
HOLOMORPHY OF ADJOINT L-FUNCTIONS FOR GL(n): n ≤ 4

OUTLINE OF THE PROOF

LIYANG YANG

Abstract. In this note we give an outline of the proof of the main result in
[15] that the adjoint L-functions associated to any cuspidal representations of
GL(3) or GL(4) over an arbitrary global field admits a holomorphic continu-
ation to the whole complex plane.
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1. Introduction

1.1. Statement of the Main Results. Let F be a global field, and π be any
cuspidal representation of GL(n,AF ). Then according to Langlands philosophy the
adjoint L-function L(s, π,Ad) is expected to admit a holomorphic continuation to
the whole complex plane.

The first breakthrough was made for classical holomorphic cusp forms by Shimura
[11] and independently by Zagier [16]; Shimura’s approach was generalized by
Gelbart-Jacquet [5] to the adelic setting, while Zagier’s method was further devel-
oped by Jacquet-Zagier [7] in terms of representation language. Moreover, under
the assumption of Dedekind Conjecture and that π ∈ A0 (GL(n)) admits a su-
percuspidal component, Flicker showed the holomorphy of L(s, π,Ad) by a simple
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trace formula (ref. [4]). However, Lemma 4 in [4] is wrong, so Flicker’s result is
flawed.

In this paper, we will deal with n ≤ 4 case, leaving the n ≥ 5 case in the sequel.
Our main result is the following.

Theorem 1. Let F be a global field and 2 ≤ n ≤ 4. Let π be a cuspidal represen-
tation of GL(n,AF ) and let τ be a character on F×\A×F . Then Λ(s, π,Ad⊗τ) =
Λ(s, π ⊗ τ × π̃)/Λ(s, τ) is entire, unless τ 6= 1 and π ⊗ τ ' π, in which case
Λ(s, π,Ad⊗τ) is meromorphic with only simple poles s = 0 and s = 1.

Corollary 2. Let notation be as before. Then L(s, π,Ad⊗τ) = L(s, π ⊗ τ ×
π̃)/L(s, τ) is entire, unless τ 6= 1 and π ⊗ τ ' π, in which case L(s, π,Ad⊗τ)
is meromorphic with only possible simple poles at s = 0 and s = 1. In particular,
the adjoint L-function L(s, π,Ad) = L(s, π × π̃)/ζF (s) is entire.

Remark. If F is a function field, by using the cohomology of stacks of shtukas and
the Arthur-Selberg trace formula, L. Lafforgue showed the Langlands correspon-
dence of cuspidal representations π of GLn(AF ) to Galois representations ρ (ref.
[9]). Then Theorem 1 follows from the identity Λ(s, π,Ad⊗τ) = Λ(s,Ad ρ ⊗ τ)
and analytic properties of Λ(s,Ad ρ ⊗ τ), which is known well (ref. [14]). Hence
we shall focus on the case that F is a number field, where such a correspondence is
not available yet.

Remark. Assuming Piatetski-Shapiro’s conjecture on converse theorem (e.g. ref.
Chap. 10 in [3]), Theorem 1 would imply that for any cuspidal representation π
of GL(n,AF ), there exists a adjoint lifting Ad(π), which is an representation of
GL(n2 − 1,AF ), in the sense of [5]. Hence, in principle, Theorem 1 will play a role
in Langlands functoriality in this case.

1.2. The Idea of Proofs. Our method is similar to [7]. We consider a smooth
function ϕ : G(AF ) → C which is left and right K-finite, transforms by a unitary
character ω of ZG (AF ) , and has compact support modulo ZG (AF ) . Then ϕ defines
an integral operator

R(ϕ)f(y) =

∫
ZG(AF )\G(AF )

ϕ(x)f(yx)dx,

on the space L2
(
G(F )\G(AF ), ω−1

)
of functions on G(F )\G(AF ) which transform

under ZG(AF ) by ω−1 and are square integrable on G(F )ZG(AF )\G(AF ). This
operator can clearly be represented by the kernel function

K(x, y) =
∑

γ∈ZG(F )\G(F )

ϕ(x−1γy).

It is well known that L2
(
G(F )\G(AF ), ω−1

)
decomposes into the direct sums of the

space L2
0

(
G(F )\G(AF ), ω−1

)
of cusp forms and spaces L2

Eis

(
G(F )\G(AF ), ω−1

)
and L2

Res

(
G(F )\G(AF ), ω−1

)
defined using Eisenstein series and residues of Eisen-

stein series respectively. Then K splits up as: K = K0 + KEis + KRes . Selberg trace
formula gives an expression for the trace of the operator R(ϕ) restricted to the
discrete spectrum, and this is given by∫

G(F )Z(AF )\G(AF )

K0(x, x)dx.

We denote by S(AnF ) the space of Schwartz-Bruhat functions on the vector space
AnF and by S0(AnF ) the subspace spanned by products Φ =

∏
v Φv whose compo-

nents at real and complex places have the form

Φv(xv) = e−π
∑n
j=1 x

2
v,j ·Q(xv,1, xv,2, · · · , xv,n), xv = (xv,1, xv,2, · · · , xv,n) ∈ Fnv ,
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where Fv ' R, and Q(xv,1, xv,2, · · · , xv,n) ∈ C[xv,1, xv,2, · · · , xv,n]; and

Φv(xv) = e−2π
∑n
j=1 xv,j x̄v,j ·Q(xv,1, x̄v,1, xv,2, x̄v,2, · · · , xv,n, x̄v,n),

where Fv ' C and Q(xv,1, x̄v,1, xv,2, x̄v,2, · · · , xv,n, x̄v,n) is a polynomial in the ring
C[xv,1, x̄v,1, xv,2, x̄v,2, · · · , xv,n, x̄v,n].

Denote by ΞF the set of characters on F×\A×F which are trivial on R×+. Let
Φ ∈ S0(AnF ) and τ ∈ ΞF . Let η = (0, · · · , 0, 1) ∈ Fn. Set

f(x,Φ, τ ; s) = τ(detx)|detx|s
∫
A×F

Φ(ηtx)τ(t)n|t|nsd×t,

which is a Tate integral (up to holomorphic factors) for L(ns, x.Φ, τn). It converges
absolutely uniformly in compact subsets of Re(s) > 1/n. Since the mirabolic sub-
group P0 is the stabilizer of η. Let P = P0ZG be the full (n−1, 1) parabolic subgroup
of G, then f(x, s) ∈ Ind

G(AF )
P (AF )(δ

s−1/2
P τ−n), where δP is the modulus character for

the parabolic P. Then we can define the Eisenstein series

EP (x,Φ, τ ; s) =
∑

γ∈P (F )\G(F )

f(x,Φ, τ ; s),

which converges absolutely for Re(s) > 1. Also, we define the integral:

Iϕ(s) =

∫
G(F )Z(AF )\G(AF )

K0(x, x)EP (x,Φ; s)dx.

If there is no confusion in the context, we will alway write I(s) (resp. f(x, s))
instead of Iϕ(s) (resp. f(x,Φ, τ ; s)) for simplicity.

