to the elements g € GL,(Q,)*.

In particular, when g = I;,, the above quasi-isomorphisms give rise to the isomor-
phisms of Z/I"Z-representations of G Ly(Z,) x W, in the statement.

Further more, we deduce that the morphisms (dp7,4x1)*~!og* define a quasi-action
of GL,(Q,) on the direct limit (as M varies) of the complexes

RT(Masg, RV (Z)1"Z g, ) @%, (1) BUe(Juw, 2/ ),

which is compatible under the above isomorphisms with the quasi-action of the right
hand side. Thus, we conclude. O

8.1.5. We remark that, for all level U?, M, there are GLy(Z,) x Wg,-equivariant
spectral sequences

Dsttrqmp Ty oy (He(Manr, RV, (Z/1Z)), H (Ja,u0, Z/I'Z))
which abut the representations
H™(RLo(Ma s, RY T/ 0ty ),) @y RE (T, 2/ ),

foralln=p+p >0.
As UP, M vary, the Z/I"Z-modules

ln v a1 Bostsgmyy Tordy, o) (HEMants RO (Z/UD)), HE (Jan Z/UE))
are naturally endowed with an action of G(A*P) x Q) x (GLn(Zy),pln) x Wa,.

Moreover, this action induces an action on the limit of convergence which simply is
the restriction to G(A*?) x Q) X (G Ly (Zy), pln) x W, of the action of G(A>) x W, .
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8.2. The cohomology of the Rapoport-Zink spaces. — In this section, we
shall study the cohomology of the Rapoport-Zink more closely. In particular, we
have two goals in mind. On one hand, we want to relate the cohomology of the
rigid analytic Rapoport-Zink spaces to the cohomology of their special fibers, with
coeffiecients in the vanishing cycles sheaves, as it appears in theorem 8.2. On the
other hand, there is the proof of the admissibility of the representations associated
to the cohomology groups of the Igusa varieties and the Rapoport-Zink spaces, which
we prove in lemma 8.9. (The admissibiblity of these representations is an obviuos
prerequisite for describing our final result as an equality of virtual representations.)

We are very grateful to L. Fargues for explaining to us the results of this section
and correcting an early mistake.

8.2.1. Let a be a Newton polygon of dimension ¢ and height h. We denote by M,
the Rapoport-Zink space (without level structure) associated to the Barsotti-Tate
group ¥(® and, for any positive integer M, we write M2, for the Rapoport-Zink

rigid analytic space of level M over M!&.

8.2.2. We start by considering the case of cohomology with ["-torsion coefficients,
for any r > 1. We recall that the j-th cohomology group of the Rapoport-Zink
spaces associated to the Newton polygon « is defined to be the representation of
To x GLr(Qp) x Wo,

H} (Mg, Z/1"Z) = lim o HI (M52, xx K, Z/I"Z)
(see section 2.5), where the action of T, is the one induced by the left action of T,
on M7 %, (for all M) (see [28], Remark 1.3(i), p. 425).

On the other hand, because of theorem 8.2, we are induced to consider the Z/I"Z-
representations of To, X (GLn(Zy), pln) x Wo,

HJ (Mo xg, By, R9,(Z/I"Z)) = lim y H (Ma,n X5, By, RY0,(Z/1"7Z)),

for all j,q > 0.

The goal of this section is to understand the relation between the cohomology
groups of the rigid analytic Rapoport-Zink spaces and these modules.

More precisely, we shall establish a link between the Wg,-representations

Tory, () (HZ(Ma,nt X, Fp, R, (Z/1"Z)), 1)
and
Ext%(,—smooth(Hz (Mg,g]\/l XK K’ Z/ZTZ), H)

for any smooth Z/I"Z-representation II of T, and all levels M. (The above derived
functors are computed in the category of smooth Z/I"Z-representations of T, x Wg, ).
8.2.8. Let us fix the level M of the formal Rapoport-Zink space My » = Ma a1,
which we now simply denote by M, and write {U™? = Ug:g/[}n,d for the usual open
cover of M.
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By proposition 4.6, there exist some positive integers m,n,d such that the mor-
phism 7y @ Jn, XF, Ut — X(@) x I_Fp is surjective on geometric points, for some
N > d/éB. Equivalently, there exist some integers n,d such that the reduced fiber
of the Rapoport-Zink space M is covered by the opens pU, as p varies in T and
U = U™?. Indeed, since the maximal open compact subgroup I' C T stabilizes the
open U, it suffices to let p vary among a set of representatives of the cosets in T'/T".

