
CORRELATIONS OF THE VON MANGOLDT AND HIGHER
DIVISOR FUNCTIONS I. LONG SHIFT RANGES
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Abstract. We study asymptotics for the sums
∑
X<n≤2X Λ(n)Λ(n+h),

∑
X<n≤2X dk(n)dl(n+

h),
∑
X<n≤2X Λ(n)dk(n+ h), and

∑
n Λ(n)Λ(N − n), where Λ is the von Man-

goldt function, dk is the kth divisor function, and N,X are large. Our main
result is that the expected asymptotic for the first three sums holds for al-
most all h ∈ [−H,H], provided that Xσ+ε ≤ H ≤ X1−ε for some ε > 0,
where σ := 8

33 = 0.2424 . . .. This improves upon results of Mikawa and Baier-
Browning-Marasingha-Zhao, who obtained analogous results with σ replaced by
1
3 . We obtain an analogous result for the fourth sum for most N in an interval of

the form [X,X+H] with Xσ+ε ≤ H ≤ X1−ε. Our method is based on an argu-
ment of Zhan, using the circle method and some oscillatory integral estimates to
reduce matters to establishing some mean-value estimates for certain Dirichlet
polynomials associated to “Type d3” and “Type d4” sums (as well as some other
sums that are easier to treat). After applying Hölder’s inequality to the Type
d3 sum, one is left with two expressions, one of which we can control using a
short interval mean value theorem of Jutila, and the other we can control using
exponential sum estimates of Robert and Sargos. The Type d4 sum is treated
similarly using the classical L2 mean value theorem and the classical van der
Corput exponential sum estimates.

In a sequel to this paper we will obtain some weaker results of this nature for
smaller values of H.

1. Introduction

This paper (as well as the sequel [55]) will be concerned with the asymptotic
estimation of correlations of the form

∑
X<n≤2X

f(n)g(n+ h) (1)

for various functions f, g : Z → C and large X, and for “most” integers h in the
range |h| ≤ H for some H = H(X) growing in X at a moderate rate (in this
paper we will mostly be concerned with the regime where H = Xθ for some fixed

1
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0 < θ < 1). We will focus our attention on the particularly well studied correlations∑
X<n≤2X

Λ(n)Λ(n+ h) (2)∑
X<n≤2X

dk(n)dl(n+ h) (3)∑
X<n≤2X

Λ(n)dk(n+ h) (4)∑
n

Λ(n)Λ(X − n) (5)

for fixed k, l ≥ 2, where Λ is the von Mangoldt function and

dk(n) :=
∑

n1...nk=n

1

is the kth divisor function, adopting the convention that Λ(n) = dk(n) = 0 for
n ≤ 0. Of course, to interpret (5) properly one needs to take X to be an integer,
and then one can split this expression by symmetry into what is essentially twice
a sum of the form (1) with X replaced by X/2, f(n) := Λ(n), g(n) := Λ(−n), and
h := −X. One can also work with the range 1 ≤ n ≤ X rather than X < n ≤ 2X
for (2), (3), (4) with only minor changes to the arguments below. As is well
known, the von Mangoldt function Λ behaves similarly in many ways to the divisor
functions dk for k moderately large, with identities such as the Linnik identity [48]
and the Heath-Brown identity [31] providing an explicit connection between the
two functions. Because of this, we will be able to treat both Λ and dk in a largely
unified fashion.

In the regime when h is fixed and non-zero, and X goes to infinity, we have well
established conjectures for the asymptotic values of each of the above expressions:

Conjecture 1.1. Let h be a fixed non-zero integer, and let k, l ≥ 2 be fixed natural
numbers.

(i) (Hardy-Littlewood prime tuples conjecture [28]) We have1∑
X<n≤2X

Λ(n)Λ(n+ h) = S(h)X +O(X1/2+o(1)) (6)

as X → ∞, where the singular series S(h) vanishes if h is odd, and is
equal to

S(h) := 2Π2

∏
p|h:p>2

p− 1

p− 2
(7)

when h is even, where Π2 :=
∏

p>2(1− 1
(p−1)2

) is the twin prime constant.

1See Section 2 for the asymptotic notation used in this paper.
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(ii) (Divisor correlation conjecture [78], [37], [10, Conjecture 3]) We have2∑
X<n≤2X

dk(n)dl(n+ h) = Pk,l,h(logX)X +O(X1/2+o(1)) (8)

as X →∞, for some polynomial Pk,l,h of degree k + l − 2.
(iii) (Higher order Titchmarsh divisor problem) We have∑

X<n≤2X

Λ(n)dk(n+ h) = Qk,h(logX)X +O(X1/2+o(1)) (9)

as X →∞, for some polynomial Qk,h of degree k − 1.
(iv) (Quantitative Goldbach conjecture, see e.g. [41, Ch. 19]) We have∑

n

Λ(n)Λ(X − n) = S(X)X +O(X1/2+o(1)) (10)

as X → ∞, where S(X) was defined in (7) and X is restricted to be
integer.

Remark 1.2. The polynomials Pk,l,h are in principle computable (see [10] for an
explicit formula), but they become quite messy in their lower order terms. For in-
stance, a classical result of Ingham [36] shows that the leading term in the quadratic
polynomial P2,2,h(t) is ( 6

π2

∑
d|h

1
d
)t2, but the lower order terms of this polynomial,

computed in [17] (with the sum
∑

X<n≤2X replaced with the closely related sum∑
n≤X), are significantly more complicated. A similar situation occurs for Qk,h;

see for instance [19] for an explicit formula for Q2,h. The top degree terms of
Pk,l,h, Qk,h are however easy to predict from standard probablistic heuristics: one
should have

Pk,l,h(t) =
tk−1

(k − 1)!

tl−1

(l − 1)!

(∏
p

Sk,l,p(h)

)
+Ok,l,h(t

k+l−3) (11)

and

Qk,h(t) =
tk−1

(k − 1)!

(∏
p

Sk,p(h)

)
+Ok,h(t

k−2)

2In [78] it is conjectured (in the k = l case) that the error term is only bounded by
O(x1−1/k+o(1)), and in [37] it is in fact conjectured that the error term is not better than this;
see also [39] for further discussion. Interestingly, in the function field case (replacing Z by Fq[t])

the error term was bounded by O(q−1/2) times the main term in the large q limit in [1], but
this only gives square root cancellation in the degree 1 case n = 1 and so does not seem to give
strong guidance as to the size of the error term in the large n limit.



4 KAISA MATOMÄKI, MAKSYM RADZIWI L L, AND TERENCE TAO

where the local factors Sk,l,p(h),Sk,p(h) are defined by the formulae3

Sk,l,p(h) :=
Edk,p(n)dl,p(n + h)

Edk,p(n)Edl,p(n)

and

Sk,p(h) :=
Edk,p(n)Λp(n + h)

Edk,p(n)EΛp(n)

where n is a random variable drawn from the profinite integers Ẑ with uniform
Haar probability measure, dk,p(n) :=

(
vp(n)+k−1

k−1

)
is the local component of dk at p

(with the p-valuation vp(n) being the supremum of all j such that pj divides n),
and Λp(n) := p

p−1
1p-n is the local component of Λ. See for instance [69, §4] for an

explanation of these heuristics and a verification of the asymptotic (11) in the case
k = l, as well as an explicit formula for the local factor Sk,k,p(h). For comparison,
it is easy to see that

S(h) =
∏
p

EΛp(n)Λp(n + h)

EΛp(n)EΛp(n)

for all non-zero integers h, and similarly

S(X) =
∏
p

EΛp(n)Λp(X − n)

EΛp(n)EΛp(n)

for all non-zero integers X.

Conjecture 1.1 is considered to be quite difficult, particularly when k and l are
large, even if one allows the error term to be larger than X1/2+o(1) (but still smaller
than the main term). The objective of this paper is to obtain a weaker version
of this conjecture in which the error terms are weaker, and one is content with
obtaining the asymptotics for most h in a given range [h0 − H, h0 + H], rather
than for all h. This is in analogy with our recent work on Chowla and Elliott type
conjectures for bounded multiplicative functions [54], although our methods here
are somewhat different4. Our ranges of h will be shorter than those in previous
literature on Conjecture 1.1, although they cannot be made arbitrarily slowly
growing with X as was the case for bounded multiplicative functions in [54]. In
particular, our methods will certainly be unable to unconditionally handle intervals
of length X1/6−ε or shorter for any ε > 0, since it is not even known5 currently if the

3One can simplify these formulae slightly by observing that Edk,p(n) = (1 − 1
p )1−k and

EΛp(n) = 1.
4In particular, the arguments in [54] rely heavily on multiplicativity in small primes, which

is absent in the case of the von Mangoldt function, and in the case of the divisor functions dk
would not be strong enough to give error terms of size OA(log−A x) times the main term. In any
event, the arguments in this paper certainly cannot work for H slower than logX even if one
assumes conjectures such as GLH, GRH, or EH, as the h = 0 term would dominate all of the
averages considered here.

5See [82] for the best known result in this direction.
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prime number theorem is valid in most intervals of the form [X,X +X1/6−ε], and
such a result would easily follow from an averaging argument (using a well-known
calculation of Gallagher [25]) if we knew the prime tuples conjecture (6) for most
h = O(X1/6−ε). However, one can do much better than this if one assumes powerful
conjectures such as the Generalized Lindelöf Hypothesis (GLH), the Generalized
Riemann Hypothesis (GRH), or the Elliott-Halberstam conjecture (EH); also, in
the case of the divisor correlation conjecture (8), one can obtain much shorter
values of H (but with a much weaker error term) by modifying the methods in
[52], [54]. We will address these issues in a sequel [55] to this paper.

1.1. Prior results. We now discuss some partial progress on each of the four parts
to Conjecture 1.1, starting with the prime tuples conjecture (6). The conjecture
(6) is trivial for odd h, so we now restrict attention to even h. In this case, even
the weaker estimate ∑

X<n≤2X

Λ(n)Λ(n+ h) = S(h)X + o(X) (12)

is not known to hold for any single choice of h; for instance, the case h = 2 would
imply the twin prime conjecture, which remains open. One can of course use sieve
theoretic methods (see e.g. [62, Corollary 3.14]) to obtain the upper bound∑

X<n≤2X

Λ(n)Λ(n+ h)� S(h)X (13)

uniformly for |h| ≤ X (say).
There are a number of results [4], [80], [59], [44] that show that (6) holds for

“most” h with |h| ≤ H, as long as H grows moderately quickly with X. The best
known result in the literature (with respect to the range of H) is by Mikawa [59],
who showed (in our notation) that if X1/3+ε ≤ H ≤ X1−ε for some6 fixed ε > 0,
then the estimate (12) holds for all but OA,ε(H log−AX) values of h with |h| ≤ H,
for any fixed A; in fact the o(X) error term in (12) can also be taken to be of the
form OA,ε(X log−AX).

Now we turn to the divisor correlation conjecture (8). These correlations have
been studied by many authors [35], [36], [17], [48], [30], [64], [65], [66], [67], [45],
[13], [14], [77], [23], [37], [38], [10], [39], [58], [7], [15], [69]. When k = 2, the
conjecture is known to be true with a somewhat worse error term; the current

6One can also handle the range X1−ε ≤ H ≤ X by the same methods; see [59]. However,
we restrict H to be slightly smaller than X here in order to avoid some minor technicalities
arising from the fact that n+h might have a slightly different magnitude than n, which becomes
relevant when dealing with the dk functions, whose average value depends on the magnitude on
the argument.
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records are∑
X<n≤2X

d2(n)d2(n+ h) = P2,2,h(logX)X +O(X2/3+o(1))∑
X<n≤2X

d2(n)d3(n+ h) = P2,3,h(logX)X +O(X1−δ+o(1))∑
X<n≤2X

d2(n)dl(n+ h) = P2,l,h(logX)X +Ol(X exp(−cl
√

logX))

as X → ∞ and l ≥ 3, for some δ > 0 and cl > 0; these results are due to
Deshouillers and Iwaniec [14], Deshouillers [13] and Topacogullari [77], and Fouvry
and Tenenbaum [23] respectively, with such tools used as the Linnik dispersion
method and estimates on Kloosterman sums. In the final case l ≥ 3, a power
savings ∑

X<n≤2X

d2(n)dl(n+ h) = P2,l,h(logX)X +O(X1−δk+o(1))

is known assuming GRH or GLH [7], [15]. See [15], [69] for further references and
surveys of the problem. Finally, we remark that a function field analogue of (8) has
been established in [1], but with an error term that is only bounded by Ok,l(q

−1/2)
times the main term (so the result pertains to the “large q limit” rather than the
“large n limit”).

Of course, one has similar results when one has l = 2 instead of k = 2. When
k, l ≥ 3, no unconditional proof of even the weaker asymptotic∑

X<n≤2X

dk(n)dl(n+ h) = Pk,l,h(logX)X + o(X logk+l−2X)

is known. However, upper and lower bounds of the correct order of magnitude
are known [69] (one can also use the pseudorandom majorants constructed by
Matthiesen [56, 57] or the estimates of Henriot [33], [34] for upper bounds).

In the case k = l = 3, the analogue of Mikawa’s results (now with a power
savings in error terms) were recently established by Baier, Browning, Marasingha,
and Zhao [3], who were able to obtain the asymptotic∑

X<n≤2X

d3(n)d3(n+ h) = P3,3,h(logX)X +O(X1−δ)

for all but Oε(HX
−δ) choices of h with |h| ≤ H, provided that X1/3+ε ≤ H ≤ X1−ε

for some fixed ε > 0, and δ > 0 is a small exponent depending only on ε.
Next, we turn to the (higher order) Titchmarsh divisor problem (9). This prob-

lem is often expressed in terms of computing an asymptotic for
∑

p≤X dk(p + h)

rather than
∑

X<n≤2X Λ(n)dk(n + h), but the two sums can be related to each
other via summation by parts up to negligible error terms, so it is fairly easy to
translate results about one sum to the other. The k = 2 case with qualitative error
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term was established by Linnik [48]. This result was improved by Fouvry [21] and
Bombieri-Friedlander-Iwaniec [5], who in our notation showed that∑

X<n≤2X

Λ(n)d2(n+ h) = Q2,h(logX)X +OA(X log−AX)

for any A > 0. Recently, Drappeau [15] showed that the error term could be
improved to O(X exp(−c

√
logX)) for some c > 0 provided that one added a

correction term in the case of a Siegel zero; under the assumption of GRH, the
error term could be improved further to O(X1−δ) for some absolute constant δ > 0.
Fiorilli [19] also established some uniformity of the error term in the parameter h.
A function field analog of (9) was proven (for arbitrary k) in [1], but with an error
term that is Ok(q

−1/2) times the main term.
When k ≥ 3 even the weaker estimate∑

X<n≤2X

Λ(n)dk(n+ h) = Qk,h(logX)X + o(X logk−1X)

remains open; sieve theoretic methods would only give this asymptotic assuming a
level of distribution of Λ that is greater than 1−1/k, which would follow from EH
but is not known unconditionally for any k ≥ 3, even after the recent breakthrough
of Zhang [84] (see also [8]).

In analogy with the results of Baier, Browning, Marasingha, and Zhao [3], it is
likely that the method of Mikawa [59] can be extended to give an asymptotic of
the form ∑

X<n≤2X

Λ(n)d3(n+ h) = Q3,h(logX)X +OA,ε(X log−AX)

for all but OA,ε(H log−AX) values of h with |h| ≤ H, for any fixed A, if X1/3+ε ≤
H ≤ X1−ε for some fixed ε > 0, however to our knowledge this result has not been
explicitly proven in the literature.

Finally, we discuss some known results on the Goldbach conjecture (10). As with
the prime tuples conjecture, standard sieve methods (e.g. [62, Theorem 3.13]) will
give the upper bound ∑

n

Λ(n)Λ(X − n)� S(X)X

uniformly in X. There are a number of results [76], [11], [18], [63], [9], [47], [49]
establishing that the left-hand side of (10) is positive for “most” large even integers
X; for instance, in [49] it was shown that this was the case for all but O(X0.879

0 )
of even integers X ≤ X0, for any large X0. There are analogous results in shorter
intervals [70], [50], [81], [42], [29], [51], for instance in [51] it was shown that for
any 1/5 < θ ≤ 1 the left-hand side of (10) is positive for all but O(Xθ−δ

0 ) even
integers X ∈ [X0, X0 +Xδ

0 ], for some δ > 0 depending on θ, while in [29, Chapter
10] it is shown that for 11

180
≤ θ ≤ 1 and A > 0, the left-hand side of (10) is
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positive for all but OA(X0 log−AX0) even integers X ∈ [X0, X0 + Xδ
0 ]. On the

other hand, if one wants the left-hand side of (10) to not just be positive, but
be close to the main term S(X)X on the right-hand side, the state of the art
requires larger intervals. For instance, in [41, Proposition 19.5] it is shown that
(10) holds (with OA(X0 log−AX0) error term) for all but OA(X0 log−AX0) even
integers X in [1, X0]. Using the methods of Mikawa [59] it is likely that one can

achieve analogous results for shorter intervals such as [X0, X0 + X
1
3

+ε

0 ] for any
ε > 0, though to our knowledge this does not appear explicitly in the literature.

1.2. New results. Our main result is as follows: for all four correlations (i)-(iv) in
Conjecture 1.1, we can improve upon the results of Mikawa and Baier, Browning,
Marasingha, and Zhao by improving the exponent 1

3
to the quantity

σ :=
8

33
= 0.2424 . . .; (14)

for future reference we observe that σ lies in the range

1

5
<

11

48
<

25

108
<

7

30
< σ <

1

4
. (15)

More precisely, we have

Theorem 1.3 (Averaged correlations). Let A > 0, 0 < ε < 1/2 and k, l ≥ 2 be
fixed, and suppose that Xσ+ε ≤ H ≤ X1−ε for some X ≥ 2, where σ is defined by
(14). Let 0 ≤ h0 ≤ X1−ε.

(i) (Averaged Hardy-Littlewood conjecture) One has∑
X<n≤2X

Λ(n)Λ(n+ h) = S(h)X +OA,ε(X log−AX)

for all but OA,ε(H log−AX) values of h with |h− h0| ≤ H.
(ii) (Averaged divisor correlation conjecture) One has∑

X<n≤2X

dk(n)dl(n+ h) = Pk,l,h(logX)X +OA,ε,k,l(X log−AX)

for all but OA,ε,k,l(H log−AX) values of h with |h− h0| ≤ H.
(iii) (Averaged higher order Titchmarsh divisor problem) One has∑

X<n≤2X

Λ(n)dk(n+ h) = Qk,h(logX)X +OA,ε,k(X log−AX)

for all but OA,ε,k(H log−AX) values of h with |h− h0| ≤ H.
(iv) (Averaged Goldbach conjecture) One has∑

n

Λ(n)Λ(N − n) = S(N)N +OA,ε(X log−AX)

for all but OA,ε(H log−AX) integers N in the interval [X,X +H].
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As mentioned previously, the cases H ≥ X
1
3

+ε of the above theorem are essen-
tially in the literature, either being contained in the papers of Mikawa [59] and
Baier et al. [3], or following from a modification of their methods. We give a
slightly different proof of these cases in this paper, in which direct reliance on
Kloosterman sum estimates are replaced by fourth moment estimates for the zeta
function and Dirichlet L-functions (but note that these estimates are proven in
turn using Kloosterman sum estimates, so ultimately the same inputs are being
used in both proofs). For part (iii) of this theorem it is likely that one can in fact
obtain power savings in the error terms (as in [3]); see Remark 1.4.

We now briefly summarize the arguments used to prove Theorem 1.3. To follow
the many changes of variable of summation (or integration) in the argument, it is
convenient to refer to the following diagram:

Additive frequency α Multiplicative frequency t
m m

Position n ⇔ Logarithmic position u

Initially, the correlations studied in Theorem 1.3 are expressed in terms of the
position variable n (an integer comparable to X), which we have placed in the
bottom left of the above diagram. The first step in analyzing these correlations,
which is standard, is to apply the Hardy-Littlewood circle method (i.e., the Fourier
transform), which expresses correlations such as (1) as an integral∫

T
Sf (α)Sg(α)e(αh) dα

over the unit circle T := R/Z, where Sf , Sg are the exponential sums

Sf (α) :=
∑

X<n≤2X

f(n)e(nα)

Sg(α) :=
∑

X<n≤2X

g(n)e(nα).

The additive frequency α, which is the Fourier-analytic dual to the position vari-
able n, is depicted on the top left of the above diagram. In our applications, f will
be of the form Λ1(X,2X] or dk1(X,2X], and similarly for g. We then divide T into

the major arcs, in which |α − a
q
| ≤ logB

′
X

X
for some q ≤ logBX, and the minor

arcs, which consist of all other α. Here B′ > B > 0 are suitable large constants
(depending on the parameters A, k, l).

