HOLOMORPHY OF ADJOINT L-FUNCTIONS FOR GL(n): n<4
OUTLINE OF THE PROOF

LIYANG YANG

ABSTRACT. In this note we give an outline of the proof of the main result in
[15] that the adjoint L-functions associated to any cuspidal representations of
GL(3) or GL(4) over an arbitrary global field admits a holomorphic continu-
ation to the whole complex plane.
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1. INTRODUCTION

1.1. Statement of the Main Results. Let F' be a global field, and 7 be any
cuspidal representation of GL(n, Ar). Then according to Langlands philosophy the
adjoint L-function L(s, 7, Ad) is expected to admit a holomorphic continuation to
the whole complex plane.

The first breakthrough was made for classical holomorphic cusp forms by Shimura
[11] and independently by Zagier [16]; Shimura’s approach was generalized by
Gelbart-Jacquet [5] to the adelic setting, while Zagier’s method was further devel-
oped by Jacquet-Zagier [7] in terms of representation language. Moreover, under
the assumption of Dedekind Conjecture and that 7 € Ay (GL(n)) admits a su-
percuspidal component, Flicker showed the holomorphy of L(s, 7, Ad) by a simple
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trace formula (ref. [4]). However, Lemma 4 in [4] is wrong, so Flicker’s result is
flawed.

In this paper, we will deal with n < 4 case, leaving the n > 5 case in the sequel.
Our main result is the following.

Theorem 1. Let F be a global field and 2 < n < 4. Let m be a cuspidal represen-
tation of GL(n,Ar) and let T be a character on F*\AR. Then A(s, 7, Ad®T) =
A(s,m @ 7 x 7)/A(s,T) is entire, unless T # 1 and m @ T ~ =, in which case
A(s,m, Ad®T) is meromorphic with only simple poles s =0 and s = 1.

Corollary 2. Let notation be as before. Then L(s,m,Ad®7) = L(s,m ® T X
7)/L(s,T) is entire, unless 7 # 1 and ® ® T ~ 7, in which case L(s,7,Ad®T)
is meromorphic with only possible simple poles at s = 0 and s = 1. In particular,
the adjoint L-function L(s,m,Ad) = L(s,m x )/Cr(s) is entire.

Remark. If F is a function field, by using the cohomology of stacks of shtukas and
the Arthur-Selberg trace formula, L. Lafforgue showed the Langlands correspon-
dence of cuspidal representations m of GL,(Ar) to Galois representations p (ref.
[9]). Then Theorem 1 follows from the identity A(s, 7, Ad®7) = A(s,Adp ® 7)
and analytic properties of A(s, Adp ® 7), which is known well (ref. [14]). Hence
we shall focus on the case that F' is a number field, where such a correspondence is
not available yet.

Remark. Assuming Piatetski-Shapiro’s conjecture on converse theorem (e.g. ref.
Chap. 10 in [3]), Theorem 1 would imply that for any cuspidal representation 7
of GL(n,AF), there exists a adjoint lifting Ad(w), which is an representation of
GL(n? —1,AF), in the sense of [5]. Hence, in principle, Theorem 1 will play a role
in Langlands functoriality in this case.

1.2. The Idea of Proofs. Our method is similar to [7]. We consider a smooth
function ¢ : G(Ar) — C which is left and right K-finite, transforms by a unitary
character w of Zg (Ar), and has compact support modulo Z¢ (Ar) . Then ¢ defines
an integral operator

R(o)f(y) = / (@) (y)de,

Za(Ar)\G(AF)
on the space L? (G(F)\G(Ap),w™!) of functions on G(F)\G(Ap) which transform
under Zg(Ap) by w™! and are square integrable on G(F)Zg(Ar)\G(Ar). This
operator can clearly be represented by the kernel function

Kzy) = >, o).
YE€Za(F)\G(F)
It is well known that L? (G(F)\G(Ar),w™") decomposes into the direct sums of the
space L3 (G(F)\G(Ap),w™) of cusp forms and spaces L, (G(F)\G(Ap),w™!)
and L, (G(F)\G(AF),w™ ') defined using Eisenstein series and residues of Eisen-
stein series respectively. Then K splits up as: K = Kg + Kgis + Kges - Selberg trace
formula gives an expression for the trace of the operator R(y) restricted to the
discrete spectrum, and this is given by

/ Ko(z,x)dz.
G(F)Z(Ar)\G(AF)
We denote by S(A%) the space of Schwartz-Bruhat functions on the vector space

A% and by Sp(A’%) the subspace spanned by products ® = [] @, whose compo-
nents at real and complex places have the form

_ n 2
(I)v(mv) =€ 7"ij1 To.g Q(xv,la-rv,2; e axv,n)y Ty = (xv,17$v727 e amvfn) S FgLv
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where F, R, and Q(zy,1,%Zv,2, * ,Zun) € ClXy1,Tu,2, -+, Tyn]; and
=2 3" Ty j T - - -
(I)v(x'u) =e€ 2771 CATT Q(xv,hm'u,lyxv,% Ty,2,° axv,naxv,n)y
where F,, ~ C and Q(x4y,1, %v,1,Tv,2, Tv,2,"* * » Lu,n, Tv,n) 18 & polynomial in the ring
(C[xv,lv jU,la Ty,2 jv,?v s Tyn, i‘v,n]-

Denote by Zp the set of characters on F*\Aj which are trivial on R. Let
® € So(A%) and 7 € Ep. Let n = (0,---,0,1) € F™. Set

f(z,®,7;5) :T(detx)|detm|s/ S (ntz)T ()"t d*t,
AR

which is a Tate integral (up to holomorphic factors) for L(ns, x.®,7™). It converges
absolutely uniformly in compact subsets of Re(s) > 1/n. Since the mirabolic sub-
group Py is the stabilizer of ). Let P = PyZ¢ be the full (n—1, 1) parabolic subgroup

of G, then f(z,s) € Indggﬁi;(éf;l/%_”), where dp is the modulus character for

the parabolic P. Then we can define the Eisenstein series

Ep(z,®,78)= > f(z,®,7s),

YEP(FN\G(F)

which converges absolutely for Re(s) > 1. Also, we define the integral:

I%(s) :/ Ko(z,z)Ep(z, ®; s)dx.

G(F)Z(Ar)\G(AF)
If there is no confusion in the context, we will alway write I(s) (resp. f(z,s))
instead of I¥(s) (resp. f(z,®,7;s)) for simplicity.