For any positive integer s, we set

(T/D)5 = {t = (pol,...., paT) € (T/T)" il # p;TVi # 5}

and for any t = (pol,...,psI) € (T/F)‘;H, we write tU = poU N--- N p;U and
jiu 2 tU — M for the natural inclusion.

Let F be an abelian étale torsion sheaf over M, with torsion orders prime to p.
For any integer s > 0, we define an abelian étale torsion sheaf over M

CS(U7 *7:) = @te(T/r);jlth!(ﬂtU)'

Moreover, let t € (T/l");“, s > 1, and write t = (pol,... il psI) €
(T/F);, for all i = 0,...,s. Then, the natural inclusions tU C ‘U give rise to
some morphisms

Jew (Fev) = Jevi(Flev),
and analogously, for any p € T, the inclusion pU C M gives rise to a morphism
ij!(}—lpU) — F.
These maps induce some morphisms Cy (U, F) — Cys_1 (U, F) and Co(U, F) — F such
that the corresponding complex of sheaves over M
= C(U,F)— - Co(U,F) - F—0

is exact (we adopt the same alternating sign convention of the usual Cech complex).
Equivalently, there is a quasi-isomorphism in the derived category of abelian torsion
sheaves over M between the complex C.(U, F) and the sheaf F.

8.2.4. Let us now focus our attention of the action of the group T on M. This
action gives rise to an action of 7' on the cohomology groups H:(M,F) and
Hi(M,Cy(U, F)), for all i and s.

Moreover, for all i, s > 0, we can identify

Hi{(M,Cs(U,F)) = @, (r /F);ﬂHci(tU, F),

where the action of T can be interpreted, on the right hand side, as arising from the
isomorphisms

v :tU — ~tU,

which are induced by restriction from the action of v on M, for all v € T (if t =
(pol's..., psT) € (T/T)5H, we write 7t = (ypol,. .., ypsT)).
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For any s > 0, let t € (T/I‘)‘;H, t = (pols...,ppl"). If s > 1, we write € = ¢ =
(00 p1s--- 0 ps)] € \(T/T)% and Ue = U N po tpUN - NpytpsU. If s =0, we
write I‘\(T/l“)g,é ={e} and Us =U.

Then, the action of py € T gives rise to some isomorphisms

H(tU, F) = H (U, F),
for all 7, and thus to an identification of T-representations

@te(T/m;ﬂHi(tU, F) = @cer\aryrys.¢ — Indf (HL(U, F)),

where I'c = T'N ell"efl N---Nelegt is an open compact subgroup of T, for any
e=[(e1,...,e)] € T\(T/T')% and s > 0 (for s = 0, we write ['e =T").

8.2.5. Let s > 1, and for each € = [(€1,...,€)] € I'\(T/I')%, consider the open
U. ¢ M. We claim that the set

{e e T\(T/T)%|U: # &}

is finite, and empty for s sufficiently large. In fact, for any p € T, the set UNpU = @
unless p € T%4, i.e. unless both p?p and p?p~! are isogenies. (This fact follows from
the equalities p?p = (p?~ ") (p"Bp) and plp~' = (p*"p~'371)(p"B), for some
B e€UnpU.) Thus, if U, # @, then € € F\(Td’d/F);. Since T4¢ C T is compact, the
set 794 /T is finite and moreover (Tdvd/F); =@ if s > #(T44)T).

It follows that the complex C.(U,F) is bounded (indeed Cs(U,F) = 0 if s >
#(T%4/T) ), and thus the above considerations give rise to the following proposition.

