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Abstract

Predictions about the future are often evaluated through statistical tests. As
shown by recent literature, many known tests are subject to adverse selection
problems and are ineffective at discriminating between forecasters who are com-
petent and forecasters who are uninformed but predict strategically.
This paper presents necessary and sufficient conditions under which it is possible
to discriminate between informed and uninformed forecasters. These conditions
have a natural Bayesian interpretation.
It is shown that optimal tests take the form of simple likelihood-ratio tests com-
paring forecasters’ predictions against the predictions of a hypothetical outside
observer. The result rests on a novel connection between the problem of testing
strategic forecasters and the classical Neyman-Pearson paradigm of hypothesis
testing.
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1 Introduction

Forecasts are often formulated in terms of probability distributions over future events
(e.g., “a recession will happen with probability 0.2”). Probabilistic forecasts appear
across a wide variety of economic and scientific activities, including the analysis of
weather and climate (Gneiting and Raftery, 2005), aggregate output and inflation
(Diebold, Tay and Wallis, 1997), epidemics (Alkema, Raftery and Clark, 2007), seismic
hazard (Jordan et al., 2011), financial risk (Timmermann, 2000), demographic variables
(Raftery et al., 2012) and elections (Tetlock, 2005), among many others.1

One practical difficulty with probabilistic forecasts is that they cannot be falsified
by casual observation but only through proper statistical tests. From an economic
perspective, a key issue is that statistical tests aimed at evaluating forecasters can be
subject to adverse selection. Consider, to illustrate, a forecaster who is asked to predict
how a stochastic process of interest will evolve over time and will be evaluated by an
empirical test comparing his prediction against the realized sequence of outcomes. The
forecaster can be either a true expert, who knows the actual distribution P generating
the data and is willing to report it truthfully, or a strategic forecaster, who is uninformed
about the process but is interested in passing the test in order to establish a false
reputation of competence. Recent literature shows that many tests of interest cannot
discriminate between the two.

In their seminal paper, Foster and Vohra (1998) examine the well-known calibration
test.2 They construct a randomized forecasting algorithm that allows an individual to
pass the test regardless of how data unfold and without any knowledge of the true data
generating process. By employing such an algorithm, an uninformed but strategic fore-
caster can completely avoid being discredited by the data, thus defeating the purpose
of the test.

This surprising phenomenon is not restricted to calibration. Subsequent work em-
phasizes one critical feature of the calibration test: the fact that it is free of Type-I
errors. For any possible true law P generating the data, where P is an arbitrary proba-
bility measure defined over sequences of outcomes, an expert who predicts according to
P will pass the calibration test with high probability (Dawid (1982)). This remarkable

1Corradi and Swanson (2006) and Gneiting and Katzfuss (2014) review the literature on proba-
bilistic forecasts.

2Consider a stochastic process that every day can generate two outcomes, say “rain” and “no rain.”
A forecaster passes the calibration test if for every p ∈ [0, 1], the empirical frequency of rainy days
computed over the days where the forecaster predicted rain with probability p is close to p.
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property ensures that the test is unlikely to reject any competent forecaster. However,
as shown by Sandroni (2003), once incentives are taken into account, the same property
leads to a general impossibility result for testing probabilistic predictions: any test that
is free of Type-I errors can be passed by a strategic but uninformed forecaster. San-
droni’s impossibility result has been further extended in several directions by Shmaya
(2008) and Olszewki and Sandroni (2008,2009), among others.

Tests, such as calibration, that are free of Type-I errors do not impose any restriction
on the unknown law P generating the process. The starting point of this paper is the
observation that such a degree of agnosticism is all but common in economics and
statistics. Indeed, most empirical studies posit that data are generated according to a
specific model, often fully specified up to a restricted set of parameters. In this paper I
take a similar approach to the problem of testing forecasters. In particular, I examine
the problem of testing forecasters in the presence of a theory about the data-generating
process.

I consider a framework where it is known that the law generating the data belongs
to a given set Λ, which represents a theory, or paradigm, about the phenomenon under
consideration. Accordingly, forecasters are required to provide forecasts belonging to
Λ, while predictions incompatible with the paradigm are rejected out of hand. The goal
of this paper is to understand under what paradigms it is possible to construct tests
that cannot be manipulated.

For the purpose of this paper, paradigms admit multiple interpretations. A paradigm
can be seen as a summary of pre-existing knowledge about the problem. It can also rep-
resent the set of restrictions imposed on the data-generating process by a scientific
theory of interest. It can, alternatively, be interpreted as a normative standard to
which the forecasters’ predictions must conform in order to qualify as useful.

Classic examples of paradigms include the classes of i.i.d., Markov or stationary
distributions. In this paper, in order to make the analysis applicable to a broad class
of environments, no a priori restrictions are imposed over paradigms (beyond measur-
ability).

A paradigm Λ is testable if it admits a test with the following three features. First,
it is unlikely that the test will reject a true expert who knows the correct law in Λ.
Therefore, the test must be free of Type-I errors with respect to laws in the paradigm.
Second, for any possible strategy that a forecaster might employ to misrepresent his
knowledge, there is a law belonging to Λ under which the forecaster will fail the test
with high probability. Hence, strategic forecasters are not guaranteed to avoid rejection.
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Third, the test returns a decision (acceptance or rejection) in finite time. So, only by
adopting testable paradigms is possible to construct tests that do not reject true experts
and cannot be manipulated.

A crucial question, then, is which paradigms are testable. As discussed in the next
section, the existing literature provides notable instances of testable classes of distribu-
tions (see, among others, Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010) and
Olszewski and Sandroni (2009)). However, reasonably general conditions under which
a paradigm is testable are not known.

The first step of the analysis is a general characterization of testable paradigms. The
result characterizes testability as a statement about a hypothetical Bayesian outside ob-
server. Given a paradigm Λ, consider, for the sake of illustration, an analyst, consumer
or statistician who is uncertain about the odds of the data generating process, and who
is sophisticated enough to express a prior probability µ over the set of possible laws.
The prior assigns probability 1 to the paradigm. It is shown that Λ is testable if and
only if there exists at least one prior µ such that the observer, by predicting according
to the prior, is led to forecasts that are incompatible with any law in the paradigm.

More formally, testability is equivalent to the existence of a prior µ over the paradigm
such that the law

∫
Pdµ (P ) obtained by averaging with respect to the prior is suffi-

ciently distant, in the appropriate metric, from every law P in the paradigm. In other
terms, the paradigm is testable if and only if simply taking the theory Λ to be true
does not exhaust all possible opinions that a Bayesian rational agent can entertain.
The result can also be interpreted geometrically as a specific lack of compactness and
convexity of the paradigm.

The paper illustrates a number of applications of this characterization. The result
is first applied to examine nonmanipulable tests. In Section 4 I show that given any
testable paradigm, it is without loss of generality to restrict the attention to standard
likelihood-ratio tests. Hence, all testable paradigms can be subsumed under a single
family of statistical tests. Such tests are constructed as follows.

First, the test creates a fictitious Bayesian forecaster. This forecaster serves as a
benchmark and is obtained by placing a sufficiently uninformative prior µ over the
paradigm. Actual forecasters are then evaluated by comparing their predictions to the
forecasts generated by the test. A forecaster passes the test if only if the realized se-
quence of outcomes was, ex-ante, deemed more likely by the agent than by the fictitious
Bayesian forecaster. It is important to note that likelihood-ratio tests form one the most
canonical classes of tests and that their properties are well understood.
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The results are strengthened to show that likelihood-ratio tests are in fact optimal.
To this end, an additional contribution of the paper is to provide a notion of optimality
based on a novel ranking among tests. A test T1 is less manipulable than T2 when,
controlling for sample size and for the level of Type-I error with respect to laws in
Λ, the probability that a strategic forecaster can guarantee passing the test is lower
under T1 than under T2. So, less manipulable tests are more effective at screening be-
tween informed and uninformed experts. I show that for any paradigm there exists a
likelihood-ratio test that is less manipulable than any other test. The result provides
a foundation for likelihood-ratio tests as a general methodology for testing probabilis-
tic predictions under adverse selection. As explained in the main text, the result is
closely related to the celebrated Neyman-Pearson lemma and highlights a novel con-
nection between the problem of testing strategic forecasters and the standard practice
of hypothesis testing.

The existing literature cast doubts on the possibility of identifying and testing strate-
gic forecasters. This paper provides foundations for a general and, perhaps intuitive, cri-
terion for identifying competent forecasters: a predictor is recognized as knowledgeable
if his or her forecasts results more accurate (in likelihood terms) than the predictions
of a Bayesian endowed with an uninformative prior.

The paper presents additional results on the structure of testable paradigms and
nonmanipulable tests. In Section 6 it is shown that the results on likelihood-ratio tests
continue to hold in the case where forecasters are evaluated based only on their one-step
ahead predictions made along the realized path.

In Section 7 I identify two representative families of testable paradigms. Many
examples of testable classes of distributions, such as i.i.d. or irreducible Markov, satisfy
a version of the strong law of large numbers. In all cases, the paradigm is identifiable:
the true law of the process can eventually be inferred from the data. Identifiability is
a sufficient, but not necessary, condition for testability. It is an important assumption
when, in the absence of experts, the goal is to learn the correct law P from the data.
Identifiability becomes, however, a strong requirement when the goal is to test a single
law P put forward by a forecaster.

I show that any well-behaved testable paradigm Λ contains a non-trivial identifiable
subset Λ′ ⊆ Λ. Hence, identifiable paradigms represent a minimal family of testable
paradigms. The characterization introduced in this paper also allows us to characterize
maximal paradigms, i.e., paradigms that are testable and are not included in any other
testable set of distributions. It is shown that maximal paradigms take a particularly
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simple form and that any testable paradigm can be enlarged to a maximal one. The
result answers an open question posed by Olszewski (2015).

1.1 Related Literature

Following the work of Foster and Vohra (1998), the calibration test has been studied
by Foster (1999), Fudenberg and Levine (1999), Kalai, Lehrer and Smorodinsky (1999),
Hart and Mas-Colell (2001), Lehrer (2001), Sandroni, Smorodinsky and Vohra (2003),
Carvayal (2009), Mannor and Stoltz (2009), and Feinberg and Lambert (2015), among
others. The impossibility result of Sandroni (2003) has been extended by Shmaya (2008)
and Olszewski and Sandroni (2008).

Dekel and Feinberg (2006) and Olszewski and Sandroni (2009b-2011) provide tests
that do not impose any restriction over the data-generating process and are nonma-
nipulable. These papers consider tests that may not return a decision in any finite
time.

Likelihood-ratio tests appear in Al-Najjar and Weinstein (2008) as a method for
comparing the predictions of two forecasters under the assumption that at least one of
them is informed (see also Feinberg and Stewart (2008) and Olszewski and Sandroni
(2009c) for different approaches to testing multiple forecasters). The same type of tests
also plays an important role in Stewart (2011). Stewart proposes a Bayesian framework
where the tester is endowed with a prior over laws and the forecaster is evaluated
according to a likelihood-ratio test against the predictions induced by the prior. In the
current paper the tester is not assumed to be Bayesian. Instead, the existence of an
appropriate prior which allows to construct a nonmanipulable likelihood-ratio test is
shown to be a property that is intrinsic to all testable paradigm.

Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010) consider the set of laws
that have a learnable and predictable representation, a class of distributions introduced
by Jackson, Kalai and Smorodinsky (1999). They show that the paradigm is testable
by constructing a test where experts are asked to announce a deadline after which they
must be able to provide sharp predictions about future frequencies of outcomes. The
use of a deadline announced by the forecaster is an insight that is also applied in one of
the tests in this paper. Olszewski and Sandroni (2009) extend the impossibility result
of Sandroni (2003) to any paradigm that is convex and compact and provide examples
of testable paradigms.

This paper is also related to the work of Babaioff, Blumrosen, Lambert and Rein-

7



gold (2010), who consider a principal-agent model where the principal offers a monetary
contract with the intent of discriminating between informed and uninformed experts.
They show, quite surprisingly, that screening is possible if and only if the true law is
restricted to a non-convex set of distributions. There are several important differences
between the two approaches. In Blumrosen, Lambert and Reingold (2010) payoffs are
a function solely of the monetary transfers (which are allowed to be negative and un-
bounded). This paper follows the literature on testing strategic experts and emphasizes
forecasters’ reputational concerns. Hence, transfers are absent and the forecaster ex-
pected payoff is the probability of passing the test chosen by the tester. The two papers
also arrive at different conclusions. In particular, there exist non-convex paradigms that
are not testable, and convex paradigms that are testable.3

Other papers have addressed the problem of testing strategic forecasters. Principal-
agent models have been studied by Olszewki and Sandroni (2007), Echenique and
Shmaya (2007), Gradwohl and Salant (2011), Olszewski and Peski (2011) and San-
droni (2014). Fortnow and Vohra (2009) construct tests that are non-manipulable once
computational constraints are taken into account. Hu and Shmaya (2012) show that the
paradigm of computable distributions is testable when forecasters are limited to com-
putable strategies. Foster and Vohra (2011) and Olszewski (2015) survey the existing
literature.