According to Proposition 4, Theorem 1 will follow if I(s) - A(s,7)~1, Re(s) > 1,
admits a holomorphic continuation. To achieve it, we tear I(s) into two parts:
geometric side and spectral side. The geometric part is treated in Proposition 5.
To deal with the spectral part, which is denoted by I (s), we develop a mirabolic
type of Fourier expansion to further decompose I, (s) as a sum of n distributions:
IC(,IOC)(S), 1 <k < n(ref. Prop. 7). Then we continue each Iél.f)(s) respectively. There
are two major difficulties: the first is showing each Lgf)(s) is well defined when
Re(s) > 1, and the other is obtaining continuation of each Lglé)(s). Typically each
Igf) (s) is an infinite sum of meromorphic functions, we need to show its convergence
so that it’s well defined. Then we have to investigate the analytic property of each
1P (s)-A(s,7)"1. Furthermore, we also need to get a meromorphic continuation of

1) (s) - A(s,7)~!. In this process many more infinite sums will show up and after
verifying their absolute convergence we get a sum of meromorphic functions, while
each individual may have poles. Then the next step is to analyze these possible
poles and show that they do cancel with each other. However, by this approach we
can only rule out all potential poles of I(s) - A(s,7)~! except for a possible simple
pole at s = 1/2 when 7 is quadratic. This will eventually imply that A(s, 7, Ad ®7)
admits a meromorphic continuation with at most a simple pole at s = 1/2. To
remedy it, we prove the root number of A(s, 7, Ad®7) is always 1 in this case.
This would exclude the possibility of existence of a simple pole at s = 1/2. Now
Theorem 1 follows.

2. CONTRIBUTIONS FROM GEOMETRIC SIDES

Let H (G(AF)) be the Hecke algebra of # (G(Ar)) and ¢ € H (G(Ar)). For any
character w of AX/F*. Let ¢ € C° (Za(Ar) \ G(Ar)) NH (G(AF)) be of central
character w. Denote by V| the Hilbert space

Lg (G(F)\ G(Ar),w ™) = D Va,
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where ™ € Ay (G(F) \ G(AF), w_l) , the set of irreducible cuspidal representation of
G(AFp) with central character w and V is the corresponding isotypical component.
By multiplicity one, the representation of G(Ar) on V; is equivalent to 7. For each
m, we choose an orthonormal basis B, of V, consisting of K-finite vectors. Let
Ko(z,y) be the kernel function for the right regular representation R(yp) on Vj.
Then we have the decomposition

1) Ko@y) = 3 Kela,y), where Ko(z,y) = 3 7(¢)6(2)6()-

T PEB,
All the functions in the summands are of rapid decay in « and y. The sum of K (z, y)
converges in the space of rapidly decaying functions, by the usual estimates on the
growth of cusp forms. The sum over B, is finitely uniformly in « and y for a given
¢ because of the K-finiteness of ¢.

2.1. Choice of Test Functions. Let ¥ = 3 [[X; be the set of places of F,
where ¥, denotes the subset set of archimedean places of F', and ¥; denotes the
subset of nonarchimedean places of F.

Definition 3. For a place v € ¥, we say that a test function ¢ = ®,p, €
H(G(AF)) is discrete at v if ¢, is supported on the intersection of G(Op,) and
the regular elliptic subset of G(Fy,).

Let w be a character of Ax/F>*. Let F*(w) be the set of smooth functions
¢ = L, : G(Ap) — C which is left and right K-finite, is discrete at some
v € Xy, transforms by the character w of Zg (Ar), and has compact support
modulo Z¢g (Ar). Let F(w) be the space spanned linearly by functions in F7*(w).

Then we have an improvement of the Proposition in Section 3.3 of [7]:

Proposition 4. Let F(x) be a function on G(F)Z(Ap)\G(AF) which is K -finite
and of polynomial growth in a Siegel domain. Then the following are equivalent:
(a): fG(F)Z(AF)\G(AF) Ko(z,z)F(z)dz = 0, for all p € F(w);
(b): fG(F)Z(AF)\G(AF) Ky (x,2)F(z)dx =0, for all ¢ € F(w) and all cuspidal
representations ™ € Ao (G(F) \ G(Ap),w™1);
(c): fG(F)Z(AF)\G(AF) ¢1(x)p2(x)F(x)dx = 0, for all cuspidal representations
T € Ay (G(F)\ G(Ar),w™"), and all K-finite functions ¢1,¢2 € V.

2.2. Contributions from Conjugacy Classes. Consider the distribution
I(s) :/ Ko(z,2)E(z, ®; s)dx.
G(F)Zc(Ar)\G(AF)

Recall that in [7] the calculation of I(s) was based on the decomposition

K(z,z) = ZKc(x) + Koo(2),
c

where C runs through all nontrivial conjugacy classes in G(F')/Z¢g(F') and

Ke@)= > @ 'ya),
yeC
¢ P(F)/Za(F)

Koo(z) = Z oz yx) — Kpis(r, 7) — Kges(z, ).
YEP(F)/Za(F)

So correspondingly, integrating against the Eisenstein series E(z, ®;s) associated
to the parabolic subgroup P implies that I(s) can be decomposed as

I(s) = ZIC(S) + Io(s), Re(s) > 1.
C
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When G = GL(2), Jacquet and Zagier (ref. [7]) computed each I¢(s) and I (s) for
general test function ¢. Note that the contribution from non-regular elliptic classes
would give Artin L-functions of degree less than n. Therefore, for our particular
purpose in this paper, we only use the test functions in F,. This is because for any
© € Fr, for any z € G(Ar) and any v € G(F), one has ¢(z~1yz) = 0 unless v is
elliptic regular. Let I'y.. (G(F)/Zg(F)) be the subset of regular elliptic elements
in G(F)/Zg(F), then K¢(s) = 0 unless C C Iy (G(F)/Zg(F)). This helps us
simplify the computation of I(s) = I...(s) + I (s), where

I.(s) :/ {
G(F)Za(AP)\G(AF) \

Io(s) =

gp(x_lfyx)} - E(x, ®; s)dx,
€Ty (G(F)/Z(F))

- / {Kpgis(z,2) + Kpes(z,2) } - E(z, ®; 5)dz.
G(F)Zg(Ar)\G(AF)
We shall deal with I, . (s) in this section, and leaving the computation of I (s)
in the next part.

Proposition 5. Let F' be a number field and Ireq ci(s) be defined as above, then
for every field extension E/F of degree n, there is an analytic function Qg(s) such
that

(2) Lo (s) =12, (s) = 1 > Qu(s)Le (5,70 Ng/r),
(E:F)=n

where the summation is taken over only finitely many E’s, depending implicitly only
on the test function .

3. MIRABOLIC FOURIER EXPANSION OF I ($)

Take a test function ¢ € Fy, then by the definition of Ep(x, ®;s) we have

Io(s)=1I%(s) = —/ Koo(z, ) Z f(yz, s)dx.

G(F)Za(Ar)\G(AF) YEP(F)\G(F)

where Koo (2, y) = Kgis(2,y) + Kres(z, y) is left N(F)-invariant. Then
(3) It = [ Koo (2, ) f (2, 5)d.
Za(Ar)P(F)\G(Ar)

Now we proceed to compute (3) by considering the Fourier expansion of Ko (z,y).

3.1. Mirabolic Fourier Expansions of Weak Automorphic Forms. Fourier
expansions of automorphic forms of GL, are well known (ref. [?]). Following
the idea of Piatetski-Shapiro in [?], we give a new form of Fourier expansions of
weak automorphic forms in terms of generalized mirabolic subgroups, via which a
further decomposition of I (s) is obtained. Here we call a function f € C (G(Af))
a weak automorphic form if it is slowly increasing on G(Ap), right K-finite and
Py(F)-invariant, where Py is the mirabolic subgroup of G = GL,,.