Proposition 8.3. — Let F be an object in the derived category of abelian I”-torsion
sheaves over M.
Then, there is a spectral sequence of /1" Z-representations of T x W,

Eig’t = GaeEF\(T/F);C — Ind%l Hz(Ue,f) = Hcs+t(~/\;la]:)

In particular, if F is a constructible sheaf, the representations HE(M,F) are
smooth of finite type for the action of T, for all k > 0.

Proof. — The above spectral sequence arises from the quasi-isomorphism in the de-
rived category

RT(M,F) = RT(M,C.(U,F)) = Geer\(ryry, ¢ — Indf, RTc(Ue, F).

For F a constructible sheaf , the cohomology groups H.(U.,F) are finite, for
all ,¢ > 0. Moreover, the set I'\(T'/T')% is finite, for any s > 0, and thus the
representations Deer\(1/1)s, c—Ind%l H!(U, F) are smooth of finite type for the action
of T. Tt follows from the fact that the category of smooth representations of finite
type of T' is noetherian and closed under extensions (see [8]) that the representations
HE(M, F) are also smooth of finite type. O
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Lemma 8.4. — Let A denote Z/I"Z (for some r > 1) or Q;, and denote by A(T,,)
the Hecke algebra of T, with coefficients in A.

Let M be a finite smooth A-representation of K x GLp(Zy) x W, for K C T a
open compact subgroup, and denote by MV its dual.

For any admissible A-representation II of T x Wq,, and any integer j > 0, there
exists an isomorphism

Exth, o (c— Indg MY TI) ~ Torfx(T) (c — Ind}; M, 1),

equivariant for the action of Wg,.
Moreover, the above modules are finite and vanish for j sufficiently large.

Proof. — The vanishing of the modules Ea:tjffsmooth (¢ — IndL-MV 10) for j suffi-
ciently large (e.g. j greater than the rank of T') is proved in [10] (lemma 4.3.12, pp.
69-70).

On the other hand, if F. — II is a projective resolution of II, then one can use such
resolution to compute both

Torly gy (e~ IndE ML TT) = H9 e~ IndigM 1, F)

and
Ext%"—smooth (C - Iﬂd%;Mv, H) - Hj (HomT—smooth (C - Ind{(Mvv F))

Thus, in order to conclude, it suffices to prove that for any smooth projective
representation F', there exists an isomorphism

¢ — IndjeM ®nr) F =2 Homp— smootn (¢ — Inde MY, F),
equivatiant for the action of GL(Zy,) x Wg,, and that the above modules are finite.
By Frobenius reciprocity, we have a canonical isomorphism

HomT—sm,ooth(C - IndJI;Mvv F) = HomK—smooth(MV7 ﬂK)7

where we denote by F|x the restriction of the T-representation F' to the compact
subgroup K C T. Moreover, since the K-representation M is smooth and finite,
there exists an open compact normal subgroup K’ C K such that M = M¥ ' (and
thus also MY = (MY)X"). We deduce that

Homesmooth(Mv; —F|K) = Homesmooth(nyFK/%

which is indeed finite since the representation F' is admissible.
Further more, we can rewrite

Homry_smooth (¢ — Indk MY | F) ~ Homa (M, F)K ~ (M ®z/1rz F)K
and, analoguously,
c—Indk M ®p¢r) F = (M @5 F)k.

For any A-representation V' of K, the morphism e : V — V gives rise to an isomor-
phism Vi ~ VE, O
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It is a direct consequence of the above lemma that, for any smooth Z/I"Z-
representations V' of T of finite type and any admissible representations II, the
modules Tor%r ) (V,II) are finite. (In fact, any smooth representation of finite type
V' admits a resolution by representations of the form @;cjc — I nd};iMi, for some
open compact subgroups K; C T, some finite free Z/I"Z-modules M;, endowed with
an action of K, and some finite set I.)

Moreover, it also follows from lemma 4.3.12 in [10] that the above modules vanish
for j sufficiently large.

In particular, one can combine the above lemma and proposition 8.3 to obtain the
following corollary.