The major arcs contribute the main terms S(h)X, Pk,l,h(logX)X, Qk,h(logX)X,
S(N)N to Theorem 1.3, and the estimation of their contribution is standard; we
do this in Section 4. The main novelty in our arguments lies in the treatment of the
minor arc contribution, which we wish to show is negligible on the average. After
an application of the Cauchy-Schwarz inequality, the main task becomes that of
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estimating the integral ∫ β+1/H

β−1/H

|Sf (α)|2 dα (16)

for various “minor arc” β. To do this, we follow a strategy of Zhan [83] and
estimate this type of integral in terms of the Dirichlet series

D[f ](
1

2
+ it) :=

∑
n

f(n)

n
1
2

+it

for various “multiplicative frequencies” t. Actually for technical reasons we will
have to twist these Dirichlet series by a Dirichlet character χ, but we ignore this
complication for this informal discussion. The variable t is depicted on the top
right of the above diagram, and so we will have to return to the position variable n
and then go through the logarithmic position variable u, which we will introduce
shortly.

Applying the Fourier transform (as was done in Gallagher [24]), we can control
the expression (16) in terms of an expression of the form∫

R
|
∑

x≤n≤x+H

f(n)e(βn)|2 dx.

Actually, it is convenient to smooth the summation appearing here, but we ignore
this technicality for this informal discussion. This returns one to the bottom
left of the above diagram. Next, one makes the logarithmic change of variables
u = log n− logX, or equivalently n = Xeu. This transforms the main variable of
interest to a bounded real number u = O(1), and the phase e(βn) that appears in
the above expression now takes the form e(βXeu).

Finally, one takes the Fourier transform to convert the expression involving u to
an expression involving t, which (up to a harmless factor of 2π, as well as a phase
modulation) is the Fourier dual of u. Because the u derivative of the phase βXeu is
comparable in magnitude to |β|X, one would expect the main contributions in the
integration over t to come from the region where t is comparable to |β|X. This
intuition can be made rigorous using Fourier-analytic tools such as Littlewood-
Paley projections and the method of stationary phase. By doing so, our task
essentially reduces to that of obtaining a certain mean value theorem on Dirichlet
series. A precise statement of the estimates needed can be found in Proposition
5.4; a model problem would be to obtain an upper bound on the quantity∫

|t|�λX

(∫ t+λH

t−λH

∣∣∣∣D[f ](
1

2
+ it′)

∣∣∣∣ dt′)2

dt

for 1
H
� λ� log−BX that improves (by a large power of logX) upon the trivial

bound of Ok(λ
2H2X logOk(1)X) that one can obtain from the Cauchy-Schwarz
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inequality(∫ t+λH

t−λH
|D[f ](

1

2
+ it′)| dt′

)2

� λH

∫ t+λH

t−λH
|D[f ](

1

2
+ it′)|2 dt′,

Fubini’s theorem, and the standard L2 mean value theorem for Dirichlet poly-
nomials. The most difficult case occurs when λ is large (e.g. λ = log−BX);

in particular, the case λ ≤ X−
1
6
−ε of small λ is analogous to the prime number

theorem in most short intervals of the form [X,X + X
1
6

+ε], and (following [29])
can be treated by such methods as the Huxley large values estimate and mean
value theorems for Dirichlet polynomials. This is done in Appendix A. (In the
case f = d31(X,2X], these bounds are essentially contained (in somewhat disguised
form) in [3, Theorem 1.1].)

For sake of argument let us focus now on the case f = Λ1(X,2X]. We proceed
via the usual technique of decomposing Λ using the Heath-Brown identity [31] and
further dyadic decompositions. Because σ lies in the range (15), this leaves us
with “Type II” sums where f is replaced by a Dirichlet convolution α ∗ β with
α supported on [Xε2 , X−ε

2
H], as well as “Type d1”, “Type d2”, “Type d3”, and

“Type d4” sums where (roughly speaking) f is replaced by a Dirichlet convolution
that resembles one of the first four divisor functions d1, d2, d3, d4 respectively. (See
Proposition 6.1 for a precise statement of the estimates needed.)

The contribution of the Type II sums can be easily handled by an application
of the Cauchy-Schwarz inequality and L2 mean value theorems for Dirichlet poly-
nomials. The Type d1 and Type d2 sums can be treated by L4 moment theorems
[71], [2] for the Riemann zeta function and Dirichlet L-functions, which are ulti-
mately proven via estimates on Kloosterman sums. These arguments are already
enough to recover the results in [59], [3], which treated the case H ≥ X1/3+ε; our
methods are slightly different from those in [59], [3] due to our heavier reliance on
Dirichlet polynomials, but the key nontrivial input, namely Kloosterman sum esti-
mates, is ultimately the same. To break the X1/3 barrier we need to control Type
d3 sums, and to go below X1/4 one must also consider Type d4 sums. The stan-
dard unconditional moment estimates on the Riemann zeta function and Dirichlet
L-functions are inadequate for treating the d3 sums. Instead, after applying the
Cauchy-Schwarz inequality and subdividing the range {t : t � λX} into intervals

of length
√
λX, the problem reduces to obtaining two bounds on Dirichlet polyno-

mials in “typical” short or medium intervals. A model for these problems would
be to establish the bounds∫ tj+

√
λX

tj−
√
λX

∣∣∣∣D[1(X1/3,2X1/3]]

(
1

2
+ it

)∣∣∣∣4 dt�ε X
ε2
√
λX (17)

and ∫ tj+H

tj−H

∣∣∣∣D[1(X1/3,2X1/3]]

(
1

2
+ it

)∣∣∣∣2 dt�ε X
ε2H (18)
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for “typical” j = 1, . . . , r, where t1, . . . , tr is a maximal
√
λX-separated subset of

[λX, 2λX]. (These are oversimplifications; see Proposition 6.5 and Proposition 6.6
for more precise statements of the bounds needed.)

The first estimate (17) turns out to follow readily from a fourth moment estimate
of Jutila [43] for Dirichlet L-functions in medium-sized intervals on average. As for
(18), one can use the Fourier transform to bound the left-hand side by something
that is roughly of the form

H

X1/3

∑
`=O(X1/3/H)

∣∣∣∣∣ ∑
m�X1/3

e

(
tj
2π

log
m+ `

m− `

)∣∣∣∣∣ . (19)

The diagonal term ` = 0 is easy to treat, so we focus on the non-zero values of `.
By Taylor expansion, the phase

tj
2π

log m+`
m−` is approximately equal to the monomial

tj
π
`
m

. If one were to actually replace e(
tj
2π

log m+`
m−`) by e(

tj
π
`
m

), then it turns out that
one can obtain a very favorable estimate by using the fourth moment bounds of
Robert and Sargos [73] for exponential sums with monomial phases. Unfortunately,

the Taylor expansion does contain an additional lower order term of
tj
3π

`3

m3 which
complicates the analysis, but it turns out that (at the cost of some inefficiency) one
can still apply the bounds of Robert and Sargos to obtain a satisfactory estimate
for the indicated value (14) of σ.

In the range (15) one must also treat the Type d4 sums. Here we use a cruder
version of the Type d3 analysis. The analogue of Jutila’s estimate (which would
now require control of sixth moments) is not known unconditionally, so we use
the classical L2 mean value theorem in its place. The estimates of Robert and
Sargos are now unfavorable, so we instead estimate the analogue of (19) using the
classical van der Corput exponent pair (1/14, 2/7), which turns out to work for σ
as small as 7/30 (see (15)). Hence d4 sums turn out to be easier than d3 in our
range of H.

Remark 1.4. As usual, the results involving Λ will have the implied constant
depend in an ineffective fashion on the parameter A, due to our reliance on Siegel’s
theorem. It may be possible to eliminate this ineffectivity (possibly after excluding
some “bad” scales X � X0) by introducing a separate argument (in the spirit of
[32]) to handle the case of a Siegel zero, but we do not pursue this matter here. In
the proof of Theorem 1.3(ii), we do not need to invoke Siegel’s theorem, and it is
likely that (as in [3]) we can improve the logarithmic savings log−AX to a power

savings X−
cε
k+l for some absolute constant c > 0 (and with effective constants) by

a refinement of the argument. However, we do not do this here in order to be able
to treat all four estimates in a unified fashion.
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2. Notation and preliminaries

All sums and products will be over integers unless otherwise specified, with the
exception of sums and products over the variable p (or p1, p2, p′, etc.) which will
be over primes. To accommodate this convention, we adopt the further convention
that all functions on the natural numbers are automatically extended by zero to
the rest of the integers, e.g. Λ(n) = 0 for n ≤ 0.

We use A = O(B), A � B, or B � A to denote the bound |A| ≤ CB for
some constant C. If we permit C to depend on additional parameters then we will
indicate this by subscripts, thus for instance A = Ok,ε(B) or A�k,ε B denotes the
bound |A| ≤ Ck,εB for some Ck,ε depending on k, ε. If A,B both depend on some
large parameter X, we say that A = o(B) as X → ∞ if one has |A| ≤ c(X)B
for some function c(X) of X (as well as further “fixed” parameters not depending
on X), which goes to zero as X → ∞ (holding all “fixed” parameters constant).
We also write A � B for A� B � A, with the same subscripting conventions as
before.

We use T := R/Z to denote the unit circle, and e : T → C to denote the
fundamental character

e(x) := e2πix.

We use 1E to denote the indicator of a set E, thus 1E(n) = 1 when n ∈ E and
1E(n) = 0 otherwise. Similarly, if S is a statement, we let 1S denote the number
1 when S is true and 0 when S is false, thus for instance 1E(n) = 1n∈E. If E is a
finite set, we use #E to denote its cardinality.

We use (a, b) and [a, b] for the greatest common divisor and least common mul-
tiple of natural numbers a, b respectively, and write a|b if a divides b. We also
write a = b (q) if a and b have the same residue modulo q.

Given a sequence f : X → C on a set X, we define the `p norm ‖f‖`p of f for
any 1 ≤ p <∞ as

‖f‖`p :=

(∑
n∈X

|f(n)|p
)1/p

and similarly define the `∞ norm

‖f‖`∞ := sup
n∈X
|f(n)|.
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Given two arithmetic functions f, g : N → C, the Dirichlet convolution f ∗ g is
defined by

f ∗ g(n) :=
∑
d|n

f(d)g
(n
d

)
.

2.1. Summation by parts and exponential sums. If one has an asymp-

totic of the form
∑

X≤n≤X′′ g(n) ≈
∫ X′′
X

h(x) dx for all X ≤ X ′′ ≤ X ′, then
one can use summation by parts to then obtain approximations of the form∑

X≤n≤X′ f(n)g(n) ≈
∫ X′′
X

f(x)h(x) dx for sufficiently “slowly varying” amplitude
functions f : [X,X ′]→ C. The following lemma formalizes this intuition:

Lemma 2.1 (Summation by parts). Let X ≤ X ′, and let f : [X,X ′] → C be
a smooth function. Then for any function g : N → C and absolutely integrable
h : [X,X ′]→ C, we have∑
X≤n≤X′

f(n)g(n)−
∫ X′

X

f(x)h(x) dx ≤ |f(X ′)|E(X ′) +

∫ X′

X

|f ′(X ′′)|E(X ′′) dX ′′

where f ′ is the derivative of f and E(X ′′) is the quantity

E(X ′′) :=

∣∣∣∣∣ ∑
X≤n≤X′′

g(n)−
∫ X′′

X

h(x) dx

∣∣∣∣∣ .
Proof. From the fundamental theorem of calculus we have∑
X≤n≤X′

f(n)g(n) = f(X ′)
∑

X≤n≤X′
g(n)−

∫ X′

X

( ∑
X≤n≤X′′

g(n)

)
f ′(X ′′) dX ′′ (20)

and similarly∫ X′

X

f(x)h(x) dx = f(X ′)

∫ X′

X

h(x) dx−
∫ X′

X

(∫ X′′

X

h(x) dx

)
f ′(X ′′) dX ′′.

Subtracting the two identities and applying the triangle inequality and Minkowski’s
integral inequality, we obtain the claim. �

The following variant of Lemma 2.1 will also be useful. Following Robert and
Sargos [73], define the maximal sum |

∑
X≤n≤X′ g(n)|∗ to be the expression∣∣∣∣∣ ∑

X≤n≤X′
g(n)

∣∣∣∣∣
∗

:= sup
X≤X1≤X2≤X′

∣∣∣∣∣ ∑
X1≤n≤X2

g(n)

∣∣∣∣∣ . (21)

Lemma 2.2 (Summation by parts, II). Let X ≤ X ′, let f : [X,X ′] → C be
smooth, and let g : N→ C be a sequence. Then∣∣∣∣∣ ∑
X≤n≤X′

f(n)g(n)

∣∣∣∣∣
∗

≤

∣∣∣∣∣ ∑
X≤n≤X′

g(n)

∣∣∣∣∣
∗(

sup
X≤x≤X′

|f(x)|+ (X ′ −X) sup
X≤x≤X′

|f ′(x)|
)
.
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Proof. Our task is to show that∣∣∣∣∣ ∑
X1≤n≤X2

f(n)g(n)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
X≤n≤X′

g(n)

∣∣∣∣∣
∗(

sup
X≤x≤X′

|f(x)|+ (X ′ −X) sup
X≤x≤X′

|f ′(x)|
)
.

for all X ≤ X1 ≤ X2 ≤ X ′. The claim then follows from (20) (replacing X,X ′ by
X1, X2) and the triangle inequality and Minkowski’s integral inequality. �

To estimate maximal exponential sums, we will use the following estimates,
contained in the work of Robert and Sargos [73]:

Lemma 2.3. Let M ≥ 2 be a natural number, and let X ≥ 2 be a real number.

(i) Let ϕ(1), . . . , ϕ(M) be real numbers, let a1, . . . , aM be complex numbers of
modulus at most one, and let 2 ≤ Y ≤ X. Then∫ X

0

(∣∣∣∣∣
M∑
m=1

ame(tϕ(m))

∣∣∣∣∣
∗)4

dt� X log4X

Y

∫ Y

0

(∣∣∣∣∣
M∑
m=1

e(tϕ(m))

∣∣∣∣∣
)4

dt.

(ii) Let θ 6= 0, 1 be a real number, let ε > 0, and let aM , . . . , a2M be complex
numbers of modulus at most one. Then∫ X

0

(∣∣∣∣∣
2M∑
m=M

ame

(
t
(m
M

)θ)∣∣∣∣∣
∗)4

dt�θ,ε (X +M)ε(M4 +M2X).

(iii) Suppose that M � X �M2. Let ϕ : R→ R be a smooth function obeying
the derivative estimates |ϕ(j)(x)| � X/M j for j = 1, 2, 3, 4 and x � M .
Then ∣∣∣∣∣

2M∑
m=M

e(ϕ(m))

∣∣∣∣∣
∗

� M

X1/2

∣∣∣∣∣∑
ε`�L

e(ϕ∗(`))

∣∣∣∣∣
∗

+M1/2

for some L � X
M

, where ϕ∗(t) := ϕ(u(t))− tu(t) is the (negative) Legendre
transform of ϕ, u is the inverse of the function ϕ′, and ε = ±1 denotes the
sign of ϕ′(x) in the range x �M .

Proof. Part (i) follows from the p = 2 case of [73, Lemma 3]. Part (ii) follows from
[73, Lemma 7] when X ≤M2, and the remaining case X > M2 then follows from
part (i). Finally, part (iii) follows from applying the van der Corput B-process
(and Lemma 2.2), see e.g. [27, Lemma 3.6] or [41, Lemma 8.16], replacing ϕ with
−ϕ if necessary to normalize the second derivative ϕ′′ to be positive. �

2.2. Dirichlet polynomials. Given any function f : N → C supported on a
finite set, we may form the Dirichlet polynomial

D[f ](s) :=
∑
n

f(n)

ns
(22)
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for any complex s; if f has infinite support but is bounded, we can still define D[f ]
in the region Res > 1. We will use a normalization in which we mostly evaluate
Dirichlet polynomials on the critical line {1

2
+ it : t ∈ R}, but one could easily run

the argument using other normalizations, for instance by evaluating all Dirichlet
polynomials on the line {1 + it : t ∈ R} instead.

We have the following standard estimate:

Lemma 2.4 (Truncated Perron formula). Let f : N → C be a bounded sequence,
let T,X ≥ 2, and let 1 ≤ x ≤ X.

(i) If f is k-divisor-bounded for some k ≥ 0, then for any 0 ≤ σ < 1, One has

∑
n≤x

f(n)

nσ
− 1

2π

∫ T

−T
D[f ](1+

1

logX
+it)

x1−σ+ 1
logX

+it

1− σ + 1
logX

+ it
dt+Ok,σ

(
X1−σ logOk(1)(TX)

T

)
.

(ii) If in addition f : N→ C is supported on [X/C,CX] for C > 1, then

∑
n≤x

f(n) =
1

2π

∫ T

−T
D[f ](

1

2
+ it)

x
1
2

+it

1
2

+ it
dt+OC

(∑
n

|f(n)|min

(
1,

X

T |x− n|

))
.

(23)
In particular, if we estimate f(n) pointwise by ‖f‖`∞, we have∑

n≤x

f(n) =
1

2π

∫ T

−T
D[f ](

1

2
+ it)

x
1
2

+it

1
2

+ it
dt+OC

(
‖f‖`∞

X log(2 + T )

T

)
. (24)

Proof. For (i), apply [62, Corollary 5.3] with an := f(n)
nσ

and σ0 := 1 − σ + 1
logX

,

as well as (25). For (ii), apply [62, Corollary 5.3] isntead with an := f(n) and
σ0 := 1

2
. �

As one technical consequence of this lemma, we can estimate the effect of trun-
cating an arithmetic function f on its Dirichlet series:

Corollary 2.5 (Truncating a Dirichlet series). Suppose that f : N → C is sup-
ported on [X/C,CX] for some X ≥ 1 and C > 1. Let T ≥ 1. Then for any
interval [X1, X2] and any t ∈ R, we have the pointwise bound

D[f1[X1,X2]](
1

2
+ it)�C

∫ T

−T
|D[f ](

1

2
+ it+ iu)| du

1 + |u|
+ ‖f‖`∞

X1/2 log(2 + T )

T
.

Because the weight 1
1+|u| integrates to O(log(2 + T )) on [−T, T ], this corollary

is morally asserting that the Dirichlet polynomial of f1[X1,X2] is controlled by that
of f up to logarithmic factors. As such factors will be harmless in our applica-
tions, this corollary effectively allows one to dispose of truncations such as 1[X1,X2]

appearing in a Dirichlet polynomial whenever desired.
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Proof. Applying Lemma 2.4(ii) with f replaced by n 7→ f(n)/nit, we have for any
x that∑

n≤x

f(n)

nit
=

1

2π

∫ T

−T
D[f ](

1

2
+ it+ iu)

x
1
2

+iu

1
2

+ iu
du+OC

(
‖f‖`∞

X log(2 + T )

T

)
and hence by the triangle inequality∑

n≤x

f(n)

nit
�C x

1/2

∫ T

−T
|D[f ](

1

2
+ it+ iu)| du

1 + |u|
+ ‖f‖`∞

X log(2 + T )

T
.

The claim now follows from Lemma 2.1 (with h = 0, g(n) replaced by f(n)/nit,
and f(x) replaced by x−1/2). �

2.3. Divisor-bounded arithmetic functions with good cancellation. Let
us call an arithmetic function α : N→ C k-divisor-bounded for some k ≥ 0 if one
has the pointwise bound

α(n)�k d
k
2(n) logk(2 + n)

for all n. From the elementary mean value estimate∑
1≤n≤x

dl(n)k �k,l x logl
k−1(2 + x), (25)

valid for any k ≥ 0, l ≥ 2, and x ≥ 1, we see that a k-divisor-bounded function
obeys the `2 bounds ∑

n≤x

α(n)2 �k x logOk(1)(2 + x) (26)

for any x ≥ 1. Applying (26) with α replaced by a large power of α, we conclude
in particular the `∞ bound

sup
n≤x

α(n)�k,ε x
ε (27)

for any ε > 0.
From (26) and Cauchy-Schwarz, we see that∑

n≤x:n=a (q)

α(n)

n
1
2

+it
�k x

1/2 logOk(1) x (28)

for any t ∈ R, q ≥ 1, and a ∈ Z. We will say that a k-divisor-bounded function α
has good cancellation if one has the improved bound∑

n≤x:n=a (q)

α(n)

n
1
2

+it
�k,A,B,B′ x

1/2 log−A x (29)

for any A,B,B′ > 0, x ≥ 2, q ≤ logB x, a ∈ Z, and t ∈ R with logB
′
x ≤ |t| ≤ xB

′
,

provided that B′ is sufficiently large depending on A,B, k.
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It is clear that if α is a k-divisor-bounded function with good cancellation, then
so is its restriction α1[X1,X2] to any interval [X1, X2]. The property of being k-
divisor-bounded with good cancellation is also basically preserved under Dirichlet
convolution:

Lemma 2.6. Let α, β be k-divisor-bounded functions. Then α ∗ β is a (2k + 1)-
divisor-bounded function. Furthemore, if α and β both have good cancellation, then
so does α ∗ β.

If, furthermore, there is an N for which α is supported on [N2,+∞] and β is
supported on [1, N ], then one can omit the hypothesis that β has good cancellation
in the above claim.