Fix an integer n > 2. The maximal unipotent subgroup of G(Ar), denoted by
N(Ap), is defined to be the set of all n x n upper triangular matrices in G(Ap)
with ones on the diagonal and arbitrary entries above the diagonal. Let ¢p/qg(-) =
e2miTrr/0() he the standard additive character, then for any a = (a1, - ,0n_1) €
Fn~1 define a character ¢, : N(Ar) — C by

n—1
ba(w) =[] ¢ro (@itiiz1), Vu=(t;)nxn € N(Ap).

i=1
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Write ¢ = ¥(o,... 0,1,-. 1) (Where the first n—k components are 0 and the remaining
k components are 1) and 6 = Y(1,... 1), the standard generic character used to define
Whittaker functions.

For 1 <k <n-—1, let B,,_j be the standard Borel subgroup (i.e. the subgroup
consisting of nonsingular upper triangular matrices) of GL,_; let N,_j be the
unipotent radical of B,,_j. For any 4, j € N, let M;; be the additive group scheme
of i x j-matrices. Define the unipotent radicals

Nt 1) = { (Ik ZBD> . B € Myy(n_yy, D€ Nnk}, 1<k<n—1.

For 1 <k <n —1, set the generalized mirabolic subgroups
A C
Rk:{< 0 B ) : AeGLy, CEMkX(nfk% BEBnk}.
For 2 < k <n — 1, define subgroups of Ry by

A B C ,
RO = { 0 a D : (A B;) S GLk;, (g) S ka(nfk)a Be Bn—k)}-
0 0 B

Also we define Ry = R} = Ng1,....1) := N(1,1,... 1) to be the unipotent radical of
the standard Borel subgroup of GL,,.

Proposition 6 (Mirabolic Fourier Expansion). Let h be a continuous function on
Py(F)\ G(AFp). Then we have

B IDY

k=16r€Rr_1\Rn_1

/ h(ndgx)n—k(n)dn
Nae—1,1,- )y(FN\N@g—1,1,... . 1)(AF)

if the right hand side converges absolutely and locally uniformly.

3.2. Decomposition of I, (s). Applying Proposition 6 to the kernel function
K(z,y) viewed as a function of z, we thus obtain a formal decomposition of the
distribution I (s) when Re(s) > 1. Convergence problems of this expansion will
be settled in the following several sections.

Now for 1 < k < n we write I (k ) (s) for the above (formal) integral, namely,

I8 (s) —/ / / (n*nyiz, 2)0(n1)dnidn” f(z, s)dx.
Zc(Ar)Rr—1(F)\G(AFr) J[N}] A

Proposition 7. Let notation be as before. Then one has, when Re(s) > 1, that

() I(s) = Y 18(s)
k=1

where Nj, = N(g1,... 1) and

I, C
N,::{ 1 : Ce@’;—l}.
Infk

Both sides of (5) converge absolutely when Re(s) > 1.

In the following sections these I, éf)(s) will be treated separately because of their
different characters. As we will see, L%)(s) can be reduced to an infinite sum of
Rankin-Selberg convolutions of irreducible generic non-cuspidal representations of
GL(n,Ar) (ref. Section 6), and L()g)(s) will be handled by Langlands-Shahidi’s
method after applying some geometric auxiliary results (ref. Section 4); while the
remaining terms will be treated by invoking intertwining operators and spectral
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analysis of tori (ref. Section 5). In particular, according to results in the following

sections (Section 4 for & = n and Section 5 for 1 < k < n), Ic()]og)(s) converges
absolutely when Re(s) > 1, and admits a meromorphic continuation to the whole

complex plane.When n < 4, we also obtain a meromorphic continuation of 1Y (s) in
Section 7. Hence the expansion (5) is well defined on both sides for Re(s) > 1, and
can be regarded as an identity between their continuations when s € C is arbitrary
and n < 4.

4. CONTRIBUTIONS FROM Iég)(s)

Now we start with handling the last term I Q) (s), since the approach here applies
to part of the computation of Lg.f)(s), 2<k<n-—1,as well

Proposition 8. Let C be a regular G(F)-conjugacy classes in G(F). Then there
exists a P(F)-conjugacy class Cy such that

(6) C= COHUCﬂQk F)PU,

where Q(F)P'F) = {pyp™: v € Qu(F), p € P(F)}.

Let ¢F éF) be the union of regular elliptic components of all G(F)-conjugacy
classes in G(F). Then ¢ is a disjoint union of P(F)-conjugacy classes in G(F)
by Proposition 8.

Corollary 9. Let notation be as before. Set (F*)" = {t": t € F*}, and let
. In73
(7) R};:{’wlué"'wnl t u: tEFX/(FX)n,uENp(F)}.
I
Then 75} forms a family of representatives of (Zc;( n S ) \QZP(F .

4.1. Holomorphic Continuation. Let Py(F') be the mirabolic subgroup of G(F).
For any v € G(F), write y°) for the Py(F)-conjugacy class of v, which is the same
as P(F)-conjugacy class of . Then by Corollary 9 one can decompose Zg(F)\G(F)
as

(8) Za(F) H7P°(F)HU (Za(F)\Qx(F))™")

'yER*

where Q) is maximal parabolic subgroup of type (k,n — k). By the decomposition
(8), one can write ng)(s) = I2%(s) + IZ%(s), where

I;€~(s)=/ / S Y e 'nTp ypr)dnf(z, s)da,
Zg(Ap)Rn-1(F)\G(Ar) J[Np]

Pl yeRy pEP(F)
5) = / / S > el 'nTp  ypa)dnf (v, s)d,
Yo JINPL PPy ep pe Py (F)
where Y,, = Zg(Ap)Rn—1(F)\G(Ar) = Zg(Ap) Py (F)\G(AF) and
P = {’yP(F) v € Zg(F)\Qg(F) for some 1 <k <n—1}.
An analysis on the support of ¢ leads to that I2:%(s) = 0. Now our computation
reduces to ng)(s) =I5 (s).

Depending on the purity of n, we can further simplify I7:%(s). Recall the test
function ¢ has the central character w, = is the set of idele class characters on Ap,
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which is trivial on the archimedean places. Denote by Z, , the subset {x € Z :
X" =w} CE. Also, let 2!y, = {{ € 2: £ =7} if n is even, and set 27, to be the
empty set if n is odd. Then when n is odd, we have

> [ s

7 ( /fksdk/ du/ du/ dn
CP N(Ap) [NP] Np(Ar)

XEE

X/ / o |k 1u an'k | &ty dt,_1,
A% A% -1

n—1

t1

where we use the fact that (A;)n CFX (B = Fx. (FX\A;)n, and 7| - |a, is
F*-invariant, and

(n— 1)(€+1)

o _ —71 —77, s+1
A% () = X(t)T(t) T ], Hr il 2 Y.

When n is even, we also have a similar expansion.
Let T, (Ay) = {diag(1,t1,t2, -+ ,tn—1) € T(Ap) : t; € Af, 1 <i<n—1}. Set

v THAR) — TW(AR), t— t =diag(l,t; 51, 60 ).