Corollary 8.5. — Let F be a constructible sheaves over M and II be an admissible
Z.]I" Z-representations of T x W, .
There is an equality of virtual Z/1" Z-representations of Wy, .

Tor$, ) (HY(M,F), ML) = > Tory, iq(c—Indf HE(U.,F),II).
eel'\(T/T)%,

8.2.6. Let us remark that, in particular, the above corallary applies to the case of
F = RV, (Z/I"Z), for any ¢ > 0. (The complex of vanishing cycles sheaves of the
integral model M is indeed bounded and constructible since, locally on M, they can
be identified to the vanishing cycles sheaves of some schemes of finite type.)

Further more, in the case of the complex F = R, (Z/I"7Z), we obtain the following
result. (We reintroduce the level M in our notations.)

Corollary 8.6. — Let I be an admissible Z /1" Z-representations of T x Wo, .
There is an equality of virtual Z/1" Z-representations of (G Ly(Zy), pln) x Wo, C
GL,(Qp) x Wa,

lim o Torfy () (HS (Mag, R0, (Z/I'Z)), 1) =
= Y limyToryy g (c— Indf HS(Uear, R*Y,(Z/1"Z)),1I).
€T\(T/T)%,
Proof. — Tt suffices to remark that the quasi-isomorphisms in the derived category
RTc(Mar, R, (Z/U'Z)) =~ Seery(ryry, ¢ — Indp, RTe(Uenr, RY,(Z/1'Z))

are equivariant under the action of GLj(Z,) and the morphisms p’lﬂ’,';, as M varies.
O

Since we are interested in applying the above corollary to the case of Il equal to the
cohomology of the Igusa varieties, let us recall that the representations of 7' x Wo,
associated to the cohomology of the Igusa varieties of level UP (for any sufficiently
small open compact subgroup U? of G(A°?)) are indeed admissible (see remark 3.9).
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8.2.7. We now focus our attention on the cohomology groups
RU(Ue, R™,(Z/1"Z)),

for all integer j,q > 0 and any ¢ € F\(T/F);, for some s > 0, as representations of
I'e x GLy(Zy) x Wg,. We recall that I'. C T' is an open compact subgroup and Ul
an open subscheme, of finite type, of the reduction M of the formal Rapoport-Zink
space M = Mg ar g

For all ¢, we denote by U the closure of the open U, C M. Then, the complement
U — U, is also a closed subscheme of M. In particular, both U and U¢! — U, proper
schemes.

For any object F in the derived category of abelian torsion étale sheaves, the
inclusion U, C U gives rise to an exact triangle

RF UE,]: Ucl ]_-)
LU —U., F)

and in particular, for 7 = R, (Z/I"Z), part (2) of proposition 2.22 implies that there
is an exact triangle

RT (U, RV, (Z/I"Z)) RT(sp~ U x K,7,)I"7)

T

R (sp~ Y (U -~ U,) xx K,Z/I"7Z)

where sp : M“g = (Ma,m)y — M = (Mg,m)s denotes the reduction map (see
section 2.7.1).

Let us recall that the rigid analytic spaces sp~ U and sp~ 1 (U —U,) = sp~ U —
sp~1U, are by definition some open subspaces of M8 = /\/ligM, and therefore in
particular they are smooth. Thus, Poincaré duality imples that

Hi(sp U xx K,Z/I"Z(D)) ~ H*P~9(sp~ U x i K,Z/I"Z)",
and
Hi(sp " (U — U.) xx K,ZJI"Z(D)) ~ H*~4(sp~ (U — U,) x ¢ K,Z)I"7)"
where D = q(h — ¢) the dimension of the Rapoport-Zink spaces and M" denotes the
dual of M, for any Z/1"Z-module M.