Proof. Using the elementary inequality dk12 ∗ dk22 ≤ dk1+k2+1
2 , we see α ∗ β is 2k+ 1-

divisor-bounded. Next, suppose that α and β have good cancellation, and let
A,B,B′ > 0, x ≥ 2, q ≤ logBX, a ∈ Z, and t ∈ R with logB

′
x ≤ |t| ≤ xB

′
,

with B′ is sufficiently large depending on A,B, k. To show that α ∗ β has good
cancellation, it suffices by dyadic decomposition to show that∑

x<n≤2x:n=a (q)

α ∗ β(n)

n
1
2

+it
�k,A,B,B′ x

1/2 log−A x. (30)

By decomposing α into α1[1,
√
x] and α1(

√
x,+∞), and similarly for β, we may assume

from the triangle inequality that at least one of α, β is supported on (
√
x,+∞);

by symmetry we may assume that α is so supported. The left-hand side of (30)
may thus be written as∑

b=ac (q)

∑
m�
√
x:m=c (q)

β(m)

m
1
2

+it

∑
x/m<n≤2x/m:n=a (q)

α(n)

n
1
2

+it
.

Let A′ > 0 be a quantity depending on A,B, k to be chosen later. As α has good
cancellation, we may bound this (for B′ sufficiently large depending on k,A′, B)
using the triangle inequality by

�k,A′,B,B′

∑
b=ac (q)

∑
m�
√
x:m=c (q)

|β(m)|
m

1
2

(x/m)1/2 log−A
′
(x/m);

as β is k-divisor-bounded and q ≤ logB x, we may apply (25) and bound this by

�k,A′,B,B′ x log−A
′+B+Ok(1) x.

Choosing A′ sufficiently large depending on A,B, k, we obtain (30). The final
claim of the lemma is proven similarly, noting that the left-hand side of (30)
vanishes unless x� N2, and hence from the support of β we may already restrict
α to the region (c

√
x,+∞) for some absolute constant c > 0 without invoking

symmetry. �

We have three basic examples of functions with good cancellation:
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Lemma 2.7. The constant function 1, the logarithm function L : n 7→ log n and
the Möbius function µ are 1-divisor-bounded with good cancellation.

From this lemma and Lemma 2.6, we also see that Λ and dk have good cancel-
lation for any fixed k.

Proof. For the functions 1, L this follows from standard van der Corput exponential
sum estimates for |

∑
n≤x e(−

t
2π

log(qn+a))|∗ (e.g. [41, Lemma 8.10]) and Lemma
2.2, normalizing a to be in the range 0 ≤ a < q. Now we consider the function µ.
By using multiplicativity (and increasing A as necessary) we may assume that a
is coprime to q. By decomposition into Dirichlet characters (and again increasing
A as necessary) it suffices to show that∑

n≤x

µ(n)χ(n)

n
1
2

+it
�k,A,B,B′ x

1/2 log−A x (31)

for any Dirichlet character χ of period q.
The Vinogradov-Korobov zero-free region [61, §9.5] implies that L(s, χ) has no

zeroes in the region{
σ + it′ : 0 < |t′| � |t|+ x2;σ ≥ 1− cB,B′

log2/3 |x|(log log |x|)1/3

}
for some cB,B′ > 0 depending only on B,B′. Applying the estimates in [12, §16],
and shrinking cB,B′ if necessary, we obtain the crude upper bounds

L′(s, χ)

L(s, χ)
�B,B′ log2 |x|

in this region, which upon integrating also gives the upper bound

log |L(s, χ)| �B,B′ log2 |x|.
Applying Perron’s formula as in [53, Lemma 2] (see also [29, Lemma 1.5]), one
then has the bound ∑

n≤y

Λ(n)χ(n)n−it �A′,B,B′ y log−A
′
x

for any A′ > 0 and any y with exp(log3/4 x) ≤ y ≤ x2 (in fact one may replace 3/4
here by any constant larger than 2/3). To pass from Λ to µ we use a variant of
the arguments used to prove Lemma 2.6. We begin with the trivial bound∑

n≤y

µ(n)χ(n)n−it � y (32)

for any y > 0. Writing µ(n) log(n)χ(n)n−it as the Dirichlet convolution of Λ(n)χ(n)n−it

and −µ(n)χ(n)nit and using the Dirichlet hyperbola method, we conclude that∑
n≤y

µ(n) log nχ(n)n−it �B,B′ y log3/4 x
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for any y = x1+o(1), which by Lemma 2.2 implies that∑
n≤y

µ(n)χ(n)n−it �B,B′ y log−1/4 x

for y = x1+o(1). Applying the Dirichlet hyperbola method again (using the above
bound to replace the trivial bound (32) for y = x1+o(1)) we conclude that∑

n≤y

µ(n)χ(n)n−it �B,B′ y log−2/4 x

for y = x1+o(1). Iterating this argument O(A) times, we eventually conclude that∑
n≤y

µ(n)χ(n)n−it �A,B,B′ y log−A x

for y = x1+o(1), and the claim (31) then follows from Lemma 2.2. �

2.4. Mean value theorems. In view of Lemma 2.4, it becomes natural to seek
upper bounds on the quantity |D[f ](1

2
+ it)| for various functions f supported on

[X/C,CX]. We will primarily be interested in functions f which are k-divisor-
bounded for some bounded k. In such a case, we see from (26) that

‖f‖2
`2 �k X logOk(1)X.

The heuristic of square root cancellation then suggests that the quantity |D[f ](1
2

+

it)| should be of size O(Xo(1)) for all values of t that are of interest (except possibly
for the case t = O(1) in which there might not be sufficient oscillation). Such
square root cancellation is not obtainable unconditionally with current techniques;
for instance, square root cancellation for f = 1(X,2X] is equivalent to the Lindelöf
hypothesis, while square root cancellation for f = Λ1(X,2X] is equivalent to the
Riemann hypothesis. However, we will be able to use a number of results that
obtain something resembling square root cancellation on the average. The most
basic instance of these results is the classical L2 mean value theorem:

Lemma 2.8 (Mean value theorem). Suppose that f : N → C is supported on
[X/2, 4X] for some X ≥ 2. Then one has∫ T0+T

T0

∣∣∣∣D[f ](
1

2
+ it)

∣∣∣∣2 dt� T +X

X
‖f‖2

`2

for all T > 0 and T0 ∈ R. In particular (from (26)), if f is k-divisor-bounded,
then ∫ T0+T

T0

∣∣∣∣D[f ](
1

2
+ it)

∣∣∣∣2 dt�k (T +X) logOk(1)X.

Proof. See [41, Theorem 9.1]. �
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We will need to twist Dirichlet series by Dirichlet characters. With f as above,
and any Dirichlet character χ : Z→ C, we can define

D[f ](s, χ) :=
∑
n

f(n)

ns
χ(n)

and more generally

D[f ](s, χ, q0) :=
∑
n

f(q0n)

ns
χ(n)

for any complex s and any natural number q0. These Dirichlet series naturally ap-

pear when estimating Dirichlet series with a Fourier weight e
(
an
q

)
, as the following

simple lemma shows:

Lemma 2.9 (Expansion into Dirichlet characters). Let f : N → C be a function
supported on a finite set, let q be a natural number, and let a be coprime to q. Let

e
(
a·
q

)
denote the function n 7→ e

(
an
q

)
. Then we have the pointwise bound∣∣∣∣D [fe(a·q

)]
(s)

∣∣∣∣ ≤ d2(q)
√
q

∑
q=q0q1

∑
χ (q1)

|D[f ](s, χ, q0)| (33)

for all complex numbers s with Re(s) = 1
2
, where in this paper the sum

∑
χ (q1)

denotes a summation over all characters χ (including the principal character) of
period q1, and q0, q1 are understood to be natural numbers.

Proof. Let s be such that Re(s) = 1
2
. By definition we have

D
[
fe

(
a·
q

)]
(s) =

∑
n

f(n)

ns
e

(
an

q

)
.

We now decompose the n summation in terms of the greatest common divisor
q0 := (n, q) of n and q, obtaining (after writing q = q0q1 and n = q0n1)

D
[
fe

(
a·
q

)]
(s) =

∑
q=q0q1

1

qs0

∑
n1:(n1,q1)=1

f(q0n1)

ns1
e

(
an1

q1

)
and thus by the triangle inequality∣∣∣∣D [fe(a·q

)]
(s)

∣∣∣∣ ≤ ∑
q=q0q1

1
√
q0

∣∣∣∣∣∣
∑

n1:(n1,q1)=1

f(q0n1)

ns1
e

(
an1

q1

)∣∣∣∣∣∣ .
Next, we perform the usual Dirichlet expansion

e

(
an1

q1

)
1(n1,q1)=1 =

1

ϕ(q1)

∑
χ (q1)

χ(a)χ(n1)τ(χ) (34)
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where τ(χ) is the Gauss sum

τ(χ) :=

q1∑
l=1

e

(
l

q1

)
χ(l) (35)

As is well known, we have
|τ(χ)| ≤ √q1

(as can be seen for instance from making the substitution l 7→ al to (35) for
(a, q) = 1 and then applying the Parseval identity in a). Using the crude bound

1
√
q0

1

ϕ(q1)

√
q1 �

1
√
q0

d2(q1)

q1

√
q1 ≤

d2(q)
√
q

and the triangle inequality, we obtain (33). �

It thus becomes of interest to have upper bounds, on average at least, on the
quantity |D[f ](1

2
+ it, χ, q0)|. We first recall a variant of Lemma 2.8, which can

save a factor of q1 or so compared to that lemma when summing over characters
χ:

Lemma 2.10 (Mean value theorem with characters). Suppose that f : N → C is
supported on [X/2, 4X] for some X ≥ 2. Then one has∑

χ (q1)

∫ T0+T

T0

∣∣∣∣D[f, χ]

(
1

2
+ it

)∣∣∣∣2 � q1T +X

X
‖f‖2

`2 log3(q1TX)

for all T ≥ 2, T0 ∈ R, and natural numbers q1, where χ is summed over all
Dirichlet characters of period q1. In particular, if f is k-divisor-bounded, then
(from (26)) we have∑

χ (q1)

∫ T0+T

T0

∣∣∣∣D[f, χ]

(
1

2
+ it

)∣∣∣∣2 �k (q1T +X) logOk(1)(q1TX)

Proof. This is a special case of [41, Theorem 9.12]. �

In the case when f is an indicator function f = 1[1,X] we have a fourth moment
estimate:

Lemma 2.11 (Fourth moment estimate). Let X ≥ 2, q1 ≥ 1, and T ≥ 1. Let S be
a finite set of pairs (χ, t) with χ a character of period q, and t ∈ [−T, T ]. Suppose
that S is 1-separated in the sense that for any two distinct pairs (χ, t), (χ′, t′) ∈ S,
one either has χ 6= χ′ or |t− t′| ≥ 1. Then one has∑

(χ,t)∈S

∣∣∣∣D[1[1,X]]

(
1

2
+ it, χ

)∣∣∣∣4 � q1T logO(1)X + |S| log3X

(
q2

1

T 2
+
X2

T 4

)
+X2

∑
(χ,t)∈S

δχ(1 + |t|)−4
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where δχ is equal to 1 when χ is principal, and equal to zero otherwise.

Proof. See [2, Lemma 9]. We remark that this estimate is proven using fourth
moment estimates [71] for Dirichlet L-functions, which are in turn proven using
Kloosterman sum estimates. �

It will be more convenient to use a (slightly weaker) integral form of this esti-
mate:

Corollary 2.12 (Fourth moment estimate, integral form). Let X ≥ 2, q1 ≥ 1,
and T ≥ 1. Then∑
χ (q1)

∫
T/2≤|t|≤T

∣∣∣∣D[1[1,X]](
1

2
+ it, χ)

∣∣∣∣4 dt� q1T

(
1 +

q2
1

T 2
+
X2

T 4

)
logO(1) X. (36)

Similarly with 1[1,X] replaced by L1[1,X].

Proof. For each χ, we cover the region T/2 ≤ |t| ≤ T by unit intervals I, and
for each such I we find a point t ∈ I that maximizes |D[1[1,X]](

1
2

+ it, χ)|, then
add (χ, t) to S. Then |S| � qT ; it is not necessarily 1-separated, but one can
easily separate it into O(1) 1-separated sets. Applying Lemma 2.11 (bounding
δχ(1 + |t|)−4 by O(1/T 4)), we obtain (36). Finally, to handle L1[1,X], one can use
the integration by parts identity

L1[1,X](y) = logX1[1,X](y)−
∫ X

1

1[1,X′](y)
dX ′

X ′
(37)

and the triangle inequality (cf. Lemmas 2.1, 2.2). �

We will also need the following variant of the fourth moment estimate due to
Jutila [43].

Proposition 2.13 (Jutila). Let q, T ≥ 1 and ε > 0. Let T 1/2+ε � T0 � T 2/3 and
T < t1 < . . . < tr < 2T with ti+1 − ti > T0. Then we have∑

χ (q)

r∑
i=1

∫ ti+T0

ti

|L(1
2

+ it, χ)|4dt�ε q(rT0 + (rT )2/3)(qT )ε.

Here L(s, χ) is the Dirichlet L-function associated to χ.

Proof. See [43, Theorem 3]. This estimate is a variant of Iwaniec’s result [40] on
the fourth moment of ζ in short intervals; it is however proven using a completely
different and more elementary method. �

Using a variant of Corollary 2.5 we may truncate the Dirichlet L-function to
conclude
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Corollary 2.14. Let the hypotheses be as in Proposition 2.13. Then for any
1 ≤ X � T 2 and any Dirichlet character χ of period q, one has

r∑
i=1

∫ ti+T0

ti

|D[1[1,X]](
1
2

+ it, χ)|4dt�ε q
O(1)(rT0 + (rT )2/3)T ε.

Similarly with 1[1,X] replaced by L1[1,X].

One can be more efficient here with respect to the dependence of the right-hand
side on q, but we will not need to do so in our application as q will be quite small.

Proof. In view of (37) and the triangle inequality, followed by dyadic decomposi-
tion, it suffices to show that

r∑
i=1

∫ ti+T0

ti

|D[1[X,2X]](
1
2

+ it, χ)|4dt�ε q
O(1)(rT0 + (rT )2/3)T ε.

From the fundamental theorem of calculus we have

D[1[X,2X]](
1
2

+ it, χ) =
1

(2X)1/2
D[1[X,2X]](it, χ) +

∫ 2X

X

D[1[X,X′]](it, χ)
dX ′

2(X ′)3/2

so by the triangle inequality again, it suffices to show that

r∑
i=1

∫ ti+T0

ti

|D[1[1,X]](it, χ)|4dt�ε q
O(1)X2(rT0 + (rT )2/3)T ε. (38)

Let t lie in the range [T, 3T ]. From Lemma 2.4(i) with f(n), σ, T replaced by χ(n)
nit

,
0, T 3 respectively, we see that

D[1[1,X]](it, χ)�

∣∣∣∣∣
∫ T 3

−T 3

L

(
1 +

1

logX
+ i(t+ t′), χ

)
X1+ 1

logX
+it′

1 + 1
logX

+ it′
dt′

∣∣∣∣∣+X logO(1) T

T 3

where L(s, χ) is the Dirichlet L-function. Shifting the contour and using the crude
convexity bound L(σ+ it, χ)� qO(1)(1+ t)1/2 for 1/2 ≤ σ ≤ 2 and |σ+ it−1| � 1,
and also noting that the residue of L(s, χ) at 1 (if it exists) is O(1), we obtain the
estimate

D[1[1,X]](it, χ)� qO(1)

(∣∣∣∣∣
∫ T 3

−T 3

L

(
1

2
+ i(t+ t′), χ

)
X

1
2

+it′

1
2

+ it′
dt′

∣∣∣∣∣+
X

T
+X1/2

)
(say). Since X � T 2, we can absorb the X

T
factor into the X1/2 factor. We have

the crude L2 mean value estimate∫ T ′

−T ′

∣∣∣∣L(1

2
+ it′, χ

)∣∣∣∣2 dt′ � qO(1)T ′ logO(1)(2 + T ′)
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for any T ′ > 0 (which can be established for instance from Lemma 2.8 and the ap-
proximate functional equation, or from Proposition 2.13 and Hölder’s inequality).
From this, Cauchy-Schwarz, and dyadic decomposition, we see that

D[1[1,X]](it, χ)� qO(1)X1/2

(
1 +

∫ T/2

−T/2

∣∣L(1
2

+ i(t+ t′), χ)
∣∣

1 + |t′|
dt′

)
.

By Hölder’s inequality, we then have

|D[1[1,X]](it, χ)|4 � qO(1)X2

(
1 +

∫ T/2

−T/2

∣∣L (1
2

+ i(t+ t′), χ
)∣∣4

1 + |t′|
dt′

)
.

From shifting the tj by t′ (and adjusting T slightly if necessary), we see from
Proposition 2.13 that

r∑
i=1

∫ ti+T0

ti

|L(1
2

+ i(t+ t′), χ)|4dt�ε q(rT0 + (rT )2/3)(qT )ε.

whenever −T/2 ≤ t′ ≤ T/2. The claim now follows from Fubini’s theorem. �

2.5. Combinatorial decompositions. We will treat the functions Λ1(X,2X] and
dk1(X,2X] in a unified fashion, decomposing both of these functions as certain (trun-
cated) Dirichlet convolutions of various types, which we will call “Type dj sums”
for some small j = 1, 2, . . . and “Type II sums” respectively. More precisely, we
have

Lemma 2.15 (Combinatorial decomposition). Let k,m ≥ 1 and 0 < ε < 1
m

be

fixed. Let X ≥ 2, and let H0 be such that X
1
m

+ε ≤ H0 ≤ X. Let f : N → C be
either the function f := Λ1(X,2X] or f := dk1(X,2X]. Then one can decompose f

as the sum of Ok,m,ε(logOk,m,ε(1)X) components f̃ , each of which is of one of the
following types:

(Type dj) A function of the form

f̃ = (α ∗ β1 ∗ · · · ∗ βj)1(X,2X] (39)

for some arithmetic functions α, β1, . . . , βj : N → C, where 1 ≤ j < m,
α is Ok,m,ε(1)-divisor-bounded and supported on [N, 2N ], and each βi, i =
1, . . . , j is either equal to 1(Mi,2Mi] or L1(Mi,2Mi] for some N,M1, . . . ,Mj

obeying the bounds

1� N �k,m,ε X
ε, (40)

NM1 . . .Mj �k,m,ε X (41)

and

H0 �M1 � · · · �Mj � X.
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(Type II sum) A function of the form

f = (α ∗ β)1(X,2X]

for some Ok,m,ε(1)-divisor-bounded arithmetic functions α, β : N → C of
good cancellation supported on [N, 2N ] and [M, 2M ] respectively, for some
N,M obeying the bounds

Xε �k,m,ε N �k,m,ε H0 (42)

and
NM �k,m,ε X. (43)

As the name suggests, Type dj sums behave similarly to the jth divisor function
dj (but with all factors in the Dirichlet convolution constrained to be supported
on moderately large natural numbers). In our applications we will take m to be
at most 5, so that the only sums that appear are Type d1, Type d2, Type d3,
Type d4, and Type II sums, and the dependence in the above asymptotic notation
on m can be ignored. The contributions of Type d1, Type d2, and Type II sums
were essentially treated by previous literature; our main innovations lie in our
estimation of the contributions of the Type d3 and Type d4 sums.

Proof. We first claim a preliminary decomposition: f can be expressed as a linear
combination (with coefficients of size Ok,m,ε(1)) of Ok,m,ε(logOk,m,ε(1)X) terms f̃
that are each of the form

f̃ = (γ1 ∗ · · · ∗ γr)1(X,2X] (44)

for some r = Ok,m,ε(1), where each γi : N → C is supported on [Ni, 2Ni] for some
N1, . . . , Nr � 1 and are 1-divisor-bounded with good cancellation. Furthermore,
for each i, one either has γi = 1(Ni,2Ni], γi = L1(Ni,2Ni], or Ni � Xε.

We first perform this decomposition in the case f = dk1(X,2X]. On the interval
(X, 2X], we clearly have

dk = 1[1,2X] ∗ · · · ∗ 1[1,2X]

where the term 1[1,2X] appears k times. We can dyadically decompose 1[1,2X] as the
sum of O(logX) terms, each of which is of the form 1(N,2N ] for some 1� N � X.

This decomposes dk1(X,2X] as the sum of Ok(logkX) terms of the form

(1(N1,2N1] ∗ · · · ∗ 1(Nk,2Nk])1(X,2X]

and this is clearly of the required form (44) thanks to Lemma 2.7.
Now suppose that f = Λ1(X,2X]. Here we use the well-known Heath-Brown

identity [31, Lemma 1]. Let K be the first natural number such that K ≥ 1
ε
, 1
m

,
thus K = Om,ε(1). The Heath-Brown identity then gives

Λ =
K∑
j=1

(−1)j+1

(
K

j

)
L ∗ 1∗j−1 ∗ (µ1[1,(2X)1/K ])

∗j (45)
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on the interval (X, 2X], where f ∗j denotes the Dirichlet convolution of j copies of f .
Clearly we may replace L and 1 by L1[1,2X] and 1[1,2X] respectively without affecting
this identity on (X, 2X]. As before, we can decompose 1[1,2X] into O(logX) terms
of the form 1(N,2N ] for some 1 � N � X; one similarly decomposes L1[1,2X]

into O(logX) terms of the form 1(N,2N ] for 1 � N � X, and µ1[1,(2X)1/K ] into

O(logX) terms of the form µ1(N,2N ] for 1 � N ≤ (2X)1/K � Xε. Inserting
all these decompositions into (45) and using Lemma 2.7, we obtain the desired

expansion of f into Ok,m,ε(logOk,m,ε(1)X) terms of the form (44).
In view of the above decomposition, it suffices to show that each individual term

of the form (44) can be expressed as the sum of Ok,m,ε(1) terms, each of which
are either a Type dj sum for some 1 ≤ j < m or as a Type II sum (note that the
coefficients of the linear combination can be absorbed into the α factor for both
the Type dj and the Type II sums). First note that we may assume that

N1 . . . Nr �k,m,ε X (46)

otherwise the expression in (44) vanishes. By symmetry we may also assume that
N1 ≤ · · · ≤ Nr. We may also assume that X is sufficiently large depending on
k,m, ε as the claim is trivial otherwise (every arithmetic function of interest would
be a Type II sum, for instance, setting α to be the Kronecker delta function at
one).