7n1u

For any n € N2, define

Tx.e(xik,s) :/ du/ du’/ o (k7 ut'aw'k) Ay oy en(t)d™t,
N(Ar) [(NF] T*(Agp)

1+(_1)n

where we write §,, = — and denote by A; - y.e.n(t) the following character

im1ss <n 1))

_ _ n ntl-8y _; ndl_i0sq]
X(t0)&(t) 707 (1) lt1]a, H x(t T(t;) 2 |t; ‘AF ),

Since [NP] = NP(F)\NF(AF) is compact and ¢ is compactly supported, the
function §y ¢(x; k, s) is well defined for any x, £ and Re(s) > 1.
Let b =ut € B(Ap), where u € N(Ap), t = diag(t1,t2,- -+ ,tn) € T(Ap). Then

n

ntl—6yn _, ——z s+1
el o) = [Lctte(e) o) ™5 Tl 700 el
Since the modular character of T(Ap) is 6, (t) = [T, 27", so one has
A s 1 An7 S n n nS
ue @ik, s) € ndG") (Xgénﬁl\ R Sr e B N Sy e B e )

where for 1 <i<mn, \; = M — 1. Denote by

Gyelx;s) = / f(k, $)8y.e(x; k, s)dk.

Then we have (at least formally) that
IW(s) =1 (s)= > > / Gy (Wn; s)dn.
XEZu,n €T, * NP (AF)

Thus by the Langlands-Shahidi method and Tate’s thesis one concludes the follow-
ing.
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Theorem 10. Let notation be as before, then ng)(s) converges absolutely and
locally normally in the domain Re(s) > 1. Moreover, ng)(s) admits a meromorphic
continuation. Precisely, one has

L(s,7)L(2s,7%)--- L((n — 1)s, 7" 1) L(ns, ™)
L(s+1,7)L(2s+1,72)---L((n —1)s + 1,77 1)"

1(s) ~

Remark. To make the above formally computation rigorous, one can apply the
proceeding computation to Ifﬁﬁ(s) = ng)(s; |©], |®],1). Then everything is non-

negative, so we can interchange orders of integrals. The convergence of Iég? +(s)
follows from Langlands’ theory on intertwining operators. Therefore, the proceed-
ing formal computation is justified by dominant control theorem.

5. THE CONTRIBUTIONS FROM Ié’o“)(s) 2<k<n-1)

In this section we claim that IS (s) admits meromorphic continuation to C. The
proof is much more subtle than the continuation of Iég )(s). Recall that

I(()’O“)(s):/ / Koo (n*niz, 2)0(ny)dnidn’ f (x, s)dx.
Za(Ar)Re—1(FO\G(AF) J[N}] J[N]]

Since our test function is supported in the subset of elliptic regular elements, we can
show that the corresponding inner integral of Ic()’g)(s) is supported in a particular
Bruhat cell, i.e., the cell corresponding to the longest element. Finding an explicit

form of representatives of this cell we then see that I 5,’5)(5) is equal to

f(x,s)d:z:/ dul/ du/ dn/ Zcp(JF1ul_1u5@kurn$)§(u,«ul_l)dur,
Yy Ni il I IN TS

where § € diag(GLg, G *)(F), Y} = Za(Ar)R;_,(F)N/(Ar)\G(Ar) with
A B0 ,
R;_(F)= { 0 a 0 |: <A i) € GLy, B e ank};
0 0 B

wy, is the longest element, N} = N 1.... 1)(Ar), N, = diag(lr—1, Nny1-1)(AF),

i I 0 Mug—1yx(n—r)
NP = 1 0
In—k:

One sees clearly that the integral over Y, will decompose into products I;1s,
where I; is an integral over Py (F)\GLy(AF), where Py is the mirabolic subgroup
of GLy; and I is an integral over the torus G”!~%. The absolute convergence is
handled in Section 5.2 of [15]. So we can switch orders of some integrals and just
discuss formal computation here. To deal with I3, we consider representatives of
Bruhat normal form of Py (F)\GLy(AFp) just as Section 4. Then apply the same
idea as continuing Lx?)(s) in last section, but here we need a more complicated
computation since I is not really independent of I due to the action of wy. For I
we shall just apply Poisson summation along torus and the continuation from this
part comes from shifting contour. Putting things together, we obtain the following,
which appears to be new.

Theorem 11. Let 2 < k <n —1. Then we have
L(s,7)L(2s,7%)---L ((k —1)s, Tk_l) L(ns, ™)
L(s+1,7)L(2s+1,72)--- L((k—1)s + 1,7k-1)"

I8 (s) ~
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Remark. The convergence here is more delicate than that of Theorem 10. We will
use intertwining operator theory iteratively and introduce an extra family of dom-
inant integrals with parameters in some cone. Then invoking Poisson summation
and absolute convergence we can reduce Lgf)(s) to roughly a finite sum of inter-
twining operators. The holomorphic continuation comes from that of intertwining
theory and shifting contour of Mellin transform. See Section 5 of [15] for details.

6. CONTRIBUTIONS FROM Lgé)(s)

In this section, we shall outline the proof of absolute and locally uniform conver-

gence of [ (%) (s). The whole process is lengthy and makes use of a variant of Arthur’s
truncation technique. See Section 6 of [15] for details.

For any functions G(x,y) on Zg(Ar)G(F)\G(Ar) x Zg(Ar)G(F)\G(AF), let
F1G(x,y) be the Fourier transform along the x-variable.

Proposition 12. Let notation be as above. Let R(x) be a slowly increasing function
on Sy. Then we have

9) 3 )flAg K, (z,2) - R(z)|dz < oo,

/ZG(AF)N(F)\G(AF) X

where x Tuns over all the equivalent classes of cuspidal datum; and AL is Arthur’s
truncation operator with respect to the second variable (ref. [1]).

Proposition 13. Let notation be as before. Let x € X be a cuspidal datum. Then
there exists some Ty € ag depending only on the support of p, such that for any
TecaygwithT -1y € ag, one has

/ FiAd K, (z,7) - R(z)dz
Za(Ap)N(F)\G(AF)
converges absolutely, and it is of the form

(10) Z ZC?(TO;UJ’X7R)6_>\W(T)+ Z ZCSQ(TO;UJ7X)R)PU7,Q(T;TO)v
weW, Q weW, Q

where ClQ (To; w, x, R) and 0262 (To; w, x, R) are constants depending on w, x, R and
To; Aw s a point (a8)+, decided by w € Wy; and P, q(T;Ty) is a polynomial
depending on w and Q, with deg P, o(T;Tp) < dim ag.