8.2.8. The cohomology with compact supports of the rigid analytic space M™& can
be described in terms of the above cohomology with compact supports of the opens
sp~tUC. Indeed, in [10] (section 4.3, pp. 67 — 72) Fargues proves the analogue of
proposition 8.3 for the cohomology with compact support of the rigid analytic space
Mg In his result, the role of the open U = U™? C M is played by any V C M"8,
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such that M"& = Uper pV, for V either an open subset or a closed analytic domain
(e.g. V =sp U sp~1U).
In particular, there is an equality of virtual Z/I" Z-representations of Wy,

Ext’;‘fsmooth (Hc.(Mrig XK K’ Z/ITZ(_D))v H) =

= Y Eaty_ e (c— Indf, H (Ve xx K, Z/I"Z(-D)),T0),
e€T\(T/T),

for any admissible Z/I" Z-representation II of T' x W, .

8.2.9. Let us now reintroduce the level at p, M, in our notations and consider how
the previous construction behaves, as M varies, under the action of GL;,(Q,).

Let Vy be an open subset or a closed analytic domain of the Rapoport-Zink space
with no level structure Mg¢ such that ./\/l(r]ig = Uper pVo. We denote by Vi the
pullback of V; under the projection M}y? — Mg®, for all M > 1. Then, M}F =
Uper pVar and the action of GL(Qy) on the system of rigid analytic Rapoport-Zink
spaces preserves such decompositions.

We deduce that, for any admissible Z/I" Z-representation II of T x Wg,, there is
an equality of virtual Z/I" Z-representations of GLj(Q,) x Wo,

@ M Emt;’—smooth (Hc. ('/\/11;\1/[g XK Ka Z/ZTZ(_D))’ H) =

= Z lim vy Boty oo (¢ — Indf H? (Venr xx K, Z/I"Z(=D)),T0).
€T\ (T/T)%,

Finally, we remark that the analoguous results also hold for the [-adic cohomology
groups. More precisely, in [10] Fargues proves that, for all M > 0, there is a spectral
sequence of -representations of T' x Wg,

Ef’t = 696€I‘\(T/I‘);c - Ind%ﬂeHé(Vé,Ma Ql(_D)) = Hs+t(Ml;\i/}g7 Ql(_D))>
and thus the equality of virtual Q;-representations of GL,(Q,) x Wo,

lii,n M E‘rt’;‘fsmooth ('I:Ic.('/\/lg\l/lg XK K’Ql(_D))’ H) =

= Z hﬂ} M Emt’}—smooth (C - Indgﬁ Hc.(‘/ﬁM XK K’ Ql(_D))’H)v
c€T\(T/T)%,
for any admissible Z/I"Z-representation II of T' x Wq,. (We recall that the I-
adic cohomology groups of the Rapoport-Zink spaces are defined as the smooth
Qq-representations of T,, x Wg,

HI (M3, Q) = lim , g(lim, H] (U378 x x x K, Z/I"Z) @7, Q1),

for all j > 0 and any level M > 0.)
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Theorem 8.7. — Let II be an admissible /1" Z-representation of T x Wq, .
Then, there is an equality of virtual Z/1"Z-representations of (GLy(Zy),ply) X
VVQp C GLh(Qp) X W@p

hﬂ)l M TOT’;—(T(T) (H: (M]\/Ia R.\IIH(Z/ZTZ))v H) =

= hi{l M Emt%fsmooth (H;(Ml;\l/}g XK R’ Z/ZTZ(_D))7H)7

where D = q(h — q) the dimension of the Rapoport-Zink space M.

Proof. — Combining lemma 8.4 and corollary 8.6 with the equalities corresponding
to the exact triangles in section 8.2.7 and Poincaré duality, we obtain (for all M > 0)

Tors, (ry (HS(Mar, R*W, (Z/1"Z)),1T) =

= N Torsy ) (c— Indf. HY (Ue, RV, (Z/1'Z)),11) =
ceT\(T/T)s,

— > (Tor;ir(T) (c— IndE H*(sp™'U xx K,Z/I"Z),11) +
eeI'\(T/T)%,

—Tor3, (p) (¢ — Indt, H*(sp™ (U = Ue) xx K, Z/I"ZL), H)) =
= > (Tor;ir(T) (c — Indk H2 (sp™ U xx K,Z/I"Z(—D))",1I) +
€T\ (T/T)s,
—Tory, (1) (c— Ind{ HS(sp™ ' (US - U.) xk sz/lTZ(D))VJT)) =
= Z (Ext;"—smooth (c—Ind%e Hc.(spierd XK K7Z/ZTZ(—D))’H) +
c€T\(T/T)%,

_Ext%—s7rLoot/L (C - Ind,ll':g H(:(Spil(UeCl - UC) XK K7 Z/ZTZ(_D))v H)) .