Let 0 ≤ s ≤ r denote the largest integer for which

N1 . . . Ns ≤ Xε. (47)

From (46) we have s < r (if X is large enough). We divide into two cases,
depending on whether N1 . . . Ns+1 ≤ 2H0 or not. First suppose that N1 . . . Ns+1 ≤
2H0, then by construction we have

Xε ≤ N1 . . . Ns+1 ≤ H0.

One can then almost express (44) as a Type II sum by setting

α := γ1 ∗ · · · ∗ γs+1

and

β := γs+2 ∗ · · · ∗ γr
and using Lemma 2.6. The only difficulty is that α is not quite supported on an in-
terval of the form [N, 2N ], instead being supported on [N1 . . . Ns+1, 2

s+1N1 . . . Ns+1],
and similarly for β; but this is easily rectified by decomposing both α and β dyad-
ically into Ok,m,ε(1) pieces, each of which are supported in an interval of the form
[N, 2N ].

Finally we consider the case when N1 . . . Ns+1 > 2H0. Since H0 ≥ X
1
m

+ε, we
conclude from (47) that

Nr ≥ · · · ≥ Ns+2 ≥ Ns+1 > 2X
1
m ≥ (2X)

1
m .
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In particular, if r−s ≥ m, then Ns+1 . . . Nr > 2X and (44) vanishes. Thus we may
assume that s = r− j for some 1 ≤ j < m. Also, as Nr, . . . , Ns+1 are significantly
larger than Xε, the γj for j = s+1, . . . , r must be of the form 1(Nj ,2Nj ] or L1(Nj ,2Nj ].
One can then almost express (44) as a Type dj sum by setting

α := γ1 ∗ · · · ∗ γj
and

βi := γs+i

for i = 1, . . . , j and using Lemma 2.6. The support of α is again slightly too large,
but this can be rectified as before by a dyadic decomposition. �

For technical reasons (arising from the terms in Lemma 2.9 when q0 > 1), we
will need a more complicated variant of this proposition, in which one decomposes
the function n 7→ f(q0n) rather than f itself. This introduces some additional
“small” sums which are not Dirichlet convolutions, but which are quite small in
`2 norm and so can be easily managed using crude estimates such as Lemma 2.8.

Lemma 2.16 (Combinatorial decomposition, II). Let k,m,B ≥ 1 and 0 < ε <
1
m

be fixed. Let X ≥ 2, and let H0 be such that X
1
m

+ε ≤ H0 ≤ X. Let q0

be a natural number with q0 ≤ logBX. Let f : N → C be either the function
f := Λ1(X,2X] or f := dk1(X,2X]. Then one can decompose the function f(q0·) :

n 7→ f(q0n) as a linear combination (with coefficients of size Ok(d2(q0)Ok(1))) of

Ok,m,ε(logOk,m,ε(1)X) components f̃ , each of which is of one of the following types:

(Type dj sum) A function of the form

f̃ = (α ∗ β1 ∗ · · · ∗ βj)1(X/q0,2X/q0] (48)

for some arithmetic functions α, β1, . . . , βj : N → C, where 1 ≤ j < m,
α is Ok,m,ε(1)-divisor-bounded and supported on [N, 2N ], and each βi, i =
1, . . . , j is either of the form βi = 1(Mi,2Mi] or βi = L1(Mi,2Mi] for some
N,M1, . . . ,Mj obeying the bounds (40),

NM1 . . .Mj �k,m,ε X/q0 (49)

and

H0 �M1 � · · · �Mj � X/q0.

(Type II sum) A function of the form

f̃ = (α ∗ β)1(X/q0,2X/q0]

for some Ok,m,ε(1)-divisor-bounded arithmetic functions α, β : N→ C with
good cancellation supported on [N, 2N ] and [M, 2M ] respectively, for some
N,M obeying the bounds (42) and

NM �k,m,ε X/q0. (50)
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The good cancellation bounds (29) are permitted to depend on the parameter
B in this lemma (in particular, B′ can be assumed to be large depending
on this parameter).

(Small sum) A function f̃ supported on (X/q0, 2X/q0] obeying the bound

‖f̃‖2
`2 �k,m,ε,B X

1−ε/8.

Proof. If q0 = 1 then the claim follows from Lemma 2.15, so suppose q0 > 1. We
first dispose of the case when f = Λ1(X,2X]. From the support of the von Mangoldt
function we see that the function f(q0·) : n 7→ f(q0n) is only supported on the
multiplicative semigroup G generated by the primes dividing q0. We thus have

‖f(q0·)‖2
`2 ≤

∑
n∈G

1(X,2X](q0n)Λ(q0n)2

�
∑
n∈G

1n≤2X/q0 log2X

� (X/q0)1/2
∑
n∈G

1√
n

log2X

= (X/q0)1/2
∏
p|q0

O(1) log2X

� d2(q0)O(1)(X/q0)1/2 log2X

�ε,B X
1−ε/8

by the divisor bound (27) and the hypothesis q0 ≤ logBX. Thus f(q0·) is already
a small sum, and we are done in this case.

It remains to consider the case when f = dk1(X,2X]. Let dk(q0·) denote the
function n 7→ dk(q0n). The function dk(q0·)/dk(q0) is multiplicative, hence by
Möbius inversion we may factor

dk(q0·) = dk(q0)dk ∗ g
where g is the multiplicative function

g :=
1

dk(q0)
dk(q0·) ∗ µ∗k

and µ∗k is the Dirichlet convolution of k copies of µ. From multiplicativity we see
that g is supported on the semigroup G, and is Ok(1)-divisor-bounded. We split
g = g1 + g2, where g1(n) := g(n)1n≤Xε/2 and g2(n) := g(n)1n>Xε/2 , thus

f(q0·) = dk(q0)(dk ∗ g1)1(X/q0,2X/q0] + dk(q0)(dk ∗ g2)1(X/q0,2X/q0].

The term (dk ∗ g1)1(X/q0,2X/q0] can be decomposed into terms of the form (44)
(but with X replaced by X/q0), exactly as in the proof of Lemma 2.15 (with
the additional factor g1 simply being an additional term γi), so by repeating the
previous arguments (with X replaced by X/q0 as appropriate), we obtain the
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required decomposition of this term as a linear combination (with coefficients of
size O(dk(q0)) = O(d2(q0)Ok(1))) of Type dj and Type II sums, using the second
part of Lemma 2.6 to ensure that convolution by g1 does not destroy the good
cancellation property.

It remains to handle the (dk ∗ g2)1(X/q0,2X/q0] term, which we will show to be
small. Indeed, we expand

‖(dk ∗ g2)1(X/q0,2X/q0]‖2
`2 =

∑
n:X<q0n≤2X

|dk ∗ g2(q0n)|2.

We can expand out the square and bound this by

�
∑
m1,m2

g2(m1)g2(m2)
∑

X<n≤2X:m1,m2,q0|n

dk

(
n

m1

)
dk

(
n

m2

)
, (51)

wherem1,m2 range over the natural numbers. We crudely drop the constraint q0|n.

From (25) (factoring n = [m1,m2]n′ and noting that dk

(
n
m1

)
≤ d2(m2)Ok(1)d2(n′)Ok(1),

and similarly for dk

(
n
m2

)
) we have∑

X<n≤2X:m1,m2|n

dk

(
n

m1

)
dk

(
n

m2

)
�k

Xd2(m1)Ok(1)d2(m2)Ok(1) logOk(1)X

[m1,m2]

and also crudely bounding 1
[m1,m2]

≤ 1

m
1/2
1 m

1/2
2

, we can bound (51) by

�k

(∑
m

g2(m)d2(m)Ok(1)

m1/2

)2

X logOk(1)X

which on bounding g2(m) ≤ X−ε/8g(m)m1/4 becomes

�k,ε X
−ε/8X

(∑
m

g(m)d2(m)Ok(1)

m1/4

)2

logOk(1) X.

From Euler products and the support and bounds on g we have∑
m

g(m)d2(m)Ok(1)

m1/4
�k d2(q0)Ok(1)

and so by using (27), we conclude that (dk ∗g2)1(X/q0,2X/q0] is small as required. �

3. Applying the circle method

Let f, g : Z→ C be functions supported on a finite set, and let h be an integer.
Following the Hardy-Littlewood circle method, we can express the correlation (1)
as an integral ∑

n

f(n)g(n+ h) =

∫
T
Sf (α)Sg(α)e(αh) dα



CORRELATIONS OF VON MANGOLDT AND DIVISOR FUNCTIONS 31

where Sf , Sg : T→ C are the exponential sums

Sf (α) :=
∑
n

f(n)e(αn)

Sg(α) :=
∑
n

g(n)e(αn).

If we then designate some (measurable) portion M of the unit circle T to be the
“major arcs”, we thus have∑

n

f(n)g(n+ h)−MTM,h =

∫
m

Sf (α)Sg(α)e(αh) dα (52)

where MTM,h is the main term

MTM,h :=

∫
M

Sf (α)Sg(α)e(αh) dα (53)

and m := T\M denotes the complementary minor arcs.
We will choose the major arcs so that the main term can be computed for any

given h by classical techniques (basically, the Siegel-Walfisz theorem, together with
the analogous asymptotics for the divisor functions dk). To control the minor arcs,
we take advantage of the ability to average in h to control this contribution by
certain short L2 integrals of the exponential sum Sf (α) (the factor Sg(α) will be
treated by a trivial bound). The key estimate is

Proposition 3.1 (Circle method). Let H ≥ 1, and let f, g,M,m, Sf , Sg,MTM,h

be as above. Then for any integer h0, we have∑
|h−h0|≤H

|
∑
n

f(n)g(n+ h)−MTM,h |2

� H

∫
m

|Sf (α)||Sg(α)|
∫
m∩[α−1/2H,α+1/2H]

|Sf (β)||Sg(β)| dβdα
(54)

Proof. From (52), the left-hand side of (54) may be written as∑
|h−h0|≤H

∣∣∣∣∫
m

Sf (α)Sg(α)e(αh) dα

∣∣∣∣2 .
Next, we introduce an even non-negative Schwartz function Φ: R → R+ with
Φ(x) ≥ 1 for all x ∈ [−1, 1], such that the Fourier transform Φ̂(ξ) :=

∫
R Φ(x)e(−xξ) dx

is supported in [−1/2, 1/2]. (Such a function may be constructed by starting with
the inverse Fourier transform of an even test function supported on a small neigh-
bourhood of the origin, and then squaring.) Then we may bound the preceding
expression by ∑

h

∣∣∣∣∫
m

Sf (α)Sg(α)e(αh) dα

∣∣∣∣2 Φ

(
h− h0

H

)
.
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Expanding out the square, rearranging, and using the triangle inequality, we may
bound this expression by∫

m

|Sf (α)||Sg(α)|
∫
m

|Sf (β)||Sg(β)|

∣∣∣∣∣∑
h

e((α− β)h)Φ

(
h− h0

H

)∣∣∣∣∣ dβdα.
From the Poisson summation formula we have∑

h

e((α− β)h)Φ

(
h

H

)
= H

∑
k

Φ̂(H(α̃− β̃ + k))

where α̃, β̃ are any lifts of α, β from T to R. In particular, this expression is of size
O(H), and vanishes unless β lies in the interval [α − 1/2H,α + 1/2H] for some

absolute constant C (depending on the support of Φ̂). Shifting h by h0, the claim
follows. �

From the Plancherel identities∫
T
|Sf (α)|2dα = ‖f‖2

`2 (55)∫
T
|Sg(α)|2dα = ‖g‖2

`2 (56)

and Cauchy-Schwarz, we have∫
m

|Sf (α)||Sg(α)| dα ≤ ‖f‖`2‖g‖`2

so we can bound the right-hand side of (54) by

‖f‖`2‖g‖`2 sup
α∈m

∫
m∩[α−1/2H,α+1/2H]

|Sf (β)||Sg(β)| dβ.

By (56) and Cauchy-Schwarz, we may bound this expression in turn by

‖f‖`2‖g‖2
`2 sup
α∈m

(∫
m∩[α−1/2H,α+1/2H]

|Sf (β)|2 dβ
)1/2

. (57)

Note that from (55) we have the trivial upper bound∫
m∩[α−1/2H,α+1/2H]

|Sf (α)|2 dα ≤ ‖f‖2
`2 (58)

and so the right-hand side of (54) may be crudely upper bounded by H‖f‖2
`2‖g‖2

`2 ,
which is essentially the trivial bound on (54) that one obtains from the Cauchy-
Schwarz inequality. Thus, any significant improvement (e.g. by a large power of
logX) over (58) for minor arc α will lead to an approximation of the form∑

n

f(n)g(n+ h) ≈ MTM,h

for most h ∈ [h0 −H, h0 +H]. We formalize this argument as follows:
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Corollary 3.2. Let H ≥ 1 and η, F,G,X > 0. Let f, g : Z → C be functions
supported on a finite set, let M be a measurable subset of T, and let m := T\M.
For each h, let MTh be a complex number. Let h0 be an integer. Assume the
following axioms:

(i) (Size bounds) One has ‖f‖2
`2 � F 2X and ‖g‖2

`2 � G2X.
(ii) (Major arc estimate) For all but O(ηH) integers h with |h− h0| ≤ H, one

has ∫
M

Sf (α)Sg(α)e(αh) dα = MTh +O(ηFGX).

(iii) (Minor arc estimate) For each α ∈ m, one has∫
m∩[α−1/2H,α+1/2H]

|Sf (α)|2 dα� η6F 2X. (59)

Then for all but O(ηH) integers h with |h− h0| ≤ H, one has∑
n

f(n)g(n+ h) = MTh +O(ηFGX). (60)

In our applications, F and G will behave like a fixed power of logX, and η will
be set log−AX for some large A. By symmetry one can replace f, F in (59) with
g,G if desired, but note that we only need a minor arc estimate for one of the two
functions f, g.

Proof. From Proposition 3.1, the upper bound (57), and axioms (i), (iii) we have∑
|h−h0|≤H

∣∣∣∣∣∑
n

f(n)g(n+ h)−MTM,h

∣∣∣∣∣
2

� η3F 2G2HX2

and hence by Chebyshev’s inequality we have∑
n

f(n)g(n+ h)−MTM,h = O(ηFGX)

for all but O(ηH) integers h with |h−h0| ≤ H. Applying axiom (ii), (53) and the
triangle inequality, we obtain the claim. �

In view of the above corollary, Theorem 1.3 will be an easy consequence of the
following major and minor arc estimates. Given parameters Q ≥ 1 and δ > 0,
define the major arcs

MQ,δ :=
⋃

1≤q≤Q

⋃
a:(a,q)=1

[
a

q
− δ, a

q
+ δ

]
,

where we identify intervals such as [a
q
− δ, a

q
+ δ] with subsets of the unit circle T in

the usual fashion. We will take Q := logBX and δ := X−1 logB
′
X for some large

B′ > B > 1. To handle the major arcs, we use the following estimate:
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Proposition 3.3 (Major arc estimate). Let A > 0, 0 < ε < 1/2 and k, l ≥ 2 be
fixed, and suppose that X ≥ 2, and that B ≥ 2A and B′ ≥ 2B + A. Let h be an
integer with 0 < |h| ≤ X1−ε.

(i) (Major arcs for Hardy-Littlewood conjecture) We have∫
M

logB X,X−1 logB
′
X

|SΛ1(X,2X]
(α)|2e(αh) dα = G(h)X

+Oε,A,B,B′(d2(h)O(1)X log−AX).

(61)

(ii) (Major arcs for divisor correlation conjecture) We have∫
M

logB X,X−1 logB
′
X

Sdk1(X,2X]
(α)Sdl1(X,2X]

(α)e(αh) dα = Pk,l,h(logX)X

+Oε,k,l,A,B,B′(d2(h)Ok,l(1)X logk+l−2−AX).

(iii) (Major arcs for higher order Titchmarsh problem) We have∫
M

logB X,X−1 logB
′
X

SΛ1(X,2X]
(α)Sdk1(X,2X]

(α)e(αh) dα = Qk,h(logX)X

+Oε,k,A,B,B′(d2(h)Ok(1)X logk−1−AX).

(iv) (Major arcs for Goldbach conjecture) If X is an integer, then∫
M

logB X,X−1 logB
′
X

SΛ1(X,2X]
(α)SΛ1[1,X)

(α)e(αh) dα = G(h)X

+Oε,A,B,B′(d2(X)O(1)X log−AX).

These bounds are quite standard and will be established in Section 4. It is likely
that one can remove the factors of d2(h), d2(X) from the error terms with a little
more effort, but we will not need to do so here. In case (ii), it is also likely that
we can improve the error term to a power saving in X if one enlarges the major
arcs accordingly, but we will again not do so here.

To handle the minor arcs, we use the following exponential sum estimate:

Proposition 3.4 (Minor arc estimate). Let ε > 0 be a sufficiently small absolute
constant, and let A,B,B′ > 0. Let k ≥ 2 be fixed, let X ≥ 2, and set Q := logBX.
Assume that B is sufficiently large depending on A, k, and that B′ is sufficiently
large depending on A,B, k.

Let 1 ≤ q ≤ Q, let a be coprime to q. Let f : N → C be either the function
f(n) := Λ(n)1(X,2X] or f(n) := dk(n)1(X,2X].

(i) One has∫
X−1 logB

′
X�|θ|�X−1/6−ε

∣∣∣∣Sf (aq + θ

)∣∣∣∣2 dθ �k,ε,A,B,B′ X log−AX (62)



CORRELATIONS OF VON MANGOLDT AND DIVISOR FUNCTIONS 35

(ii) One has, for σ ≥ 8/33, the bound∫
|θ−β|�X−σ−ε

∣∣∣∣Sf (aq + θ

)∣∣∣∣2 dθ �k,ε,A,B X log−AX (63)

for any real number β with X−1/6−ε � |β| ≤ 1
qQ

.

Note from (26) and (55) that one already has the bound∫
T

∣∣∣∣Sf (aq + θ

)∣∣∣∣2 dθ �k,ε X logOk(1)X,

so the bounds (62), (63) only gain a logarithmic savings over the trivial bound. We
also remark that the σ ≥ 1/3 case of Proposition 3.4(ii) can be established from
the estimates in [59] (in the case f = Λ1(X,2X]) or [3] (in the case f = d31(X,2X]).

Proposition 3.4 will be proven in Sections 5-7. Assuming it for now, let us see
why it (and Proposition 3.3) imply Theorem 1.3. We begin with Theorem 1.3(i).
By subdividing the interval [h0 − H, h0 + H] if necessary, we may assume that
H = Xσ+ε with ε small. Let A > 0, let B > 0 be sufficiently large depending on
A, and let B′ > 0 be sufficiently large depending on A,B. We apply Corollary 3.2
with f = g = Λ, η = log−A−2X, and M := M

logB X,X−1 logB
′
X

. From crude bounds

we can verify the hypothesis in Corollary 3.2(i) with F,G = X logX. From the
estimates in [46], we know that∑

h:|h−h0|≤H

d2(h)� H logO(1) X

and hence by the Markov inequality we have d2(h)� logOA(1) X for all but O(ηH)
values of h ∈ [h0 − H, h0 + H]. This fact and Proposition 3.3(i) then give the
hypothesis in Corollary 3.2(ii). It remains to verify the hypothesis in Corollary
3.2(iii) for any α 6∈ M

logB X,X−1 logB
′
X

. By the Dirichlet approximation theorem,

we can write α = a/q+β for some 1 ≤ q ≤ logBX, (a, q) = 1, and |β| ≤ 1
qQ

. Since

α 6∈ M
logB X,X−1 logB

′
X

, we also have |β| ≥ X−1 logB
′
X. If β ≤ X−

1
6
−ε, the claim

then follows from Proposition 3.4(ii), while for β > X−
1
6
−ε the claim follows from

Proposition 3.4(i). Theorem 1.3(ii)-(iv) follow similarly.

Remark 3.5. The bound (63) is being used here to establish Theorem 1.3. In the
converse direction, it is possible to use Theorem 1.3 to establish (63); we sketch
the argument as follows. The left-hand side of (63) may be bounded by∫

R
|Sf (θ)|2 η

(
Xσ+ε

(
θ − a

q
− β

))
dθ
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for some rapidly decreasing η with compactly supported Fourier transform,and this
can be rewritten as

X−σ−ε
∑
h

e

(
−h
(
a

q
+ β

))
η̂

(
h

Xσ+ε

)∑
n

f(n)f(n+ h).

The inner sum can be controlled for most h using Theorem 1.3, and contribution
of the exceptional values of h can be controlled by upper bound sieves. We leave
the details to the interested reader.