Proposition 14. Let notation be as above. Let x € X be a cuspidal datum. Let
R(x) be a slowly increasing function on a Siegel domain Sy. Then we have

(11)

/ FiKy(z,z) - R(z)|dr < oo.
Za(Ap)N(F)\G(Ar)

Remark. Inequality (11) comes from estimate on gauges considered in [6].
Let R be a slowly increasing function on Xg. Define, at least formally, that
Jr :/ > FiK(z,z) - R(x)da.
X 5

Noting the fact that 1A% K, (2, ) = F1 K, (2, ) when T is sufficiently regular,
one then concludes from Proposition 13 and Proposition 14 that:

Corollary 15. Let notation be as above. Then for any slowing increasing left
Za(Ap)N(F)-invariant function R, Jg is well defined. Moreover, we have

(12) Jr = /Y Z IA(X(x,x) - R(x)dx = Z ﬁx(x, z) - R(z)dx,

XEX XEX Yo
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where Yo := Zg(Ar)N(Ap)\G(AF), and for any x € X,

IA(X(ﬂf,y) Z/ / Ky (n1@,m2y)0(n1)0(n2)dnidns.
N(F)\N(Ar) JN(F)\N(AF)

One then further deduces that

Theorem 16. Let notation be as before. Let s € C be such that Re(s) > 1. Let
Yo = Za(Ap)N(Ap)\G(AF). Then the following integral

Z Z Z Z / / IP ©) o, p1)W1 (2 NWa (23 N) f (2, 5)|dzdA
XEX PEP ¢1E€B py, d2€Bp

is finite, and is uniformly bounded if s lies in some compact subset of the right half
plane {z : Re(z) > 1}. In particular, L(,é)(s) converges absolutely for Re(s) > 1.
Moreover, when Re(s) > 1, I(l)(s) is equal to

> Z >y / (Zp(\, ©)p2, d1) Wl(x MNWa (23 N f (2, s)dedA,
X PeP ¢ EBp p2€Bp

where x runs over proper cuspidal data, i.e., x is not of the form {(G,n)}. Partic-

ularly, as a function of s, Iéi)(s) is analytic in the right half plane {z : Re(z) > 1}.

6.1. Absolute Convergence in the Critical Strip Sy ).

Theorem 17. Let s € C be such that 0 < Re(s) < 1, then

(13) Z Z Z / (8, \; @)A(s, ) @ T X T_y)dA,
x Pep P gémp,

converges absolutely, normally with respect to s, where A(s,m\ ® T X T_)) is the
complete L-function, and

Rsﬂ(s’)‘; ¢2) = Z <IP(>‘590)¢1,¢2> !

¢1EBp

with (s, W1, Wa; A) the standard Rankin-Selberg integral.

(s, Wi, Wa; A)
A(SJT)\ X T X %,)\)’

Re(s) > 1,

7. HOLOMORPHIC CONTINUATION VIA MULTIDIMENSIONAL RESIDUES

From preceding estimates, we see that when Re(s) > 1, Ic(,é)(s) is a combination
of Rankin-Selberg convolutions for automorphic functions which are not of rapid
decay. Zagier [17] computed the Rankin-Selberg transform of some type of auto-
morphic functions and derived the desired holomorphic continuation for n = 2 and
F = Q case. However, general Eisenstein series for GL(n) do not have the asymp-
totic properties as Zagier considered, since there are mixed terms in the Fourier
expansion (ref. Proposition 6). Thus one needs to develop a different approach to
obtain the continuation. We will make essentially use of zero-free region to obtain
a continuation.

7.1. Continuation via a Zero-free Region. Recall that we fix the unitary char-
acter 7. Let D, be a standard (open) zero-free region of Lp(s,7) (e.g. ref. [2]). We
fix such a D, once for all. We thus can form a domain

(14) R(1/2;7)" :={se€C: 2s€D;} 2D {se€C: Re(s) >1/2}.

In Section 7.2, we will continue L(,i)(s) to the open set R(1/2;7)~. Invoking (14)

with functional equation we then obtain a meromorphic continuation of Lgé)(s) to
the whole complex plane.
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7.1.1. Meromorphic continuation of Jp(s; ¢,Cy(€)) across the critical line Re(s) =
1. Let 1 < m,m’ < n be two integers. Let 0 € Ao(GL,(F)\GL,,(Ar)) and
o' € Ag(GLyy (F)\GLy (AF)). Fix €9 > 0. For any ¢’ > 0, let D/ (0, 0’) be

(C(o)C(0)™ 2(7n+m):| +72(m+m,) €o
(] + 3P

{K;:B—i—i'y: 521—0’-[
if o/ 2 7; and let Do/ (0, 0’) denote by the region

- O T (o) e B A
{“=ﬂ+zv- ﬂzl—c'[(\v|+3>2mm2“‘@]] }

if o’ ~ 5. According to [2] and the Appendix of [8], there exists a constant ¢, ,,» > 0
depending only on m and m’, such that L(k,o X ¢’) does not vanish in Kk =
(K1, ,Kp) € De, . (o,0") x --+ % D, . (0,0"). Let ¢ = mini<pm m/<n Cm,m’ and
C(o,0’) be the boundary of D.(c,c’). We may assume that ¢ is small such that the
curve C(o,¢’) lies in the strip 1 —1/(n+4) < Re(x;) < 1,1 <j <r Fixsuchac
henceforth.

Let x € Xp be a cuspidal datum with respect to a standard parabolic P, and

= Indp(ﬁF)(al,ag,--- ,0.) € x. For any € € (0, 1] we set

ﬂ n {/se(C: Re(k) > 0, 1—/€€Dce(0i,0j)}.

1<i<ri<j<r

Also, for € = 0, we set Dy(e) = {k € C: Re(k) > 0}. Then by the above
discussion, as a function of &, Lg(n m,7) is nonzero in the region Dy(e) = {k =
(K1,-+ ,kr) € C" 1 K € Dy(e)}, where € = (e1,--+ &) € [0,1]". We can write

Dx(e) as a product space Dx(e) = [I)—; Dx(e), and let D, (¢;) be the boundary
of Dy (e). Then when ¢ > 0, 9D, (¢;) has two connected components and one of
which is exactly the imaginary axis. Let Cy (¢;) be the other component, which is a
continuous curve, where 0 < ¢ < 1. When ¢ = 0, let C, (&) be the maginary axis.
Set Cy(€) =Cy(€1) X -+ xCy(€r21), 0< <1, 1<I<r—1

Let € = (€1, -+ ,€6._1) € [0,1]"L. For any 3 > 1/2, we denote by

(15) R(B;x,e):{sGl—l—’DX(e)}U{sel—Dx(e)}.

Let € = (1/n,1/n,---,1/n) € R""! and s € 1 + D, (€) and Re(s) > 1. Then
R(s,W1,Wa; kK, ®)A(s, T, ®T X T_,,) is equal to a holomorphic function multiplying

r—1 j

HAsa orxar) []T] s+’fw’Uz®TXUJ+1)A( — Kijs 0j+1 @ T X 0y)
k k — .
i A kg0 X G) AL = Ry 0j4 X 03)

Let G(k;s) = G(k;s, P,x) denotes the above product. Also, for simplicity, we
denote by F(k;s) = F(k;s, P, x) the function R, (s, k; ¢)A(s, e @T X T_x). Then
the Rankin-Selberg theory implies that F(k;s)/G(k;s) can be continued to an
entire function. We will write C for the boundary C, (1), and (0) for the imaginary
axis. Then an analysis on the potential poles of G(k;s) leads to an expression for
the integral Jp,(s;¢,Cy(0)) = Jpy(s;¢,C) — J1(s), where

r—1 7

ZZ/ / drj_1 - dm/ / Res F(w:s)dry—1 - drjir,
C Rig= s—1

j=11i=1

where Res .7-" (k; s) is not identically vanishing unless 0; @7 ~ 041, in which case
Ki,j=s—1

one must have n; = nj;1. To obtain meromorphic continuation of Jp, (s; ¢,Cy(€))
inside the critical strip 0 < Re(s) < 1, we start with the following initial step:
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Proposition 18. Let notation be as before. Let € = (1/n,1/n,---,1/n) and s €
1+ Dy(€) and Re(s) > 1. Then Exex Zzﬁe%p JIp(8;6,Cy(0)) is equal to