According to Proposition 4, Theorem 1 will follow if I(s) · Λ(s, τ)−1, Re(s) > 1,
admits a holomorphic continuation. To achieve it, we tear I(s) into two parts:
geometric side and spectral side. The geometric part is treated in Proposition 5.
To deal with the spectral part, which is denoted by I∞(s), we develop a mirabolic
type of Fourier expansion to further decompose I∞(s) as a sum of n distributions:
I

(k)
∞ (s), 1 ≤ k ≤ n (ref. Prop. 7). Then we continue each I(k)

∞ (s) respectively. There
are two major difficulties: the first is showing each I

(k)
∞ (s) is well defined when

Re(s) > 1, and the other is obtaining continuation of each I(k)
∞ (s). Typically each

I
(k)
∞ (s) is an infinite sum of meromorphic functions, we need to show its convergence
so that it’s well defined. Then we have to investigate the analytic property of each
I

(k)
∞ (s) ·Λ(s, τ)−1. Furthermore, we also need to get a meromorphic continuation of
I

(k)
∞ (s) · Λ(s, τ)−1. In this process many more infinite sums will show up and after
verifying their absolute convergence we get a sum of meromorphic functions, while
each individual may have poles. Then the next step is to analyze these possible
poles and show that they do cancel with each other. However, by this approach we
can only rule out all potential poles of I(s) · Λ(s, τ)−1 except for a possible simple
pole at s = 1/2 when τ is quadratic. This will eventually imply that Λ(s, π,Ad⊗τ)
admits a meromorphic continuation with at most a simple pole at s = 1/2. To
remedy it, we prove the root number of Λ(s, π,Ad⊗τ) is always 1 in this case.
This would exclude the possibility of existence of a simple pole at s = 1/2. Now
Theorem 1 follows.

2. Contributions from Geometric Sides

Let H (G(AF )) be the Hecke algebra of H (G(AF )) and ϕ ∈ H (G(AF )) . For any
character ω of A×F /F×. Let ϕ ∈ C∞c (ZG(AF ) \G(AF )) ∩ H (G(AF )) be of central
character ω. Denote by V0 the Hilbert space

L2
0

(
G(F ) \G(AF ), ω−1

)
=
⊕
π

Vπ,
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where π ∈ A0

(
G(F ) \G(AF ), ω−1

)
, the set of irreducible cuspidal representation of

G(AF ) with central character ω and Vπ is the corresponding isotypical component.
By multiplicity one, the representation of G(AF ) on Vπ is equivalent to π. For each
π, we choose an orthonormal basis Bπ of Vπ consisting of K-finite vectors. Let
K0(x, y) be the kernel function for the right regular representation R(ϕ) on V0.
Then we have the decomposition

(1) K0(x, y) =
∑
π

Kπ(x, y), where Kπ(x, y) =
∑
φ∈Bπ

π(ϕ)φ(x)φ(y).

All the functions in the summands are of rapid decay in x and y. The sum of Kπ(x, y)
converges in the space of rapidly decaying functions, by the usual estimates on the
growth of cusp forms. The sum over Bπ is finitely uniformly in x and y for a given
ϕ because of the K-finiteness of ϕ.

2.1. Choice of Test Functions. Let Σ = Σ∞
∐

Σf be the set of places of F,
where Σ∞ denotes the subset set of archimedean places of F , and Σf denotes the
subset of nonarchimedean places of F.

Definition 3. For a place v ∈ Σf , we say that a test function ϕ = ⊗vϕv ∈
H (G(AF )) is discrete at v if ϕv is supported on the intersection of G(OFv ) and
the regular elliptic subset of G(Fv).

Let ω be a character of A×F /F×. Let F∗(ω) be the set of smooth functions
ϕ = ⊗′vϕv : G(AF ) → C which is left and right K-finite, is discrete at some
v ∈ Σf , transforms by the character ω of ZG (AF ) , and has compact support
modulo ZG (AF ) . Let F(ω) be the space spanned linearly by functions in F∗(ω).

Then we have an improvement of the Proposition in Section 3.3 of [7]:

Proposition 4. Let F (x) be a function on G(F )Z(AF )\G(AF ) which is K-finite
and of polynomial growth in a Siegel domain. Then the following are equivalent:

(a):
∫
G(F )Z(AF )\G(AF )

K0(x, x)F (x)dx = 0, for all ϕ ∈ F(ω);

(b):
∫
G(F )Z(AF )\G(AF )

Kπ(x, x)F (x)dx = 0, for all ϕ ∈ F(ω) and all cuspidal
representations π ∈ A0

(
G(F ) \G(AF ), ω−1

)
;

(c):
∫
G(F )Z(AF )\G(AF )

φ1(x)φ2(x)F (x)dx = 0, for all cuspidal representations
π ∈ A0

(
G(F ) \G(AF ), ω−1

)
, and all K-finite functions φ1, φ2 ∈ Vπ .

2.2. Contributions from Conjugacy Classes. Consider the distribution

I(s) =

∫
G(F )ZG(AF )\G(AF )

K0(x, x)E(x,Φ; s)dx.

Recall that in [7] the calculation of I(s) was based on the decomposition

K(x, x) =
∑
C
KC(x) +K∞(x),

where C runs through all nontrivial conjugacy classes in G(F )/ZG(F ) and

KC(x) =
∑
γ∈C

γ /∈P (F )/ZG(F )

ϕ(x−1γx),

K∞(x) =
∑

γ∈P (F )/ZG(F )

ϕ(x−1γx)−KEis(x, x)−KRes(x, x).

So correspondingly, integrating against the Eisenstein series E(x,Φ; s) associated
to the parabolic subgroup P implies that I(s) can be decomposed as

I(s) =
∑
C
IC(s) + I∞(s), Re(s) > 1.
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When G = GL(2), Jacquet and Zagier (ref. [7]) computed each IC(s) and I∞(s) for
general test function ϕ. Note that the contribution from non-regular elliptic classes
would give Artin L-functions of degree less than n. Therefore, for our particular
purpose in this paper, we only use the test functions in Fπ. This is because for any
ϕ ∈ Fπ, for any x ∈ G(AF ) and any γ ∈ G(F ), one has ϕ(x−1γx) = 0 unless γ is
elliptic regular. Let Γr.e. (G(F )/ZG(F )) be the subset of regular elliptic elements
in G(F )/ZG(F ), then KC(s) ≡ 0 unless C ⊆ Γr.e. (G(F )/ZG(F )) . This helps us
simplify the computation of I(s) = Ir.e.(s) + I∞(s), where

Ir.e.(s) =

∫
G(F )ZG(AF )\G(AF )

{ ∑
γ∈Γr.e.(G(F )/Z(F ))

ϕ(x−1γx)

}
· E(x,Φ; s)dx,

I∞(s) = −
∫
G(F )ZG(AF )\G(AF )

{
KEis(x, x) + KRes(x, x)

}
· E(x,Φ; s)dx.

We shall deal with Ir.e.(s) in this section, and leaving the computation of I∞(s)
in the next part.

Proposition 5. Let F be a number field and Ireg ell(s) be defined as above, then
for every field extension E/F of degree n, there is an analytic function QE(s) such
that

(2) Ir.e.(s) = Iϕr.e.(s) =
1

n

∑
(E:F )=n

QE(s)LE
(
s, τ ◦NE/F

)
,

where the summation is taken over only finitely many E’s, depending implicitly only
on the test function ϕ.

3. Mirabolic Fourier Expansion of I∞(s)

Take a test function ϕ ∈ Fπ, then by the definition of EP (x,Φ; s) we have

I∞(s) = Iϕ∞(s) = −
∫
G(F )ZG(AF )\G(AF )

K∞(x, x)
∑

γ∈P (F )\G(F )

f(γx, s)dx.

where K∞(x, y) = KEis(x, y) + KRes(x, y) is left N(F )-invariant. Then

(3) I∞(s) = −
∫
ZG(AF )P (F )\G(AF )

K∞(x, x)f(x, s)dx.

Now we proceed to compute (3) by considering the Fourier expansion of K∞(x, y).

3.1. Mirabolic Fourier Expansions of Weak Automorphic Forms. Fourier
expansions of automorphic forms of GLn are well known (ref. [?]). Following
the idea of Piatetski-Shapiro in [?], we give a new form of Fourier expansions of
weak automorphic forms in terms of generalized mirabolic subgroups, via which a
further decomposition of I∞(s) is obtained. Here we call a function f ∈ C (G(AF ))
a weak automorphic form if it is slowly increasing on G(AF ), right K-finite and
P0(F )-invariant, where P0 is the mirabolic subgroup of G = GLn.