2 Basic Definitions

In each period an outcome from a finite X is realized. A path is an infinite set of
outcomes and Ω = X∞ denotes the set of all paths. Time is indexed by n ∈ N, and
for each path ω = (ω1, ω2, . . .) the corresponding finite history of length n is denoted
by ωn. That is, ωn is the set of paths that coincide with ω in the first n periods. In
addition, ω0 denotes the empty history. Throughout the paper Fn denotes the algebra
generated by all histories of length n and B is the σ-algebra generated by

⋃
nFn. The

set of paths Ω is endowed with the product topology, which makes B the corresponding
Borel σ-algebra. Given a measurable subset Γ ⊆ Ω, denote by ∆ (Γ) the set of all
Borel probability measures assigning probability 1 to Γ. Elements of ∆ (Ω) will be
interchangeably referred to as laws or distributions. The space ∆ (Ω) is endowed with

3For instance, the paradigm in Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010) is convex,
but testable. A paradigm obtained by removing a (non-degenerate) distribution from the set of all
distributions is not convex, but is also not testable.
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the weak* topology and the corresponding Borel σ-algebra.4 The same applies to the
space ∆ (∆ (Ω)) of Borel probability measures over ∆ (Ω). In what follows, the word
“measurable” will always mean “Borel measurable.”

2.1 Empirical Tests

A forecaster announces a law P ∈ ∆ (Ω), under the claim that P describes how the
data will evolve. A tester is interested in evaluating this claim using a statistical test.

Definition 1 A test is a measurable function T : Ω×∆ (Ω)→ [0, 1].

The test compares the realized path ω with the reported law P . The law is accepted
if T (ω, P ) = 1 and rejected if T (ω, P ) = 0. Values strictly between 0 and 1 describe
randomized tests in which the forecaster is accepted with probability T (ω, P ). Except
for Theorem 3, none of the results are affected by restricting the attention to non-
randomized tests. The timing is as follows: (i) At time 0, the tester chooses T ; (ii)
After having observed T , the forecaster chooses whether or not to participate in the
test; (iii) A forecaster who chooses to participate must announce a law P ; (iv) Nature
generates a path ω; and (v) T reports acceptance or rejection.

Throughout the paper the attention is restricted to tests where a decision is reached
in finite time. Following Olszewski (2015), a test T is finite if for every law P there
exists a time nP such that T (·, P ) is measurable with respect to FnP . That is, P
is accepted or rejected as a function of the first nP observations. The number nP is
deterministic and known ex-ante. A relevant special case is given by the class of non-
asymptotic tests, where there exists a single deadline N such that nP ≤ N for every
P . While the main focus will be on asymptotic tests, as shown in Section 8.2 many of
the results extend immediately to non-asymptotic tests. Notice, in addition, that any
finite test can be transformed in a non-asymptotic test by ruling out, as inadmissible,
those laws that require more than N data points to be evaluated.

2.2 Strategic Forecasting

The forecaster can be of two possible types. A true expert (or informed forecaster) knows
the law governing the data generating process and is willing to report it truthfully. A

4A sequence (Pn) in ∆ (Ω) converges to P in the weak* topology if and only if EPn
[φ] → EP [φ]

for every continuous function φ : Ω → R. Given a measure Q, EQ denotes the expectation operator
with respect to Q.
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strategic (or uninformed) forecaster does not possess any relevant knowledge about
the data generating process. His goal is to pass the test in order to establish a false
reputation of being competent. Strategic forecasters can produce their predictions using
mixed strategies. Formally,

Definition 2 A strategy is a randomization over laws ζ ∈ ∆ (∆ (Ω)).

The next example shows how a standard likelihood-ratio test can be manipulated
by strategic forecasters.

Example 1. (A manipulable likelihood-ratio test) The test is specified by a time
n and a probability measure Q ∈ ∆ (Ω) with full support. The law Q serves as a
benchmark against which the forecaster is compared. Given a forecast P and a path
ω, the test returns 1 if

P (ωn)

Q (ωn)
> 1 (1)

and 0 otherwise. Thus, the forecaster passes the test if and only if the realized history
is more likely under the forecast P than under the benchmark. The test can be ma-
nipulated using the following simple strategy. For each history ωn of length n, consider
the measure Pωn = Q (·|Ω− ωn) obtained by conditioning Q on the complement of ωn.
It satisfies

Pωn (ωn) = 0 and Pωn (ω̃n) > Q (ω̃n) for any other history ω̃n 6= ωn.

Define ζ to be the mixed strategy that randomizes uniformly over all measures of the
form Pωn defined above. Given a history ωn, a forecaster using strategy ζ will pass the
test as long as the law he happens to announce is different from Pωn . This is an event
that under ζ has probability greater or equal to 1 − 2−n. So, no matter how the data
will unfold, even for n relatively small the forecaster can be confident of passing the
test with high probability.

The test in Example 1 does not assume any structure on the data-generating process.
For example, P is not required to belong to a canonical class of distributions such as
Markov or i.i.d. The freedom granted to forecasters of announcing any law allows
an uninformed predictor to manipulate the test. We will see that once appropriate
restrictions are imposed on the type of laws the forecaster can announce, then even
simple likelihood-ratio tests similar to the one considered in example can screen between
informed and uninformed forecasters.
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2.3 Testable Paradigms

The tester operates under a theory, or paradigm, about the data generating process.
In this paper a theory is identified with the restrictions it imposes over the law of the
process. Formally, a paradigm is a measurable set Λ ⊆ ∆ (Ω), with the interpretation
that the data are generated according to some unknown law belonging to Λ. Beyond
measurability, no assumptions are imposed on Λ. A paradigm can be defined in many
ways. For instance, it can express statistical independence between different variables
(“the outcome ωn realized at time n is independent from the outcome realized at time
n − 365”) or it might reflect assumptions about the long run behavior of the process
(“the process is ergodic”).

Given a paradigm, a basic property a test should satisfy is to not reject informed
experts.

Definition 3 Given a paradigm Λ, a nonrandomized test T does not reject the truth
with probability 1− ε if for all P ∈ Λ it satisfies

P ({ω : T (ω, P ) = 1}) ≥ 1− ε. (2)

A test that does not reject the truth is likely to accept an expert who reports the
actual law of the data generating process.

Tests such as calibration do not reject the truth with respect to the unrestricted
paradigm Λ = ∆ (Ω) (see Dawid, 1982). As shown by Sandroni (2003), any such test
can be manipulated. That is, given a finite test T that satisfies property (2) for all
P ∈ ∆ (Ω), there exists a strategy ζ such that

ζ ({P : T (ω, P ) = 1}) ≥ 1− ε

for all paths ω ∈ Ω. The strategy allows the forecaster to completely avoid rejection.
The result motivates the next definition.

Definition 4 Given a paradigm Λ, a non-randomized test T is ε-nonmanipulable if for
every strategy ζ there is a law Pζ ∈ Λ such that

(Pζ ⊗ ζ) ({(ω, P ) : T (ω, P ) = 1}) ≤ ε.

The notation Pζ ⊗ ζ stands for the independent product of Pζ and ζ. A test T
is ε-nonmanipulable if for any strategy ζ there is a law Pζ in the paradigm such that
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the forecaster is rejected with probability greater than 1 − ε. Thus, no strategy can
guarantee a strategic forecaster more than an ε probability of passing the test.

As discussed by Olszewski and Sandroni (2008), nonmanipulable tests can dissuade
uninformed forecasters from participating in the test. This follows from the idea of
modelling a strategic forecaster as an agent facing a decision under uncertainty. Assume
that a forecaster who opts not to participate in the test receives a payoff of 0, while
a forecaster announcing a law P obtains a payoff that depends on the outcome of the
test. If P is accepted then the forecaster is recognized to be knowledgeable and gets a
payoff w > 0. Conversely, if the law is rejected then the forecaster is discredited and
incurs a loss l < 0.

Further assume that a strategic and uninformed forecaster makes his decision in
accordance with the standard Gilboa-Schmeidler (1989) maxmin criterion where each
strategy ζ is evaluated according to the minimum expected payoffs with respect to a
set of laws. If such a set equals the paradigm, then for each strategy ζ the expected
payoff is

inf
P∈Λ

EP⊗ζ [wT + l (1− T )] (3)

where EP⊗ζ denotes the expectation operator with respect to Pζ ⊗ ζ. If ε is sufficiently
small, then the value (3) is negative and so the optimal choice for a strategic forecaster
is to not take the test. Therefore, a test that rejects the truth with probability 1 − ε
and is ε-nonmanipulable can screen between informed and uninformed experts: A true
expert finds profitable to participate in the test, while for an uninformed expert it is
optimal not to participate.5

Definitions 3 and 4 extend immediately to general, randomized, tests. Given a
paradigm Λ, a test T does not reject the truth with probability 1− ε if for every P ∈ Λ

it satisfies EP [T (·, P )] ≥ 1− ε, where EP is the expectation operator associated with
P . The test is ε-nonmanipulable if for every strategy ζ there is a law Pζ ∈ Λ such that
EPζ⊗ζ [T ] ≤ ε.

The next definition, which parallels the definition in Al-Najjar, Sandroni, Smorodin-
sky and Weinstein (2010), summarizes the properties introduced so far.

Definition 5 A paradigm Λ is testable if for every ε > 0 there exists a finite test T
such that:

5Section 8.3 considers a different specification of the set C where uninformed forecasters are less
conservative and in (3) the worst case scenario is taken with respect to an arbitrary open ball in the
paradigm.

12



1. T does not reject the truth with probability 1− ε; and

2. T is ε-nonmanipulable.

3 Characterization

This section provides a characterization of testable paradigms. It will be useful in what
follows to consider the perspective of a Bayesian outside observer (an analyst, a voter,
or a statistician) who is interested in the problem at hand and uncertain about the
odds governing the data generating process. The uncertainty perceived by the observer
is expressed by a prior probability µ ∈ ∆ (Γ), where Γ ⊆ ∆ (Ω) is the set of laws the
observer believes to be possible. Of main interest is the case where Γ equals (or is
close to) the paradigm Λ, so that the observer and the tester have compatible views on
the problem. If asked to make forecasts about the future, the observer would predict
according to the probability measure defined as

Qµ (E) =

∫
Γ

P (E) dµ (P ) for all E ∈ B. (4)

The definition (4) follows the well established approach in Bayesian statistical decision
theory of defining a probability measure over the sample space Ω by averaging with
respect to the prior.6

We can now characterize testable paradigms. Given laws P and Q, let ‖P −Q‖ =

supE∈B |P (E)−Q (E)| denote the (normalized) total-variation distance between the
two measures. Given a paradigm Λ, its closure with respect to the weak* topology is
denoted by Λ.

Theorem 1 A paradigm Λ is testable if and only if for every ε > 0 there exists a prior
µ ∈ ∆(Λ) such that ‖Qµ − P‖ ≥ 1− ε for all P ∈ Λ.

Consider an outside observer whose prior assigns probability 1 to (the closure of) Λ.
The result compares the observer’s forecasts with the paradigm. Two polar cases are
possible. If Qµ ∈ Λ, then the observer’s prediction cannot be distinguished, ex-ante,
from the prediction of an expert who announced Qµ knowing it was the true law of the
process. Theorem 1 is concerned with the opposite case, where the prediction Qµ is

6In the literature, Qµ is often referred to as a predictive probability. Cerreia-Vioglio, Maccheroni,
and Marinacci (2013) provide, under appropriate conditions, an axiomatic foundation for the repre-
sentation (4).
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far from any possible law P in the paradigm. It shows that a paradigm is testable if
and only if there is some observer whose uncertainty about the data generating process
leads him to predictions that are incompatible with any law in the paradigm.

Theorem 1 allows us to reformulate the property of testability in terms of more
standard concepts such as priors and the total-variation distance between probability
measures. We now illustrate this idea in the context of a classic environment where a
coin of unknown bias is tossed repeatedly.