(16) ST N il - > > TG

XEXPp PEBp XEXPp ¢EBp

where the summand J(s) in the last double sum is equal to

r—1
d/iT,1 cee dﬁl
E E E / ------ Res L Res 1}"(1@;5)ﬁ,
Kj =S— Ki, =S8— K P K:
=1 Jmsdm—1," 501 ¢ € mam 71 Jm J1
1<jm<-<j1<r—1

where ¢j, ... j,.’s are some explicit integers, and dk,_1 - - - dk1/(dK;,, - - - dKj,) means
dkp_q - %J\m e cﬁ;; -+ -dky. Moreover, the terms in (16) converges absolutely and
normally inside R(1;x,€) \ {1}, where R(1;x,€) is defined in (15). Hence (16)
gives a meromorphic continuation of 3 e, Jpx(5;0,Cx(0)) to R(1;x,€), with
a potential pole at s = 1.

Denote by Zy(s) the first term of the right hand side of (16), i.e.,

To(s):= D> > Jex(50,C), s€1+Dy(e), Re(s) > 1.

XEXp ¢EDBp

Proposition 19. Let notation be as before. Let s € 14D, (€) and Re(s) > 1. Then

(17) To(s)= D D Ipxs:6.C(0)+ Y. > Tn(s)

XEXPp ¢EDBp XEXPp ¢EDBp

where the summand J°(s) in the last double sum is equal to

r—1

DI I / ...... / Res - Res F(ns)tor=twdrt
(0) (0) Kim=1=s  kj=1—s dkj,, -+ dKj,

m=1 jm,jm—1,"",J1
1<jm<-- <]1<7 1

. , o
where Cji,r g S OTE SOME explicit integers, and di,—1 - - - dk1/(dkj,, - - - di;j, ) means

dir_q---drj,, -~ cﬁa; -+ ~dky. Moreover, the terms in (17) converges absolutely and
normally inside any bounded strip.

Let notation be as in Proposition 19. For x € Xp, denote by Zg , (s) the summand
of the first term of the right hand side of (17), i.e.,

Tox(s Z Ipx(s;6,C,(0)) + Z \7;)(5)

PEB p PEB P x

To prove Theorem 1, we expect a meromorphic continuation of erxp To,x(s)
to some open region containing the half plane Re(s) > 1/2 (then one can apply
functional equation to deal with the remaining area). An initial step is to get
a continuation of erxp To,x(s) to some open region containing the half plane
Re(s) > 1. Due to the zero-free region it is clear that Zy ,(s) is naturally mero-
morphic (with a possible pole at s = 1) when s € R(1;x,€) (defined in (15)),
which does include the half plane Re(s) > 1. However, as x varies over Xp, the
intersection of all these domains R(1; x, €) is exactly the line Re(s) = 1. Hence one
cannot expect a continuation of 37 cy_ Zo(s) to a domain we want in this way.
Nevertheless, we can remedy this by considering continuation of each Zy , (s) first,
then showing the sum 3> .y Zoy(s), viewed as a sum of continuations of each
Zo,x(s), does converge absolutely and locally normally out of finitely many explicit
poles, giving a desired meromorphic continuation of erxp Zo,x(s). This will be
carried out in the following parts.
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7.2. Meromorphic Continuation Inside the Critical Strip. Let s € R(1; x, €)
and 1 <m <r —1. Let jm, Jm—-1,"+ ,J1 be m integers such that 1 < j,, < --- <
j1 <7 — 1. Consider the summand in the second term of (16):

Linx(s) = Z /C ...... / Res --- Res }‘(n;s)w

GeB ¢ Rim=s—1  Kj=s-1 dkj,, -+ dkj,

Then each Z,, ,(s) is naturally meromorphic in R(1;x, €) with a possible at s = 1.

Theorem 20. Let notation be as before. Let n < 4. Let x € Xp. Assume that
the adjoint L-function L(s,o, Ad®rt) is holomorphic inside the strip S 1y for any
cuspidal representation o € Ay (GL(k,Ar)), and any k < n — 1. Then for any
0<m<r—1, the function

> Inals),  seR(Lixe)
PEDBp,y

admits a meromorphic continuation to the area R(1/2;7)~, with possible simple
poles at s € {1/2,2/3,--- ,(n—1)/n,1}, where R(1/2;7)~ is defined in (14). More-
over, for any 3 <k <n, if Lr((k—1)/k,7) =0, then s = (k — 1)/k is not a pole.

Remark. We restrict ourselves to the case n < 4 for the following two reasons.
On the one hand, we actually need to assume Dedekind Conjecture of degree n to
handle the contribution from geometric side. This conjecture has been confirmed
when n < 4, so we will get unconditional results if n < 4. On the other hand, when
n > 5, the procedure of meromorphic continuation is even more complicated, since
we are lack of a symmetrical description of this process. Thus, we will focus on
n < 4 case in this paper.

Remark. In can be seen from the proof that when n < 3, we can continue the
functions 3, g, Zmx(s) to Re(s) > 1/3. When n = 4, we can only continue
Zqﬁe%ﬁx L (s) to R(1/2;7)~, an open set just containing the right half plane
Re(s) > 1/2. This is because some of its components involve A(2s,72)71 as a
factor (e.g. ref. (318) of [15]). The key ingredient is that R(1/2;7)” is uniform
with respect to x € Xp. In fact this is sufficient to give 32, > jcon, Ty (s) a
continuation to R(1/2;7)~ (ref. Theorem 21), hence to the whole complex plane
when combining with functional equation.

Proof. The proof of Theorem 20 roughly follows from a repeated application of
Cauchy’s integral formula to shift contour. The complete proof is rather tedious
although we take advantage of symmetry to simplify it a little bit. To illustrate
the idea more directly, we shall follow Jacquet-Zagier’s original approach, for the
n = 3 case, to give meromorphic continuation of J(s) = f(o) f(o) F(k,s)dridry as
follows, which involves 56 terms in total (also some of them are same but locate in
different regions). When s € R(1)", we have, by Cauchy integral formula, that

J(s)://}'(n,s)dmd@—/ Res f(n,s)dng—/ Res F(k,s)dry
cJe Cm1=s—1 cmgzs—l—m

_/ Res F(k,s)dk1 + Res Resl]:(ms)—i— Res Res F(k,s).
c

Ko=s8—1 k1=s—1lkog=s5— Kk1=25—2Kko=s—1—K1
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Since the right hand side is meromorphic in R(1), we get meromorphic continuation
of J(s) in R(1)~. Denote by Ji(s) this continuation. Let s € R(1)~. Then