Fix an integer n ≥ 2. The maximal unipotent subgroup of G(AF ), denoted by
N(AF ), is defined to be the set of all n × n upper triangular matrices in G(AF )
with ones on the diagonal and arbitrary entries above the diagonal. Let ψF/Q(·) =

e2πiTrF/Q(·) be the standard additive character, then for any α = (α1, · · · , αn−1) ∈
Fn−1, define a character ψα : N(AF )→ C by

ψα(u) =

n−1∏
i=1

ψF/Q (αiui,i+1) , ∀ u = (ui,j)n×n ∈ N(AF ).
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Write ψk = ψ(0,··· ,0,1,··· ,1) (where the first n−k components are 0 and the remaining
k components are 1) and θ = ψ(1,··· ,1), the standard generic character used to define
Whittaker functions.

For 1 ≤ k ≤ n− 1, let Bn−k be the standard Borel subgroup (i.e. the subgroup
consisting of nonsingular upper triangular matrices) of GLn−k; let Nn−k be the
unipotent radical of Bn−k. For any i, j ∈ N, let Mi×j be the additive group scheme
of i× j-matrices. Define the unipotent radicals

N(k,1,··· ,1) =

{(
Ik B

D

)
: B ∈Mk×(n−k), D ∈ Nn−k

}
, 1 ≤ k ≤ n− 1 .

For 1 ≤ k ≤ n− 1, set the generalized mirabolic subgroups

Rk =

{(
A C
0 B

)
: A ∈ GLk, C ∈Mk×(n−k), B ∈ Bn−k

}
.

For 2 ≤ k ≤ n− 1, define subgroups of Rk by

R0
k =

{ A B′ C
0 a D
0 0 B

 :

(
A B′

a

)
∈ GLk,

(
C
D

)
∈Mk×(n−k), B ∈ Bn−k

}
.

Also we define R0 = R0
1 = N(0,1,··· ,1) := N(1,1,··· ,1) to be the unipotent radical of

the standard Borel subgroup of GLn.

Proposition 6 (Mirabolic Fourier Expansion). Let h be a continuous function on
P0(F ) \G(AF ). Then we have

(4) h(x) =

n∑
k=1

∑
δk∈Rk−1\Rn−1

∫
N(k−1,1,··· ,1)(F )\N(k−1,1,··· ,1)(AF )

h(nδkx)ψn−k(n)dn

if the right hand side converges absolutely and locally uniformly.

3.2. Decomposition of I∞(s). Applying Proposition 6 to the kernel function
K(x, y) viewed as a function of x, we thus obtain a formal decomposition of the
distribution I∞(s) when Re(s) > 1. Convergence problems of this expansion will
be settled in the following several sections.

Now for 1 ≤ k ≤ n we write I(k)
∞ (s) for the above (formal) integral, namely,

I(k)
∞ (s) =

∫
ZG(AF )Rk−1(F )\G(AF )

∫
[N∗k ]

∫
[N ′k]

K∞(n∗n1x, x)θ(n1)dn1dn
∗f(x, s)dx.

Proposition 7. Let notation be as before. Then one has, when Re(s) > 1, that

(5) I∞(s) =

n∑
k=1

I(k)
∞ (s),

where N ′k = N(k,1,··· ,1) and

N∗k =

{Ik−1 C
1

In−k

 : C ∈ Gk−1
a

}
.

Both sides of (5) converge absolutely when Re(s) > 1.

In the following sections these I(k)
∞ (s) will be treated separately because of their

different characters. As we will see, I(1)
∞ (s) can be reduced to an infinite sum of

Rankin-Selberg convolutions of irreducible generic non-cuspidal representations of
GL(n,AF ) (ref. Section 6), and I

(n)
∞ (s) will be handled by Langlands-Shahidi’s

method after applying some geometric auxiliary results (ref. Section 4); while the
remaining terms will be treated by invoking intertwining operators and spectral
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analysis of tori (ref. Section 5). In particular, according to results in the following
sections (Section 4 for k = n and Section 5 for 1 < k < n), I(k)

∞ (s) converges
absolutely when Re(s) > 1, and admits a meromorphic continuation to the whole
complex plane.When n ≤ 4, we also obtain a meromorphic continuation of I(1)

∞ (s) in
Section 7. Hence the expansion (5) is well defined on both sides for Re(s) > 1, and
can be regarded as an identity between their continuations when s ∈ C is arbitrary
and n ≤ 4.

4. Contributions from I
(n)
∞ (s)

Now we start with handling the last term I
(n)
∞ (s), since the approach here applies

to part of the computation of I(k)
∞ (s), 2 ≤ k ≤ n− 1, as well.

Proposition 8. Let C be a regular G(F )-conjugacy classes in G(F ). Then there
exists a P (F )-conjugacy class C0 such that

(6) C = C0
∐ n−1⋃

k=1

C ∩Qk(F )P (F ),

where Qk(F )P (F ) = {pγp−1 : γ ∈ Qk(F ), p ∈ P (F )}.

Let C
P (F )
r.e. be the union of regular elliptic components of all G(F )-conjugacy

classes in G(F ). Then C
P (F )
r.e. is a disjoint union of P (F )-conjugacy classes in G(F )

by Proposition 8.

Corollary 9. Let notation be as before. Set (F×)
n

= {tn : t ∈ F×}, and let

(7) R̃∗P =

{
w1w2 · · ·wn−1

In−3

t
I2

 u : t ∈ F×/
(
F×
)n
, u ∈ NP (F )

}
.

Then R̃∗P forms a family of representatives of
(
ZG(F ) ∩ C

P (F )
r.e.

)
\CP (F )

r.e. .

4.1. Holomorphic Continuation. Let P0(F ) be the mirabolic subgroup of G(F ).
For any γ ∈ G(F ), write γP0(F ) for the P0(F )-conjugacy class of γ, which is the same
as P (F )-conjugacy class of γ. Then by Corollary 9 one can decompose ZG(F )\G(F )
as

(8) ZG(F )\G(F ) =
∐
γ∈R̃∗P

γP0(F )
∐ n−1⋃

k=1

(ZG(F )\Qk(F ))
P0(F )

,

where Qk is maximal parabolic subgroup of type (k, n− k). By the decomposition
(8), one can write I(n)

∞ (s) = Ir.e.∞ (s) + Ip.c.∞ (s), where

Ir.e.∞ (s) =

∫
ZG(AF )Rn−1(F )\G(AF )

∫
[NP ]

∑
γ∈R̃∗P

∑
p∈P0(F )

ϕ(x−1n−1p−1γpx)dnf(x, s)dx,

Ip.c.∞ (s) =

∫
Yn

∫
[NP ]

∑
γP0(F )∈P

∑
p∈P0(F )

ϕ(x−1n−1p−1γpx)dnf(x, s)dx,

where Yn = ZG(AF )Rn−1(F )\G(AF ) = ZG(AF )P0(F )\G(AF ) and

P =
{
γP (F ) : γ ∈ ZG(F )\Qk(F ) for some 1 ≤ k ≤ n− 1

}
.

An analysis on the support of ϕ leads to that Ip.c.∞ (s) = 0. Now our computation
reduces to I(n)

∞ (s) = Ir.e.∞ (s).
Depending on the purity of n, we can further simplify Ir.e.∞ (s). Recall the test

function ϕ has the central character ω, Ξ is the set of idele class characters on AF ,
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which is trivial on the archimedean places. Denote by Ξω,n the subset {χ ∈ Ξ :
χn = ω} ⊂ Ξ. Also, let Ξnτ,2 = {ξ ∈ Ξ : ξ2 = τ} if n is even, and set Ξnτ,2 to be the
empty set if n is odd. Then when n is odd, we have

Ir.e.∞ (s) =
1

cP

∫
K

f(k, s)dk

∫
N(AF )

du

∫
[NP ]

du′
∫
NP (AF )

dn
∑

χ∈Ξω,n

∫
A×F

∆od
s,τ,χ(t)d×t1

×
∫
A×F
· · ·
∫
A×F

ϕ

k−1u


1

t−1
2

. . .
t−1
n−1

t1

 w̃nu′k

 d×t2 · · · d×tn−1,

where we use the fact that
(
A×F
)n · F×/ (F×)

n
= F× ·

(
F×\A×F

)n
, and τ | · |AF is

F×-invariant, and

∆od
s,τ,χ(t) = χ̄(t1)τ(t1)

n−1
2 |t1|

(n−1)(s+1)
2

AF

n−1∏
i=2

τ(t
n+1
2 −i

i )|ti|
[n+1

2 −i](s+1)

AF .