Example 2 (The i.i.d. paradigm) The set of outcomes is {Heads, Tails} and a
path is an infinite sequence of tosses. The process follows an i.i.d. distribution Pθ,
where θ ∈ [0, 1] is the probability, in each period, of observing Heads under Pθ. The
paradigm is the class {Pθ : θ ∈ [0, 1]}. It is well-known that such a paradigm is testable.
To see how this fact relates to Theorem 1, let µ be the prior obtained by taking θ to
be uniformly distributed. So, µ satisfies Qµ (E) =

∫ 1

0
Pθ (E) dθ for every event E. For

each value θ, let Eθ ⊆ Ω be the set of paths where the limiting empirical frequency of
Heads equals θ. Then, by the strong law of large numbers, the event Eθ must have
probability 1 under Pθ and probability 0 under Pθ̃ for any θ̃ different from θ. Because
µ has no atoms then, for every fixed θ, the event Eθ must have probability 0 under the
law Qµ. Hence, the total-variation distance between Qµ and Pθ must equal 1 for every
law Pθ in the paradigm. Thus, by Theorem 1, the prior µ guarantees that the paradigm
is testable.7

As shown in Section 8.1, a similar argument shows that the paradigm of all Markov
laws is testable.

Testability of a paradigm is a property which can be formulated geometrically as
a lack of compactness and convexity. In order to illustrate this idea we now associate
to each paradigm Λ an index I (Λ) of its compactness and convexity. The definition is
based on notions introduced in the context of general equilibrium theory by Folkmann,
Shapley, and Starr (see Starr (1969)).

Given a subset Λ ⊆ ∆ (Ω), let

I (Λ) = sup
Q∈co(Λ)

inf
P∈Λ
‖Q− P‖

7The standard argument to show that the i.i.d. paradigm is testable is to consider a test where
the forecaster is asked, at time 0, to predict the frequencies of different outcomes in a sufficiently
distant future. By the law of large numbers, the test does not reject the truth. In addition, the test is
non-manipulable. While intuitive, this argument, which hinges crucially on the law of large numbers,
does not extend to general testable paradigm.
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where co (Λ) is the weak*-closed convex hull of Λ. For each Λ we have 0 ≤ I (Λ) ≤ 1

by the definition of the total-variation distance. If I (Λ) = 0, then any law Q in the
closed convex hull of the paradigm can be approximated with arbitrary precision by a
law P in Λ. In this case, it follows from the results of Olszewski and Sandroni (2009)
that any test that does not reject the truth is manipulable. In the opposite case, when
I (Λ) = 1, one can find a law in the closed convex hull of Λ that has distance arbitrarily
close to 1 with respect to every law in the paradigm. The next result shows that this
is true if and only if the paradigm is testable.

Corollary 1 A paradigm Λ is testable if and only if it satisfies I (Λ) = 1.

4 Nonmanipulable Tests

The characterization provided by Theorem 1 allows to study nonmanipulable tests in
a unified way. Given any testable paradigm, it is without loss of generality to restrict
the attention to simple likelihood-ratio tests:

Theorem 2 Let Λ be a testable paradigm. Given ε > 0, let µ ∈ ∆(Λ) be a prior that
satisfies ‖Qµ − P‖ > 1 − ε for all P ∈ Λ. There exist positive integers (nP )P∈Λ such
that the test defined as

T (ω, P ) =

{
1 if P ∈ Λ and P (ωnP ) > Qµ (ωnP )

0 otherwise
(5)

does not reject the truth with probability 1− ε and is ε-nonmanipulable.

Given a law P , the test reaches a decision after nP observations, where nP is a
constant known in advance. The forecaster passes the test if and only if the history
realized at time nP is strictly more likely under P than under the law Qµ. Notice that
the prior µ is required to be sufficiently uninformative so that the induced law Qµ is far
from every law in the paradigm. As implied by Theorem 1, such a prior exists whenever
the paradigm is testable.

The likelihood-ratio test is one of the most applied and well-known statistical tests.
It is therefore reassuring that all testable paradigms can be unified under the same
family of tests and that such tests are already well understood.

The main idea behind the proof of Theorem 2 is to exploit a formal connection
between likelihood-ratio tests and the total-variation distance. To illustrate, let AP be
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the set of paths where a law P ∈ Λ passes the test (5), and consider the difference
in probability P

(
AP
)
− Qµ

(
AP
)
. It can be shown that by taking nP large enough,

this difference approximates the distance ‖P −Qµ‖. Hence, the event AP must have
probability higher than 1 − ε under P , so the test does not reject the truth with high
probability. In addition, AP must have probability at most ε under Qµ. Thus, in the
hypothetical scenario where the data were generated according toQµ, a forecaster would
be unlikely to pass the test regardless of what law is announced and, therefore, regardless
of whether or not he randomizes his prediction. It follows from this observation and
from the fact that Qµ is a mixture of laws in the paradigm, that against every fixed
randomization ζ there must be some law Pζ in the paradigm against which passing the
test is unlikely. That is, the test cannot be manipulated.

5 Optimality of Likelihood Tests: a Neyman-Pearson Lemma

Theorem 2 shows that simple likelihood-ratio tests can screen between informed and
uninformed forecasters. However, it leaves open the possibility that such tests are
inefficient in the number of observations which they require. A natural question is
whether there exist tests that, for a fixed sample size, can outperform likelihood-ratio
tests in screening between experts and strategic forecasters. We now make this question
precise by introducing a novel decision-theoretic ranking among tests.

Definition 6 Let Λ be a paradigm. Given tests T1 and T2, say that T1 is less manipu-
lable than T2 if

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

EP⊗ζ [T1] ≤ sup
ζ∈∆(∆(Ω))

inf
P∈Λ

EP⊗ζ [T2] . (6)

Consider a strategic forecaster who is confronted with a test T and must choose
whether or not to undertake the test. As discussed in Section 4, an uninformed fore-
caster will participate only if the value supζ∈∆(Λ) infP∈ΛEζ⊗P [T ] (which is proportional
to the maxmin expected payoff from taking the test) is sufficiently large. The ranking
(6) requires that any strategic forecaster who finds optimal not to participate in the
test T2 must also find optimal not to participate in the test T1. Hence, any uninformed
forecaster who is screened out by the test T2 is also screened out by the test T1. In other
terms, a less manipulable test has a stronger effect in deterring strategic forecasters.

A comparison between tests is more informative when some variables, such as the
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required number of observations, are kept fixed. To this end, we call a collection (nP )P∈Λ

of positive integers a collection of testing times if the map P 7→ nP is measurable. A
test T is bounded by the testing times (nP )P∈Λ if T (·, P ) is a function of the first nP
observations. The definition allows for the possibility that different laws may need
different sample sizes in order to be properly tested. Finally, given a class T of tests,
we will call a test T least manipulable in T if it belongs to T and is less manipulable
than any other test in the same class.

We can now state the main result of this section.

Theorem 3 Fix a paradigm Λ, testing times (nP )P∈Λ and a probability α ∈ [0, 1].
There exists a prior µ∗ ∈ ∆

(
Λ
)
, thresholds (λP )P∈Λ, and a test T ∗ such that:

1. T ∗ (ω, P ) = 1 if P ∈ Λ and P (ωnP ) > λPQµ∗ (ωnP );

2. T ∗ (ω, P ) = 0 if P /∈ Λ or P (ωnP ) < λPQµ∗ (ωnP ); and

3. T ∗ is least manipulable in the class of tests that are bounded by (nP ) and do not
reject the truth with probability α.

Theorem 3 is a general result illustrating the optimality of likelihood-ratio tests.
Given the number of data points nP that the tester is willing to collect for each forecast
P , and given a lower bound α on the probability of accepting a true expert, there exists
a likelihood-ratio test that is less manipulable than any other test that satisfies the
same constraints.

The result does not demand any assumption on the paradigm, which is not required
to be testable. Another difference with the test introduced in Theorem 2 is the use
of law-specific thresholds λP which allow to adjust the probability of accepting a true
expert as a function of the desired level α of Type-I errors.8

The result is based on a novel connection between the problem of testing strategic
forecasters and the methodology of statistical hypotheses testing. To illustrate this idea,
consider the standard problem of testing a null hypothesis P0 against an alternative
hypothesis P1, where P0 and P1 are two given probability measures over paths. To be
clear, in such a context a (possibly randomized) hypothesis test is a function φ : Ω →
[0, 1], where φ (ω) is the probability of accepting the hypothesis P0 on path ω.

8The proof of Theorem 3 provides a complete description of the test T ∗ and illustrates how the
thresholds and the prior µ∗ are computed. In the knife-edge case where P (ωnP ) = λPQµ (ωnP ) the
test is randomized. The use of randomized tests greatly simplifies the analysis and allows the tester
to achieve a probability exactly equal to α of accepting a true expert.
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Notice that the test T ∗ is formally equivalent to a hypothesis test where the law P

produced by the expert plays the role of the null hypothesis while the outside observer’s
prediction Qµ∗ plays the role of the alternative. The crucial difference between the test
T ∗ and the standard hypothesis testing framework is that the two “hypotheses” P and
Qµ∗ are not given exogenously. Rather, P is produced by a possibly strategic forecaster
while Qµ∗ is chosen by the tester.

The celebrated Neyman and Pearson lemma shows that for any two hypotheses
P0 and P1, given an upper bound on the probability of Type I error, there exists
a likelihood-ratio test between P0 and P1 that minimizes the probability of Type II
errors. The proof of Theorem 3 applies and extends this fundamental result to the
problem of strategic forecasters.

The proof proceeds in two steps. First, the belief µ∗ is obtained as the solution of
an explicit nonlinear minimization problem over the space of priors. The test T ∗ is then
defined by applying the Neyman-Pearson Lemma to each pair of laws P and Qµ∗ . The
key step is to show, through a duality argument, that because of the particular choice
of µ∗, a test which minimizes the probability of Type-II errors with respect to Qµ∗ is
also a test that is least manipulable.

6 Tests and Off-Path Predictions

The tests presented so far require the forecaster to provide a completely specified law
at time 0. In this section we seek tests that evaluate forecasters based only on their
one-step-ahead predictions made along the realized path. This is how most practical
tests (including calibration) operate. In addition to added realism, such tests have the
advantage of taking into account the critical trade-off experts face between proving
their knowledge and revealing it through their forecasts. For instance, a competent
weather forecaster who intends to profit from his skills might be willing to provide
daily forecasts, but not to reveal the model P behind his predictions. Tests where
forecasters are required to reveal the law governing the process effectively ignore this
trade-off and, as a result, can dissuade even informed experts from participating in the
test.

The main result of this section shows that given any testable paradigm it is with-
out loss of generality to restrict the attention to tests which do not rely on off-path,
counterfactual, predictions.

We first introduce the necessary notation. Let Hn be the set of histories of length
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n. Consider a forecaster who is asked, in each period, to provide a prediction about the
next outcome. A forecasting rule is a function f :

⋃∞
n=0Hn → ∆ (X) which specifies,

conditional on every history ωn, the probability f (ωn) (x) of observing outcome x in
period n + 1. So, a forecasting rule describes how the forecaster will predict at each
history.

It is convenient to identify forecasting rules with laws. This identification is stan-
dard. By Bayes’ rule every law P induces a forecasting rule fP obtained by conditioning
P at each history. Given a path ω and a time n, the forecasting rule fP and the law P

are related by the identity

P (ωn) =
n−1∏
i=0

fP
(
ωi
)

(ωi+1) . (7)

In particular, a truthful expert who knows the law generating the data to be P will
predict according to fP .9 Conversely, given any forecasting rule f , repeated applications
of (9) imply that f defines a law P such that f = fP .

The next definition, which follows Dawid (1982), formalizes the requirement that
the test be a function only of the sequential predictions made by the forecaster along
the realized path.

Definition 7 A test T is prequential if for every pair of laws P and Q and every path
ω, if fP (ωn) = fQ (ωn) for every n, then T (ω, P ) = T (ω,Q).

As discussed earlier, prequential tests present several advantages. At the same time,
the use of prequential tests brings new difficulties. One complication is that such test
limit the information available to the tester.

Another difficulty presented by prequential tests is that they provide no indication,
at time 0, of how many observations will be necessary for the test to return a pass or
fail decision.

One approach for dealing with this issue is to confine the attention to non-asymptotic
tests where a decision is reached after a fixed number of observations that is independent
of the forecaster’s predictions. This approach is applied in Section 8.2.