J1(s) :/ F(k, s)dmdﬁg—i—/ Res ]-'(n s)dng—i—/ Res F(k,s)dr1
0) /(0) (0 (0) ®2=

) K1= =1—-s—K1

+ Res ]—'(n s)dky — / Res F(k,s)dri — Res F(k,s)dro—
(0) Ko=1— (0) Kko=s—1 (0) rk1=s—1

/ Res F(k,s)dk1 + Res Res F(k,s)+ Res Res ]-"(n s)—
0

)/-czzsflfnl Kk1=1—sko=1—s K1=s—1lko=s—1

Res  Res .7-'(1@ s) — Res Res F(k,s)— Res Res ]—'(n s)

K1=2—28Kko=s—1 k1=1—sKko=s—1—kK1 ko=2—2sk1=s—1

+ Res Res F(k,s),

K1=2—2S8Kko=8—1—K1

where the right hand side is meromorphic in 1/2 < Re(s) < 1. Hence we obtain
a meromorphic of Ji(s) to the domain S /21y. Denote by Jy(s) this continuation.
Let s € R(1/2)*. Then we have, again, by Cauchy integral formula, that

J2(s) :/ f(n,s)dnldn2+/ Res ]-"(fc,s)d@+/ Res F(k,s)dry
0) ch2

¢ ki=l=s =1—s5—kK1
—|—/ Res F(k,s)dr1 —/ Res F(k,s)dk1 —/ Res F(k,s)dra—
Cl{2:175 cng:sfl c k1=s— 1

Res F(k, s)dm—&— Res Res .7-'(I<L s)+ Res Res .7-"(& s)—

CKQ:S*lflﬂl 1—sko= K1=8—1ko=s—1

Res  Res }"(ka s) — Res Res F(k,s)— Res Res F(k,s)+
Kk1=2—28Kko=s—1 k1=1—sko=s—1—kK1 ko=28s—1k1=1—s

Res Res F(k,s)— Res Res f(n s)— Res = Res ]:(Fi s)
K1=2—28Kko=8—1—K1 —2sk1=s—1 k1=28—1lKko=1—
+ Res Res .F(n,s)— Res Res F(k,s),

k1=28—1lko=s—1—k—1 K1=25—1lko=1—s—K1

where the right hand side is meromorphic in R(1/2). Hence we obtain a meromor-
phic continuation of Ja(s) in s € R(1/2). Let s € R(1/2)~. Then we have, again,
by Cauchy integral formula, that

Ja(s) :/o) ) f(n,s)dmdlsg—&—/cmRes f(n7s)dﬁ2+/cn2 Res  F(k,s)dr1

=1-—s =1—s5—kK1
+ Res ]—'(n s)dky — Res F(k,s)dri — Res F(k,s)dra—
c k2= 1— (0) Kko=s—1 (0) Kk1=s—1

/ Res F(k, s)der Res Res ]:(F.: s)+ Res Res ]-'(n s)—
(0

)HQZS—I—Hl =1—sKko=1 Kk1=8—1lkgo=s—1

Res  Res .7-'(1@ s) — Res Res F(k,s)— Res Res ]—'(n s)+

Kk1=2—28Kko=s—1 =1l—sko=s5—1—K1 ko=2s—1k1=
Res Res f(n,s) Res Res ]:(Ii s)— Res = Res ]:(K, s)
K1=2—2S8Kko=5—1—K1 2—2sk1=s—1 k1=28—1Kko=1—
+ Res Res F(k, s) —  Res Res F(k,s)+
k1=28—1lko=s—1—K—1 K1=28—1ko= —K1

Res Res .7-"(1@ s) + Res Res ]—'(n s) + Res Res F(k,s),
—28Ko=8— =1—2sk1= =1—2sko=s5—1—kK1

where the right hand side is meromorphic in 1/3 < Re(s) < 1/2. Hence we obtain a
meromorphic continuation of Jy(s) in s € §(1/3,1/2). Therefore, putting the above
computation together, we get a meromorphic continuation of J(s) to the domain
S € 8(1/371).

Then one needs to investigate these terms individually. What is worse, the
situation would be much more complicated in GL4 case. O
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Recall that we need to investigate the analytic behavior of the function

Z =D D Tnxle) Al

P yexp peBp,
where the sum over standard parabolic subgroups P is finite while the sum over
cuspidal data y is infinite. According to Theorem 16 Z,(s) converges absolutely
and locally normally in the region Re(s) > 1. Moreover, by Theorem 20 we see that
each summand que%p,x T (s) - A(s, 7)*1 admits a meromorphic continuation to
the region R(1/2; 7)™, with possible simple poles at s € {1/2,2/3,3/4} and a pole
of order at most 4 at s = 1. Denote formally by

(18) Z =D D Tl A

XEf{p PEDBp

where fmx(s) is the continuation of Z,, ,(s). Clearly we only need to show that
(s —1/2)(s —2/3)(s — 3/4)(s — 1)*Z(s) converges absolutely and locally normally
inside the domain R(1/2;7)~. Invoking this with the second part of Theorem 20
will lead to a meromorphic continuation of Z(s) to the region R(1/2;7)~ with a
possible simple pole at s = 1/2 and a pole of order 4 at s = 1.

Theorem 21. Let notation be as before. Let 0 < m < r — 1. Then Z(s) admils a
meromorphic continuation to the domain R(1/2; 7)™, where it has possible poles at
s =1/2 and s = 1. Moreover, if s =1/2 is a pole, then it must be simple.

Remark. One can formally verify this conclusion by a direct computation without
considering convergence problem. The convergence of m = 0 case follows from
Theorem 17, while for m > 1, the situation is more subtle. We shall prove an
estimate of the form

dkp_q1---d
DS / ...... / Res - Res Flw;s)|dFrmtdin
XCXp 6eBr Cr_i |Fim=0m(s) K =01(s) dlﬁ:jm s dlijl
where the above inequality holds locally uniformly in the set of regular points of
Reés o Rgs( )]-'(n;s) in R(1/2;7)~. See Theorem 81 of [15] for details.
KRjm =0m(s Kjlz 1(s

8. PROOF OF MAIN THEOREMS

Proposition 22. Let n > 1 be an integer. Let m be an cuspidal representation of
GL(n,Ar) and 7 be a quadratic primitive Hecke character on F*\A}, where F is
a number field. Then the root number of Ap(s, 7, Ad® 1) is 1.

Proof of Theorem 1. Recall that we have shown, for any test function ¢ € F(w),

I(s) = / Ko(z,2)E(x,®,7;8)dx = I . () + I (5),
G(F)Za(Ar)\G(AF)

where I,.. (s) is defined via (2), namely,

Le(®) =I5 == 3 Quls)As (5,70 Neyr):

(E:F)=n

and Io(s) = Y 14 Igf)(s). Since n < 4, then according to Uchida-Van der Waal
Theorem (ref. [12] and [13]) and its generalization to twist form (ref. [10]), each
Ag (s, TO NE/F) -Ap(s,7)~! admits a holomorphic continuation to the whole com-
plex plane. Since the sum over extensions E/F is finite, the function I, . (s) -
Ar(s,7)~! admits an entire continuation.

