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Abstract

We introduce a new cost function over experiments, f-information, based on the theory
of multivariate statistical divergences, that generalizes Sims’s classic model of rational
inattention as well as the class of posterior-separable cost functions. We characterize its
behavioral predictions by deriving optimality conditions that extend those of Matéjka and
McKay (2015) and Caplin, Dean, and Leahy (2019) beyond mutual information. Using
these tools, we study the implications of f-information in a number of canonical decision
problems. A strength of the framework is that it can be analyzed using familiar methods
of microeconomics: convex duality and the Arrow-Pratt approach to expected utility.
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1 Introduction

Traditional models of information acquisition depict the decision maker as a statistician who
observes a signal from a parametric family of experiments and can increase its precision at a
cost. More recent models abandon this structure in favor of a non-parametric formulation,
where the agent can select virtually any experiment (i.e. any mapping from states to signal
distributions) as an information source. This captures the idea that the agent can fine-tune
how they learn about the environment based on the decision problem at hand. Limitations
on learning are then represented by an information cost function defined over experiments.

Following Sims (2003), much of the literature has assumed that the cost of information
is given by Shannon’s mutual information, due in large part to its tractability. In this case,
as Matéjka and McKay (2015) and Caplin, Dean, and Leahy (2019) have shown, optimal
behavior resembles standard multinomial logit and the information acquisition problem can
be solved via a basic variational condition.

Mutual information is a highly specific functional form, and a growing literature has
begun to study alternative cost functions (Morris and Strack, 2019; Hébert and Woodford,
2021; Caplin, Dean, and Leahy, 2022; Pomatto, Strack, and Tamuz, 2023; Walker-Jones, 2023;
Bloedel and Zhong, 2024, among others). Despite much progress in this direction, extending
the analysis beyond mutual information has remained challenging. Unlike utility or production
functions, which are defined over familiar economic objects, information costs are defined on
the abstract, infinite-dimensional space of experiments, making them inherently harder to
specify. Assumptions on learning technologies, which are rarely observed directly, are also
more difficult to test. Finally, no other cost function in the literature leads to predictions that
have a structure as simple as those of mutual information. For example, the link between
mutual information and logit has found no immediate generalizations to these other costs.

In this paper, we introduce a new family of information costs, f-information. This family,
which is parametrized by a convex function f, encompasses mutual information and many
other cost functions in the literature as special cases. Our main result is a characterization
of optimal behavior that extends those in Matéjka and McKay (2015) and Caplin, Dean,
and Leahy (2019) to f-information. Building on this characterization, we identify a number
of tractable special cases of the framework, study their implications in a range of decision
problems of interest, and relate the predicted behavior to well known models of random choice,
such as additive perturbed utility (Fudenberg, Iijima, and Strzalecki, 2015) and nested logit.

Formally, given a finite set © = {01, ..., 60,} of states, information is acquired by observing
the outcome of an experiment P = (2, (Py)gco), where Py(w) is the probability of signal
realization w € ) in state 6. The f-information cost of an experiment P is defined as

Py, (w) By, (w) >
aw) T aw) /)7

[(P) = min 3 aw)f ( &

aceA(Q) e

where f is a non-negative convex function satisfying f(1,...,1) = 0. For a fixed distribution



« over signal realizations, the map f assigns a penalty based on the likelihood ratios between
the state-contingent distributions Py, ,..., P, and «. In statistics, this quantity is known as
the f-divergence between P and a.' The cost of P is computed by selecting the measure a
for which the average penalty is minimal. We call the solution to the minimization problem
(1) the f-mean of P. Intuitively, it can be seen as a best approximation of the experiment P.

The notion of f-information formalizes the idea that an experiment P is informative when
its state-contingent distributions Py, ,..., P, are far apart, and uninformative when they
nearly coincide. When the state-contingent distributions cluster around their f-mean, the
experiment conveys little information. When instead they vary across states, the experiment
is more costly but also more informative. By varying the transformation f, we obtain a menu
of cost functions that remain Blackwell monotone and convex.