The approach we follow in this section is to slightly weaken Definition 7. We consider
tests where the forecaster is asked to announce, at time 0, the number observations

9The forecasting rule fP is not uniquely defined when some histories have probability 0 under P .
In this case, choose fP to be any forecasting rule that satisfies (7) for all histories that have positive
probability under P .
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necessary to test his forecasts. The two approaches lead to qualitatively similar results.
We consider the following test:

Definition 8 Consider a paradigm Λ and a prior µ ∈ ∆
(
Λ
)
. Fix ε > 0. The forecasts-

based likelihood-ratio test Tµ,ε is defined as

Tµ,ε (d, ω, P ) =

{
1 if P (ωd) > 1

ε
Qµ(ωd)

0 otherwise

for all d ∈ N, ω ∈ Ω and P ∈ ∆ (Ω).

The test formalizes the following procedure. Before any data is observed, the fore-
caster is asked to report a deadline d. Then, in each period from 0 to d− 1, the agent
provides a one-step-ahead forecast (i.e. a probability over the set X of outcomes). Con-
sider a forecaster who adopts a rule fP . At time d, given a path ω, the forecaster is
accepted by the test if and only if the ratio

P (ωd)

Qµ(ωd)
=

d−1∏
i=0

fP (ωi) (ωi+1)

fQµ (ωi) (ωi+1)

is above 1/ε, where the equality follows directly from (7). For small ε, in order for the
forecaster to pass the test, his predictions must accumulate a consistent advantage in
likelihood terms over the predictions of a Bayesian endowed with a prior µ. Notice that
once a deadline is fixed, the test Tµ,ε becomes a standard prequential test.10

6.1 Main Result

We now study the properties of the forecasts-based likelihood-ratio test. In the context
of this test, a strategy is a joint randomization ζ ∈ ∆ (N×∆ (Ω)) over deadlines and
laws.

Theorem 4 Let Λ be a testable paradigm. Given ε > 0, let µ ∈ ∆
(
Λ
)
be a prior that

satisfies ‖Qµ − P‖ > 1− ε2/ (1 + ε) for every P ∈ Λ. Then, the test Tµ,ε satisfies:

1. For every P in Λ there is a deadline dP such that for every d ≥ dP

P ({ω : Tµ,ε (d, ω, P ) = 1}) ≥ 1− ε.
10For the same reason and in contrast to other likelihood-ratio tests in the paper, the test does not

check, at time 0, whether or not the law P belongs to the paradigm.
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2. For every strategy ζ ∈ ∆ (N×∆ (Ω)) there is a law Pζ ∈ Λ such that

(Pζ ⊗ ζ) {(ω, (d, P )) : Tµ,ε (d, ω, P ) = 1} ≤ ε.

Given a testable paradigm Λ, Theorem 1 guarantees we can find a prior µ ∈ ∆
(
Λ
)

such that the distance ‖Qµ − P‖ is arbitrarily close to 1 with respect to every law P

in the paradigm. Thus, for each ε, there exists a prior that satisfies the assumption of
Theorem 4.

The test Tµ,ε does not reject true experts with probability 1 − ε. For every law P

in the paradigm there is a deadline dP such that a true expert who reports a deadline
d ≥ dP and then predicts according to P will pass the test with probability greater
than 1 − ε. The test is also ε-nonmanipulable: For every strategy ζ there is a law in
the paradigm under which the forecaster will pass the test with at most ε probability.

The result provides additional justification for the likelihood-ratio test as a method-
ology for screening forecasters. Compared to other results in the paper, such a justifi-
cation does not rest on testing off-path, counterfactual, predictions.

Theorem 4 is in contrast with the result of Shmaya (2008), which casted doubts on
the possibility of testing strategic forecasters without relying on off-path predictions.
Shmaya (2008) considers prequential tests that do not reject the truth with respect to
the unrestricted paradigm ∆ (Ω) and shows that any such test must be manipulable,
even if the test is not finite and is allowed to return a decision at infinity. Shmaya’s
result implies that if no restrictions are imposed on the paradigm, then it is impossible
to test strategic forecasters using tests which do not rely on counterfactual predictions.
As shown by Theorem 4, both goals are compatible once we consider finite tests and
testable paradigms.11

7 Identifiable and Maximal Paradigms

In this section, we present and study two representative families of testable paradigms.
We first consider identifiable paradigms, i.e. paradigms where the true law can be
inferred from the data in the long run. We then consider maximal paradigms. We show

11Nonmanipulable and prequential, but not finite, tests are provided by Stewart (2011), Hu and
Shmaya (2013), Sandroni and Shmaya (2014) and Feinberg and Lambert (2015). Fortnow and Vohra
(2009) provide a prequential test that is non-manipulable in the presence of a computational constraint
on the forecaster.
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that any well-behaved testable paradigm is obtained by enlarging some identifiable
paradigm. In addition, any testable paradigm can be enlarged to a maximal paradigm.

7.1 Testing and Identification

It is plain that the class of deterministic laws is testable. An uninformed forecaster
who is asked to perfectly predict the first n realizations can guarantee only a vanishing
probability of not being contradicted by the data. A similar intuition applies to the class
of i.i.d. distributions. In this case, an expert must be able to predict, ex-ante and with
almost perfect precision, what the long run empirical frequency of each outcome will be.
The same logic applies to other paradigms of interest for which suitable generalizations
of the law of large numbers hold (e.g. the class of all stationary ergodic distributions).
The idea common to these examples is that the true law can be eventually inferred
from the data. The next definition formalizes this concept.

Definition 9 A paradigm Λ is identifiable if there exists a measurable map f : Ω→ Λ

such that P ({ω : f (ω) = P}) = 1 for every P ∈ Λ.

The same notion of identifiability has been studied, in different contexts, by Doob
(1949), Blackwell (1980), Weizsäcker (1996) and Al-Najjar and Shmaya (2016) among
others. There are several reasons for studying identifiable paradigms more in depth.
Notice that experts are more relevant when the paradigm is not identifiable, because in
this case the knowledge held by the expert goes beyond what the tester could infer on his
own from the data. It is therefore important to know to what extent testability confines
the tester to identifiable paradigms. In addition, as discussed in the previous paragraph,
many examples of testable paradigms of practical interest are also identifiable. It is not
clear, a priori, what is the gap between identifiability and testability. Theorem 5 below
clarifies the relationship between the two properties.

The next result is a preliminary observation.

Remark 1 Any infinite, identifiable paradigm is testable. However, there exist testable
and non-identifiable paradigms.

Hence, any sufficiently rich and identifiable paradigm is testable. However, identifi-
ability is not a necessary condition for testability.12 To gain an intuition, consider the

12Indeed, the testable paradigm presented by Olszewski and Sandroni (2009a) and Al-Najjar, San-
droni, Smorodinsky and Weinstein (2010) are not identifiable.
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class Λ1 = {δω : ω ∈ Ω} of all deterministic laws and now add a mixture P = 1
2
δω′+

1
2
δω′′

between two distinct degenerate distributions. The resulting set Λ = Λ1∪{P} is testable
but no longer identifiable, since observing the sequence ω′ does not reveal whether the
data was generated by the mixture P or by the deterministic law δω′ .

The next result shows that any suitably well-behaved testable paradigm is obtained
by enlarging some rich (i.e. uncountable) identifiable subclass of distributions. Hence,
identifiable paradigms form a minimal class of testable paradigms.

Theorem 5 Let Λ be a paradigm for which there exists a prior µ ∈ ∆ (Λ) such that
‖Qµ − P‖ = 1 for every P ∈ Λ. Then there exists a paradigm Λ̃ ⊆ Λ that is identifiable
and uncountable. In addition, if Λ is closed then Λ̃ can be chosen to be homeomorphic
to the class of all deterministic laws.

The result assumes that Λ is testable and well-behaved. By Theorem 1, testability
is equivalent to the existence of a sequence of priors (µn) where the distance between
each law Qµn and the paradigm goes to 1 as n goes to infinity. Theorem 5 assumes
that such sequence can be replaced by a single prior µ ∈ ∆ (Λ). This assumption can
be interpreted as a form of continuity with respect to the total-variation distance.13

The result also shows that when Λ is closed, then Λ̃ can be chosen to be topologically
equivalent to the paradigm of all degenerate distributions.

7.2 Maximal Paradigms

Any theory about the data generating process, if incorrect, exposes the tester to the
risk of rejecting informed experts. Following this motivation, Feinberg and Stewart
(2008), Olszewski and Sandroni (2009), Stewart (2011) and Feinberg and Lambert
(2015) develop nonmanipulable tests that do not reject true expert except for a topo-
logically small set of distributions. Relatedly, Olszewski (2015) posed the question of
which testable paradigms are maximal, in the sense of not being included in any other
testable paradigm. The next result provides an answer to this open question. Say that
Λ is ε-testable if it admits a test that passes the truth with probability 1 − ε and is
ε-nonmanipulable.

13The paradigm of Al-Najjar, Sandroni, Smorodinsky and Weinstein (2010), all the examples men-
tioned at the beginning of this section satisfy this property.
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Theorem 6 Let ε ∈ (0, 1) Given a law Q ∈ ∆ (Ω) the paradigm

Λε
Q = {P ∈ ∆ (Ω) : ‖Q− P‖ > 1− ε}

is ε-testable. In addition, it is not included in any testable paradigm.

The set Λε
Q is obtained by fixing a distribution Q and considering all laws which

are sufficiently far from P . The resulting class Λε
Q is not included in any other testable

paradigm (indeed, as shown in the proof, Λε
Q is included in any δ-testable paradigm,

for δ sufficiently small). By Theorem 2, given paradigm Λε
Q, forecasters can be tested

using a simple likelihood-ratio test with respect to the benchmark Q.
The adoption of maximal paradigms has two effects. On the one hand, maximal

paradigms reduce the risk of accidentally rejecting true experts. On the other hand,
they make nonmanipulability a weaker concept. This is because the assertion that un-
informed forecasters are screened out by non-manipulable tests rests on the assumption
that uninformed agents evaluate the odds of passing the test according to the worst-
case scenario with respect to the paradigm Λ (as discussed in Section 2.3). Such an
assumption becomes stronger as the paradigm gets larger.

The next result shows that this tension disappears if maximal paradigms are ob-
tained by enlarging an already testable paradigm.

Theorem 7 Let Λ be a testable paradigm. Then, for every ε > 0 there exist a prior
µ ∈ ∆(Λ) such that Λ ⊆ Λε

Qµ
and a test T such that:

1. For every law P ∈ Λε
Qµ

, EP [T (·, P )] ≥ 1− ε; and

2. For every strategy ζ there exists a law Pζ ∈ Λ such that EPζ⊗ζ [T ] ≤ ε.

The first part of the result shows that any testable paradigm Λ can be extended
to a maximal paradigm Λε

Qµ
. The second part of the result shows that there exists

a test T that is likely to pass a true expert with respect to any law in the maximal
paradigm Λε

Qµ
, and such that for every strategy there is a law in the original paradigm

Λ under which a strategic forecaster is likely to be rejected. So, a strategic forecaster
who evaluates the odds of passing the tests by considering the worst-case scenario with
respect to the original paradigm Λ is screened out by the test. The result shows that
any testable paradigm can be enlarged to minimize the risk of rejecting true experts
and without affecting the deterrent effect on strategic forecasters.
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8 Discussion and Extensions

8.1 Markov Processes

The characterization of Theorem 1 is now applied to the paradigm of all Markov dis-
tributions, which is shown to be testable.

Each Markov law is described by a transition probability π : X → ∆ (X) and
an initial probability ρ ∈ ∆ (X). Every pair (ρ, π) induces a Markov distribution
Pρ,π ∈ ∆ (Ω). We now define the prior of the Bayesian outside observer. Fix two
distinct outcomes x and y. Given α ∈ [0, 1], let πα be the transition probability defined
as

πα (x) (x) = α, πα (x) (y) = 1− α and πα (z) (x) = 1 for all z 6= x

Thus, if the current outcome is x then the process remains at x with probability α

and moves to y with probability 1 − α. If the current outcome is any z other than x,
then the process returns to x almost surely. To simplify the notation, let Pα be the
Markov distribution where the two outcomes x and y have initial probability 1

2
and

the transition probability is πα. Consider a Bayesian outside observer who is uncertain
about the transition probability of the process and believes the true law to be Pα for
some α. By taking α to be uniformly distributed in (0, 1), we obtain (implicitly) a prior
µ defined on the set of Markov distributions such that the resulting law Qµ satisfies

Qµ (E) =

∫ 1

0

Pα (E) dα

for every event E.

Theorem 8 The prior µ satisfies ‖Qµ − Pπ,ρ‖ = 1 for all Markov Pπ,ρ.

The result is obtained by applying standard asymptotic results for Markov processes.
Theorems 1 and 2 allow then to conclude that the paradigm is testable by means of a
likelihood-ratio test with respect to the law Qµ.