Also, by Theorem 10, Corollary 11 and Theorem 20, the function Io.(s)/Ar(s, T)
admits a meromorphic continuation to Re(s) > 1/3, with possible simple poles at



HOLOMORPHY OF ADJOINT L-FUNCTIONS FOR GL(n): n <4 17

s € {1/2,2/3,3/4}. Moreover, if Lr(2/3,7) =0, then I(s) - Ap(s,7)"! is regular
at s = 2/3; if Lp(3/4,7) = 0, then I(s) - Ap(s,7)~! is regular at s = 3/4.
Let p be a zero of A(s,7) of order r, > 1 such that Re(p) > 1/3. Denote by

o7
/ Ko(z,2) 5= E(x,®,7;5) |s=p dz, 0 < j <r,—1.
G(F)Z(Ar\G(AF) 07
If p # 1/2, we then see that J(p;j) = 0 for any 0 < j < 7, — 1 and ¢ €
F(w). According to Proposition 4, one has, for all cuspidal representations m €
Ao (G(F)\ G(Ap),w™"), and all K-finite functions ¢1,p2 € V, that

J(p;j) =

-

o9
/ d)l(x)gbz(x)WE(x, D, 7;5) |s=p dz = 0.
G(F)Z(Ar)\G(AF) §

Then by Rankin-Selberg theory, we have, for all cuspidal representations 7 €
Ao (G(F)\ G(Af),w™"), that %A(S,ﬂ' QT XT) |s=p=0,1 < j < r,, implying
that the adjoint L-function A(s, 7, Ad ®7) is regular at s = p.

Now assume that p = 1/2, namely, Lr(1/2,7) = 0. If 7 is not quadratic, then
by Theorem 21, Iéé)(s) - Ap(s,7)7! is regular at s = 1/2. Therefore, we have
J(1/2;5) = 0, for 1 < j < 71/ — 1. Hence, by Proposition 4 and similar analysis
as above we see that %A(s,ﬂ ®@T X7) |s=172= 0, 1 < j < ryjp — 1, implying
that the adjoint L-function A(s,, Ad) is regular at s = 1/2. Now we assume that
2 =1.1f r1/2 = 2, then by Theorem 10, Theorem 11 and Theorem 21 we see that
J(1/2;5) =0, for 1 < j < ry/5 — 2. Hence, by Proposition 4 and similar analysis
as above we see that %A(s,ﬂ ®T XT) |s=1/2= 0, 1 < j < 719 — 1, implying
that the adjoint L-function A(s, 7, Ad) has at most a simple pole at s = 1/2. Now
we apply Proposition 22 to exclude this possible simple pole at 1/2. Suppose that
A(s,m,Ad®7) has a pole at s = 1/2. Since the root number of A(s, 7, Ad®7) is
trivial, then the order of the pole s = 1/2 must be even. So A(s, 7, Ad ®7) cannot
have a simple pole at s = 1/2. A contradiction. If ry )5 = 1, then clearly, the adjoint
L-function A(s,m, Ad) has at most a simple pole at s = 1/2. The same argument
on root number excludes the possibility of pole at s = 1/2.

In all, we have shown that A(s, 7, Ad ®7) is holomorphic in R(1/2;7)”US(1 /2,00)-
Now Theorem 1 follows from global functional equation of A(s, 7, Ad ®7). O

REFERENCES

[1] J. Arthur. A Trace Formula for Reductive Groups I: Terms Associated to Classes in G(Q).
Duke Math. J. 245 (1978), 911-952.

[2] F. Brumley. Effective Multiplicity One on GL(n) and Zero-Free Regions of Rankin-Selberg
L-Functions. American Journal of Mathematics. 128: 6 (2006), 1455-1474.

[3] J. Cogdell. Lectures on L-functions, Converse Theorems, and Functoriality for GL(n), in
Lectures in Automorphic L-functions, 2004: 3-96.

[4] Y. Flicker. The Adjoint Representation L-function for GL(n). [J]|. Pacific Journal of Mathe-
matics, 1992, 154(2): 231-244.

[5] S. Gelbart, H. Jacquet. A Relation Between Automorphic Representations of GL(2) and
GL(3). Ann. Sci. Ecole Norm. Sup. (4) 11 (1978). 471-542.

[6] H. Jacquet. J. A. Shalika. On Euler Products and the Classification of Automorphic Repre-
sentations I and II, Amer. J. of Math., 103 (1981), 499-558 and 777-815.

[7] H. Jacquet, D. Zagier. Eisenstein Series and the Selberg Trace Formula. II. Transactions of
the American Mathemathcal Society. vol 300. No.1, 1987.

[8] E. Lapid, On the Harish-Chandra Schwartz Space of G(F)\G(A), with an appendix by Farrell
Brumley, in Automorphic Representations and L-Functions. Proceedings of the International
Colloquium, Mumbai 2012, editors D. Prasad, C. S. Rajan, A. Sankaranarayanan, and J.
Sengupta, Hindustan Book Agency, New Delhi, 2013, 335-377.

[9] L. Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147,
(2002), 1-241.



18

LIYANG YANG

[10] M. R. Murty, A. Raghuram. Some Variations on the Dedekind Conjecture. JOURNAL-

RAMANUJAN MATHEMATICAL SOCIETY, 2000, 15(4): 225-246.

[11] G. Shimura. On the Holomorphy of Certain Dirichlet Series. Proc. London Math. Soc. (3)

31 (1975) pp. 79-98.

[12] K. Uchida. On Artin’s L-functions. Tohoku Math. J., 27 (1975), 75-81.
[13] R. W. van der Waal. On a conjecture of Dedekind on zeta functions. Indag. Math., 37 (1975),

83-86.

[14] A. Weil. Basic Number Theory. Third edition, Die Grundlehren der Mathematischen Wis-

senschaften, Band 144, Springer-Verlag, New York-Berlin, 1974.

[15] L. Yang. Holomophy of Adjoint L-functions of GL(n). 2018.
[16] D. Zagier. Modular Forms Whose Fourier Coefficients Involves Zeta-functions of Quadratic

(17]

Fields. Modular Functions of One Variable. VI. Lecture Notes in Math., vol. 627. Springer-
Verlag. Berlin and New York, 1981.

D. Zagier. The Rankin Selberg method for automorphic functions which are not of rapid
decay. J. Fac. Sci. Univ. of Tokyo, Sect. IA 28 (1981), 415 437.

253-37 CALTECH, PasabpeEna, CA 91125, USA
Email address: lyyang@caltech.edu



	1. Introduction
	1.1. Statement of the Main Results
	1.2. The Idea of Proofs

	2. Contributions from Geometric Sides
	2.1. Choice of Test Functions
	2.2. Contributions from Conjugacy Classes

	3. Mirabolic Fourier Expansion of I(s)
	3.1. Mirabolic Fourier Expansions of Weak Automorphic Forms
	3.2. Decomposition of I(s)

	4. Contributions from I(n)(s)
	4.1. Holomorphic Continuation

	5. The Contributions from I(k)(s) (2kn-1)
	6. Contributions from I(1)(s)
	6.1. Absolute Convergence in the Critical Strip S[0,1]

	7. Holomorphic Continuation via Multidimensional Residues
	7.1. Continuation via a Zero-free Region
	7.2. Meromorphic Continuation Inside the Critical Strip

	8. Proof of Main Theorems
	References