When n is even, we also have a similar expansion.
Let T∗(A×F ) = {diag(1, t1, t2, · · · , tn−1) ∈ T (AF ) : ti ∈ A×F , 1 ≤ i ≤ n− 1}. Set

ι : T ∗(A×F ) −→ T∗(A×F ), t 7→ tι = diag(1, t−1
2 , t−1

3 , · · · , t−1
n−1, t1).

For any n ∈ N≥2, define

Fχ,ξ(x; k, s) =

∫
N(AF )

du

∫
[NP ]

du′
∫
T∗(A×F )

ϕ
(
k−1utιxu′k

)
∆s,τ,χ,ξ,n(t)d×t,

where we write δn = − 1+(−1)n

2 and denote by ∆s,τ,χ,ξ,n(t) the following character

χ̄(t1)ξ(t1)−δnτ(t1)
n−1−δn

2 |t1|
(n−1)(s+1)

2

AF

n−1∏
i=2

χ(ti)ξ(ti)
δnτ(ti)

n+1−δn
2 −i|ti|

[n+1
2 −i](s+1)

AF .

Since [NP ] = NP (F )\NP (AF ) is compact and ϕ is compactly supported, the
function Fχ,ξ(x; k, s) is well defined for any χ, ξ and Re(s) > 1.

Let b = ut ∈ B(AF ), where u ∈ N(AF ), t = diag(t1, t2, · · · , tn) ∈ T (AF ). Then

Fχ,ξ(bx; k, s) =

n∏
i=1

χ(ti)ξ(ti)
δnτ(ti)

n+1−δn
2 −i|ti|

[n+1
2 −i](s+1)

AF · Fχ,ξ(x; k, s).

Since the modular character of T (AF ) is δT (AF )(t) =
∏n
i=1 t

n+1−2i
i , so one has

Fχ,ξ(x; k, s) ∈ Ind
G(AF )
B(AF )

(
χξδnτλ1 | · |λ1s

AF , · · · , χξ
δnτλn−1 | · |λn−1s

AF , χξδnτλn | · |λnsAF

)
,

where for 1 ≤ i ≤ n, λi = n+1−δn
2 − i. Denote by

Gχ,ξ(x; s) =
1

cP

∫
K

f(k, s)Fχ,ξ(x; k, s)dk.

Then we have (at least formally) that

I(n)
∞ (s) = Ir.e.∞ (s) =

∑
χ∈Ξω,n

∑
ξ∈Ξnτ,2

∫
NP (AF )

Gχ,ξ(w̃n; s)dn.

Thus by the Langlands-Shahidi method and Tate’s thesis one concludes the follow-
ing.
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Theorem 10. Let notation be as before, then I
(n)
∞ (s) converges absolutely and

locally normally in the domain Re(s) > 1. Moreover, I(n)
∞ (s) admits a meromorphic

continuation. Precisely, one has

I(n)
∞ (s) ∼ L(s, τ)L(2s, τ2) · · ·L((n− 1)s, τn−1)L(ns, τn)

L(s+ 1, τ)L(2s+ 1, τ2) · · ·L((n− 1)s+ 1, τn−1)
.

Remark. To make the above formally computation rigorous, one can apply the
proceeding computation to I(n)

∞,+(s) = I
(n)
∞ (s; |ϕ|, |Φ|, 1). Then everything is non-

negative, so we can interchange orders of integrals. The convergence of I(n)
∞,+(s)

follows from Langlands’ theory on intertwining operators. Therefore, the proceed-
ing formal computation is justified by dominant control theorem.

5. The Contributions from I
(k)
∞ (s) (2 ≤ k ≤ n− 1)

In this section we claim that I(k)
∞ (s) admits meromorphic continuation to C. The

proof is much more subtle than the continuation of I(n)
∞ (s). Recall that

I(k)
∞ (s) =

∫
ZG(AF )Rk−1(F )\G(AF )

∫
[N∗k ]

∫
[N ′k]

K∞(n∗n1x, x)θ(n1)dn1dn
∗f(x, s)dx.

Since our test function is supported in the subset of elliptic regular elements, we can
show that the corresponding inner integral of I(k)

∞ (s) is supported in a particular
Bruhat cell, i.e., the cell corresponding to the longest element. Finding an explicit
form of representatives of this cell we then see that I(k)

∞ (s) is equal to∫
Y ′k

f(x, s)dx

∫
Nl
dul

∫
[N∗k ]

du

∫
[N

(k)
0 ]

dn

∫
Nr

∑
δ

ϕ(x−1u−1
l uδw̃kurnx)θ̄(uru

−1
l )dur,

where δ ∈ diag(GLk,Gn−km )(F ), Y ′k = ZG(AF )R∗k−1(F )N ′k(AF )\G(AF ) with

R∗k−1(F ) =

{ A B′ 0
0 a 0
0 0 B

 :

(
A B′

a

)
∈ GLk, B ∈ Gn−km

}
;

w̃k is the longest element, N ′l = N(k,1,··· ,1)(AF ), Nr = diag(Ik−1, Nn+1−k)(AF ),

N
(k)
0 =

Ik−1 0 M(k−1)×(n−k)

1 0
In−k

 .

One sees clearly that the integral over Y ′k will decompose into products I1I2,
where I1 is an integral over Pk(F )\GLk(AF ), where Pk is the mirabolic subgroup
of GLk; and I2 is an integral over the torus Gn−1−k

m . The absolute convergence is
handled in Section 5.2 of [15]. So we can switch orders of some integrals and just
discuss formal computation here. To deal with I1, we consider representatives of
Bruhat normal form of Pk(F )\GLk(AF ) just as Section 4. Then apply the same
idea as continuing I

(n)
∞ (s) in last section, but here we need a more complicated

computation since I1 is not really independent of I2 due to the action of w̃k. For I2
we shall just apply Poisson summation along torus and the continuation from this
part comes from shifting contour. Putting things together, we obtain the following,
which appears to be new.

Theorem 11. Let 2 ≤ k ≤ n− 1. Then we have

I(k)
∞ (s) ∼

L(s, τ)L(2s, τ2) · · ·L
(
(k − 1)s, τk−1

)
L(ns, τn)

L(s+ 1, τ)L(2s+ 1, τ2) · · ·L ((k − 1)s+ 1, τk−1)
.
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Remark. The convergence here is more delicate than that of Theorem 10. We will
use intertwining operator theory iteratively and introduce an extra family of dom-
inant integrals with parameters in some cone. Then invoking Poisson summation
and absolute convergence we can reduce I(k)

∞ (s) to roughly a finite sum of inter-
twining operators. The holomorphic continuation comes from that of intertwining
theory and shifting contour of Mellin transform. See Section 5 of [15] for details.

6. Contributions from I
(1)
∞ (s)

In this section, we shall outline the proof of absolute and locally uniform conver-
gence of I(1)

∞ (s). The whole process is lengthy and makes use of a variant of Arthur’s
truncation technique. See Section 6 of [15] for details.

For any functions G(x, y) on ZG(AF )G(F )\G(AF ) × ZG(AF )G(F )\G(AF ), let
F1G(x, y) be the Fourier transform along the x-variable.