8.2 Non-asymptotic Tests

We now consider the case where at most n observations are available to the tester. The
main conclusion is that most of the results obtained for general tests (Theorems 1, 2
and 4) can be adapted to non-asymptotic tests.
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Call a paradigm ε-testable in n periods if it admits a test T such that T (·, P ) is
Fn-measurable for every P , does not reject the truth with probability 1 − ε, and is
ε-nonmanipulable. The next result mirrors the characterization of Theorem 1. Given
n and two laws P and Q, we denote (with a slight abuse of notation) by ‖Q− P‖n the
distance maxE∈Fn |Q (E)− P (E)|.

Theorem 9 Let Λ be a paradigm. If there exists a prior µ ∈ ∆
(
Λ
)
with the property

that ‖Qµ − P‖n > 1− ε for every P ∈ Λ, then Λ is ε-testable in n periods. Conversely,
if Λ is ε-testable in n periods then there is a prior µ ∈ ∆

(
Λ
)
such that ‖Qµ − P‖n >

1− 2ε for every P ∈ Λ.

Hence, similarly to Theorem 1, testability in n periods is equivalent to a high dis-
tance between the law Qµ induced by the prior and each law in the paradigm. The
main difference between the two results is that in Theorem 9 the distance between laws
is now computed with respect to events occurring before time n.

The next result shows that for paradigms that are ε-testable in n periods, restricting
the attention to to prequential likelihood-ratio tests is loss of generality for ε sufficiently
small.

Theorem 10 Let Λ be a paradigm. If µ ∈ ∆
(
Λ
)
satisfies ‖Qµ − P‖n > 1− ε2/ (1 + ε)

for every P ∈ Λ, then the test

T (ω, P ) =

{
1 if P (ωn) > 1

ε
Qµ (ωn)

0 otherwise

is prequential, does not reject the truth with probability 1− ε and is ε-nonmanipulable.

Fix ε > 0 and let δ = ε2/ (1 + ε). The result shows that if the paradigm is δ-testable
in n periods, then there exists a prequential test that does not reject the truth with
probability 1− ε and is ε nonmanipulable.

8.3 Maxmin and Strategic Forecasters

Consider a strategic forecaster producing his forecasts according to a strategy ζ. As
discussed in Section 4, a strategic but uninformed forecaster who adopts the Gilboa-
Schmeidler maxmin criterion will evaluate the strategy according to

inf
P∈C

EP⊗ζ [wT + l (1− T )]
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where C is a set of laws. So far, we have assumed C to be equal to the paradigm Λ

under consideration. However, an uninformed forecaster may adopt a less conservative
decision making criterion. To this end we fix a distance for the weak*-topology on
∆ (Ω), and for every law P ∈ ∆ (Ω) denote by Bδ (P ) the open ball of radius δ around
P . A natural specification for the set C of of laws takes the form

C = Bδ (Po) ∩ Λ for some Po ∈ Λ. (8)

Under this specification, the uninformed forecaster evaluates each strategy by consider-
ing the worst-case expected payoff with respect to laws that are within a distance δ from
a reference measure Po. Similar specifications appear in robust statistics (Huber, 1981)
and economics (Bergemann and Schlag, 2011, and Babaioff, Blumrosen, Lambert and
Reingold, 2010). We will not assume that Po coincides with the correct law generating
the data nor that Po is known to the tester.

We now consider the problem of screening between informed and uninformed under
the specification (8).

Definition 10 A paradigm Λ is uniformly testable with precision δ if for every ε > 0

there exists a finite test T such that:

1. T does not reject the truth with probability 1− ε; and

2. For every strategy ζ and every Po ∈ Λ there exists a law Pζ ∈ Λ ∩ Bδ (Po) such
that EPζ⊗ζ [T ] ≤ ε.

Thus, the test passes a true expert with high probability. In addition, for every
strategy ζ there is a law Pζ in the paradigm under which rejection is likely. In addition,
for every reference law Po, the measure Pζ can be chosen to belong to Λ ∩ Bδ (Po).
Hence, the test guarantees that the value an uninformed forecaster can expect from
participating in the test is negative whenever ε is sufficiently small. So, the test can
screen between the two types of forecasters.

The next theorem provides a simple sufficient condition for a paradigm to be uni-
formly testable.

Theorem 11 Let µ ∈ ∆
(
Λ
)
be a prior with support Λ such that Qµ satisfies ‖Qµ − P‖ =

1 for every P in Λ. Then Λ is uniformly testable with precision δ for every δ > 0.
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Compared to the characterization of Theorem 1, the prior µ is now required to have
support equal to the closure of the paradigm. An exact characterization of uniformly
testable paradigms is provided in Appendix B.

A Appendix

A.1 Preliminaries

The space of paths Ω is endowed with the product topology. Hence, a function that is
Fn-measurable for some n is also continuous. This implies that for every finite test T
and any law P ∈ ∆ (Ω) the function Q 7→ EQ [T (·, P )], Q ∈ ∆ (Ω), is continuous. We
will denote by Hn the set of histories ωn of length n.

Recall that the space ∆ (∆ (Ω)) is endowed with the weak* topology. As proved
in Phelps (2001) (Proposition 1.1), the function µ 7→ Qµ assigning to each prior
µ ∈ ∆ (∆ (Ω)) its barycenter Qµ is continuous. In particular, given a continuous func-
tion ψ : Ω→ R, the map µ 7→

∫
Ω
ψ (ω) dQµ (ω), µ ∈ ∆ (∆ (Ω)) , is continuous. In addi-

tion, Qµ satisfies
∫

Ω
ψ (ω) dQµ (ω) =

∫
∆(Ω)

(∫
Ω
ψ (ω) dQ (ω)

)
dµ (Q) for every bounded

measurable function ψ. Given a measurable subset Γ of ∆ (Ω), denote by ∆ (Γ) the
set of probability measures P ∈ ∆ (Ω) assigning probability 1 to Γ. The space ∆

(
Γ
)

is compact by the Banach-Alaoglu theorem (see Aliprantis and Border (2006, Chapter
16)).

Lemma 1 Let T be a finite test. For every strategy ζ the function P 7→ EP⊗ζ [T ],
P ∈ ∆ (Ω), is continuous.

Proof. Let (ωk) be a sequence in Ω converging to a path ω. Given a law P , the
function T (·, P ) is continuous. So, T (ωk, P )→ T (ω, P ) as k →∞. Given a strategy ζ,
Lebesgue’s convergence theorem implies Eζ [T (ωk, ·)]→ Eζ [T (ω, ·)] as k →∞. Hence,
for every strategy ζ the map ω 7→ Eζ [T (ω, ·)], ω ∈ Ω, is continuous. Fubini’s Theorem
implies EP⊗ζ [T ] =

∫
Ω
Eζ [T (ω, ·)] dP (ω). Therefore, for each P ,

∫
Ω
Eζ [T (ω, ·)] dP (ω)

is the expectation with respect to P of a continuous function. Hence, it follows from
the definition of weak* topology that the map P 7→ EP⊗ζ [T ], P ∈ ∆ (Ω), is continuous.
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A.2 Proofs of Results of Sections 3 and 4

Proof of Theorems 1 and 2. The first part of the proof shows the necessity part
of Theorem 1. The second half of the proof establishes Theorem 2 and, therefore, the
sufficiency part of Theorem 1.

Assume that Λ is testable. Fix ε > 0 and let T be a test that satisfies the conditions
of Definition 5. Given a measure P ∈ ∆ (Ω) and a strategy ζ, let V (P, ζ) = EP⊗ζ [T ].
The map V is affine in each argument and for each strategy ζ the map V (·, ζ) is
continuous by Lemma 1. Since T is ε-nonmanipulable then

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

V (P, ζ) ≤ ε. (9)

Let ∆o (Λ) ⊆ ∆ (Λ) be the subset of priors on Λ with finite support. We have

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

V (P, ζ) = sup
ζ∈∆(∆(Ω))

inf
µ∈∆o(Λ)

V (Qµ, ζ) = sup
ζ∈∆(∆(Ω))

min
µ∈∆(Λ)

V (Qµ, ζ) . (10)

The first equality follows immediately from the definition of Qµ and the affinity of
V (·, ζ). The second equality follows from the continuity of the map µ 7→ V (Qµ, ζ),
µ ∈ ∆ (∆ (Ω)), together with the fact that ∆o (Λ) is dense in ∆

(
Λ
)
(as implied by

Aliprantis and Border (2006, Theorem 15.10)) and that ∆
(
Λ
)
is compact.

The space ∆
(
Λ
)
is compact and convex and for every ζ the map µ 7→ V (Qµ, ζ),

µ ∈ ∆ (∆ (Ω)), is continuous and affine. In addition, ∆ (∆ (Ω)) is convex and for every
µ, the map V (Qµ, ·) is affine. We can therefore apply Fan’s Minmax Theorem (Fan
(1953)) to obtain the equality

sup
ζ∈∆(∆(Ω))

min
µ∈∆(Λ)

V (Qµ, ζ) = min
µ∈∆(Λ)

sup
ζ∈∆(∆(Ω))

V (Qµ, ζ) . (11)

For every µ , the function V satisfies V (Qµ, ζ) =
∫

∆(Ω)
EQµ [T (·, P )] dζ (P ) by Fubini’s

theorem. So, supζ∈∆(∆(Ω)) V (Qµ, ζ) = supP∈∆(Ω) V (Qµ, δP ). Hence the right-hand side
of (11) can be written as

min
µ∈∆(Λ)

sup
ζ∈∆(∆(Ω))

V (Qµ, ζ) = min
µ∈∆(Λ)

sup
P∈∆(Ω)

V (Qµ, δP ) = min
µ∈∆(Λ)

sup
P∈∆(Ω)

EQµ [T (·, P )] .

(12)
Taken together, (9), (10) (11) and (12) prove the existence of a prior µ ∈ ∆

(
Λ
)
such
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that
sup

ζ∈∆(∆(Ω))

inf
P∈Λ

V (P, ζ) = sup
P∈∆(Ω)

EQµ [T (·, P )] ≤ ε.

Because the test does not reject the truth with probability 1− ε, it follows that

EP [T (·, P )]− EQµ [T (·, P )] ≥ 1− 2ε for all P ∈ Λ. (13)

As shown by Lemmas 1 and 2 in Shiryaev (2016, Chapter 8), the (normalized) total
variation distance ‖Qµ − P‖ satisfies

‖Qµ − P‖ = sup
φ

∣∣∣∣∫
Ω

φdQµ −
∫

Ω

φdP

∣∣∣∣
where the supremum is taken over all measurable functions φ : Ω → [0, 1]. By letting
φ = T (·, P ), it follows from (13) that ‖Qµ − P‖ ≥ 1−2ε. Thus, ‖Qµ − P‖ ≥ 1− 2ε for
every P ∈ Λ. Since ε is arbitrary, the first part of the proof is concluded.

Consider a prior µ ∈ ∆
(
Λ
)
such that ‖Qµ − P‖ > 1 − ε for all P ∈ Λ. Fix a

measure P ∈ Λ. For any n,

max
E∈Fn

Qµ (E)− P (E) = max
E∈Fn

|Qµ (E)− P (E)| .

As shown in Halmos (1950, 13D), maxE∈Fn Qµ (E) − P (E) ↑ ‖Qµ − P‖ as n ↑ ∞.
Therefore, we can conclude that for each P ∈ Λ the number

nP = min

{
n : max

E∈Fn
Qµ (E)− P (E) > 1− ε

}
(14)

is well defined. Consider now the test

T (ω, P ) =

{
1 if P ∈ Λ and P (ωnP ) > Qµ (ωnP )

0 otherwise

We now prove that T is measurable. First we show that for every k ∈ N the set
{P ∈ Λ : nP = k} is measurable. For every n and every E ∈ Fn the function P 7→
P (E), P ∈ ∆ (Ω), is continuous. Because Fn is finite, it follows that ϕn : P 7→
maxE∈Fn Qµ (E) − P (E), P ∈ ∆ (Ω), is measurable. Since Λ is measurable the re-
striction of ϕn on Λ is also measurable. The set {P ∈ Λ : nP = k} can be written as
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{P ∈ Λ : ϕk > 1− ε} if k = 1, or as the intersection⋂
1≤n<k

{P ∈ Λ : ϕn ≤ 1− ε} ∩ {P ∈ Λ : ϕk > 1− ε}

if k > 1. Hence {P ∈ Λ : nP = k} is measurable. For each path ω, the function T (ω, ·)
is measurable: For each n, the set {P ∈ ∆ (Ω) : T (ω, P ) = 1} is given by the union
over k > 1 of all sets of the form

{
P ∈ ∆ (Ω) : P

(
ωk
)
−Qµ

(
ωk
)
> 0
}
∩ {P ∈ Λ : nP = k} .