Let us consider the open V = sp~'U¢ (resp. the closed analytic domain V =
sp~'Uc). Then, for all e € T\(T/T)%, s > 0, we have V. = sp~'U (vesp. V. =
sp~tU.). Tt follows that there are equalities of virtual Z/I”Z-representations of
GLn(Qp) x Wy,

i a1 Eat_ oo (S (MU x5 K, 2/UZ(~D)), TT) =
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= lim y ExtS._ ¢ —IndLt H*(sp~'U% xx K,Z/I"Z(—D)),1I
Py T —smooth I c €

eEF\(T/F);
= hi,n M Z Emt}fsmooth (C_ Ind%l Hc.(spilUE XKkvz/lTZ(_D))7H)
eEF\(T/F);

Further more, the open inclusions sp~ (U — U,) = sp~ U — sp~1U, — sp~1UZ
give rise to the equalities

H?(sp YUY — Ue) xx K,Z/I"Z(—D)),1I) =

= H2(sp U x i K,Z/I"Z(—D)),II) — H*(sp~'U. xx K,Z/I"Z(—D)),1I).
Substituting the terms on the right hand side of our formula, accordingly with the

last three equalities, we deduce the equality in the statement. O

8.2.10. Finally, it is possible to improve theorem 8.7, by considering the integral
models M, a4, for all g € GL,(Q,) 7.
Let us consider the Z/I"Z-modules

H"(RT (Mo, R, (Z/I"Z)) ®3; () TT)

for any admissible representation Il of 7" x Wg, and n > 0. For all n > 0, the direct
limits
lim py H"(RTo(Mar, RV, (Z/1"Z)) ©F, () 1)

are naturally endowed with an action of (GLy(Zy), pln) x Wg,, and also with the
morphisms induced by the maps

Oprg© 9" RLe(Mur—c, RU,(Z/I"Z)) — RU(Mar, R, (Z/1"Z)),

for all g € GL,(Q,)T and M > e = e(g).
By corollary 8.6, we can write

lim y H*(RT (Mo, RV, (Z/1"Z)) @7 () 1) =

=lim s Tor}, () (HZ (Ma,nr, R* Wy (Z/1"2)), 1)

as virtual Z/I"Z-representations of (G Ly (Zy),pln) x Wo, C GLr(Qp) x Wo, .
Then, Theorem 90 implies that there in an equality of virtual Z/I"Z-representations
of (GLp(Zp), pln) x Wo,

lim ps H*(RT (Mo, RV, (Z/1'Z)) @7, oy ) =

= h_H)l M Emt;"fsmooth (Hc. (Mrig XK Ra Z/ZTZ(_DDv H)v

where the virtual representation on the right hand side is the restriction to the sub-
group (G Ly (Zy), pl) x Wy, of a representation of GLj(Qp) x Wo,.
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Proposition 8.8. — Let Il be an admissible Z/1" Z-representation of T x Wq, .
The morphisms induced by the maps 5}‘\]7; 0g*, g€ GLy(Qp)*, on the modules

lim p H"(RTo(Mar, RV, (Z/I"Z)) @5, () TD),

define an action of GLy(Qy) which extends the action of (GLy(Zy),ply) C GLy(Qp)
and commutes with the action of Wq,.
Moreover, there is an equality of virtual Z /1" Z-representations of GLy(Qp) x Wo,

lim ps H*(RTo(Ma, v, R, (Z/1"Z)) @3 o0y 1) =
= lim v Eaty_ oo (HE(M™8 x i K, Z/I"Z(-D)),11).