4. Major arc estimates

In this section we prove Proposition 3.3. To do this we need some estimates on
SΛ1(X,2X]

(α) and Sdk1(X,2X]
(α) for major arc α. The former is standard:

Proposition 4.1. Let A,B,B′ > 0, X ≥ 2, and let α = a
q

+ β for some 1 ≤ q ≤

logBX, (a, q) = 1, and |β| ≤ logB
′
X

X
. Then we have

SΛ1[1,X]
(α) =

µ(q)

ϕ(q)

∫ X

1

e(βx) dx+OA,B,B′(X log−AX)

and hence also

SΛ1(X,2X]
(α) =

µ(q)

ϕ(q)

∫ 2X

X

e(βx) dx+OA,B,B′(X log−AX)

Proof. See [68, Lemma 8.3]. We remark that this estimate requires Siegel’s theorem
and so the bounds are ineffective. �

For the dk exponential sum, we have

Proposition 4.2. Let A,B,B′ > 0, k ≥ 2, X ≥ 2, and let α = a
q

+ β for some

1 ≤ q ≤ logBX, (a, q) = 1, and |β| ≤ logB
′
X

X
. Then we have

Sdk1(X,2X]
(α) =

∫ 2X

X

pk,q(x)e(βx) dx+Ok,A,B,B′(X log−AX)

where

pk,q(x) :=
∑
q=q0q1

µ(q1)

ϕ(q1)q0

pk,q0,q1

(
x

q0

)

pk,q0,q1(x) :=
d

dx
Ress=1

xsFk,q0,q1(s)

s

Fk,q0,q1(s) :=
∑

n≥1:(n,q1)=1

dk(q0n)

ns
.
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Using Euler products we see that Fk,q0,q1 has a pole of order k at s = 1, and
so pk,q0,q1 (and hence pk,q) will be a polynomial of degree at most k − 1 in log x.
One could improve the error term X log−AX here to a power savings X1−c/k for
some absolute constant c > 0, and also allow q and X|β| to similarly be as large
as Xc/k, but we will not exploit such improved estimates here.

Proof. This is a variant of the computations in [3, §6]. Using Lemma 2.1 (and
increasing A as necessary), it suffices to show that∑

n≤X′
dk(n)e(an/q) =

∫ X′

0

pk,q(x) dx+Ok,A,B(X log−AX)

for all X ′ � X. As in the proof of Lemma 2.9, we can expand the left-hand side
as ∑

q=q0q1

∑
n1≤X′/q0:(n1,q1)=1

dk(q0n1)e(an1/q1)

so (again by enlarging A as necessary) it will suffice to show that∑
n1≤X′/q0:(n1,q1)=1

dk(q0n1)e(an1/q1) =
µ(q1)

ϕ(q1)

∫ X′/q0

0

pk,q0,q1(x) dx+Ok,A,B(X log−AX)

(64)
for each factorization q = q0q1. By (34), the left-hand side of (64) expands as

1

ϕ(q1)

∑
χ (q1)

χ(a)τ(χ)
∑

n1≤X′/q0

χ(n1)dk(q0n1)

where the Gauss sum τ(χ) is defined by (35). For non-principal χ, a routine
application of the Dirichlet hyperbola method shows that∑

n1≤X′/q0:(n1,q1)=1

χ(n1)dk(q0n1)�k,A,B X log−AX

for anyA > 0 (in fact one can easily extract a power savings of orderX−1/k logOk,A,B(1)X
from this argument). Thus it suffices to handle the contribution of the principal
character. Here, the Gauss sum (35) is just µ(q1), so we reduce to showing that∑

n1≤X′/q0:(n1,q1)=1

dk(q0n1) =

∫ X′/q0

0

pk,q0,q1(x) dx+Ok,A,B(X log−AX).

By the fundamental theorem of calculus one has∫ X′/q0

0

pk,q0,q1(x) dx = Ress=1
(X ′/q0)sFk,q0,q1(s)

s
.



38 KAISA MATOMÄKI, MAKSYM RADZIWI L L, AND TERENCE TAO

Meanwhile, by Lemma 2.4(i), we can write the left-hand side as

1

2πi

∫ σ+iXε

σ−iXε

(X ′/q0)sFk,q0,q1(s)

s
ds+Ok,A,B,ε(X log−AX)

where σ := 1 + 1
logX

and ε > 0 is arbitrary. On the other hand, by modifying the

arguments in [3, Lemma 4.3] (and using the standard convexity bound for the ζ
function) we have the bounds

Fk,q0,q1(s)�k,B,ε X
Ok(ε2)

when Re(s) ≥ 1 − ε, |Im(s)| ≤ Xε, and |s − 1| ≥ ε. Shifting the contour to the
rectangular path connecting σ − iXε, (1 − ε) − iXε, (1 − ε) + iXε, and σ + iXε

and using the residue theorem, we obtain the claim. �

Now we establish Proposition 3.3(i). From Proposition 4.1 and the crude bound
SΛ1(X,2X]

(α)� X coming from the prime number theorem, we have

|SΛ1(X,2X]
(α)|2 =

µ2(q)

ϕ2(q)

∣∣∣∣∫ 2X

X

e(βx) dx

∣∣∣∣2 +OA′,B,B′(X
2 log−A

′
X)

for any A′ > 0 and major arc α as in that proposition. On the other hand, the
set M

logB X,X−1 logB
′
X

has measure O(X−1 log2B+B′ X). Thus (on increasing A′ as

necessary) to prove (61), it suffices to show that∑
q≤logB X

∑
(a,q)=1

∫
|β|≤X−1 logB

′
X

µ2(q)

ϕ2(q)

∣∣∣∣∫ 2X

X

e(βx) dx

∣∣∣∣2 e((aq + β

)
h

)
dβ

= G(h)X +Oε,A,B,B′(d2(h)O(1)X log−AX).

By the Fourier inversion formula we have∫
R

∣∣∣∣∫ 2X

X

e(βx) dx

∣∣∣∣2 e(βh) dβ =

∫
R

1[X,2X](x)1[X,2X](x+ h) dx

= (1 +O(X−ε))X

so from the elementary bound
∫ 2X

X
e(βx) dx� 1/|β| one has∫

|β|≤X−1 logB
′
X

∣∣∣∣∫ 2X

X

e(βx) dx

∣∣∣∣2 e(βh) dβ = (1 +Oε,B′(log−B
′
X))X. (65)

If B′ ≥ 2B + A, it thus suffices to show that∑
q≤logB X

∑
(a,q)=1

µ2(q)

ϕ2(q)
e

(
ah

q

)
= G(h) +Oε,A,B(d2(h)O(1) log−AX).
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Introducing the Ramanujan sum

cq(a) :=
∑

1≤b≤q:(b,q)=1

e

(
ab

q

)
, (66)

the left-hand side simplifies to ∑
q≤logB X

µ2(q)cq(h)

ϕ2(q)
.

Recall that, for fixed h, cq(h) is multiplicative in q and that cp(h) = −1 if p - h
and cp(h) = ϕ(h) if p | h. Hence by Euler products one has∑

q

µ2(q)cq(h)

ϕ2(q)
q1/2 �

∏
p-h

(
1 +O

(
1

p3/2

))
×
∏
p|h

O(1)

� d2(h)O(1)

and hence ∑
q>logB X

µ2(q)cq(h)

ϕ2(q)
� d2(h)O(1) log−B/2X.

Since B ≥ 2A, it thus suffices to establish the identity∑
q

µ2(q)cq(h)

ϕ2(q)
= G(h)

but this follows from a standard Euler product calculation.
The proof of Theorem 3.3(iv) is similar to that of Theorem 3.3(i) and is left to

the reader. We now turn to Theorem 3.3(ii). From (25) one has

Sdk1(X,2X]
(α)�k X logk−1X

and similarly
Sdl1(X,2X]

(α)�l X logl−1X.

Write

Sk,q(β) :=

∫ 2X

X

pk,q(x)e(xβ) dx

and similarly for Sl,q(β). Then from Proposition 4.2 we have (on increasing A as
necessary) that

Sdk1(X,2X]
(α)Sdl1(X,2X]

(α) = Sk,q(β)Sl,q(β) +Ok,l,A′,B,B′(X log−A
′
X)

for any A′ > 0. It thus suffices to show that∑
q≤logB X

∑
(a,q)=1

∫
|β|≤X−1 logB

′
X

Sk,q(β)Sl,q(β)e

((
a

q
+ β

)
h

)
dβ

= Pk,l,h(logX)X +Oε,k,l,A,B,B′(d2(h)Ok,l(1)X log−AX).
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Using Euler products one can obtain the crude bounds

pk,q(x)�k
d2(q)Ok(1)

q
logk−1X (67)

for x � X; indeed, the coefficients of pk,q (viewed as a polynomial in logX) are of

size Ok(
d2(q)Ok(1)

q
). By repeating the proof of (65), we can then conclude that∫

|β|≤X−1 logB
′
X

Sk,q(β)Sl,q(β)e(βh) dβ

=

∫ 2X

X

pk,q(x)pl,q(x+ h) dx+Ok,l,B′

(
d2(q)Ok,l(1)

q2
X logk+l−2−B′ X

)
.

Since log(x+ h) = log x+Oε(X
−ε) for |h| ≤ X1−ε and x � X, we have∫ 2X

X

pk,q(x)pl,q(x+h) dx =

∫ 2X

X

pk,q(x)pl,q(x) dx+Ok,l,B′

(
d2(q)Ok,l(1)X logk+l−2−B′ X

)
.

Using (25) to control the error terms, using (66), and recalling that B′ ≥ 2B +A,
it therefore suffices to establish the bound∑
q≤logB X

cq(h)

∫ 2X

X

pk,q(x)pl,q(x) dx = Pk,l,h(logX)X+Oε,k,l,A,B

(
d2(h)Ok,l(1)X logk+l−2−AX

)
.

Using the bounds (67), we can argue as before to show that∑
q

q1/2cq(h)

∫ 2X

X

pk,q(x)pl,q(x) dx�k,l d2(h)Ok,l(1)X logk+l−2X

and so for B ≥ 2A it suffices to show that∑
q

cq(h)

∫ 2X

X

pk,q(x)pl,q(x) dx = XPk,l,h(logX).

But as pk,q, pl,q are polynomials in logX of degree at most k− 1, l− 1 respectively,
this follows from direct calculation (using (67) to justify the convergence of the
summation). An explicit formula for the polynomial Pk,l,h may be computed by
using the calculations in [10], but we will not do so here.

To prove Theorem 3.3(iii), we repeat the arguments used to establish Theorem
3.3(ii) (replacing one of the invocations of Proposition 4.2 with Proposition 4.1)
and eventually reduce to showing that∑

q

cq(h)

∫ 2X

X

pk,q(x)
µ(q)

ϕ(q)
dx = XQk,h(logX),

but this is again clear since pk,q(x) is a polynomial in logX of degree at most k−1.
Again, the polynomial Qk,h is explicitly computable, but we will not write down
such an explicit formula here.
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5. Reduction to a Dirichlet series mean value estimate

We begin the proof of Proposition 3.4. As discussed in the introduction, we will
estimate the expressions (63), (62), which currently involve the additive frequency
variable α, by expressions involving the multiplicative frequency t, by performing
a sequence of Fourier-analytic transformations and changes of variable.

The starting point will be the following treatment of the q = 1 case:

Proposition 5.1 (Bounding exponential sums by Dirichlet series mean values).
Let 1 ≤ H ≤ X, and let f : N → C be a function supported on (X, 2X]. Let β, η
be real numbers with |β| � η � 1, and let I denote the region

I :=

{
t ∈ R : η|β|X ≤ |t| ≤ |β|X

η

}
(68)

(i) We have∫ β+1/H

β−1/H

|Sf (θ)|2 dθ �
1

|β|2H2

∫
I

(∫ t+|β|H

t−|β|H
|D[f ](

1

2
+ it′)| dt′

)2

dt

+

(
η + 1

|β|H

)2

H2

∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx.

(69)

(ii) If β = 1/H, then we have the variant∫
β≤|θ|≤2β

|Sf (θ)|2 dθ �
∫
I

|D[f ](
1

2
+ it)|2 dt

+

(
η + 1

|β|X

)2

H2

∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx

(70)

Observe from the Cauchy-Schwarz inequality that

1

|β|2H2

∫
I

(∫ t+|β|H

t−|β|H

∣∣∣∣D[f ]

(
1

2
+ it′

)∣∣∣∣ dt′
)2

dt�
∫ 2|β|X/η

−2|β|X/η

∣∣∣∣D[f ]

(
1

2
+ it

)∣∣∣∣2 dt

and so from the L2 mean value estimate (Lemma 2.8) we see that (69) trivially
implies the bound ∫ β+1/H

β−1/H

|Sf (θ)|2 dθ �k X logOk(1) X.

Note that this bound also follows from the “trivial” bounds (55) and (25). Thus,
ignoring powers of logX, (69) is efficient in the sense that trivial estimation of the
right-hand side recovers the trivial bound on the left-hand side. In particular, any
significant improvement (such as a power savings) over the trivial bound on the
right-hand side will lead to a corresponding non-trivial estimate on the left-hand
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side, of the type needed for Proposition 3.4. Similarly for (70) (which roughly
corresponds to the endpoint |β| � 1

|H| of (69)).

Proof. For brevity we adopt the notation

F (t) := D[f ](
1

2
+ it).

We first prove (69). It will be convenient for Fourier-analytic computations to
work with smoothed sums. Let ϕ : R → R be a smooth even function supported
on [−1, 1], equal to one on [−1/10, 1/10], and whose Fourier transform ϕ̂(θ) :=∫
R ϕ(y)e(−θy) dy obeys the bound |ϕ̂(θ)| � 1 for θ ∈ [−1, 1]. Then we have

∫ β+1/H

β−1/H

|Sf (θ)|2 dθ �
∫
R
|Sf (θ)|2|ϕ̂(H(θ − β))|2 dθ

=

∫
R

∣∣∣∣∣
∫
R

∑
n

f(n)ϕ(y)e(βHy)e(θ(n−Hy)) dy

∣∣∣∣∣
2

dθ

= H−2

∫
R

∣∣∣∣∣
∫
R

∑
n

f(n)ϕ

(
n− x
H

)
e(β(n− x))e(θx) dx

∣∣∣∣∣
2

dθ

= H−2

∫
R

∣∣∣∣∣∑
n

f(n)ϕ

(
n− x
H

)
e(β(n− x))

∣∣∣∣∣
2

dx

= H−2

∫
R

∣∣∣∣∣∑
n

f(n)ϕ

(
n− x
H

)
e(βn)

∣∣∣∣∣
2

dx

= H−2

∫ 4X

X/2

∣∣∣∣∣∑
n

f(n)ϕ

(
n− x
H

)
e(βn)

∣∣∣∣∣
2

dx.

where we have made the change of variables x = n−Hy, followed by the Plancherel
identity, and then used the support of f and ϕ. (This can be viewed as a smoothed
version of a lemma of Gallagher [24, Lemma 1]).)

By the triangle inequality, we can bound the previous expression by

� H−2

∫
R

( ∑
x−H≤n≤x+H

|f(n)|

)2

dx,

which is acceptable if |β|H � 1. Thus we may assume henceforth that |β| � 1/H.
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By duality, it thus suffices to establish the bound

∫
R

∑
n

f(n)ϕ

(
n− x
H

)
e(βn)g(x) dx� 1

|β|

∫
I

(∫ t+|β|H

t−|β|H
|D[f ](

1

2
+ it′)| dt′

)2

dt

1/2

+

(
η +

1

|β|H

)∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx

1/2

(71)

whenever g : R → C is a measurable function supported on [X/2, 4X] with the
normalization ∫

R
|g(x)|2 dx = 1. (72)

Using the change of variables u = log n − logX (or equivalently n = Xeu), as
discussed in the introduction, we can write the left-hand side of (71) as∑

n

f(n)

n1/2
G(log n− logX) (73)

where G : R→ R is the function

G(u) := X1/2eu/2e(βXeu)

∫
R
ϕ

(
Xeu − x

H

)
g(x) dx.

From the support of g and ϕ, we see that G is supported on the interval [−10, 10]
(say).

At this stage we could use the Fourier inversion formula

G(u) =
1

2π

∫
R
Ĝ

(
− t

2π

)
e−itu dt (74)

to rewrite (73) in terms of the Dirichlet series D[f ](1
2

+ it) =
∑

n
f(n)

n
1
2+it

. However,

the main term in the right-hand side of (69) only involves “medium” values of the
frequency variable t, in the sense that |t| is constrained to lie between ηβX and
βX/η. Fortunately, the phase e(βXeu) ofG(u) oscillates at frequencies comparable
to βX in the support [−10, 10] of G, so the contribution of “high frequencies”
|t| � βX/η and “low frequencies” |t| � ηβX will both be acceptable, in the sense
that they will be controllable using the error term in (69).

To make this precise we will use the harmonic analysis technique of Littlewood-
Paley decomposition. Namely, we split the sum (73) into three subsums∑

n

f(n)

n1/2
Gi(log n− logX) (75)
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for i = 1, 2, 3, where G1, G2, G3 are Littlewood-Paley projections of G,

G1(u) :=

∫
R
G

(
u− 2πv

10η|β|X

)
ϕ̂(v) dv

G2(u) :=

∫
R
G

(
u− 2πηv

|β|X

)
ϕ̂(v) dv −

∫
R
G

(
u+

2πv

10η|β|X

)
ϕ̂(v) dv

G3(u) := G(u)−
∫
R
G

(
u− 2πηv

|β|X

)
ϕ̂(v) dv

and estimate each subsum separately.

Remark 5.2. Expanding out ϕ̂ as a Fourier integral and performing some change
of variables, one can compute that

G1(u) =
1

2π

∫
R
Ĝ

(
− t

2π

)
ϕ(

t

10η|β|X
)e−itu dt

G2(u) =
1

2π

∫
R
Ĝ

(
− t

2π

)(
ϕ

(
ηt

|β|X

)
− ϕ

(
t

10η|β|X

))
e−itu dt

G3(u) =
1

2π

∫
R
Ĝ

(
− t

2π

)(
1− ϕ

(
ηt

|β|X

))
e−itu dt.

Comparing this with (74), we see that G1, G2, G3 arise from G by smoothly trun-
cating the frequency variable t to “low frequencies” |t| � η|β|X, “medium frequen-
cies” η|β|X � |t| � |β|X/η, and “high frequencies” |t| � |β|X/η respectively.
It will be the medium frequency term G2 that will be the main term; the low fre-
quency term G1 and high frequency term G3 can be shown to be small by using the
oscillation properties of the phase e(βXeu).

We first consider the contribution of (75) in the “high frequency” case i = 3.
Since

∫
R ϕ̂(v) dv = 1, we can use the fundamental theorem of calculus to write

G3(u) =
2πη

|β|X

∫ 1

0

∫
R
vG′

(
u− a2πηv

|β|X

)
ϕ̂(v) dvda. (76)

For x ∈ [X/2, 4X], the function u 7→ X1/2eu/2e(βXeu)ϕ
(
Xeu−x
H

)
is only non-zero

when x = Xeu +O(H), and has a derivative of O(|β|X3/2). As a consequence, we
have the derivative bound

G′(u)� βX3/2

∫
x=Xeu+O(H)

|g(x)| dx

for any u, and hence by the triangle inequality

G3(u)� ηX1/2

∫ 1

0

∫
R

∫
x=Xe

−a 2πηv
|β|X eu+O(H)

|g(x)||v||ϕ̂(v)| dxdvda.
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The expression (75) when i = 3 may thus be bounded by

� ηX1/2

∫ 1

0

∫
R

∫
R

∑
n:x=λn+O(H)

|f(n)|
n1/2

|g(x)||v||ϕ̂(v)| dxdvda

where we abbreviate λ := e−a
2πηv
|β|X . From the support of f and g we see that the

inner integral vanishes unless λ � 1. By the rapid decrease of ϕ̂, we may then
bound the previous expression by

� ηX1/2 sup
λ�1

∫
R

∑
n:x=λn+O(H)

|f(n)|
n1/2

|g(x)| dx.

Since f is supported on [X, 2X], we see from (72) and Cauchy-Schwarz that this
quantity is bounded by

� η sup
λ�1

∫
R

 ∑
n:x=λn+O(H)

|f(n)|

2

dx

1/2

.

Rescaling x by λ and using the triangle inequality, we can bound this by

� η

(∫
R
(
∑

x≤n≤x+H

|f(n)|)2 dx

)1/2

which is acceptable.
Now we consider the contribution of (75) in the “low frequency” case i = 1. We

first make the change of variables w := u− 2πv
10η|β|X to write

G1(u) =
−10η|β|X

2π

∫
R
G(w)ϕ̂

(
10η|β|X

2π
(u− w)

)
dw

=
−10η|β|X3/2

2π

∫
R

(∫
R
e(βXew)ψx,u(w) dw

)
g(x) dx

where ψx,u : R→ C is the amplitude function

ψx,u(w) := ew/2ϕ̂

(
10η|β|X

2π
(u− w)

)
ϕ

(
Xew − x

H

)
. (77)

The function ψx,u is supported on the region w = log x
X

+ O(H
X

) (in particular,
w = O(1)); from the rapid decrease of ϕ̂ and the hypothesis |β| � 1/H we also
have the bound

ψx,u(w)� (1 + η|β|X|w − u|)−2

(say). Differentiating (77) in w, we conclude the bounds

ψ′x,u(w)�
(
η|β|X +

X

H

)
(1 + η|β|X|w − u|)−2.
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Meanwhile, the phase βXew has all w-derivatives comparable to |β|X in magni-
tude. Integrating by parts, we conclude the bound∫

R
e(βXew)ψx,u(w) dw �

(
η +

1

|β|H

)∫
w=log x

X
+O(H

X
)

(1 + η|β|X|w − u|)−2 dw

and hence (75) for i = 1 may be bounded by

�
(
η +

1

|β|H

)
η|β|X3/2

∫
R

∫
w=log x

X
+O(H

X
)

∑
n

|f(n)|
n1/2

g(x)

(1 + η|β|X|w − log n+ logX|)2
dwdx.