Proposition 12. Let notation be as above. Let R(x) be a slowly increasing function
on S0. Then we have

(9)
∫
ZG(AF )N(F )\G(AF )

∑
χ

∣∣∣F1ΛT2 Kχ(x, x) ·R(x)
∣∣∣dx <∞,

where χ runs over all the equivalent classes of cuspidal datum; and ΛT2 is Arthur’s
truncation operator with respect to the second variable (ref. [1]).

Proposition 13. Let notation be as before. Let χ ∈ X be a cuspidal datum. Then
there exists some T0 ∈ a0 depending only on the support of ϕ, such that for any
T ∈ a0 with T − T0 ∈ a+

0 , one has∫
ZG(AF )N(F )\G(AF )

F1ΛT2 Kχ(x, x) ·R(x)dx

converges absolutely, and it is of the form

(10)
∑
w∈Wn

∑
Q

CQ1 (T0;w,χ,R)e−λw(T ) +
∑
w∈Wn

∑
Q

CQ2 (T0;w,χ,R)Pw,Q(T ;T0),

where CQ1 (T0;w,χ,R) and CQ2 (T0;w,χ,R) are constants depending on w, χ, R and
T0; λw is a point (a∗0)

+
, decided by w ∈ Wn; and Pw,Q(T ;T0) is a polynomial

depending on w and Q, with degPw,Q(T ;T0) ≤ dim aGQ.

Proposition 14. Let notation be as above. Let χ ∈ X be a cuspidal datum. Let
R(x) be a slowly increasing function on a Siegel domain S0. Then we have

(11)
∫
ZG(AF )N(F )\G(AF )

∣∣∣F1 Kχ(x, x) ·R(x)
∣∣∣dx <∞.

Remark. Inequality (11) comes from estimate on gauges considered in [6].

Let R be a slowly increasing function on XG. Define, at least formally, that

JR =

∫
XG

∑
χ

F1 Kχ(x, x) ·R(x)dx.

Noting the fact that F1ΛT2 Kχ(x, x) = F1 Kχ(x, x) when T is sufficiently regular,
one then concludes from Proposition 13 and Proposition 14 that:

Corollary 15. Let notation be as above. Then for any slowing increasing left
ZG(AF )N(F )-invariant function R, JR is well defined. Moreover, we have

(12) JR =

∫
YG

∑
χ∈X

K̂χ(x, x) ·R(x)dx =
∑
χ∈X

∫
YG

K̂χ(x, x) ·R(x)dx,
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where YG := ZG(AF )N(AF )\G(AF ), and for any χ ∈ X,

K̂χ(x, y) =

∫
N(F )\N(AF )

∫
N(F )\N(AF )

Kχ(n1x, n2y)θ(n1)θ̄(n2)dn1dn2.

One then further deduces that

Theorem 16. Let notation be as before. Let s ∈ C be such that Re(s) > 1. Let
YG = ZG(AF )N(AF )\G(AF ). Then the following integral∑
χ∈X

∑
P∈P

∑
φ1∈BP,χ

∑
φ2∈BP,χ

∫
Λ∗

∫
YG

∣∣∣〈IP (λ, ϕ)φ2, φ1〉W1(x;λ)W2(x;λ)f(x, s)
∣∣∣dxdλ

is finite, and is uniformly bounded if s lies in some compact subset of the right half
plane {z : Re(z) > 1}. In particular, I(1)

∞ (s) converges absolutely for Re(s) > 1.

Moreover, when Re(s) > 1, I
(1)
∞ (s) is equal to∑

χ

∑
P∈P

1

cP

∑
φ1∈BP,χ

∑
φ2∈BP,χ

∫
Λ∗
〈IP (λ, ϕ)φ2, φ1〉

∫
YG

W1(x;λ)W2(x;λ)f(x, s)dxdλ,

where χ runs over proper cuspidal data, i.e., χ is not of the form {(G, π)}. Partic-
ularly, as a function of s, I(1)

∞ (s) is analytic in the right half plane {z : Re(z) > 1}.

6.1. Absolute Convergence in the Critical Strip S[0,1].

Theorem 17. Let s ∈ C be such that 0 < Re(s) < 1, then

(13)
∑
χ

∑
P∈P

1

cP

∑
φ∈BP,χ

∫
Λ∗
Rϕ(s, λ;φ)Λ(s, πλ ⊗ τ × π̃−λ)dλ,

converges absolutely, normally with respect to s, where Λ(s, πλ ⊗ τ × π̃−λ) is the
complete L-function, and

Rϕ(s, λ;φ2) =
∑

φ1∈BP,χ

〈IP (λ, ϕ)φ1, φ2〉 ·
Ψ(s,W1,W2;λ)

Λ(s, πλ ⊗ τ × π̃−λ)
, Re(s) > 1,

with Ψ(s,W1,W2;λ) the standard Rankin-Selberg integral.

7. Holomorphic Continuation via Multidimensional Residues

From preceding estimates, we see that when Re(s) > 1, I
(1)
∞ (s) is a combination

of Rankin-Selberg convolutions for automorphic functions which are not of rapid
decay. Zagier [17] computed the Rankin-Selberg transform of some type of auto-
morphic functions and derived the desired holomorphic continuation for n = 2 and
F = Q case. However, general Eisenstein series for GL(n) do not have the asymp-
totic properties as Zagier considered, since there are mixed terms in the Fourier
expansion (ref. Proposition 6). Thus one needs to develop a different approach to
obtain the continuation. We will make essentially use of zero-free region to obtain
a continuation.

7.1. Continuation via a Zero-free Region. Recall that we fix the unitary char-
acter τ. Let Dτ be a standard (open) zero-free region of LF (s, τ) (e.g. ref. [2]). We
fix such a Dτ once for all. We thus can form a domain

(14) R(1/2; τ)− := {s ∈ C : 2s ∈ Dτ} ) {s ∈ C : Re(s) ≥ 1/2}.

In Section 7.2, we will continue I(1)
∞ (s) to the open set R(1/2; τ)−. Invoking (14)

with functional equation we then obtain a meromorphic continuation of I(1)
∞ (s) to

the whole complex plane.
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7.1.1. Meromorphic continuation of JP,χ(s;φ, Cχ(ε)) across the critical line Re(s) =
1. Let 1 ≤ m,m′ ≤ n be two integers. Let σ ∈ A0(GLm(F )\GLm(AF )) and
σ′ ∈ A0(GLm′(F )\GLm′(AF )). Fix ε0 > 0. For any c′ > 0, let Dc′(σ, σ′) be{

κ = β + iγ : β ≥ 1− c′ ·
[ (C(σ)C(σ′))−2(m+m′)

(|γ|+ 3)2mm′[F :Q]

] 1
2 + 1

2(m+m′)−ε0
}
,

if σ′ � σ̃; and let Dc′(σ, σ′) denote by the region{
κ = β + iγ : β ≥ 1− c′ ·

[ (C(σ))−8m

(|γ|+ 3)2mm2[F :Q]

]− 7
8 + 5

8m−ε0
}
,

if σ′ ' σ̃. According to [2] and the Appendix of [8], there exists a constant cm,m′ > 0
depending only on m and m′, such that L(κ, σ × σ′) does not vanish in κ =
(κ1, · · · , κr) ∈ Dcm,m′ (σ, σ

′) × · · · × Dcm,m′ (σ, σ
′). Let c = min1≤m,m′≤n cm,m′ and

C(σ, σ′) be the boundary of Dc(σ, σ′). We may assume that c is small such that the
curve C(σ, σ′) lies in the strip 1− 1/(n+ 4) < Re(κj) < 1, 1 ≤ j ≤ r. Fix such a c
henceforth.

Let χ ∈ XP be a cuspidal datum with respect to a standard parabolic P, and
π = Ind

G(AF )
P (AF )(σ1, σ2, · · · , σr) ∈ χ. For any ε ∈ (0, 1] we set

Dχ(ε) =
⋂

1≤i≤r

⋂
i<j≤r

{
κ ∈ C : Re(κ) ≥ 0, 1− κ ∈ Dcε(σi, σj)

}
.