Proof. — First, let us remark that the equalities in theorem 8.7 arise from some
quasi-isomorphisms

RT(Mar, RV, (Z/1I"Z)) @5 () T ~

~ RHom — smootn (R -(M"8 x i K,7/I"Z(—D)), 1)

which are compatible not only with the action of (GLy(Zy), pln) x W, , but also with
the morphisms associated to the elements g € GL,(Q,)™, as M varies.

As the level M varies, the action of GLj(Q,) on the complex on the right hand
side give rise to an action on the cohomology groups

lim y H*(RHomr—smooth (RTe(M"® x i K, Z/I"Z(—D)), 1)) =

@ M Ext’}—smooth (H: (Mrig XK K, Z/lrz(iD))v H)

It follows, in particular, that the morphisms induced on the complex on the left
hand side by the maps 6}‘\4_7; og*, g € GL,(Q,)*, are quasi-isomorphisms and that,
for all n > 0, there is an isomorphisms of Z/I"Z representations of GLx(Q,) x Wo,

lim ny H"(RTe(Mar, RV, (Z/1"Z)) @F, oy 1) =

=lim yy H"(RHOMT —smooth (RT(M™® x i K, Z/I"Z(—D)),10)).
O

8.3. An equality in the Grothendieck group. — In the following, we shall
apply combine the results of the previous sections in a formula describing the [l-adic
cohomology of the Shimura varieties, in terms of the [-adic cohomology of the Igusa
varieties and the Rapoport-Zink spaces, as virtual representations.
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8.3.1. First, we recall the notations for the l-adic-cohomology groups of the Igusa
varieties.

For any level away from p, UP and any Newton polygons «, of dimension g and
height h, we define, for all integer j > 0,

Hg(Ja,UPan) = h_H)l m(l(iﬂerg(JogUTﬁm X]Fp XFp,Z/ZTZ> ®Zl Ql)
as an admissible representation of T,, x Wg,, and
H(Jo, Q) = lim 7o H (Jo, 0, Q1)

as an admissible Q-representation of T, x G(A®P) x Q) x Wo, .

Lemma 8.9. — Let o be a Newton polygon , of dimension q and height h. For all
positive integers d, e, f, the l-adic representations of G(A>) x Wq,

hi,n UP7MExt§“a—smooth(Hce(Mg%M XK R>Ql)’Hg(Ja7Ql)) =

= hﬂ} UP7M(1<i£1T Ext %a—smooth(Hce(Mgth XK I_(7 Z/ZTZ)7 Hg(JOt7Up7 Z/ZTZ))) ®Zl Ql'

Moreover, they are admissible and vanish for d, e, f sufficiently large.

Proof. — Tt follows from the definitions that it is enough to show that, for all level
UP, M,
Ext %Qfsmooth(Hce(Mg,gM XK KV Ql)’ Hg(JOM Ql)) =
= @r Ext g“a—smooth (Hce (ngglw XK K? Z/ZTZ)7 Hg(JOU Z/ZTZ)) ®z, Qi

and that they are finite dimensional vector spaces, which vanish for d, e, f sufficiently
large.

Let us fix a level UP, M. We choose an closed analytic domain Vy C Mf;go as in
section 8.2.9, and denote by V}, its pullback under the projection MS’gM — MQ?O.

The equalities in section 8.2.9 reduce the proof of lemma to showing that for all
e I\(To/T)%, s 20,

E‘rt’;‘afsmooth (C - Indlj':? Hc.(VvE’M XK K7Ql)7Hc.(Ja,UP7QZ)) =
= @T(Ext”}a—smooth (C - I’I’Ld%}: HC.(VQM XK K’ Z/ZTZ)7 Hc.(JOuUpv Z/ZTZ))) Rz, Ql7
or equivalently, up to Tate twist, that
Torsyr, (c— Ind;‘f‘: H* (Vo xx K,Qp), H2 (Jovr, Q) =

=lim,(Tory, (1) (c— Ind%:j H*(Verr X K,ZJU'Z), H2 (Jo v, ZJI'Z))) @z, Qi
where we write H(T,) for the Hecke algerba of T, with coefficients in @Q;. (The
equivalence between the two equalities follows from Poincaré duality and lemma 8.4.)