It follows that T (ω, ·) is measurable. For each ω ∈ Ω and P ∈ ∆ (Ω), the function
T (·, P ) is continuous and T (ω, ·) is measurable. That is, T is a Carathéodory functions.
It follows then from Lemma 4.51 in Aliprantis and Border (2016) that T is measurable.

We now show that P ({ω : T (ω, P ) = 1}) > 1 − ε and Qµ ({ω : T (ω, P ) = 1}) < ε

for each P . The proof follows Lehmann and Romano (2006, Chapter 16). If P /∈ Λ the
result is obvious. So let P ∈ Λ, and denote be AP the set {ω : P (ωnP ) > Qµ (ωnP )}.
Let HnP be the set of all histories of length nP . Then for every E ∈ FnP we have

P (E)−Qµ (E) =
∑

ωnP ∈HnP :ωnP⊆E

P (ωnP )−Qµ (ωnP )

≤
∑

ωnP ∈HnP :ωnP⊆E∩AP
P (ωnP )−Qµ (ωnP )

≤
∑

ωnP ∈HnP :ωnP⊆AP
P (ωnP )−Qµ (ωnP ) .

Therefore P
(
AP
)
−Qµ

(
AP
)

= maxE∈FnP P (E)−Qµ (E) > 1−ε. So P
(
AP
)
> 1−ε (in

particular, the test T does not reject the truth with probability 1−ε) and Qµ

(
AP
)
< ε.

We can now show that T is ε-nonmanipulable. For every strategy ζ, we have

V (Qµ, ζ) =

∫
∆(Ω)

Qµ

(
AP
)
dζ (P ) < ε.

Using again the fact that µ 7→ V (Qµ, ζ), µ ∈ ∆ (∆ (Ω)), is continuous and ∆o (Λ) is
dense in ∆

(
Λ
)
, we can find a prior µζ ∈ ∆o (Λ) such that

V
(
Qµζ , ζ

)
=
∑
P∈Λ

µζ (P )V (P, ζ) < ε

31



Hence, there must exists some law Pζ ∈ Λ in the support of µζ such that V (Pζ , ζ) < ε.
Because ε is arbitrary, we conclude that Λ is testable.

Proof of Corollary 1. As shown in Phelps (2001, Proposition 1.2) a law P belongs
to the weak*-closed convex hull of Λ if and only if there exists a prior µ ∈ ∆

(
Λ
)
such

that P = Qµ. The result now follows immediately from Theorem 1.

A.3 Proof of Theorem 3

The next result is a version of the Neyman-Pearson lemma. The standard proof parallels
the proof of Theorem 3.2.1 in Lehmann and Romano, (2006) and is therefore omitted.

Theorem 12 (Neyman-Pearson Lemma) Let P0, P1 ∈ ∆ (Ω). Given n ∈ N and
α ∈ [0, 1], let Φ be the set of Fn-measurable functions φ : Ω → [0, 1] that satisfy
EP0 [φ] ≥ α. Let

λ = sup {k ∈ R : P0 ({ω : P0 (ωn) ≥ kP1 (ωn)}) ≥ α}

and, letting 0 · ∞ = 0, define

δ = P0 ({ω : P0 (ωn) > λP1 (ωn)})

γ = P0 ({ω : P0 (ωn) = λP1 (ωn)})

The function

φ∗ (ω) =


1 if P0 (ωn) > λP1 (ωn)
α−δ
γ

if P0 (ωn) = λP1 (ωn) and γ > 0

0 otherwise

is a solution to minφ∈Φ EP1 [φ].

Proof of Theorem 3. Fix a paradigm Λ, testing times (nP ) and a probability
α ∈ [0, 1]. Denote by T the class of finite tests that are bounded by (nP ) and do not
reject the truth with probability α.

For every P ∈ Λ, let ΦP be the set of FnP -measurable functions φ : Ω→ [0, 1] that
satisfy EP [φ] ≥ α. Define the function f : ∆

(
Λ
)
→ R as

f (µ) = sup
P∈Λ

min
φ∈ΦP

EQµ [φ] .
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The function f is lower-semicontinous: Fix P ∈ Λ. The set ΦP can be identified with
a subset of [0, 1]m, where m is the cardinality of the set of histories of length nP . It
is then immediate to verify that ΦP is compact. It then follows from the theorem of
the maximum that the map Q 7→ minφ∈ΦP EQµ [φ], Q ∈ ∆ (Ω), is continuous. Thus,
the continuity of µ 7→ Qµ, µ ∈ ∆ (∆ (Ω)) implies that the map µ 7→ minφ∈ΦP EQµ [φ],
µ ∈ ∆ (∆ (Ω)) is a composition of continuous functions. Thus, f is a supremum of
continuous functions. Hence f is lower-semicontinuous and so attains a minimum on
∆
(
Λ
)
. Let µ∗ be a prior which minimizes f .

Denote by φ∗P the test obtained by applying the Neyman-Pearson lemma when
setting P0 = P , P1 = Qµ∗ and n = nP in the statement of Theorem 12. Denote also by
λP , δP and γP the corresponding quantities. Let T ∗ be the test defined as

T ∗ (ω, P ) =

{
φ∗P (ω) if P ∈ Λ

0 if P /∈ Λ.

We now show that T ∗ is a well-defined test belonging to T . By definition, the
test is finite and does not reject the truth with probability α. It remains to show it is
measurable. By Lemma 4.51 in Aliprantis and Border (2016), it is enough to prove that
T (ω, ·) is measurable for every ω. We first show that the map P 7→ λP , P ∈ Λ, mapping
each measure to the corresponding threshold λP ∈ [0,∞] in the likelihood-ratio test, is
measurable. For every k ∈ R let

Γk = {P ∈ Λ : P ({ω : P (ωnP ) ≥ kQµ∗ (ωnP )}) ≥ α} .

Notice that Γk can be written as⋃
m∈N

({P ∈ Λ : nP = m} ∩ {P ∈ Λ : P ({ω : P (ωm) ≥ kQµ∗ (ωm)}) ≥ α})

Each set {P ∈ Λ : nP = m} is measurable. For each ωm the function P 7→ P (ωm),
P ∈ ∆ (Ω), is continuous. So, for each history ωm the set

Υωm = {P ∈ Λ : P (ωm) ≥ kQµ∗ (ωm)}
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is measurable. Let 1Υωm be the indicator function of Υωm and notice that

P ({ω : P (ωm) ≥ kQµ∗ (ωm)}) =
∑

ωm∈Hm

P (ωm) 1Υωm (P ) ,

where the latter is a measurable function of P . It then follows that each set of the form

{P ∈ Λ : P ({ω : P (ωm) ≥ kQµ∗ (ωm)}) ≥ α}

is measurable. Thus, Γk is measurable. This in turn yields that for each k the func-
tion P 7→ k1Γk (P ) is measurable. Notice that λP = supk∈Q k1Γk (P ) for every P .
Thus, we can conclude that the function P 7→ λP (mapping ∆ (Ω) to R ∪ {∞})
is measurable. Now fix a path ω. An argument analogous to that one used to
prove the measurability of the set Γk shows that {P ∈ Λ : P (ωnP ) > λPQµ∗ (ωnP )} and
{P ∈ Λ : P (ωnP ) = λPQµ∗ (ωnP )} are measurable and that δP and γP are measurable
functions of P . It is then routine to verify that T (ω, ·) is measurable. We can therefore
conclude that T is a well defined test belonging to T .

We now show that T ∗ is a least manipulable test in the class T . Let T ∈ T . As
in the proof of Theorems 1 and 2, given any test T ∈ T we can apply Fan’s minmax
theorem to conclude

sup
ζ∈∆(∆(Ω))

inf
P∈Λ

EP⊗ζ [T ] = min
µ∈∆(Λ)

sup
P∈∆(Ω)

EQµ [T (·, P )] . (15)

It is without loss of generality to assume that T (ω, P ) = 0 for every ω and P /∈ Λ. So,
the expression can be simplified to

sup
ζ∈∆(Λ)

inf
P∈Λ

EP⊗ζ [T ] = min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T (·, P )] .

The test T is finite and does not reject the truth with probability α. So, it satisfies
T (·, P ) ∈ ΦP for every P ∈ Λ. Thus,

min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T (·, P )] ≥ min
µ∈∆(Λ)

sup
P∈Λ

min
φ∈ΦP

EQµ [φ]

= min
µ∈∆(Λ)

f (µ)

= sup
P∈Λ

min
φ∈ΦP

EQµ∗ [φ] .
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The essential idea is that the test T ∗ has been defined to satisfy

EQµ∗ [T ∗ (·, P )] = min
φ∈ΦP

EQµ∗ [φ]

for every P ∈ Λ. This means that

min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T (·, P )] ≥ sup
P∈Λ

min
φ∈ΦP

EQµ∗ [φ]

= sup
P∈Λ

EQµ∗ [T ∗ (·, P )]

≥ min
µ∈∆(Λ)

sup
P∈Λ

EQµ [T ∗ (·, P )] .

By applying (15) to both T and T ∗ we now obtain

sup
ζ∈∆(Λ)

inf
P∈Λ

EP⊗ζ [T ] ≥ sup
ζ∈∆(Λ)

inf
P∈Λ

EP⊗ζ [T ∗] .

Hence, T ∗ is less manipulable than T .

A.4 Proof of Theorem 4

In the course of the proof of Theorem 4 we will use the following basic estimates.

Lemma 2 Let P,Q ∈ ∆ (Ω). For every n ∈ N and every t > 0,

Q ({ω : tP (ωn) ≥ Q (ωn)}) ≤ t and Q ({ω : tP (ωn) > Q (ωn)}) < t.

Proof. Recall that Hn is the set of histories of length n. We have,

Q ({ω : tP (ωn) ≥ Q (ωn)}) =
∑

ωn∈Hn:tP (ωn)≥Q(ωn)

Q (ωn) (16)

≤ t

 ∑
ωn∈Hn:tP (ωn)≥Q(ωn)

P (ωn)


= tP ({ω : tP (ωn) ≥ Q (ωn)})

≤ t.

For every history ωn, if tP (ωn) > Q (ωn) then P (ωn) > 0. So, similarly to (16), we
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have

Q ({ω : tP (ωn) > Q (ωn)}) < t

 ∑
ωn∈Hn:tP (ωn)>Q(ωn)

P (ωn)


so, Q ({ω : tP (ωn) > Q (ωn)}) < t.

The next result relates the total variation distance and likelihood-ratios.

Lemma 3 Let P,Q ∈ ∆ (Ω) satisfy

max
E∈Fno

|P (E)−Q (E)| > 1− ε

for some ε > 0 and no ∈ N. Then, for every n ≥ no and for every k > 0,

P ({ω : P (ωn) > kQ (ωn)}) > 1− kε− ε.

Proof. Because Fno ⊆ Fn for every n ≥ no, then

max
E∈Fn

|P (E)−Q (E)| = max
E∈Fn

P (E)−Q (E) > 1− ε for every n ≥ no.

Now fix n ≥ no. Let En be an event in Fn such that P (En) − Q (En) > 1 − ε. So
P (En) > 1− ε and Q (En) < ε. Let A+

n = {ω : Q (ωn) > 0}. Notice that A+
n ∈ Fn and

for every A ∈ Fn we have

P
(
A ∩ A+

n

)
=

∑
ωn∈Hn:ωn⊆A∩A+

n

P (ωn) =
∑

ωn∈Hn:ωn⊆A∩A+
n

P (ωn)

Q (ωn)
Q (ωn)

which can be conveniently rewritten as

P
(
A ∩ A+

n

)
=

∫
A∩A+

n

P (ωn)

Q (ωn)
dQ (ω) .

Now let Ln = {ω : P (ωn) ≤ kQ (ωn)}. Then

P
(
En ∩ Ln ∩ A+

n

)
=

∫
En∩Ln∩A+

n

P (ωn)

Q (ωn)
dQ (ω)

≤ k

∫
En∩Ln∩A+

n

dQ

≤ kQ (En) < kε.
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We seek a lower bound for

P (En ∩ Lcn) = P (En)− P (En ∩ Ln) .

For each ω ∈ Ln, either P (ωn) = 0 or both P (ωn) > 0 and Q (ωn) > 0 hold (since
k > 0). Because P ({ω : P (ωn) > 0}) = 1, it follows that

P (Ln) = P
(
Ln ∩ A+

n

)
.

Therefore
P (En ∩ Ln) = P

(
En ∩ Ln ∩ A+

n

)
.