Making the change of variables z := w − log n+ logX, this becomes

�
(
η +

1

|β|H

)
η|β|X3/2

∫
R

∫
R

∑
n:z=log x

n
+O(H

X
)

|f(n)|
n1/2

g(x)

(1 + η|β|X|z|)2
dxdz.

The sum vanishes unless z = O(1), in which case the condition z = log x
n

+ O(H
X

)
can be rewritten as n = e−zx+O(H). Since

∫
R η|β|X(1 + η|β|X|z|)−2 dz � 1, we

can thus bound the previous expression by

�
(
η +

1

|β|H

)
X1/2 sup

z=O(1)

∫
R

∑
n=e−zx+O(H)

|f(n)|
n1/2

g(x) dx.

Arguing as in the high frequency case i = 3 (with e−z now playing the role of λ),
we can bound this by(

η +
1

|β|H

)∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx

1/2

which is acceptable.
Finally we consider the main term, which is (75) in the “medium frequency”

case i = 2. For any T > 0, the quantity∑
n

f(n)

n1/2

∫
R
G

(
log n− logX − 2πv

T

)
ϕ̂(v) dv

can be expanded using the change of variables t := Ty, w := log n− logX− 2πv
T

as∫
R

∑
n

f(n)

n1/2

∫
R
G

(
log n− logX − 2πv

T

)
e(−vy)ϕ(y) dvdy

=
1

2π

∫
R

∑
n

f(n)

n1/2

∫
R
G(w)n−iteitwX itϕ

(
t

T

)
dwdt

=
1

2π

∫
R
F (t)

∫
R
G(w)eitwX itϕ

(
t

T

)
dwdt
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(compare with Remark 5.2). Applying identity for T := |β|X
η

and T := 10η|β|X
and subtracting, we may thus write (75) for i = 2 as

1

2π

∫
R
F (t)

∫
R
G(w)eitwX it

(
ϕ

(
ηt

|β|X

)
− ϕ

(
t

10η|β|X

))
dwdt.

The function ϕ( ηt
|β|X ) − ϕ( t

10η|β|X ) is bounded by O(1) and vanishes unless t ∈ I.

Thus by the triangle inequality, we may bound the previous expression by

�
∫
I

|F (t)|
∣∣∣∣∫

R
G(w)eitw dw

∣∣∣∣ dt. (78)

Expanding out G and using the triangle inequality again, we may bound this by

� X1/2

∫
R

∫
I

|F (t)||Jx(t)||g(x)| dtdx

where Jx(t) is the oscillatory integral

Jx(t) :=

∫
R
e

(
βXew +

tw

2π

)
ew/2ϕ

(
Xew − x

H

)
dw.

For x ∈ [X/2, 4X], the integrand here is only non-vanishing when w = log x
X

+

O(H
X

), and the amplitude ew/2ϕ(Xe
w−x
H

) is bounded in magnitude by O(1), and the

jth derivative is of size Oj((H/X)j) for any j. Also, the phase w 7→ βXew+ tw
2π

has
a second derivative comparable to |β|X, and similarly for all higher derivatives.
From van der Corput estimates (see e.g. [41, Lemma 8.10]) we thus have the
pointwise bound

Jx(t)� (|β|X)−1/2

for any t. Furthermore, on the support of the amplitude ew/2ϕ(Xe
w−x
H

), the first
derivative of the phase will have magnitude � | t

2π
+βx|, unless t

2π
+βx = O(|β|H).

By two integration by parts we thus have the additional bound

Jx(t)�
∣∣∣∣ t2π + βx

∣∣∣∣−2
H

X

unless t
2π

+ βx = O(|β|H). Noting that

(|β|H)−2H

X
≤ (|β|H)−1/2H

X
≤ (|β|X)−1/2

we thus have the combined bound

Jx(t)�
(

1 +
| t
2π

+ βx|
|β|H

)−2

(|β|X)−1/2

that is valid for all t. Thus we may bound the medium frequency case i = 2 of
(75)

� |β|−1/2

∫
R

∫
t∈I

(
1 +
| t
2π

+ βx|
|β|H

)−2

|F (t)||g(x)| dtdx.
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Subdividing into intervals t
2π

+ βx ∈ [k|β|H, (k + 1)|β|H] and using the triangle
inequality, we may bound this by

� |β|−1/2
∑
k∈Z

(1+ |k|)−2

∫
R
|g(x)|

(∫
t∈I∩[2πk|β|H−2πβx,2π(k+1)|β|H−2πβx]

|F (t)| dt
)2

dx

which by Cauchy-Schwarz may be bounded by

� |β|−1/2
∑
k∈Z

(1+|k|)−2

(∫
R

(∫
t∈I∩[2πk|β|H−2πβx,2π(k+1)|β|H−2πβx]

|F (t)| dt
)2

dx

)1/2

.

by Cauchy-Schwarz. Making the change of variables t′ := 2πk|β|H − 2πβx, this
becomes

� 1

|β|
∑
k∈Z

(1 + |k|)−2

(∫
R

(∫
t∈I∩[t′,t′+2π|β|H]

|F (t)| dt
)2

dt′

)1/2

,

which is acceptable from the absolute convergence of
∑

k∈Z(1 + |k|)−2. This con-
cludes the proof of (69).

Now we prove (70). Again, we use duality. It suffices to show that∫
R
Sf (θ)g(θ) dθ �

(∫
I

|F (t)|2 dt
)1/2

+
η + 1

|β|X

H

(∫
R
(
∑

x≤n≤x+H

|f(n)|)2 dx

)1/2

whenever g : R → C is a measurable function supported on {θ : β ≤ |θ| ≤ 2β}
with the normalization ∫

R
|g(θ)|2 dθ = 1. (79)

The expression
∫
R Sf (θ)g(θ) dθ can be rearranged as∑

n

f(n)

n1/2
G(log n− logX)

where

G(u) := ϕ(u/10)X1/2eu/2
∫
R
g(θ)e(Xeuθ) dθ, (80)

noting that the cutoff ϕ(u/10) will equal 1 for n ∈ [X, 2X]. We again split this
sum as the sum of three subsums (75) with i = 1, 2, 3, where G1, G2, G3 are defined
as before.

We first control the sum (75) in the “high frequency” case i = 3. By (76), the
triangle inequality, and the rapid decay of ϕ̂, we may bound this sum by

� η

|β|X
sup
a,v

∑
n

|f(n)|
n1/2

∣∣∣∣G′(log n− logX − a2πηv

|β|X

)∣∣∣∣ .
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Because of the cutoff ϕ(u/10) in (80), the sum vanishes unless a2πηv
|β|X = O(1), so

we may bound the preceding expression by

� η

|β|X
∑
n

|f(n)|
n1/2

|G′(log n− logX ′)|

for some X ′ � X. Computing the derivative of G, we may bound this in turn by

� η

|β|X
∑
n

|f(n)|
(∣∣∣∣∫

R
g(θ)e

(
X

X ′
nθ

)
dθ

∣∣∣∣+

∣∣∣∣∫
R
Xθg(θ)e

(
X

X ′
nθ

)
dθ

∣∣∣∣) .
We shall just treat the second term here, as the first term is estimated analogously
(with significantly better bounds). We write this contribution as

� η
∑
n

|f(n)|
∣∣∣∣∫

R

θ

β
g(θ)e

(
X

X ′
nθ

)
dθ

∣∣∣∣ .
By partitioning the support [X, 2X] of f into intervals of length H, and selecting on
each such interval a number n that maximizes the quantity |

∫
RX

θ
β
g(θ)e( X

X′
nθ) dθ|,

we may bound this by

� η
J∑
j=1

 ∑
|n−nj |≤H

|f(n)|

∣∣∣∣∫
R

θ

β
g(θ)e

(
X

X ′
njθ

)
dθ

∣∣∣∣
for some H-separated subset n1, . . . , nJ of [X, 2X]. By (79), the support of g
(which in particular makes the factor θ

β
bounded), the choice β = 1/H and the

large sieve inequality (e.g. the dual of [60, Corollary 3]), we have

J∑
j=1

∣∣∣∣∫
R

θ

β
g(θ)e

(
X

X ′
njθ

)
dθ

∣∣∣∣2 � β

and so by Cauchy-Schwarz, one can bound the preceding expression by

� ηβ1/2

 J∑
j=1

 ∑
|n−nj |≤H

|f(n)|

21/2

.

But one has ∑
|n−nj |≤H

|f(n)|

2

� 1

H

∫
|x−nj |≤2H

( ∑
x≤n≤x+H

|f(n)|

)2

dx

for each j, and so as β = 1/H and the nj are H-separated, we can bound the high
frequency case i = 3 of (75) by

� η

H

(∫
R
(
∑

x≤n≤x+H

|f(n)|)2 dx

)1/2
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which is acceptable.
Now we control the “low frequency” case i = 1 of (75). Using the change of

variables h := 2πv
10η|β|X , we can write this as

10η|β|X
2π

∫
R

∫
R

∑
n

f(n)ϕ

(
log n− logX − h

10

)
e−h/2g(θ)e(ne−hθ)ϕ̂

(
10η|β|Xh

2π

)
dθdh.

The integrand vanishes unless h = O(1). Writing

e(ne−hθ) =
−1

2πine−hθ

d

dh
e(ne−hθ)

and then integrating by parts in the h variable, we can write this expression as

10η|β|X
4π2i

∫
R

∫
R

∑
n

f(n)g(θ)e(ne−hθ)

nθ

d

dh
Rn,θ(h) dθdh

where Rn,θ(h) is the quantity

Rn,θ(h) := eh/2ϕ

(
log n− logX − h

10

)
ϕ̂

(
10η|β|Xh

2π

)
.

By the Leibniz rule, we see that d
dh
Rn,θ(h) is supported on the region h = O(1)

with ∫
R

∣∣∣∣ ddhRn,θ(h)

∣∣∣∣ dh� 1.

Thus we may bound the preceding expression using the triangle inequality and
pigeonhole principle by

� η
∑
n

|f(n)|
∣∣∣∣∫

R

β

θ
g(θ)e(nehθ)

∣∣∣∣
for some h = O(1). But by the same large sieve inequality arguments used to
control the high frequency case i = 3 (with eh now playing the role of X

X′
), we

see that this contribution is acceptable. This concludes the treatment of the low
frequency case i = 1.

Finally we consider the main term, which is the “medium frequency” case i = 2
of (75). As in the proof of (69), we may bound this expression by (78). By
Cauchy-Schwarz and the Plancherel identity, one may bound this by

�
(∫

I

|F (t)|2 dt
)1/2(∫

R
|G(w)|2 dw

)1/2

.

By (80) and the change of variables y := Xew, we have∫
R
|G(w)|2 dw �

∫
R

∣∣∣∣∫
R
g(θ)e(yθ) dθ

∣∣∣∣2 dy,

and by (79) and the Plancherel identity again, the right-hand side is equal to 1.
The claim (70) follows. �
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We can now use Lemma 2.9 to obtain an estimate for general q:

Corollary 5.3 (Stationary phase estimate, minor arc case). Let 1 ≤ H ≤ X, and
let f : N → C be a function supported on (X, 2X]. Let q ≥ 1, let a be coprime to
q, and let β, η be real numbers with |β| � η � 1. Let I denote the region in (68).
Then we have∫ β+1/H

β−1/H

∣∣∣∣Sf (aq + θ

)∣∣∣∣2 dθ �

d2(q)4

|β|2H2q
sup
q=q0q1

∫
I

∑
χ (q1)

∫ t+|β|H

t−|β|H

∣∣∣∣D[f ]

(
1

2
+ it′, χ, q0

)∣∣∣∣ dt′
2

dt

+

(
η + 1

|β|H

)2

H2

∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx.

If β = 1/H, one has the variant

∫
β≤|θ|≤2β

∣∣∣∣Sf (aq + θ

)∣∣∣∣2 dθ � d2(q)4

q
sup
q=q0q1

∫
I

∑
χ (q1)

∣∣∣∣D[f ]

(
1

2
+ it, χ, q0

)∣∣∣∣
2

dt

+

(
η + 1

|β|X

)2

H2

∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx.

The factor d2(q)4 might be improvable, but is already negligible in our analysis,
so we do not attempt to optimize it. The presence of the q0 variable is technical;
the most important case is when q0 = 1 and q1 = q, so the reader may wish to
restrict to this case for a first reading. It will be important that there are no
q factors in the error terms on the right-hand side; this is possible because we
estimate the left-hand side in terms of Dirichlet series at moderate values of t
before decomposing into Dirichlet characters.

Proof. We just prove the first estimate, as the second is similar. By applying
Proposition 5.1 with f replaced by fe(a · /q), we obtain the bound∫ β+1/H

β−1/H

|Sf (a/q + θ)|2dθ � 1

|β|2H2

∫
I

(∫ t+|β|H

t−|β|H

∣∣∣∣D[fe(a · /q)]
(

1

2
+ it′

)∣∣∣∣ dt′
)2

dt

+

(
η + 1

|β|H

)2

H2

∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx
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From Lemma 2.9 we have∫ t+|β|H

t−|β|H

∣∣∣∣D[fe(a · /q)]
(

1

2
+ it′

)∣∣∣∣ dt′ ≤ d2(q)
√
q

∑
q=q0q1

∑
χ (q1)

∫ t+|β|H

t−|β|H

∣∣∣∣D[f ]

(
1

2
+ it′, χ, q0

)∣∣∣∣
and hence by Cauchy-Schwarz(∫ t+|β|H

t−|β|H

∣∣∣∣D[fe(a · /q)]
(

1

2
+ it′

)∣∣∣∣ dt′
)2

≤ d2(q)3

q

∑
q=q0q1

∑
χ (q1)

∫ t+|β|H

t−|β|H

∣∣∣∣D[f ]

(
1

2
+ it′, χ, q0

)∣∣∣∣
2

Inserting this bound and bounding the summands in the q = q0q1 summation by
their supremum yields the claim. �

If the function f in the above corollary is k-divisor-bounded, then by Cauchy-
Schwarz and (25) we have

1

H2

∫
R

( ∑
x≤n≤x+H

|f(n)|

)2

dx� 1

H

∫
R

∑
x≤n≤x+H

|f(n)|2 dx

�
∑
n

|f(n)|2 dx

�k X logOk(1)X.

Applying the above corollary with η := Q−1/2 = log−B/2X, Proposition 3.4 is
now an immediate consequence of the following mean value estimates for Dirichlet
series.

Proposition 5.4 (Mean value estimate). Let ε > 0 be a sufficiently small constant,
and let A > 0. Let k ≥ 2 be fixed, let B > 0 be sufficiently large depending on
k,A, and let X ≥ 2. Set

H := Xσ+ε (81)

and

Q := logBX. (82)

Let 1 ≤ q ≤ Q, and suppose that q = q0q1. Let λ be a positive quantity such that

X−1/6−ε ≤ λ� 1

qQ
. (83)
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Let f : N → C be either the function f := Λ1(X,2X] or f := dk1(X,2X]. Then we
have∫
Q−1/2λX�|t|�Q1/2λX

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[f ]

(
1

2
+ it′, χ, q0

)∣∣∣∣ dt′
2

dt�k,ε,A,B qλ
2H2X log−AX.

(84)

Proposition 5.5. Let ε > 0 be a sufficiently small constant, and let A,B > 0. Let
k ≥ 2 be fixed, let X ≥ 2, and suppose that q0, q1 are natural numbers with q0, q1 ≤
logBX. Let f : N→ C be either the function f := Λ1(X,2X] or f := dk1(X,2X]. Let
B′ be sufficiently large depending on k,A,B. Then one has∫

logB
′
X�|t|�X5/6−ε

∑
χ (q1)

∣∣∣∣D[f ]

(
1

2
+ it′, χ, q0

)∣∣∣∣
2

dt′ �k,ε,A,B,B′ qX log−AX.

(85)

Proposition 5.5 is comparable7 in strength to the prime number theorem (in
arithmetic progressions) in almost all intervals of the form [x, x+ x1/6+ε]. A pop-
ular approach to proving such theorems is via zero density estimates (see e.g. [41,
§10.5]); this works well in the case f = Λ1(X,2X], but is not as suitable for treating
the case f = dk1(X,2X]. We will instead adapt a slightly different approach from
[29] using combinatorial decompositions and mean value theorems and large value
theorems for Dirichlet polynomials; the details of the argument will be given in
Appendix A. In the case f = d31(X,2X], an estimate closely related to Proposi-
tion 5.5 was established in [3, Theorem 1.1], relying primarily on sixth moment
estimates for the Riemann zeta function.

It remains to prove Proposition 5.4. This will be done in the remaining sections
of the paper.

6. Combinatorial decompositions

Let ε, k, A,B,H,X,Q, q0, q1, q, λ, f be as in Proposition 5.4. We may assume
without loss of generality that ε is small, say ε < 1/100; we may also assume that
X is sufficiently large depending on k, ε.

To Proposition 5.4, we first invoke Lemma 2.16 with m = 5, and with ε and H0

replaced by ε2 and X−ε
2
H respectively; this choice of m is available thanks to (15).

We conclude that the function (t, χ) 7→ D[f ](1
2

+ it, χ, q0) can be decomposed as a

linear combination (with coefficients of size Ok,ε(d2(q0)Ok,ε(1))) of Ok,ε(logOk,ε(1)X)

functions of the form (t, χ) 7→ D[f̃ ]
(

1
2

+ it, χ
)
, where f̃ : N → C is one of the

following forms:

7See [29, Lemma 9.3] for a precise connection between L2 mean value theorems such as (114)
and estimates for sums of fχ on short intervals.
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(Type d1, d2, d3, d4 sums) A function of the form

f̃ = (α ∗ β1 ∗ · · · ∗ βj)1(X/q0,2X/q0] (86)

for some arithmetic functions α, β1, . . . , βj : N→ C, where j = 1, 2, 3, 4, α is
Ok,ε(1)-divisor-bounded and supported on [N, 2N ], and each βi, i = 1, . . . , j
is either of the form βi = 1(Mi,2Mi] or βi = L1(Mi,2Mi] for some N,M1, . . . ,Mj

obeying the bounds

1� N �k,ε X
ε2 ,

NM1 . . .Mj �k,ε X/q0,

and

X−ε
2

H �M1 � · · · �Mj � X/q0.

(Type II sum) A function of the form

f̃ = (α ∗ β)1(X/q0,2X/q0]

for some Ok,ε(1)-divisor-bounded arithmetic functions α, β : N → C sup-
ported on [N, 2N ] and [M, 2M ] respectively, for some N,M obeying the
bounds

Xε2 � N � X−ε
2

H

and

NM �k,ε X/q0.

(Small sum) A function f̃ supported on (X/q0, 2X/q0] obeying the bound

‖f̃‖2
`2 �k,ε X

1−ε2/8. (87)

We have omitted the conclusion of good cancellation in the Type II case as it is
not required in the regime λ� X−1/6−ε under consideration.

By the triangle inequality, it thus suffices to show that for f̃ being a sum of one
of the above forms, that we have the bound∫

Q−1/2λX�|t|�Q1/2λX

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[f̃ ]

(
1

2
+ it′, χ

)∣∣∣∣ dt′
2

dt

�k,ε,A,B d2(q1)Ok(1)q1λ
2XH2 log−AX

(88)

(noting from (27) that the factors of d2(q1)Ok(1) can be easily absorbed into the
log−AX factor after increasing A slightly).

We can easily dispose of the small case. From Cauchy-Schwarz one has∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[f̃ ]

(
1

2
+ it′, χ

)∣∣∣∣ dt′
2

� q1λH
∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[f̃ ]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′
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and hence after interchanging the integrals, the left-hand side of (88) can be
bounded by

� q1λ
2H2

∑
χ (q1)

∫
|t|�Q1/2λX

∣∣∣∣D[f̃ ]

(
1

2
+ it, χ

)∣∣∣∣2 dt.

Using Lemma 2.10 we can bound this by

�k,ε q1λ
2H2X/q0 + q1Q

1/2λX

X/q0

‖f̃‖2
`2 log3X.

Crudely bounding q0, q1, Q, λ ≤ logBX, the claim (88) then follows in this case
from (87).