Also, for ε = 0, we set Dχ(ε) =
{
κ ∈ C : Re(κ) ≥ 0

}
. Then by the above

discussion, as a function of κ, LS(κ, π, π̃) is nonzero in the region Dχ(ε) =
{
κ =

(κ1, · · · , κr) ∈ Cr : κl ∈ Dχ(εl)
}
, where ε = (ε1, · · · , εr) ∈ [0, 1]r. We can write

Dχ(ε) as a product space Dχ(ε) =
∏r
l=1Dχ(εl), and let ∂Dχ(εl) be the boundary

of Dχ(εl). Then when εl > 0, ∂Dχ(εl) has two connected components and one of
which is exactly the imaginary axis. Let Cχ(εl) be the other component, which is a
continuous curve, where 0 ≤ εl ≤ 1. When εl = 0, let Cχ(εl) be the maginary axis.
Set Cχ(ε) = Cχ(ε1)× · · · × Cχ(εr−1), 0 ≤ εl ≤ 1, 1 ≤ l ≤ r − 1.

Let ε = (ε1, · · · , εr−1) ∈ [0, 1]r−1. For any β ≥ 1/2, we denote by

(15) R(β;χ, ε) =
{
s ∈ 1 +Dχ(ε)

}⋃{
s ∈ 1−Dχ(ε)

}
.

Let ε = (1/n, 1/n, · · · , 1/n) ∈ Rn−1 and s ∈ 1 + Dχ(ε) and Re(s) > 1. Then
R(s,W1,W2;κ, φ)Λ(s, πκ⊗τ× π̃−κ) is equal to a holomorphic function multiplying

r∏
k=1

Λ(s, σk ⊗ τ × σ̃k)

r−1∏
j=1

j∏
i=1

Λ(s+ κi,j , σi ⊗ τ × σ̃j+1)Λ(s− κi,j , σj+1 ⊗ τ × σ̃i)
Λ(1 + κi,j , σi × σ̃j+1)Λ(1− κi,j , σj+1 × σ̃i)

.

Let G(κ; s) = G(κ; s, P, χ) denotes the above product. Also, for simplicity, we
denote by F(κ; s) = F(κ; s, P, χ) the function Rϕ(s,κ;φ)Λ(s, πκ⊗ τ × π̃−κ). Then
the Rankin-Selberg theory implies that F(κ; s)/G(κ; s) can be continued to an
entire function. We will write C for the boundary Cχ(1), and (0) for the imaginary
axis. Then an analysis on the potential poles of G(κ; s) leads to an expression for
the integral JP,χ(s;φ, Cχ(0)) = JP,χ(s;φ, C)− J1(s), where

J1(s) =

r−1∑
j=1

j∑
i=1

∫
(0)

· · ·
∫

(0)

dκj−1 · · · dκ1

∫
C
· · ·
∫
C

Res
κi,j=s−1

F(κ; s)dκr−1 · · · dκj+1,

where Res
κi,j=s−1

F(κ; s) is not identically vanishing unless σi⊗τ ' σj+1, in which case

one must have ni = nj+1. To obtain meromorphic continuation of JP,χ(s;φ, Cχ(ε))
inside the critical strip 0 < Re(s) < 1, we start with the following initial step:
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Proposition 18. Let notation be as before. Let ε = (1/n, 1/n, · · · , 1/n) and s ∈
1 +Dχ(ε) and Re(s) > 1. Then

∑
χ∈XP

∑
φ∈BP,χ

JP,χ(s;φ, Cχ(0)) is equal to

(16)
∑
χ∈XP

∑
φ∈BP,χ

JP,χ(s;φ, C)−
∑
χ∈XP

∑
φ∈BP,χ

J (s),

where the summand J (s) in the last double sum is equal to
r−1∑
m=1

∑
· · ·
∑

jm,jm−1,··· ,j1
1≤jm<···<j1≤r−1

cj1,··· ,jm

∫
C
· · · · · ·

∫
C

Res
κjm=s−1

· · · Res
κj1=s−1

F(κ; s)
dκr−1 · · · dκ1

dκjm · · · dκj1
,

where cj1,··· ,jm ’s are some explicit integers, and dκr−1 · · · dκ1/(dκjm · · · dκj1) means
dκr−1 · · · d̂κjm · · · d̂κj1 · · · dκ1. Moreover, the terms in (16) converges absolutely and
normally inside R(1;χ, ε) \ {1}, where R(1;χ, ε) is defined in (15). Hence (16)
gives a meromorphic continuation of

∑
φ∈BP,χ

JP,χ(s;φ, Cχ(0)) to R(1;χ, ε), with
a potential pole at s = 1.

Denote by I0(s) the first term of the right hand side of (16), i.e.,

I0(s) :=
∑
χ∈XP

∑
φ∈BP,χ

JP,χ(s;φ, C), s ∈ 1 +Dχ(ε), Re(s) > 1.

Proposition 19. Let notation be as before. Let s ∈ 1+Dχ(ε) and Re(s) > 1. Then

(17) I0(s) =
∑
χ∈XP

∑
φ∈BP,χ

JP,χ(s;φ, Cχ(0)) +
∑
χ∈XP

∑
φ∈BP,χ

J 0
m(s),

where the summand J 0(s) in the last double sum is equal to
r−1∑
m=1

∑
· · ·
∑

jm,jm−1,··· ,j1
1≤jm<···<j1≤r−1

c̃j1,··· ,jm

∫
(0)

· · · · · ·
∫

(0)

Res
κjm=1−s

· · · Res
κj1=1−s

F(κ; s)
dκr−1 · · · dκ1

dκjm · · · dκj1
,

where c̃j1,··· ,jm ’s are some explicit integers, and dκr−1 · · · dκ1/(dκjm · · · dκj1) means
dκr−1 · · · d̂κjm · · · d̂κj1 · · · dκ1. Moreover, the terms in (17) converges absolutely and
normally inside any bounded strip.

Let notation be as in Proposition 19. For χ ∈ XP , denote by I0,χ(s) the summand
of the first term of the right hand side of (17), i.e.,

I0,χ(s) =
∑

φ∈BP,χ

JP,χ(s;φ, Cχ(0)) +
∑

φ∈BP,χ

J 0
χ (s).

To prove Theorem 1, we expect a meromorphic continuation of
∑
χ∈XP I0,χ(s)

to some open region containing the half plane Re(s) ≥ 1/2 (then one can apply
functional equation to deal with the remaining area). An initial step is to get
a continuation of

∑
χ∈XP I0,χ(s) to some open region containing the half plane

Re(s) ≥ 1. Due to the zero-free region it is clear that I0,χ(s) is naturally mero-
morphic (with a possible pole at s = 1) when s ∈ R(1;χ, ε) (defined in (15)),
which does include the half plane Re(s) ≥ 1. However, as χ varies over XP , the
intersection of all these domains R(1;χ, ε) is exactly the line Re(s) = 1. Hence one
cannot expect a continuation of

∑
χ∈XP I0,χ(s) to a domain we want in this way.

Nevertheless, we can remedy this by considering continuation of each I0,χ(s) first,
then showing the sum

∑
χ∈XP I0,χ(s), viewed as a sum of continuations of each

I0,χ(s), does converge absolutely and locally normally out of finitely many explicit
poles, giving a desired meromorphic continuation of

∑
χ∈XP I0,χ(s). This will be

carried out in the following parts.
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7.2. Meromorphic Continuation Inside the Critical Strip. Let s ∈ R(1;χ, ε)
and 1 ≤ m ≤ r − 1. Let jm, jm−1, · · · , j1 be m integers such that 1 ≤ jm < · · · <
j1 ≤ r − 1. Consider the summand in the second term of (16):

Im,χ(s) :=
∑

φ∈BP,χ

∫
C
· · · · · ·

∫
C

Res
κjm=s−1

· · · Res
κj1=s−1

F(κ; s)
dκr−1 · · · dκ1

dκjm · · · dκj1
.