As shown above, P (En ∩ Ln ∩ A+
n ) < kε. So, P (En ∩ Ln) < kε. Thus,

P (En ∩ Lcn) = P (En)− P (En ∩ Ln)

> 1− ε− P (En ∩ Ln)

> 1− ε− kε.

Hence,

P ({ω : P (ωn) > kQ (ωn)}) = P (Lcn) ≥ P (Lcn ∩ En) > 1− ε− kε.

Proof of Theorem 4. Fix δ < ε2

1+ε
and let µ satisfy ‖Qµ − P‖ > 1 − δ for every

P ∈ Λ. For every P ∈ Λ let dP ∈ N be such that maxE∈FdP |P (E)−Qµ (E)| > 1− δ.
Hence, by Lemma 3, for every d ≥ dP

P

({
ω : P

(
ωd
)
>

1

ε
Q
(
ωd
)})

> 1− δ

ε
− δ.

By the choice of δ, we have that δ
ε

+ δ < ε. Hence, a forecaster who chooses a deadline
d ≥ dP and then predicts according to P will pass the test with probability, under P ,
greater than 1− ε.

In order to prove the second part of the theorem we first need to show that Tµ
is measurable. As in the proof of Theorem 2, it is sufficient to verify that the map
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(d, P ) 7→ Tµ,ε (d, ω, P ) is measurable for every ω. For every ω, we have

{(d, P ) : Tµ,ε (d, ω, P ) = 1} =
⋃
d∈N

(
{d} ×

{
P : P

(
ωd
)
>

1

ε
Qµ

(
ωd
)})

the result then follows from the measurability of the map P 7→ P (ωn)− 1
ε
Q (ωn).

Now consider a strategic forecaster. For every d and every P ∈ ∆ (Ω), Lemma 2
implies

Qµ ({ω : Tµ,ε (d, ω, P ) = 1}) = Qµ

({
ω : εP

(
ωd
)
> Qµ

(
ωd
)})

< ε.

That is, for every d and P a forecaster who chooses a deadline d and then predicts
according to P passes the test with probability, under Qµ, lower than ε. It then follows
that for every mixed strategy ζ we have

(Qµ ⊗ ζ) ({(ω, (d, P )) : Tµ,ε (d, ω, P ) = 1})

=

∫
N×∆(Ω)

Qµ ({ω : Tµ,ε (d, ω, P ) = 1}) dζ (d, P ) < ε.

So, by Fubini’s theorem,∫
Ω

ζ ({(d, P ) : Tµ,ε (d, ω, P ) = 1}) dQµ (ω) < ε.

Fix a strategy ζ. Let π be the marginal of ζ with respect to N. For each d with
π (d) > 0 let ζd be the marginal with respect to ∆ (Ω) of the conditional probability
measure ζ (·| {d} ×∆ (Ω)). For each d, the function ω 7→ ζd ({P : Tµ,ε (d, ω, P )} = 1) is
Fd-measurable. Hence it is continuous. It then follows that

ζ ({(d, P ) : Tµ,ε (d, ω, P ) = 1}) =
∑

d:π(d)>0

π (d) ζd ({P : Tµ,ε (d, ω, P ) = 1})

is a continuous function of ω. Therefore,
∫

Ω
ζ ({(d, P ) : Tµ,ε (d, ω, P ) = 1}) dQµ (ω) is

the integral with respect to Qµ of a continuous function. Hence, it is a continuous
function of µ. Because µ

(
Λ
)

= 1, then the same argument used in the proof of Theorem
2 shows that µ can be approximated by a prior with finite support µζ ∈ ∆o (Λ) such
that ∫

Ω

ζ ({(d, P ) : Tµ,ε (d, ω, P ) = 1}) dQµζ (ω) < ε.
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Thus, there must be a law Pζ ∈ Λ in the support of µζ such that

(Pζ ⊗ ζ) ({(ω, (d, P )) : Tµ,ε (d, ω, P ) = 1})

=

∫
Ω

ζ ({(d, P ) : Tµ,ε (d, ω, P ) = 1}) dPζ (ω) < ε.

A.5 Results on Maximal and identifable paradigms

Proof of Remark 1. Let {P1, P2, ...} be a countable subset of distinct elements of Λ.
Given ε > 0, consider a prior µ ∈ ∆ (Λ) assigning probability 1 to {P1, P2, ...} and such
that µ ({Pi}) ≤ ε for all 1 ≤ i < ∞. For any P ∈ Λ, we have P ({ω : ϕ (ω) = P}) = 1

and
Qµ ({ω : ϕ (ω) = P}) =

∑
i

µ (Pi)Pi ({ω : ϕ (ω) = P}) ≤ ε.

Thus, ‖P −Qµ‖ ≥ 1 − ε. By Theorem 1, Λ is testable. An example of a testable but
non-identifiable paradigm is provided in the main text.

Given any two sets Y and Z and D ⊆ Y × Z, for every y ∈ Y and z ∈ Z we will
denote by Dy = {z : (y, z) ∈ D} and Dz = {y : (y, z) ∈ D} the corresponding sections.
Given a complete and separable metric space Y , let B (Y ) denote the corresponding
Borel sigma-algebra. Finally, recall that two measures P and Q are orthogonal if
‖P −Q‖ = 1. Equivalently, if and only if there exists an event E such that P (E) = 1

and Q (E) = 0. Given a complete and separable metric space Z, let B (Z) be the
sigma-algebra of Borel subsets of Z and ∆ (Z) the space of Borel probability measures
on Z.

Theorem 13 (Burgess and Mauldin (1981)) Let Y and Z be complete and sepa-
rable metric spaces. Let m : Y × B (Z) → [0, 1] be such that m (y, ·) belongs to ∆ (Z)

for every y ∈ Y and m (·, E) is Borel for every E ∈ B (Z). Then either

a There exists a non-empty compact perfect K ⊆ Y and a Borel D ⊆ Y × Z such
that the sections {Dy : y ∈ K} are pairwise disjoint and satisfy m (y,Dy) = 1 for
every y ∈ K; or

b If S is a subset of Y such that the measures {m (y, ·) : y ∈ S} are pairwise orthogonal,
then S is countable.
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Proof of Theorem 5. Let Λ be a paradigm. By assumption, it is measurable.
By Theorem 13.1 in Kechris (1995), there exists a topology τ on ∆ (Ω) such that Λ

is a complete and separable metric space and the Borel sigma-algebra generated by τ
is equal to the original Borel sigma-algebra generated by the weak* topology. From
now on endow ∆ (Ω) with the topology τ . We apply the Burgess-Mauldin Theorem, by
letting Y = Λ, Z = Ω and m (P,E) = P (E) for all (P,E) ∈ Λ×B. We now show that
condition (b) in the theorem is violated. Let µ ∈ ∆ (Λ) be a prior such that Qµ ⊥ P for
every P ∈ Λ. Let ω1 be the first uncountable ordinal. We now construct a transfinite
sequence {Pα : α < ω1} of measures belonging to Λ and mutually orthogonal. The
proof proceeds by induction. Suppose that a transfinite sequence {Pα : α < β} of
pairwise orthogonal measures has been defined for some β < ω1. For every α < β there
exists an event Eα ∈ B such that Qµ (Eα) = 1 and Pα (Eα) = 0. Let Eβ =

⋂
α<β Eα.

By definition, Pα (Eβ) = 0 for every α < β. Because {α : α < β} is countable,
then Qµ (Eβ) = 1. Hence

∫
Λ
P (Eβ)µ (dP ) = 1. So, µ ({P : P (Eβ) = 1}) = 1. In

particular, there exists a law Pβ ∈ Λ such that Pβ (Eβ) = 1. Hence, the measures
{Pα : α < β} ∪ {Pβ} are mutually orthogonal. Proceeding by induction, we obtain a
collection {Pα : α < ω1} of mutually orthogonal measures. We conclude that (b) is
violated.

Therefore, there exists a compact perfect subset Γ ⊆ Λ and a Borel D ⊆ Λ × Ω

such that for every P and Q belonging to Γ, if P 6= Q then the sections DP and DQ

are disjoint and satisfy P (DP ) = Q (DQ) = 1. Let Ω1 be the projection of D on Ω.
We now show that Ω1 is measurable. Notice that for each ω, the section Dω contains
at most one measure (if P,Q ∈ Dω then ω ∈ DP ∩DQ, but DP ∩DQ = ∅ if P 6= Q).
It follows then by the Lusin-Novikov theorem (Theorem 18.10, Kechris (1995)) that
Ω1 is in fact Borel. Now fix a measure Q ∈ Γ and define f : Ω → Γ as f (ω) = P if
(ω, P ) ∈ D and f (ω) = Q if ω ∈ Ωc

1. The graph of f is D∪ (Ωc
1 × {Q}), a Borel subset

of Ω ×∆ (Ω). Hence, f is Borel (Theorem 14.12, Kechris (1995)). For each P ∈ Γ we
have P ({ω : f (ω) = P}) ≥ P (DP ) = 1. Hence Γ is identifiable. The first part of the
proof is concluded by taking Λ̃ to be equal to Γ.

Now assume, in addition, that Λ is closed. Then Λ is a complete and separable
metric space. So, we can take τ to be the original weak* topology. The set Γ is
compact and perfect, so it contains a subset Λ̃ ⊆ Γ that is homeomorphic to {0, 1}∞

(see Corollary 6.5, Kechris (1995)). The space Λ̃ is identifiable: let E = f−1(Λ̃) and fix
a measure R ∈ Λ̃. Then define g : Ω → Λ̃ as g (ω) = f (ω) if ω ∈ E; and g (ω) = R

if ω ∈ Ec. Then, for every Borel subset Ψ ⊆ Λ̃, we have g−1 (Ψ) = f−1 (Ψ) ∩ E if
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R /∈ Ψ and g−1 (Ψ) = (f−1 (Ψ) ∩ E) ∪ Ec if R ∈ Ψ. So, g is Borel. In addition, for
each P ∈ Λ̃ we have P ({ω : g (ω) = P}) = 1. It is standard to verify that {0, 1}∞ is
homemorphic to Ω. It is also immediate to prove that the map ω 7→ δω mapping each
path to the corresponding degenerate distribution is an homeomorphism in the weak*
topology. Thus, Λ̃ is homemorphic to to the class of deterministic distributions.

Proof of Theorem 6. As shown by Theorem 2, in order to prove that Λε
P is ε-

testable it is enough to find a prior µ ∈ ∆
(
Λε
P

)
such that P = Qµ. Consider the

set N = {ω : P ({ω}) = 0}. Each ω ∈ N satisfies δω ∈ Λε
P . Notice that P can have

at most countably many atoms, so N is dense. The function ω 7→ δω, ω ∈ Ω, is
continuous, and so {δω : ω ∈ N} is dense in {δω : ω ∈ Ω}. We can therefore conclude
that {δω : ω ∈ Ω} ⊆ Λε

P . Consider now the prior defined as µ (Γ) = P ({ω : δω ∈ Γ})
for every measurable set Γ ⊆ ∆ (Ω). Standard arguments shows that µ is well defined
and satisfies Qµ = P . Because µ ({ω : δω ∈ Ω}) = 1, then µ ∈ ∆

(
Λε
P

)
. Therefore, Λε

P

is ε-testable.
Suppose, as a way of contradiction, that Λε

P ⊆ Λ, where Λ is a paradigm that is ε′-
testable and ε′ < ε

2
. As shown in the proof of Theorem 1, there exists a prior ν ∈ ∆

(
Λ
)

such that ‖Qν −Q‖ ≥ 1− 2ε′ for every Q ∈ Λ. Equivalently,

{Q ∈ ∆ (Ω) : ‖Q−Qν‖ < 1− 2ε′} ⊆ Λc

By assumption, Λc ⊆ (Λε
P )c = {Q ∈ ∆ (Ω) : ‖Q− P‖ ≤ 1− ε}, so

{Q ∈ ∆ (Ω) : ‖Q−Qν‖ < 1− 2ε′} ⊆ {Q ∈ ∆ (Ω) : ‖Q− P‖ ≤ 1− ε} . (17)

To show that this leads to a contradiction, let R ∈ ∆ (Ω) be a measure such that
‖R−Qν‖ = ‖R− P‖ = 1. For instance, let R = δω for some path ω that is not an
atom of either Qν or P . Fix t ∈ (2ε′, ε) and consider the measure tQν + (1− t)R. We
have

‖tQν + (1− t)R−Qν‖ = (1− t) ‖R−Qν‖ = (1− t) < 1− 2ε′.