Since the l-adic cohomology groups H:(V. ar, Q) are finite dimensional, for all
1 > 0, there exists an open compact normal subgroup K. C I'c which acts on them

trivially. Indeed, we can choose K. such that is acts trivially on the representations
Hi(Vear,ZJI"Z), for all i > 0 and r > 1.
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Let m. be a positive integer such that '« C K. C I'c (we remark that m, exists
since the subgroups I'™, m > 0, form a basis of open subgroups of T,,). Then, proving
the previous equality of virtual Q;-representations of Wy, is equivalent to proving that

TOT;—L(FE/Ks) (H.(‘/;,M XK K;Ql)aHZ(Ja,UP,mean)) =

=lim,(Tor3, v,k (H*(Vers xx K, Z/I"Z), HE (Jo,urm.. Z/I"Z))) @z, Q-

which follows from the next lemma. O

Lemma 8.10. — Let G be an abstract finite group of order a power of p, and write
H(G) = QiG] and H,(G) = Z/I"Z|G], for all T > 1.
Let (M;)r>1 and (N;),y>1 be two A-R l-adic systems, such that "M, =0 =1[1"N,,
which are endowed with an action of G. We write M = liglr M, and N = liinr N,.
Then, for alli > 0, we have

TOT 'ZH(G) (M ®Zl Ql7 N ®Zl Ql) = @TTOT :LHr(G) (M’M N’r‘) ®Zl Ql'

Proof. — Let us remark that without loss of generality we may replace M, (resp.
N;) by M/I" = M ®gz, Z)I"Z (resp. N/I" = N ®g, Z/I"Z), for all r > 1, since the two
modules differ by a torsion module of bounded order. Thus, it suffices to prove that,
for all i > 0,

TOT%-{(G)(M ®z, Qi, N ®z, Qi) = liLnTTOT ;{,.(G)(M/lrvN/lr) ®z, Q.

Let us remark that the modules Tor %T(G)(M/ZT,N/ZT) clearly satisfy the M-L
condition and thus the functors

N — TOT%T(G)(M/ZT’N/ZT) ®z, Qi,

for ¢ > 0, form a -functor from the category of finitely generated Z;-modules, endowed
with an action of G, to the category of finite dimensional Q;-vector spaces.

Moreover, it is easy to see that, as a d-functor, it is effaceable (e.g. any finitely
generated Z;-module, endowed with an action of GG, admits an epimorphism from a
module of the form [ nd?l}(ZlT) = Z;‘Gl, for some integer r > 0, which is acyclic for
the above d-functor).

For any finitely generated Z;-module N, endowed with an action of G, let N —
Tor (M, N) be the derived functors of N — (M° ®z, N)g, for i > 0.

Then, we can identify

Tor 'ZH(G) (M ®Zl Qly N ®Zz Ql) = TOT,LCJ(Mv N) ®Zl Ql7
and deduce the existence of a natural morphisms of §-functors
Torsyay(M ®z, Qi, N ®z, Qi) — lim, Tory, ) (M/I", N/I") @z, Q.

Then, in order to conclude it suffices to remark that the above morphism is indeed
an isomorphism for i = 0. O
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We have finally completed all the steps necessary to obtain the following description
of the [-adic cohomology of the Shimura varieties.

Theorem 8.11. — There is an equality of virtual representations of the group
G(A™>) x Wy,
Y (=DHN(X,Q)% =
t
= Z (_1)d+e+fl.£,n ME‘rt%afsmooth(Hce(Mrai,gM XK K7 @l(_D))7 Hg(Ja’ Ql))
a,d,e, f

where d, e, f are positive integers and o varies among the Netwon polygons of dimen-
siton q and height h.

Proof. — This follows from proposition 8.1, theorem 8.2, proposition 8.8 and lemma
8.9. O

We conclude by remarking that theorem 8.11 is compatible with corollary 4.5.1 in
[10].
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