Then each Im,χ(s) is naturally meromorphic in R(1;χ, ε) with a possible at s = 1.

Theorem 20. Let notation be as before. Let n ≤ 4. Let χ ∈ XP . Assume that
the adjoint L-function L(s, σ,Ad⊗τ) is holomorphic inside the strip S(0,1) for any
cuspidal representation σ ∈ A0 (GL(k,AF )) , and any k ≤ n − 1. Then for any
0 ≤ m ≤ r − 1, the function

∑
φ∈BP,χ

Im,χ(s), s ∈ R(1;χ, ε),

admits a meromorphic continuation to the area R(1/2; τ)−, with possible simple
poles at s ∈ {1/2, 2/3, · · · , (n−1)/n, 1}, where R(1/2; τ)− is defined in (14). More-
over, for any 3 ≤ k ≤ n, if LF ((k − 1)/k, τ) = 0, then s = (k − 1)/k is not a pole.

Remark. We restrict ourselves to the case n ≤ 4 for the following two reasons.
On the one hand, we actually need to assume Dedekind Conjecture of degree n to
handle the contribution from geometric side. This conjecture has been confirmed
when n ≤ 4, so we will get unconditional results if n ≤ 4. On the other hand, when
n ≥ 5, the procedure of meromorphic continuation is even more complicated, since
we are lack of a symmetrical description of this process. Thus, we will focus on
n ≤ 4 case in this paper.

Remark. In can be seen from the proof that when n ≤ 3, we can continue the
functions

∑
φ∈BP,χ

Im,χ(s) to Re(s) > 1/3. When n = 4, we can only continue∑
φ∈BP,χ

Im,χ(s) to R(1/2; τ)−, an open set just containing the right half plane
Re(s) ≥ 1/2. This is because some of its components involve Λ(2s, τ2)−1 as a
factor (e.g. ref. (318) of [15]). The key ingredient is that R(1/2; τ)− is uniform
with respect to χ ∈ XP . In fact this is sufficient to give

∑
χ

∑
φ∈BP,χ

Im,χ(s) a
continuation to R(1/2; τ)− (ref. Theorem 21), hence to the whole complex plane
when combining with functional equation.

Proof. The proof of Theorem 20 roughly follows from a repeated application of
Cauchy’s integral formula to shift contour. The complete proof is rather tedious
although we take advantage of symmetry to simplify it a little bit. To illustrate
the idea more directly, we shall follow Jacquet-Zagier’s original approach, for the
n = 3 case, to give meromorphic continuation of J(s) =

∫
(0)

∫
(0)
F(κ, s)dκ1dκ2 as

follows, which involves 56 terms in total (also some of them are same but locate in
different regions). When s ∈ R(1)+, we have, by Cauchy integral formula, that

J(s) =

∫
C

∫
C
F(κ, s)dκ1dκ2 −

∫
C

Res
κ1=s−1

F(κ, s)dκ2 −
∫
C

Res
κ2=s−1−κ1

F(κ, s)dκ1

−
∫
C

Res
κ2=s−1

F(κ, s)dκ1 + Res
κ1=s−1

Res
κ2=s−1

F(κ, s) + Res
κ1=2s−2

Res
κ2=s−1−κ1

F(κ, s).
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Since the right hand side is meromorphic in R(1), we get meromorphic continuation
of J(s) in R(1)−. Denote by J1(s) this continuation. Let s ∈ R(1)−. Then

J1(s) =

∫
(0)

∫
(0)

F(κ, s)dκ1dκ2 +

∫
(0)

Res
κ1=1−s

F(κ, s)dκ2 +

∫
(0)

Res
κ2=1−s−κ1

F(κ, s)dκ1

+

∫
(0)

Res
κ2=1−s

F(κ, s)dκ1 −
∫

(0)

Res
κ2=s−1

F(κ, s)dκ1 −
∫

(0)

Res
κ1=s−1

F(κ, s)dκ2−∫
(0)

Res
κ2=s−1−κ1

F(κ, s)dκ1 + Res
κ1=1−s

Res
κ2=1−s

F(κ, s) + Res
κ1=s−1

Res
κ2=s−1

F(κ, s)−

Res
κ1=2−2s

Res
κ2=s−1

F(κ, s)− Res
κ1=1−s

Res
κ2=s−1−κ1

F(κ, s)− Res
κ2=2−2s

Res
κ1=s−1

F(κ, s)

+ Res
κ1=2−2s

Res
κ2=s−1−κ1

F(κ, s),

where the right hand side is meromorphic in 1/2 < Re(s) < 1. Hence we obtain
a meromorphic of J1(s) to the domain S(1/2,1). Denote by J2(s) this continuation.
Let s ∈ R(1/2)+. Then we have, again, by Cauchy integral formula, that

J2(s) =

∫
(0)

∫
(0)

F(κ, s)dκ1dκ2 +

∫
C

Res
κ1=1−s

F(κ, s)dκ2 +

∫
C

Res
κ2=1−s−κ1

F(κ, s)dκ1

+

∫
C

Res
κ2=1−s

F(κ, s)dκ1 −
∫
C

Res
κ2=s−1

F(κ, s)dκ1 −
∫
C

Res
κ1=s−1

F(κ, s)dκ2−∫
C

Res
κ2=s−1−κ1

F(κ, s)dκ1 + Res
κ1=1−s

Res
κ2=1−s

F(κ, s) + Res
κ1=s−1

Res
κ2=s−1

F(κ, s)−

Res
κ1=2−2s

Res
κ2=s−1

F(κ, s)− Res
κ1=1−s

Res
κ2=s−1−κ1

F(κ, s)− Res
κ2=2s−1

Res
κ1=1−s

F(κ, s)+

Res
κ1=2−2s

Res
κ2=s−1−κ1

F(κ, s)− Res
κ2=2−2s

Res
κ1=s−1

F(κ, s)− Res
κ1=2s−1

Res
κ2=1−s

F(κ, s)

+ Res
κ1=2s−1

Res
κ2=s−1−κ−1

F(κ, s)− Res
κ1=2s−1

Res
κ2=1−s−κ1

F(κ, s),

where the right hand side is meromorphic in R(1/2). Hence we obtain a meromor-
phic continuation of J2(s) in s ∈ R(1/2). Let s ∈ R(1/2)−. Then we have, again,
by Cauchy integral formula, that

J2(s) =

∫
(0)

∫
(0)

F(κ, s)dκ1dκ2 +

∫
C

Res
κ1=1−s

F(κ, s)dκ2 +

∫
C

Res
κ2=1−s−κ1

F(κ, s)dκ1

+

∫
C

Res
κ2=1−s

F(κ, s)dκ1 −
∫

(0)

Res
κ2=s−1

F(κ, s)dκ1 −
∫

(0)

Res
κ1=s−1

F(κ, s)dκ2−∫
(0)

Res
κ2=s−1−κ1

F(κ, s)dκ1 + Res
κ1=1−s

Res
κ2=1−s

F(κ, s) + Res
κ1=s−1

Res
κ2=s−1

F(κ, s)−

Res
κ1=2−2s

Res
κ2=s−1

F(κ, s)− Res
κ1=1−s

Res
κ2=s−1−κ1

F(κ, s)− Res
κ2=2s−1

Res
κ1=1−s

F(κ, s)+

Res
κ1=2−2s

Res
κ2=s−1−κ1

F(κ, s)− Res
κ2=2−2s

Res
κ1=s−1

F(κ, s)− Res
κ1=2s−1

Res
κ2=1−s

F(κ, s)

+ Res
κ1=2s−1

Res
κ2=s−1−κ−1

F(κ, s)− Res
κ1=2s−1

Res
κ2=1−s−κ1

F(κ, s)+

Res
κ1=1−2s

Res
κ2=s−1

F(κ, s) + Res
κ2=1−2s

Res
κ1=s−1

F(κ, s) + Res
κ1=1−2s

Res
κ2=s−1−κ1

F(κ, s),

where the right hand side is meromorphic in 1/3 < Re(s) < 1/2. Hence we obtain a
meromorphic continuation of J2(s) in s ∈ S(1/3, 1/2). Therefore, putting the above
computation together, we get a meromorphic continuation of J(s) to the domain
s ∈ S(1/3,1).