It remains to consider f̃ that are of Type d1, Type d2, Type d3, Type d4, or Type
II. In all cases we can write f̃ = f ′1(X/q0,2X/q0], where f ′ is a Dirichlet convolution
of the form α ∗ β1 · · · ∗ βj (in the Type dj cases) or of the form α ∗ β (in the Type
II case). It is now convenient to remove the 1(X/q0,2X/q0] truncation. Applying

Corollary 2.5 with T := λX1−ε/10 and f replaced by f̃χ, and using the divisor
bound (27) to control the supremum norm, we see that

D[f̃ ]

(
1

2
+ it, χ

)
�ε

∫
|u|≤λX1−ε/10

|F (t+ u)| du

1 + |u|
+
X−1/2+ε/5

λ

where

F (t) := D[f ′]

(
1

2
+ it, χ

)
.

We can thus bound the left-hand side of (88) by

�ε,k

∫
Q−1/2λX�|t|�Q1/2λX

∫
|u|≤λX1−ε/10

∑
χ (q1)

∫ t+u+λH

t+u−λH
|F (t′)| dt′ du

1 + |u|

2

dt

+
(
Q1/2λX

)
(q1λH)2

(
X−1/2+ε/5

λ

)2

.

The second term can be written as

Q1/2X
2ε/5q1

λX
q1λ

2XH2;

since λ ≥ X−1/6−ε and q1 ≤ Q ≤ (logX)B, we see that this contribution to (88) is
acceptable.
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Meanwhile, as 1
1+|u| has an integral of O(logX) on the region |u| ≤ λX1−ε/10,

we see from the Minkowski integral inequality in L2 and on shifting t by u that∫
Q−1/2λX�|t|�Q1/2λX

∫
|u|≤λX1−ε/10

∑
χ (q1)

∫ t+u+λH

t+u−λH
|F (t′)| dt′ du

1 + |u|

2

dt

≤

∫
|u|≤λX1−ε/10

∫
Q−1/2λX�|t|�Q1/2λX

∑
χ (q1)

∫ t+u+λH

t+u−λH
|F (t′)| dt′

2

dt

1/2

du

1 + |u|


2

� log2X

∫
Q−1/2λX�|t|�Q1/2λX

∣∣∣∣∣∣
∑
χ (q1)

∫ t+λH

t−λH
|F (t′)| dt′

∣∣∣∣∣∣
2

dt

where we allow the implied constants in the region {λX � |t| � Q1/2λX} to vary
from line to line. Putting all this together, we now see that Proposition 5.4 will
be a consequence of the following estimates.

Proposition 6.1 (Estimates for Type d1, d2, d3, d4,II sums). Let ε > 0 be suffi-
ciently small. Let k ≥ 2 and A > 0 be fixed, and let B > 0 be sufficiently large
depending on A, k. Let X ≥ 2, and set H := Xσ+ε. Set Q := logBX, and let
1 ≤ q1 ≤ Q. Let λ be a quantity such that X−1/6−2ε ≤ λ� 1

q1Q
. Let f : N→ C be

a function of one of the following forms:

(Type d1, d2, d3, d4 sums) One has
f = α ∗ β1 ∗ · · · ∗ βj (89)

for some Ok,ε(1)-divisor-bounded arithmetic functions α, β1, . . . , βj : N →
C, where j = 1, 2, 3, 4, α is supported on [N, 2N ], and each βi, i = 1, . . . , j
is supported on [Mi, 2Mi] for some N,M1, . . . ,Mj obeying the bounds

1� N �k,ε X
ε2 ,

X/Q� NM1 . . .Mj �k,ε X,

and
X−ε

2

H �M1 � · · · �Mj � X.

Furthermore, each βi is either of the form βi = 1(Mi,2Mi] or βi = L1(Mi,2Mi].
(Type II sum) One has

f = α ∗ β
for some Ok,ε(1)-divisor-bounded arithmetic functions α, β : N → C sup-
ported on [N, 2N ] and [M, 2M ] respectively, for some N,M obeying the
bounds

Xε2 � N � X−ε
2

H (90)

and
X/Q� NM �k,ε X. (91)
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Then∫
Q−1/2λX�|t|�Q1/2λX

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[f ]

(
1

2
+ it′, χ

)∣∣∣∣ dt′
2

dt�k,ε,A,B q1λ
2H2X log−AX.

(92)

It remains to prove Proposition 6.1. We can deal with the Type d1, Type d2,
Type d4, and Type II cases here; the Type d3 case is trickier and we will only make
a partial reduction in this section.

We begin with the Type II case. Since f = α ∗ β, we may factor

D[f ]

(
1

2
+ it′, χ

)
= D[α]

(
1

2
+ it′, χ

)
D[β]

(
1

2
+ it′, χ

)
and hence by Cauchy-Schwarz we have∑

χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[f ]

(
1

2
+ it′, χ

)∣∣∣∣ dt′
2

�

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[α]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′


×

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[β]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′


for any t. From Lemma 2.10 we have∑

χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[α]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′ �k,ε (q1λH +N) logOk,ε(1)X

while from Fubini’s theorem and Lemma 2.10 we have∫
Q−1/2λX�|t|�Q1/2λX

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[β]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′ �k,ε λH(q1Q
1/2λX+M) logOk,ε(1) X

and so we can bound the left-hand side of (92) by

�k,ε (q1λH +N)
(
q1Q

1/2λX +M
)
λH logOk,ε(1) X.

We rewrite this expression using (91) as

�k,ε q1

(
Q1/2q1λ+

Q1/2N

H
+

1

N
+

1

q1λH

)
λ2H2X logOk,ε(1) X.

Using the hypotheses (83), (90), (81), (82), we obtain (92) in the Type II case as
required.
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Now we handle the Type d1 and d2 cases. Actually we may unify the d1 case
into the d2 case by adding a dummy factor β2, so that in both cases we have

f = α ∗ β1 ∗ β2

where α is supported on [N, 2N ] and is Ok,ε,B(1)-divisor-bounded, and each βi is
either 1(Mi,2Mi] or L1(Mi,2Mi], where

1� N � Xε2 (93)

and

X/Q� NM1M2 � X.

We may factor

D[f ]

(
1

2
+ it′, χ

)
= D[α]

(
1

2
+ it′, χ

)
D[β1]

(
1

2
+ it′, χ

)
D[β2]

(
1

2
+ it′, χ

)
.

By Cauchy-Schwarz we have∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[f ]

(
1

2
+ it′, χ

)∣∣∣∣ dt′
2

�

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[α]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′


×

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[β1]

(
1

2
+ it′, χ

)∣∣∣∣2 ∣∣∣∣D[β2]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′

 .

From Lemma 2.8 we have∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[α]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′ �k,ε (q1λH +N) logOk,ε(1)X

so from Fubini’s theorem we can bound the left-hand side of (92) by

�k,ε (q1λH +N)λH logOk,ε(1)X

×
∑
χ (q1)

∫
λX�|t|�Q1/2λX

∣∣∣∣D[β1]

(
1

2
+ it, χ

)∣∣∣∣2 ∣∣∣∣D[β2]

(
1

2
+ it, χ

)∣∣∣∣2 dt.

By the pigeonhole principle, we can thus bound the left-hand side of (92) by

�k,ε (q1λH +N)λH logOk,ε(1)X

×
∑
χ (q1)

∫
T/2≤|t|≤T

∣∣∣∣D[β1]

(
1

2
+ it, χ

)∣∣∣∣2 ∣∣∣∣D[β2]

(
1

2
+ it, χ

)∣∣∣∣2 dt
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for some T with

Q−1/2λX � T � Q1/2λX. (94)

By Corollary 2.12 and the triangle inequality, we have∑
χ (q1)

∫
T/2≤|t|≤T

∣∣∣∣D[β1]

(
1

2
+ it, χ

)∣∣∣∣4 dt� q1T

(
1 +

q2
1

T 2
+
U2

1

T 4

)
logO(1) X;

since

T � λX � X

H
� X1/2 � U

1/2
1 , q

we thus have ∑
χ (q1)

∫
T/2≤|t|≤T

∣∣∣∣D[β1]

(
1

2
+ it, χ

)∣∣∣∣4 dt� q1T logO(1)X.

Similarly with β1 replaced by β2. By Cauchy-Schwarz, we thus have∑
χ (q1)

∫
T/2≤|t|≤T

∣∣∣∣D[β1]

(
1

2
+ it, χ

)∣∣∣∣2 ∣∣∣∣D[β2]

(
1

2
+ it, χ

)∣∣∣∣2 dt� q1T logO(1)X

and so we can bound the left-hand side of (92) by

�k,ε (q1λH +N)λHq1T logOk,ε(1)X.

Using (94), we can bound this by

�k,ε q1

(
q1Q

1/2λ+
NQ1/2

H

)
λ2H2X logOk,ε(1) X.

Using (83), (93), (81), (82), we obtain (92) as desired.

Remark 6.2. The above arguments recover the results of Mikawa [59] and Baier,
Browning, Marasingha, and Zhao [3], in which σ is now set equal to 1

3
, and the

Type d3 and Type d4 sums do not appear.

Now we turn to the Type dj cases for j = 3, 4. Here we have

NM1 . . .Mj �k,ε X (95)

and

X−ε
2

H �M1 � · · · �Mj (96)

which implies that

M1 � X1/j. (97)

We now factor f = β1 ∗ g where g := α ∗ β2 ∗ · · · ∗ βj, so that

D[f ]

(
1

2
+ it, χ

)
= D[β1]

(
1

2
+ it, χ

)
D[g]

(
1

2
+ it, χ

)
.
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The function g is supported in the range {n : n � NM2 . . .Mj} and is Ok,ε(1)-
divisor bounded. By Cauchy-Schwarz, the left-hand side of (92) may be bounded
by

∫
Q−1/2λX�|t|�Q1/2λX

∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′


∑
χ (q1)

∫ t+λH

t−λH

∣∣∣∣D[β1]

(
1

2
+ it′′, χ

)∣∣∣∣2 dt′′

 dt.

Using Fubini’s theorem to perform the t integral first, we can estimate this by

� λH
∑
χ (q1)

∫
Q−1/2λX�|t′|�Q1/2λX

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2∑
χ (q1)

∫ t′+2λH

t′−2λH

∣∣∣∣D[β1]

(
1

2
+ it′′, χ

)∣∣∣∣2 dt′′

 dt′.

We fix a smooth Schwartz function η : R → R, positive on [−2, 2] and whose
Fourier transform η̂(u) :=

∫
R η(t)e(−tu) du is supported on [−1, 1] with η̂(0) = 1.
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Since λ ≤ 1
q1Q

, we can bound∑
χ (q1)

∫ t′+2λH

t′−2λH

∣∣∣∣D[β1]

(
1

2
+ it′′, χ

)∣∣∣∣2 dt′′

�
∑
χ (q1)

∫
R

∣∣∣∣D[β1]

(
1

2
+ it′′, χ

)∣∣∣∣2 η((t′′ − t′)q1Q

H

)
dt′′

=

∫
R
η

(
(t′′ − t′)q1Q

H

) ∑
χ (q1)

∑
m1,m2

β1(m1)β1(m2)χ(m1)χ(m2)

m
1/2+it′′

1 m
1/2−it′′
2

dt′′

= ϕ(q1)

∫
R
η

(
(t′′ − t′)q1Q

H

) ∑
1≤a≤q1:(a,q1)=1

∣∣∣∣∣∣
∑

m=a (q1)

β1(m)

m1/2+it′′

∣∣∣∣∣∣
2

dt′′

� q1

∫
R
η

(
(t′′ − t′)q1Q

H

) ∑
1≤a≤2q1

∣∣∣∣∣∣
∑

m=a (2q1)

β1(m)

m1/2+it′′

∣∣∣∣∣∣
2

dt′′

=
H

Q

∑
m1=m2 (2q1)

β1(m1)β1(m2)

m
1/2+it′

1 m
1/2−it′
2

η̂

(
H

2πq1Q
log

m1

m2

)

=
H

Q

∑
m,`

β1(m+ q1`)β1(m− q1`)

(m+ q1`)1/2+it′(m− q1`)1/2−it′ η̂

(
H

2πq1Q
log

m+ q1`

m− q1`

)
where we have used the balanced change of variables (m1,m2) = (m+q1`,m−q1`)
to obtain some cancellation in a Taylor expansion that will be performed in the
next section. Observe that the ` = 0 contribution to the above expression is O(H

Q
);

also, the quantity β1(m + q1`)β1(m − q1`)η̂ is only non-vanishing when m � M1

and log m+q1`
m−q1` �

q1Q
H
� Q2

H
, which implies that q1`� Q2M1

H
. By symmetry and the

triangle inequality (and crudely summing over q1` instead of over `) we have∑
χ (q1)

∫ t′+2λH

t′−2λH

∣∣∣∣D[β1]

(
1

2
+ it′′, χ

)∣∣∣∣2 dt′′ � Y (t′) +
H

Q

where Y (t′) denotes the quantity

Y (t′) :=
H

Q

∑
1≤`�Q2M1

H

∣∣∣∣∣∑
m

β1(m+ `)β1(m− `)
(m+ `)1/2+it′(m− `)1/2−it′ η̂

(
H

2πq1Q
log

m+ `

m− `

)∣∣∣∣∣ .
The function m 7→ β1(m+`)β1(m−`)

(m+`)1/2(m−`)1/2 η̂( H
2πq1Q

log m+`
m−`) is supported on the interval

[M1 + `, 2M1 − `], is of size Oε(X
O(ε2)/M1) on this interval, and has derivative of

size Oε(X
O(ε2)/M2

1 ). Thus by Lemma 2.2, one has Y (t′) �ε X
O(ε2)Ỹ (t′), where
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Ỹ (t′) denotes the quantity

Ỹ (t′) :=
H

M1

∑
1≤`�Q2M1

H

∣∣∣∣∣ ∑
m�M1

e

(
t′

2π
log

m+ `

m− `

)∣∣∣∣∣
∗

. (98)

We may thus bound the left-hand side of (92) by O(Z1 + Z2), where

Z1 := λH
∑
χ (q1)

∫
λX�|t′|�Q1/2λX

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2 Ỹ (t′) dt′

and

Z2 :=
λH2

Q

∑
χ (q1)

∫
λX�|t′|�Q1/2λX

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′.

From Lemma 2.10 we have

Z2 �k
λH2

Q
(q1Q

1/2λX +NM2 . . .Mj) logOk(1)X.

From (95), (96) we have

NM2 . . .Mj �k,ε
X

M1

� Xε2X

H

and hence by (82), (81) and (83)

NM2 . . .Mj � q1Q
1/2λX.

We thus have

Z2 �k,ε Q
−1/2q1λ

2H2X logOk(1)X;

by (82), this contribution is acceptable for B large enough.

Now we turn to Z1. At this point we will begin conceding factors of XO(ε2), in
particular we can essentially ignore the role of the parameters q1 and Q thanks to
(82).

We begin with the easier case j = 4 of Type d4 sums. To deal with D[g] in this
case, we simply invoke Lemma 2.10 to obtain the bound∑

χ (q1)

∫
Q−1/2λX�|t′|�Q1/2λX

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′ �ε X
O(ε2)λX.

To show the contribution of Z1 is acceptable in the j = 4 case, it thus suffices to
show the following lemma.

Lemma 6.3. Let the notation be as above with j = 4. Then for any Q−1/2λX �
|t′| � Q1/2λX, one has

Ỹ (t′)�ε X
−ε+O(ε2)H.
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Proof. From (98) and the triangle inequality it suffices to show that∣∣∣∣∣ ∑
m�M1

e

(
t′

2π
log

m+ `

m− `

)∣∣∣∣∣
∗

�ε X
−cε+O(ε2)H

for 1 ≤ ` � Q2M1/H. The phase m 7→ t′

2π
log m+`

m−` has jth derivative �j |t′|`
Mj+1

1

for

all j ≥ 1. Using the classical van der Corput exponent pair (1/14, 2/7) (see [41,
§8.4]) we have∣∣∣∣∣ ∑

m�M1

e

(
t′

2π
log

m+ `

m− `

)∣∣∣∣∣
∗

�ε X
O(ε2)

(
|t′|`
M2

1

) 1
14

M
2
7

+ 1
2

1

(noting from (83), (97) that |t′|` ≥ |t′| ≥ M2
1 ). Using (97), (82), the right-hand

side is
�ε X

O(ε2)(X/H)
1
14 (X1/4)

2
7

+ 1
2
− 1

14 .

From (15),(81) we have H ≥ X
7
30

+ε, and the claim then follows after some arith-
metic. �

Remark 6.4. If one uses the recent improvements of Robert [72] to the clas-
sical (1/14, 2/7) exponent pair, one can establish Lemma 6.3 for σ as small as
25
108

= 0.2314 . . . check this - I don’t have access to the Robert paper,

improving slightly upon the exponent 7
30

= 0.2333 . . . provided by the classical pair.
Unfortunately, due to the need to also treat the d3 sums, this does not improve the
final exponent (14) in Theorem 1.3.

Now we turn to estimating Z1 in the j = 3 case of Type d3 sums. To deal with
D[g] in this case, we apply Jutila’s estimate (Corollary 2.14) to conclude

Proposition 6.5. Let the notation and assumptions be as above. Cover the region
{t′ : Q−1/2λX � |t′| � Q1/2λX} by a collection J of disjoint half-open intervals

J of length Xε2
√
λX for i = 1, . . . , r. Then

∑
J∈J

∑
χ (q1)

∫
J

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′

3

�k,ε,B X
O(ε2)(λX)2.

Proof. For each R > 0, let JR denote the set of those intervals J ∈ J such that

R ≤
∑
χ (q1)

∫
J

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′ ≤ 2R.

Applying Corollary 2.14 with T := Q1/2λX and T0 := Xε2
√
λX (and ε replaced

by ε2), together with the triangle inequality and conjugation symmetry, we have∑
J∈JR

∑
χ (q)

∫
J

|D[βj](
1
2

+ it, χ)|4 dt�ε,B X
O(ε2)((#JR)

√
λX + ((#JR)λX)2/3)
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for j = 2, 3, where we recall that #JR denotes the cardinality of JR. Note that
the hypothesis Mj � T 2 required for Corollary 2.14 will follow from (95) and (83).
From Cauchy-Schwarz and the crude estimate

D[α](1
2

+ it, χ)�k,ε X
O(ε2)

we thus have∑
J∈JR

∑
χ (q)

∫
J

|D[g](1
2

+ it, χ)|2 dt�k,ε,B X
O(ε2)((#JR)

√
λX + ((#JR)λX)2/3).

By definition of JR, we conclude that

R#JR �k,ε,B X
O(ε2)((#JR)

√
λX + ((#JR)λX)2/3)

and thus either R �k,ε,B XO(ε2)
√
λX or #JR �k,ε,B XO(ε2)(λX)2/R3. Using the

trivial bound #JR �
√
λX in the former case, we thus have

#JR �k,ε,B X
O(ε2) min

(
(λX)2

R3
,
√
λX

)
for all R > 0. The claim then follows from dyadic decomposition (noting that JR
is only non-empty when R� XO(1)). �

In the next section, we will establish a discrete fourth moment estimate for the
Y (t):

Proposition 6.6. Let the notation and assumptions be as above. Let t1 < · · · < tr
be elements of {t′ : Q−1/2λX � |t′| � Q1/2λX} such that |tj+1 − tj| ≥

√
λX for

all 1 ≤ j < r. Then

r∑
j=1

Ỹ (tj)
4 �k,ε,B X

−ε+O(ε2)H4
√
λX.

Assume this proposition for the moment. Cover the set {t′ : Q−1/2λX � |t′| �
Q1/2λX} by a family J of disjoint half-open intervals J of length Xε2

√
λX for

i = 1, . . . , r. On each such J , let tJ be a point in J that maximizes the quantity
Ỹ (tJ). One can partition the tJ into O(1) subsequences that are

√
λX-separated

in the sense of Proposition 6.6. From the triangle inequality, we thus have∑
J∈J

Ỹ (tJ)4 �k,ε,B X
−ε+O(ε2)H4

√
λX

and hence by Hölder’s inequality and the cardinality bound |J | �ε,B X
O(ε2)
√
λX∑

J∈J

Ỹ (tJ)3/2 �k,ε,B X
−3ε/8XO(ε2)H3/2

√
λX,
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On the other hand, we can bound

Z1 ≤ λH
∑
J∈J

Ỹ (tJ)
∑
χ (q1)

∫
J

∣∣∣∣D[g]

(
1

2
+ it′, χ

)∣∣∣∣2 dt′

and hence by Hölder’s inequality and Proposition 6.5 we have

Z1 �k,ε,B λH(X−3ε/8+O(ε2)H3/2
√
λX)2/3((λX)2)1/3

which simplifies to

Z1 �k,ε,B λ
2H2X−ε/4+O(ε2)X

which is an acceptable contribution to (92) for ε small enough. This completes the
proof of (92).

Thus it remains only to establish Proposition 6.6. This will be the objective of
the next section.