Hence, it follows from (17) that ‖tQν + (1− t)R− P‖ ≤ 1− ε. Now let E be an event
such that R (E) = 1 and Qν (E) = P (E) = 0. Then

1− ε ≥ ‖tQν + (1− t)R− P‖ ≥ tQν (E) + (1− t)R (E)− P (E) = 1− t.

By construction, 1− t > 1− ε. So we obtain a contradiction.
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Proof of 7. By Theorem 1, there exists a prior µ ∈ ∆
(
Λ
)
such that Λ ⊆ Λε

Qµ
.

Using the fact that ‖Qµ − P‖ > 1 − ε for every P ∈ Λε
Qµ

, as in the proof of Theorem
2 we obtain a likelihood-ratio test T such that P ({ω : T (ω, P ) = 1}) > 1 − ε and
Qµ ({ω : T (ω, P ) = 1}) < ε for every P ∈ Λε

Qµ
. The proof that for every ζ there exists

a law Pζ ∈ Λ such that EPζ⊗ζ [T ] ≤ ε follows then by replicating the argument in the
proof of Theorem 2.

A.6 Other Proofs

Proof of Theorem 8. Let Nn (ω) be the number of periods the outcome x has
occurred along the path ω up to time n. Finally, given a transition probability π,
denote by Ex,π [τ ] the expected time it will take a Markov chain with transition π and
starting from x to return to outcome x. It is a standard fact that for every Markov
chain Pρ,π,

lim
n→∞

1

n
Nn (ω) =

1

Ex,π [τ ]
for Pρ,π-almost all paths ω such that τ (ω) <∞.

(see Proposition 6.2.49 in Dembo, 2016). That is, along a path ω where x occurs at
least once, the frequency 1

n
Nn (ω) converges to the constant c (π) = Ex,π [τ ]−1. For each

k ∈ R, let Ek to be the set of paths ω along which the fraction 1
n
Nn (ω) converges to

k. So, each Markov law Pρ,π satisfies Pρ,π
(
E0 ∪ Ec(π)

)
= 1. We now return to the prior

µ. For each α, the constant c (πα) can be easily computed to be 2 − α. The key fact
is that c (πα) 6= c (πα′) whenever α 6= α′. Therefore, given any Markov Pρ,π there is at
most one α ∈ [0, 1] such that c (πα) = c (π). Because Pα

(
Ec(πα)

)
= 1 for every α then

Qµ

(
E0 ∪ Ec(π)

)
=

∫ 1

0

Pα
(
E0 ∪ Ec(π)

)
dα = 0.

Because Pρ,π
(
E0 ∪ Ec(π)

)
= 1 then ‖Qµ − Pπ,ρ‖ = 1 . So, by Theorem 1, the prior µ

guarantees that Λ is testable.

Proof of Theorem 9. Let Λ be ε-testable in n periods. Then, by substituting
the total-variation distance with the semi-distance ‖Q− P‖n and applying the same
arguments used in the proof of Theorem 1 it follows that there exists a prior µ ∈ ∆

(
Λ
)

such that ‖Qµ − P‖n > 1 − 2ε for all P ∈ Λ. Only one change is necessary: the
same results in Shiryaev (2016) cited in the proof of Theorem 1 imply ‖P −Q‖n =
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maxφ
∣∣∫

Ω
φdP −

∫
Ω
φdQ

∣∣ where the maximum is taken over all functions φ : Ω→ [0, 1]

that are Fn-measurable.
Conversely, let µ ∈ ∆

(
Λ
)
be a prior such that ‖Qµ − P‖n > 1 − ε for all P ∈ Λ.

The first part of the proof follows, verbatim, the proof of Theorem 2 (notice that by
assumption nP ≤ n for every P ∈ Λ).

Proof of Theorem 10. Let µ be a prior such that ‖Qµ − P‖n > 1 − δ for every
P ∈ Λ. Then, Lemma 3 implies

P

({
ω : P (ωn) >

1

ε
Qµ (ωn)

})
> 1− δ

ε
− δ > 1− ε

Hence, the test does not reject the truth with probability 1 − ε. By Lemma 2,
Qµ

({
ω : P (ωn) > 1

ε
Qµ (ωn)

})
< ε. That the test is ε-nonmanipulable follows by repli-

cating, with only notational changes, the proof of Theorem 4.

B Appendix: Characterization of uniform testability

The purpose of this section is to provide necessary and sufficient conditions for a
paradigm to be uniformly testable in the sense of Definition 10.

Definition 11 Given δ > 0 and a paradigm Λ of ∆ (Ω), a sequence of priors (µn) in
∆
(
Λ
)
is δ-separating if:

1. there exists a sequence (εn) such that εn ↓ 0 and
∥∥Qµn − P

∥∥ ≥ 1 − εn for every
P ∈ Λ; and

2. there exists a constant λ > 0 such that infn µn (Bδ (P )) ≥ λ for every P ∈ Λ.

Property (1) mirrors the characterization of Theorem 1. Property (2) imposes a
uniform bound, along the sequence, on the probability of each ball of radius δ. The
next theorem shows that this property characterizes uniform testability.

Theorem 14 Let Λ be a paradigm. If there exists a sequence of priors (µn) that is
δ-separating then Λ is uniformly testable with precision δ. Conversely, if Λ is uniformly
testable with precision δ then there exist a sequence of priors (µn) that is δ′-separating
for every δ′ > δ.

Given this result, Theorem 11 follows from the following lemma.
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Lemma 4 Let µ ∈ ∆ (∆ (Ω)) be a prior and let Γ ⊆ ∆ (Ω) be its support. For every
δ > 0 there exists a constant λ > 0 such that

µ (Bδ (P )) ≥ λ for all P ∈ Γ.

The result implies Theorem 11: Given a prior µ with support Λ and such that
‖Qµ − P‖ = 1 for every P ∈ Λ, the constant sequence (µn) where µn = µ for every n
is δ-separating for every δ > 0. Hence, by Theorem 14 the paradigm Λ is uniformly
testable with precision δ for every δ > 0.

B.1 Proofs

Proof of Lemma 4. Suppose not. Then there must exist a sequence (Pn) in Γ such
that µ (Bδ (Pn))→ 0 as n→∞. Using the compactness of Γ we can assume (taking a
subsequence if necessary) that Pn converges to a law P ∈ Γ. Denote by d the distance
fixed to metrize the weak* topology. For each law Q, if Q ∈ Bδ (P ) then d (Pn, Q) < δ

for all n large enough. Thus Q ∈ Bδ (Pn) for all n large enough. Thus,

1Bδ(P ) (Q) ≤ lim inf
n→∞

1Bδ(Pn) (Q) for every Q ∈ Γ

where 1Bδ(P ) denotes the indicator function of Bδ (P ). By applying Fatou’s lemma, we
can then conclude that

µ (Bδ (P )) ≤
∫

∆(Ω)

lim inf
n→∞

1Bδ(Pn)dµ ≤ lim inf
n
µ (Bδ (Pn)) = 0

Hence µ (Bδ (P )) = 0. Since P ∈ Γ, then µ must satisfy µ (Bγ (P )) > 0 for every γ > 0

so we reach a contradiction, and the proof is finished.

Proof of Theorem 14. Let (µn) be a sequence of priors that is δ-separating. Let
λ > 0 be such that infn µn (Bδ (P )) ≥ λ for every P ∈ Λ. As shown in the proof of
Theorem 2, we can find for every n a finite test Tn with the properties that Tn does
not reject the truth with probability 1− εn and for every strategy ζ,∫

Λ

EP⊗ζ [Tn] dµn (P ) ≤ εn.
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By applying Markov’s inequality we obtain

µn
({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

})
≥ 1− 1

kεn
≥ 1− 1

k
for all ζ.

Fix ε > 0 and choose k large enough such that both 1
k
≤ ε and 1− 1

k
+ λ > 1 hold. In

addition, given k choose N large enough such that kεn ≤ ε for all n > N . Now fix a
particular n > N . Given Po ∈ Λ and a strategy ζ, we have

µn
({
P ∈ Λ : EP⊗ζ [Tn] ≤ ε

}
∩Bδ (Po)

)
≥ µn

({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

}
∩Bδ (Po)

)
= µn

({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

})
+µn (Bδ (Po))− µn

({
P ∈ Λ : EP⊗ζ [Tn] ≤ kεn

}
∪Bδ (Po)

)
≥ 1− 1

k
+ λ− 1 > 0.

This implies we can select a measure Qζ ∈ Λ ∩ Bδ (Po) such that EQζ⊗ζ [Tn] ≤ ε. By
continuity of the map P 7→ EP⊗ζ [Tn] we can then select a measure Pζ ∈ Λ ∩ Bδ (P0)

such that EP⊗ζ [Tn]. Because Po is arbitrary, then it follows that the test Tn satisfies
the conditions of Definition 10. Because ε is arbitrary, it follows that Λ is uniformly
testable with precision δ.

Now, let Λ be uniformly testable with precision δ. Fix ε > 0. Then we can find a
test T such that

sup
ζ∈∆(∆(Ω))

inf
Q∈Λ∩Bδ(Po)

EQ⊗ζ [T ] ≤ ε

for every Po ∈ Λ. By replicating the proof of Theorem 1 we obtain for each Po ∈ Λ and
every ε > 0 a prior µ [ε, Po] ∈ ∆

(
Λ ∩Bδ (Po)

)
such that

∥∥Qµ[ε,Po] − P
∥∥ ≥ 1 − 2ε for

every P ∈ Λ. Let {P 1, P 2, ...} be a countable dense subset of Λ. Define now the priors

π =
∑
i

2−iδP i and µ [ε] =
∑
i

2−iµ
[
ε, P i

]
.

Fix δ′ > δ and Po ∈ Λ. We have

µ [ε] (Bδ′ (Po)) =
∑
i

2−iµ [ε, Pi] (Bδ′ (Po))
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By assumption µ [ε, Pi]
(
Bδ (Pi)

)
= 1 for every i. Hence,

µ [ε] (Bδ′ (Po)) ≥ µ [ε]
({
Pi : Bδ (Pi) ⊆ Bδ′ (Po)

})
= π

({
Pi : Bδ (Pi) ⊆ Bδ′ (Po)

})
.

It follows from the triangle inequality thatBδ′−δ (Po) ⊆
{
Q ∈ ∆ (Ω) : Bδ (Q) ⊆ Bδ′ (Po)

}
.

Therefore µ [ε] (Bδ′ (Po)) ≥ π (Bδ′−δ (Po)). Now we can apply Lemma 4 to π and con-
clude that there exists a constant λδ′−δ > 0, independent of Po and ε, such that

µ [ε] (Bδ′ (Po)) ≥ π (Bδ′−δ (Po)) ≥ λδ′−δ.

The last step consists in estimating the distance
∥∥Qµ[ε] − P

∥∥ given P ∈ Λ. For each i
we have

∥∥Qµ[ε,Pi] − P
∥∥ ≥ 1−2ε so we can find an event Ei ∈ B such that Qµ[ε,Pi] (Ei) ≥

1−2ε and P (Ei) ≤ 2ε. For every n ∈ N, the distance
∥∥Qµ[ε] − P

∥∥ = maxE∈BQµ[ε] (E)−
P (E) satisfies

∥∥Qµ[ε] − P
∥∥ = max

E∈B

∞∑
i=1

2−iQµ[ε,Pi] (E)− P (E) (18)

≥ max
E∈B

n∑
i=1

2−iQµ[ε,Pi] (E)− P (E)

≥
n∑
i=1

2−iQµ[ε,Pi]

(
n⋃
l=1

El

)
− P

(
n⋃
l=1

El

)
≥

(
1− 2−n

)
(1− 2ε)− 2nε

where the last inequality follows from

Qµ[ε,Pi]

(
n⋃
l=1

El

)
≥ Qµ[ε,Pi] (Ei) ≥ 1− 2ε and P

(
n⋃
l=1

El

)
≤

n∑
l=1

P (El) ≤ n2ε.

Notice that the lower bound (1− 2−n) (1− 2ε)− 2nε does not depend on P .
Now let εn = 2−n for each n, and consider the sequence of priors (µ [εn]). As shown

above, they satisfy µ [εn] (Bδ′ (Po)) ≥ λδ′−δ > 0 for every n and every Po ∈ Λ. Moreover,
substituting ε = 2−n in (18) we obtain

∥∥Qµ[εn] − P
∥∥ ≥ (1− 2−n+1)

2 − n2−n+1 for all
P ∈ Λ. So, infP∈Λ

∥∥Qµ[εn] − P
∥∥ → 1 as n → ∞. This concludes the proof that the

sequence (µ [εn]) is δ′-separating for every δ′ > δ.
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