Then one needs to investigate these terms individually. What is worse, the
situation would be much more complicated in GL4 case. �
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Recall that we need to investigate the analytic behavior of the function

Zm,∗(s) =
∑
P

1

cP

∑
χ∈XP

∑
φ∈BP,χ

Im,χ(s) · Λ(s, τ)
−1
,

where the sum over standard parabolic subgroups P is finite while the sum over
cuspidal data χ is infinite. According to Theorem 16 Z∗(s) converges absolutely
and locally normally in the region Re(s) > 1. Moreover, by Theorem 20 we see that
each summand

∑
φ∈BP,χ

Im,χ(s) ·Λ(s, τ)
−1 admits a meromorphic continuation to

the region R(1/2; τ)−, with possible simple poles at s ∈ {1/2, 2/3, 3/4} and a pole
of order at most 4 at s = 1. Denote formally by

(18) Zm(s) =
∑
P

1

cP

∑
χ∈XP

∑
φ∈BP,χ

Ĩm,χ(s) · Λ(s, τ)
−1
,

where Ĩm,χ(s) is the continuation of Im,χ(s). Clearly we only need to show that
(s− 1/2)(s− 2/3)(s− 3/4)(s− 1)4Z(s) converges absolutely and locally normally
inside the domain R(1/2; τ)−. Invoking this with the second part of Theorem 20
will lead to a meromorphic continuation of Z(s) to the region R(1/2; τ)− with a
possible simple pole at s = 1/2 and a pole of order 4 at s = 1.

Theorem 21. Let notation be as before. Let 0 ≤ m ≤ r − 1. Then Z(s) admits a
meromorphic continuation to the domain R(1/2; τ)−, where it has possible poles at
s = 1/2 and s = 1. Moreover, if s = 1/2 is a pole, then it must be simple.

Remark. One can formally verify this conclusion by a direct computation without
considering convergence problem. The convergence of m = 0 case follows from
Theorem 17, while for m ≥ 1, the situation is more subtle. We shall prove an
estimate of the form∑

χ∈XP

∑
φ∈BP,χ

∫
C1
· · · · · ·

∫
Cr−1

∣∣∣∣ Res
κjm=δm(s)

· · · Res
κj1=δ1(s)

F(κ; s)

∣∣∣∣dκr−1 · · · dκ1

dκjm · · · dκj1
<∞,

where the above inequality holds locally uniformly in the set of regular points of
Res

κjm=δm(s)
· · · Res

κj1=δ1(s)
F(κ; s) in R(1/2; τ)−. See Theorem 81 of [15] for details.

8. Proof of Main Theorems

Proposition 22. Let n ≥ 1 be an integer. Let π be an cuspidal representation of
GL(n,AF ) and τ be a quadratic primitive Hecke character on F×\A×F , where F is
a number field. Then the root number of ΛF (s, π,Ad⊗ τ) is 1.

Proof of Theorem 1. Recall that we have shown, for any test function ϕ ∈ F(ω),

I(s) =

∫
G(F )ZG(AF )\G(AF )

K0(x, x)E(x,Φ, τ ; s)dx = Ir.e.(s) + I∞(s),

where Ir.e.(s) is defined via (2), namely,

Ir.e.(s) = Iϕr.e.(s) =
1

n

∑
(E:F )=n

QE(s)ΛE
(
s, τ ◦NE/F

)
;

and I∞(s) =
∑n
k=1 I

(k)
∞ (s). Since n ≤ 4, then according to Uchida-Van der Waal

Theorem (ref. [12] and [13]) and its generalization to twist form (ref. [10]), each
ΛE
(
s, τ ◦NE/F

)
·ΛF (s, τ)−1 admits a holomorphic continuation to the whole com-

plex plane. Since the sum over extensions E/F is finite, the function Ir.e.(s) ·
ΛF (s, τ)−1 admits an entire continuation.

Also, by Theorem 10, Corollary 11 and Theorem 20, the function I∞(s)/ΛF (s, τ)
admits a meromorphic continuation to Re(s) > 1/3, with possible simple poles at
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s ∈ {1/2, 2/3, 3/4}. Moreover, if LF (2/3, τ) = 0, then I∞(s) · ΛF (s, τ)−1 is regular
at s = 2/3; if LF (3/4, τ) = 0, then I∞(s) · ΛF (s, τ)−1 is regular at s = 3/4.

Let ρ be a zero of Λ(s, τ) of order rρ ≥ 1 such that Re(ρ) > 1/3. Denote by

J(ρ; j) =

∫
G(F )Z(AF )\G(AF )

K0(x, x)
∂j

∂sj
E(x,Φ, τ ; s) |s=ρ dx, 0 ≤ j ≤ rρ − 1.

If ρ 6= 1/2, we then see that J(ρ; j) = 0 for any 0 ≤ j ≤ rρ − 1 and ϕ ∈
F(ω). According to Proposition 4, one has, for all cuspidal representations π ∈
A0

(
G(F ) \G(AF ), ω−1

)
, and all K-finite functions φ1, φ2 ∈ Vπ, that∫

G(F )Z(AF )\G(AF )

φ1(x)φ2(x)
∂j

∂sj
E(x,Φ, τ ; s) |s=ρ dx = 0.

Then by Rankin-Selberg theory, we have, for all cuspidal representations π ∈
A0

(
G(F ) \G(AF ), ω−1

)
, that ∂j

∂sj Λ(s, π ⊗ τ × π̃) |s=ρ= 0, 1 ≤ j < rρ, implying
that the adjoint L-function Λ(s, π,Ad⊗τ) is regular at s = ρ.

Now assume that ρ = 1/2, namely, LF (1/2, τ) = 0. If τ is not quadratic, then
by Theorem 21, I(1)

∞ (s) · ΛF (s, τ)−1 is regular at s = 1/2. Therefore, we have
J(1/2; j) = 0, for 1 ≤ j ≤ r1/2 − 1. Hence, by Proposition 4 and similar analysis
as above we see that ∂j

∂sj Λ(s, π ⊗ τ × π̃) |s=1/2= 0, 1 ≤ j ≤ r1/2 − 1, implying
that the adjoint L-function Λ(s, π,Ad) is regular at s = 1/2. Now we assume that
τ2 = 1. If r1/2 ≥ 2, then by Theorem 10, Theorem 11 and Theorem 21 we see that
J(1/2; j) = 0, for 1 ≤ j ≤ r1/2 − 2. Hence, by Proposition 4 and similar analysis
as above we see that ∂j

∂sj Λ(s, π ⊗ τ × π̃) |s=1/2= 0, 1 ≤ j < r1/2 − 1, implying
that the adjoint L-function Λ(s, π,Ad) has at most a simple pole at s = 1/2. Now
we apply Proposition 22 to exclude this possible simple pole at 1/2. Suppose that
Λ(s, π,Ad⊗τ) has a pole at s = 1/2. Since the root number of Λ(s, π,Ad⊗τ) is
trivial, then the order of the pole s = 1/2 must be even. So Λ(s, π,Ad⊗τ) cannot
have a simple pole at s = 1/2. A contradiction. If r1/2 = 1, then clearly, the adjoint
L-function Λ(s, π,Ad) has at most a simple pole at s = 1/2. The same argument
on root number excludes the possibility of pole at s = 1/2.

In all, we have shown that Λ(s, π,Ad⊗τ) is holomorphic inR(1/2; τ)−∪S(1/2,∞).
Now Theorem 1 follows from global functional equation of Λ(s, π,Ad⊗τ). �
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