7. Averaged exponential sum estimates

We now prove Proposition 6.6. We will now freely lose factors of XO(ε2) in our
analysis, for instance we see from the hypothesis Q ≤ logBX that

1 ≤ q1 ≤ Q�B,ε X
ε2 . (99)

By partitioning the tj based on their sign, and applying a conjugation if necessary,
we may assume that the tj are all positive. By covering the positive portion of
{λX � |t| � λXQ1/2} into dyadic intervals [T, 2T ] (and giving up an acceptable
loss of O(logX)), we may assume that there exists

Q−1/2λX � T � λXQ1/2

such that t1, . . . , tr ∈ [T, 2T ]; from (99) we see in particular that

T = XO(ε2)λX. (100)

From (83) and the bound λ ≤ 1/qQ we also note that

X5/6−2ε � T � X. (101)

Since the t1, . . . , tr are
√
λX-separated, we have

r �ε X
O(ε2)
√
λX. (102)

Finally, from (97) we have

M1 � X1/3. (103)

Now we need to control the maximal exponential sums Ỹ (tj) defined in (98). If
one uses exponent pairs such as (1/6, 1/6) here as in Lemma 6.3 to obtain uniform
control on the Ỹ (tj), one obtains inferior results (indeed, the use of (1/6, 1/6) only
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gives Theorem 1.3 for σ = 2
7

= 0.2857 . . . ). Instead, we will exploit the averaging
in j. We first use Hölder’s inequality to note that

Ỹ (tj)
4 �ε X

O(ε2) H

M1

∑
1≤`�Q2M1

H

(∣∣∣∣∣ ∑
M1≤m≤2M1

e

(
tj
2π

log
m+ `

m− `

)∣∣∣∣∣
∗)4

.

Next, we observe that log m+`
m−` = log 1+`/m

1−`/m has the Taylor expansion

log
m+ `

m− `
=
∞∑
j=0

2

2j + 1

(
`

m

)2j+1

= 2
`

m
+

2

3

`3

m3
+

2

5

`5

m5
+ . . . .

Note how the use of the balanced change of variables eliminated the terms in the
Taylor expansion with even powers of `

m
. Thus we can write

e

(
tj
2π

log
m+ `

m− `

)
= e

(
1

π

tj`

m
+

1

3π

tj`
3

m3

)
e(Rj,`(m))

where for m ∈ [M1, 2M1], the remainder Rj,`(m) is of size

Rj,`(m)� T

(
Q2M1/H

M1

)5

�ε X
− 1

4
+O(ε2)

and has derivative estimates

R′j,`(m)� 1

M1

T

(
Q2M1/H

M1

)5

�ε
1

M1

X−
1
4

+O(ε2).

Thus by Lemma 2.2 again, we have

Ỹ (tj)
4 �ε X

O(ε2) H

M1

∑
1≤`�Q2M1

H

(∣∣∣∣∣ ∑
M1≤m≤2M1

e

(
1

π

tj`

m
+

1

3π

tj`
3

m3

)∣∣∣∣∣
∗)4

.

We write this bound as

Ỹ (tj)
4 �ε X

O(ε2) H

M1

∑
1≤`�Q2M1

H

f

(
tj`

M1

,
tj`

3

M3
1

)4

f(α, β) denotes the maximal exponential sum

f(α, β) :=

∣∣∣∣∣ ∑
M1≤m≤2M1

e

(
α

π

M1

m
+

β

3π

M3
1

m3

)∣∣∣∣∣
∗

. (104)

By a further application of Lemma 2.2, we see that

f(α + u, β + v) � f(α, β) (105)
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whenever α, β, u, v are real numbers with u, v = O(1). Thus

Ỹ (tj)
4 �ε X

O(ε2) H

M1

∑
1≤`�Q2M1

H

∫ tj`/M1+1

tj`/M1

f

(
t,
`2

M2
1

t

)4

dt.

As the tj are
√
λX-separated and lie in [T, 2T ], and by (83), (103) we have

(λX)1/2 � X5/12−ε/2 � X1/3 �M1,

we see that for fixed `, the intervals [tj`/M1, tj`/M1 + 1] are disjoint and lie in the
region {t : t � T`/M1}. Thus we have

r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2) H

M1

∑
1≤`�Q2M1

H

∫
|t|�T`/M1

f

(
t,
`2

M2
1

t

)4

dt.

By the pigeonhole principle, we thus have
r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2) H

M1

∑
`�L

∫
|t|�TL/M1

f

(
t,
`2

M2
1

t

)4

dt

for some

1 ≤ L� Q2M1

H
� XO(ε2)M1

H
. (106)

To obtain the best bounds, it becomes convenient to reduce the range of inte-
gration of t. Let S be a parameter in the range

M1 � S � min
(
M2

1 ,
TL

M1

)
(107)

to be chosen later. By Lemma 2.3(i), we then have
r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2)HTL

SM2
1

∑
`�L

∫
0<α�S

f

(
α,

`2

M2
1

α

)4

dα

Applying (105), we then have
r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2)HTL

SM2
1

∫
0<α�S

∫
0<β�1+L2α

M2
1

f(α, β)4µ(α, β) dβdα

where the multiplicity µ(α, β) is defined as the number of ` � L such that∣∣∣∣β − `2

M2
1

α

∣∣∣∣ ≤ 1.

Clearly we have the trivial bound µ(α, β) � L. On the other hand, for fixed α,

the numbers `2

M2
1
α are � Lα

M2
1
-separated, so for β � 1 we also have the bound

µ(α, β)� 1 +
M2

1

Lα
.
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We thus have
r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2)HTL

SM2
1

(W1 +W2 +W3)

where

W1 := L

∫
0<α�S

∫
0<β�1

f(α, β)4 dβdα

W2 :=

∫
0<α�S

M2
1

Lα

∫
1�β�L2α

M2
1

f(α, β)4 dβdα

W3 :=

∫
0<α�S

∫
1�β�L2α

M2
1

f(α, β)4 dβdα.

From (105) and Lemma 2.3(ii) (with θ := −1) we have

W1 �ε X
O(ε2)L(M4

1 +M2
1S)� XO(ε2)LM4

1

thanks to (107). Now we treat W2. We may assume that α � M2
1/L

2 since the
inner integral vanishes otherwise. By the pigeonhole principle, we thus have

W2 �
M2

1 logX

LA

∫
α�A

∫
β�L2A

M2
1

f(α, β)4 dβdα

for some
M2

1

L2 � A� S. Applying Lemma 2.3(ii) again (now treating the e( β
3π

M3
1

m3 )
term in (104) as a bounded coefficient am) we have∫

α�A
f(α, β)4 dα�ε X

O(ε2)(M4
1 +M2

1A)� XO(ε2)M4
1

and hence

W2 � XO(ε2)LM4
1 .

Finally we turn to W3. The contribution of the region α � M2
1

L
is O(W2). Thus

by the pigeonhole principle we have

W3 � W2 + logX

∫
α�A

∫
β�L2A

M2
1

f(α, β)4 dβdα (108)

for some
M2

1

L
� A� S. In particular (from (106), (107)) one has

M1 � A�M2
1 . (109)

One could estimate the integral here using Lemma 2.3(ii) once again, but this turns
out to lead to an inferior estimate if used immediately, given that the length M1

of the exponential sum and the dominant frequency scale A lie in the range (109);
indeed, this only lets one establish Theorem 1.3 for σ = 1/4. Instead, we will first
apply the van der Corput B-process (Lemma 2.3(iii)), which morally speaking will
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shorten the length from M1 to A/M1, at the cost of applying a Legendre transform
to the phase in the exponential sum.

We turn to the details. For a fixed α, β with

α � A; β � L2A

M2
1

(110)

(so in particular β is much smaller in magnitude than α, thanks to (106)), let

ϕ(x) :=
α

π

M1

x
+

β

3π

M3
1

x3

denote the phase appearing in (104), then the first derivative is given by

ϕ′(x) = −α
π

M1

x2
− β

π

M3
1

x4
.

This maps the region {x : x � M1} diffeomorphically to a region of the form
{t : −t � A

M1
}. Denoting the inverse map by u, we thus have

t = −α
π

M1

u(t)2
− β

π

M3
1

u(t)4

for −t � A
M1

. One can solve explicitly for u(t) using the quadratic formula as

u(t)2 =
1

2

αM1

π|t|
+

√(
αM1

π|t|

)2

+ 4
βM3

1

π|t|

 .

=

(
αM1

π|t|

)
1

2

(
1 +

(
1 +

4β

α

π|t|M1

α

)1/2
)
.

A routine Taylor expansion then gives the asymptotic

u(t) = M1

(
α

π|t|M1

)1/2

+
β

2α
M1

(
α

π|t|M1

)−1/2

+Rα,β(t)

where the remainder term Rα,β(t) obeys the estimates

Rα,β(t)� β2

α2
M1; R′α,β(t)� β2

α2

M2
1

A

for −t � A
M

. The (negative) Legendre transform ϕ∗(t) := ϕ(u(t))− tu(t) can then
be similarly expanded as

ϕ∗(t) =
2α

π

(
α

π|t|M1

)−1/2

− β

3π

(
α

π|t|M1

)−3/2

+ Eα,β(t)

where the error term Eα,β obeys the estimates

Eα,β(t)� β2

α2
A; E ′α,β(t)� β2

α2
M1.
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From (110), (106), (109) we have

β2

α2
A� L4

M4
1

A� 1

H4
M2

1 � 1

where the last bound follows from (15) since H = Xσ+ε and M1 � X1/3. Applying
Lemma 2.3(iii) followed by Lemma 2.2, we conclude that

f(α, β)� M1

A1/2
g(A1/2α1/2, A3/2α−3/2β) +M

1/2
1

where g is the maximal exponential sum

g(α, β) :=

∣∣∣∣∣∣
∑

−`�A/M1

e

(
2α

π1/2

(
|`|

A/M1

)1/2

− βπ1/2

3

(
|`|

A/M1

)3/2
)∣∣∣∣∣∣
∗

.

Inserting this back into (108) and performing a change of variables, we conclude
that

W3 � W2 + logX(L2A2 +
M4

1

A2

∫
α�A

∫
β�L2A

M2
1

g(α, β)4 dβdα).

On the other hand, by applying Lemma 2.3(ii) as before we have∫
α�A

g(α, β)4 dα�ε X
O(ε2)((A/M1)4 + (A/M1)2A)� XO(ε2)(A/M1)2A

for any β, where the last inequality follows from (109). We thus arrive at the
bound

W3 �ε W2 +XO(ε2)L2A2.

Since A� S, we thus have

W3 �ε W2 +XO(ε2)L2S2.

Combining all the above bounds for W1,W2,W3, we have
r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2)HTL

SM2
1

(LM4
1 + L2S2). (111)

To optimize this bound we select

S := min

(
M2

1

L1/2
,
TL

M1

)
.

It is easy to see (using (83), (106), and (103)) that S obeys the bounds (107).
From (111) we have

r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2)

(
HTL2M2

1

S
+
HTL3S

M2
1

)
�ε X

O(ε2)(HLM3
1 +HTL5/2).
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Applying (106), (100) we thus have
r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2)(M4
1 +H−3/2λXM

5/2
1 )

and hence by (103)
r∑
j=1

Ỹ (tj)
4 �ε X

O(ε2)(X4/3 +H−3/2λX11/6)

From (81), (15) we have H ≥ X
11
48

+ε, which implies after some arithmetic and (83)
that the X4/3 term here gives an acceptable contribution to Proposition 6.6. The
H−3/2λX11/6 term is similarly acceptable thanks to (83), (81), and (14).

Appendix A. Mean value estimate

In this section we prove Proposition 5.5. This estimate is fairly standard, for
instance following from the methods in [29, Chapter 9]; for the convenience of the
reader we sketch a full proof here.

Let ε, A,B,X, q0, q1, f, B
′ be as in Proposition 5.5. We first invoke Lemma 2.16

with m = 3, and with ε and H replaced by ε/10 and X1/3+ε/10 respectively. We
conclude that the function (χ, t) 7→ D[f ](1

2
+ it, χ, q0) can be decomposed as a

linear combination (with coefficients of size Ok,ε(d2(q0)Ok,ε(1))) of Ok,ε(logOk,ε(1)X)

functions of the form (χ, t) 7→ D[f̃ ](1
2

+ it, χ), where f̃ : N → C is one of the
following forms:

(Type d1, d2 sum) A function of the form

f̃ = (α ∗ β1 ∗ · · · ∗ βj)1(X/q0,2X/q0] (112)

for some arithmetic functions α, β1, . . . , βj : N → C, where j = 1, 2, α is
Ok,ε(1)-divisor-bounded and supported on [N, 2N ], and each βi, i = 1, . . . , j
is either of the form βi = 1(Mi,2Mi] or βi = L1(Mi,2Mi] for some N,M1, . . . ,Mj

obeying the bounds

1� N �k,ε X
ε/10,

NM1 . . .Mj �k,ε X/q0,

and
X1/3+ε/10 �M1 � · · · �Mj � X/q0.

(Type II sum) A function of the form

f̃ = (α ∗ β)1(X/q0,2X/q0]

for some Ok,ε(1)-divisor-bounded arithmetic functions α, β : N → C with
good cancellation supported on [N, 2N ] and [M, 2M ] respectively, for some
N,M obeying the bounds

Xε/10 � N � X1/3+ε/10
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and

NM �k,ε X/q0.

The good cancellation bounds (29) are permitted to depend on the param-
eter B appearing in the bound q0 ≤ logBX.

(Small sum) A function f̃ supported on (X/q0, 2X/q0] obeying the bound

‖f̃‖2
`2 �k,ε X

1−ε/80. (113)

By the triangle inequality in Lp (and enlarging A as necessary), it thus suffices
to establish the bound∫

logB
′
X�|t|�X5/6−ε

∣∣∣∣D[f̃ ]

(
1

2
+ it′, χ, q0

)∣∣∣∣2 dt′ �k,ε,A,B,B′ X log−AX. (114)

for each individual character χ and f̃ one of the above forms.
We first dispose of the small sum case. From Lemma 2.8 and (113) we have∫

|t|≤X5/6−ε

∣∣∣∣D[f̃ ](
1

2
+ it, χ)

∣∣∣∣2 dt�k X
1−ε/80 logOk(1)X.

which gives (114) (with a power savings).

In the remaining Type d1, Type d2, and Type II cases, f̃ is of the form f̃ =
f ′1(X/q0,2X/q0], where f ′ is of the form α ∗ β1, α ∗ β1 ∗ β2, or α ∗ β in the Type d1,
Type d2, and Type II cases respectively. From Corollary 2.5 one has

|D[f̃ ](
1

2
+ it, χ)| �

∫
|u|≤X5/6−ε

|D[f ′](
1

2
+ it+ iu, χ)| du

1 + |u|
+ 1.

Meanwhile, from Lemma 2.8 we have∫
|t′|≤logB

′
X/2

∣∣∣∣D[f̃ ](
1

2
+ it′, χ)

∣∣∣∣2 dt′ �k,ε X logOk,ε(1)X

and hence by Cauchy-Schwarz∫
|t′|≤logB

′
X/2

∣∣∣∣D[f̃ ](
1

2
+ it′, χ)

∣∣∣∣ dt′ �k,ε X
1/2 logOk,ε(1)+B′/2X.

We conclude that

D[f̃ ](
1

2
+it, χ)�k,ε

∫
logB

′
X/2≤|t|≤2X5/6−ε

∣∣∣∣D[f ′](
1

2
+ it′, χ)

∣∣∣∣ dt′

1 + |t− t′|
+1+

X1/2 logOk,ε(1)+B′/2X

|t|

for logB
′
X ≤ |t| ≤ X5/6−ε; by Cauchy-Schwarz, one thus has∣∣∣∣D[f̃ ](

1

2
+ it, χ)

∣∣∣∣2 �k,ε

∫
logB

′
X/2≤|t|≤2X5/6−ε

|D[f ′](
1

2
+it′, χ)|2 dt′

1 + |t− t′|
logX+1+

X logOk,ε(1)+B′ X

|t|2
.



CORRELATIONS OF VON MANGOLDT AND DIVISOR FUNCTIONS 73

Integrating in t, we can bound the left-hand side of (114) for f̃ by

�k,ε

∫
logB

′
X/2≤|t|≤2X5/6−ε

∣∣∣∣D[f ′](
1

2
+ it, χ)

∣∣∣∣2 dt log2X +X logOk,ε(1)−B′ X,

so (by taking B′ large enough) it suffices to establish the bounds∫
logB

′
X/2≤|t|≤2X5/6−ε

∣∣∣∣D[f ′](
1

2
+ it, χ)

∣∣∣∣2 dt�k,ε,A,B,B′ X log−AX (115)

in the Type d1, Type d2, and Type II cases.
We first treat the Type d2 case. By dyadic decomposition it suffices to show

that ∫
T/2≤|t|≤T

∣∣∣∣D[f ′](
1

2
+ it, χ)

∣∣∣∣2 dt�k,ε,A,B,B′ d2(q1)Ok(1)X logOk,ε,B(1)−2B′ X

for all logB
′
X ≤ T � X5/6−ε. From Corollary 2.12 we have∫
T/2≤|t|≤2T

∣∣∣∣D[βj](
1

2
+ it, χ)

∣∣∣∣4 dt�B T

(
1 +

M2
j

T 4

)
logOB(1) X

for j = 1, 2; also from (28) we have the crude bound

D[α](
1

2
+ it, χ)�k,ε N

1/2 logOk,ε(1) .

Thus by Cauchy-Schwarz we may bound∫
T/2≤|t|≤T

∣∣∣∣D[f ′](
1

2
+ it)

∣∣∣∣2 dt�k,ε NT

(
1 +

M1

T 2

)(
1 +

M2

T 2

)
logOk,ε,B(1) X.

We can bound (
1 +

M1

T 2

)(
1 +

M2

T 2

)
� 1 +

M1M2

T 2

and use NM1M2 � X to conclude∫
T/2≤|t|≤T

|D[f ′](
1

2
+ it, χ)|2 dt�k,ε,B (NT +

X

T
) logOk,ε,B(1)X

which is acceptable since logB
′
X ≤ T � X5/6−ε and N � Xε/10.

The Type d1 case can be treated similarly to the Type d2 case (with the role of
β2(n) now played by the Kronecker delta function δn=1). It thus remains to handle
the Type II case. Here we factor

D[f ′](
1

2
+ it, χ) = D[α](

1

2
+ it, χ)D[β](

1

2
+ it, χ).

and hence

D[f ′](
1

2
+ it, χ)2 = D[β](

1

2
+ it, χ)D[β](

1

2
+ it, χ)D[α ∗ α](

1

2
+ it, χ).
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At this point it is convenient to invoke an estimate of Harman (which in turn is
largely a consequence of Huxley’s large values estimate and standard mean value
theorems for Dirichlet polynomials), translated into the notation of this paper:

Lemma A.1. Let X ≥ 2 and ε > 0, and let M,N,R ≥ 1 be such that M = X2α1,
N = X2α2, and MNR � X for some α1, α2 > 0 obeying the bounds

|α1 − α2| <
1

6
+ ε

and

α1 + α2 >
2

3
− ε.

Let a, b, c : N → C be Ok,ε(1)-divisor-bounded arithmetic functions supported on
[M/2, 2M ], [N/2, 2N ], [R/2, 2R] respectively obeying the bounds

a(n), b(n), c(n)�k,ε d2(n)Ok,ε(1) logOk,ε(1) X

for all n. Suppose we also that c is of good cancellation. Then we have∫
logB X≤|t|≤X

5
6−ε

∣∣∣∣D[a](
1

2
+ it)D[b](

1

2
+ it)D[c](

1

2
+ it)

∣∣∣∣ dt�k,ε,A,B X log−AX

whenever A > 0 and B is sufficiently large depending on A.

Proof. Apply [29, Lemma 7.3] with x := X2 and θ := 7
12

+ ε
2

(so that the quantity

γ(θ) defined in [29, Lemma 7.3] is at least as large as 1
3

+ 2ε). Strictly speaking,

the hypotheses in [29, Lemma 7.3] restricted |t| to be at least exp(log1/3X) rather
than logBX, but one can check that the argument is easily modified to adapt to
this new lower bound on |t|. �

If we apply this lemma with a := βχ, b := βχ, c := (α ∗ α)χ (with α1 = α2 ≥
1
3
− ε

20
+ o(1)) using Lemma 2.6 to preserve the good cancellation property, we

conclude that∫
logB X≤|t|≤X

5
6−ε

∣∣∣∣D[f ′](
1

2
+ it)

∣∣∣∣2 dt�k,ε,A,B X log−AX

giving (115) in the Type II case.
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[37] A. Ivić, The general additive divisor problem and moments of the zeta-function, New trends
in probability and statistics, Vol. 4 (Palanga, 1996), 69-89, VSP, Utrecht, 1997.
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[80] D. Wolke, Über das Primzahl-Zwillingsproblem, Math. Ann. 283 (1989), 529–537.
[81] Q. Yao, The exceptional set of Goldbach numbers in a short interval (Chinese), Acta Math.

Sinica 25 (1982), 315–322.
[82] A. Zaccagnini, Primes in almost all short intervals, Acta Arith. 84 (1998), no. 3, 225–244.
[83] T. Zhan, On the representation of large odd integer as a sum of three almost equal primes,

Acta Math. Sinica (N.S.) 7 (1991), no. 3, 259–272.
[84] Y. Zhang, Bounded gaps between primes, Ann. of Math. (2) 179 (2014), no. 3, 1121–1174.

Department of Mathematics and Statistics, University of Turku, 20014 Turku,
Finland

E-mail address: ksmato@utu.fi

Department of Mathematics, Rutgers University, Hill Center for the Mathe-
matical Sciences, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019

E-mail address: maksym.radziwill@gmail.com

Department of Mathematics, UCLA, 405 Hilgard Ave, Los Angeles CA 90095,
USA

E-mail address: tao@math.ucla.edu