‘We obtain mutual information when

fla) = m(0)(x(6)logz(6) — x(0) + 1),

0cO
where 7 is the prior belief over states. Another special case of interest is the family of
posterior-separable costs, introduced by Caplin, Dean, and Leahy (2022) as a generalization of
mutual information, which includes most other cost functions that have been proposed in the
literature. In all these cases, the f-mean coincides with the unconditional signal distribution

In the first part of the paper, we characterize the behavioral implications of f-information.
We study general decision problems where the agent must choose from a finite set A of
actions, and describe the optimal stochastic choice rule P = (A, (Py)sco), where Py(a) is the
probability of taking action a in state 6.

To fix ideas, consider first the case of mutual information. As is well known, a stochastic
choice rule P is optimal under mutual information if and only if it satisfies two conditions.
First, each conditional probability Py is related to the unconditional distribution P, by the
modified logit formula
_ Py (a)e™?) 2)

Sben Pr(b)eb®)’

where a(f) is the payoff that action a pays in state §. Second, the unconditional probability

Pg (a)

Py is the solution to an auxiliary concave optimization problem over the set A(A).2

For f-information, we obtain a parallel two-step characterization. Central to this result is
the function f*, the convex conjugate of the transformation f. We show that a stochastic
choice rule P is optimal if and only if each conditional probability Py satisfies:

Py(a) = a(a)Vef*(am — X), (3)

1See Ali and Silvey (1966), Csiszar (1967), and Duchi, Khosravi, and Ruan (2018).
2The characterization has found wide application in models of information acquisition, including studies on

labor economics (Acharya and Wee, 2020), optimal pricing (Boyact and Akgay, 2018), insurance choice (Brown
and Jeon, 2024), and industrial organization (Cusumano, Fabbri, and Pieroth, 2024), among many others.



where « is the f-mean of the stochastic choice rule, Vyf* is the partial derivative of f*
with respect to state , and A € R® is a vector of Lagrange multipliers ensuring that the
conditional probabilities Py sum to 1. The prior 7 enters by multiplying the vector a € R® of
state-contingent payoffs statewise.

Under mutual information, « equals the unconditional distribution P, and Vg f*(am — \)

is proportional to ¢(®)

, an exponential transformation of the payoff a(f). In this case,
condition (3) reduces to (2). Condition (3) establishes a more general relation between choice
probabilities and the f-mean of P, with Vg f* replacing the exponential function. The map
Vo f* is increasing, and it may depend on the entire payoff vector a rather than just a(0).
In condition (2), solving for Py requires determining the endogenous term P, via an
auxiliary optimization problem. In condition (3), it requires solving for the quantities oz and
A, which we show are the solutions to an auxiliary saddle-point problem. Once again, this
auxiliary problem is of lower dimension than the original information acquisition problem.
A notable feature of our result is that the transformation f appears in (3) not directly, but
through its convex conjugate f*. As in other instances of duality—Marshallian vs. Hicksian
demand, cost vs. profit functions, or linear constraints vs. shadow prices—these two objects
provide complementary perspectives on the problem. Assumptions stated in terms of f
determine how the cost changes as a function of the experiment, whereas assumptions stated
in terms of f* determine how the primitives of the decision problem (i.e. the prior and
action set) translate into choice probabilities. While these two perspectives are ultimately
equivalent—there is a one-to-one relation between f and f*—the optimality condition (3)
establishes that properties of the conjugate f* are more directly related to behavior.

In the second part of the paper, we focus on a tractable special case of f-information
and apply it to a number of canonical decision problems. We consider a specification that is
additively separable and symmetric across states:

0cO

where ¢ is a univariate convex function. This functional form was first studied, in the context
of information theory, by Csiszar (1972), and we accordingly refer to it as Csiszdr information.
Compared to the general case, it preserves much of the tractability of mutual information—for
example, the Lagrange multiplier can be computed statewise. This is a new class of cost
functions that, aside from the special case of mutual information, does not overlap with the
family of posterior separable costs studied in most prior work.

In Section 5 we show that the optimal stochastic choice rule under Csiszar information
closely resembles additive perturbed utility, a well-known model of discrete choice that
generalizes logit (Fudenberg, Iijima, and Strzalecki, 2015). When the decision problem is
symmetric, the predictions of the two models coincide. For more general problems, the optimal

rule under Csiszar information differs by an endogenous term, «, the f-mean of the choice



rule. We interpret a(a) as the salience of action a, and characterize what it means for one
action to be more salient than another.

Section 6 shows how the properties of the optimal choice rule can be analyzed through
the degree of convexity of the conjugate function ¢*. To measure this convexity, we draw
on tools from risk theory, in particular the Arrow-Pratt coefficient of ¢*. As we establish,
the Arrow-Pratt coefficient measures the decision maker’s response to a marginal increase in
the stakes of the decision problem. We also connect the Arrow-Pratt coefficient to the ways
behavior under Csiszar information can deviate from standard ITA properties.

In Section 7 we study inconclusive evidence, i.e. situations where informative and uninfor-
mative signals coexist, as in medical tests that yield not only positive or negative results but
also inconclusive ones. Although common in practice, such signals cannot be rationalized by
models of information acquisition based on mutual information or posterior separability (ex-
cept for knife-edge cases), leading these models to generate counterfactual predictions (Denti,
2022). In contrast, we show that Csizar information can accommodate this phenomenon.

Section 8 concerns a classic question in psychology, namely, how increasing rewards for
accuracy translate into a higher probability of making a correct choice. We analyze a standard
task in which the decision maker’s objective is to correctly identify the true state, and study
how the predicted probability of a correct choice varies with the primitives of the problem.
It has been observed that, in perceptual experiments, subjects tend to be less responsive to
incentives than the benchmark model based on mutual information predicts (Dean and Neligh,
2023). We show that Csiszar information allows for a much wider range of predictions and
demonstrate that properties of the resulting psychometric curve, such as it being S-shaped,
can be directly linked to the prudence index of ¢*, another tool we borrow from risk theory.

In the last part of the paper, we apply the framework of f-information to address a
well-known limitation of mutual information: the fact that states enter into the analysis only
through the payoff consequences of different actions. This property rules out the possibility
that distinguishing between more similar states, whether by physical characteristics or by their
proximity, may be costlier. It also leads to unrealistic predictions, such as sharp discontinuities
in behavior where smoother adjustments would be expected (e.g., Hébert and Woodford, 2021;
Morris and Yang, 2022; Dean and Neligh, 2023; Pomatto, Strack, and Tamuz, 2023).

We propose two families of models, both instances of f-information, that take into account
the structure of the state space. The common and central idea is that agents simplify the
environment by representing states through a smaller set of attributes, and then acquire
information as if attributes were the actual states. This attribute-based framework allows us
to introduce interpretable parameters that capture how similarity between states shapes the
cost of learning.

The first model, which we call Perceptual Csiszdr information, extends Csiszar information
by explicitly incorporating the decision maker’s hardwired limitations in distinguishing
between states. Although the resulting cost function admits a richer set of parameters and



loses the additively separable structure of standard Csiszar information, we develop a solution
method tailored to this broader class and show that many of the analytical tools used in the
separable case remain applicable. We illustrate the model in a canonical one-dimensional
discrimination task and show that it yields intuitive sufficient conditions under which the
predicted psychometric curve is S-shaped.

The second model, Nested Shannon entropy, is a posterior-separable cost function that
generalizes mutual information by allowing the modeler to specify which subsets, or nests,
of states share similar attributes. These costs describe the decision-maker as following an
optimal two-step learning process in which they first learn about which nest contains the true
state, and then learn about the states within that nest. We relate the resulting behavior to the
well-known nested logit model, and show that the cost function connects closely to Hébert and
Woodford’s (2021) neighborhood-based costs and to Walker-Jones’s (2023) multi-attribute
Shannon entropy. We apply this model to a multi-dimensional discrimination task and show
that it can capture the idea that learning about a multi-dimensional state can be harder than
learning about a uni-dimensional one.

1.1 Related literature

Building on Sims’ (2003) rational inattention framework and the optimality conditions for
mutual information derived by Matéjka and McKay (2015) and Caplin, Dean, and Leahy
(2019), a burgeoning literature has examined the properties and behavioral implications
of information costs (see Mackowiak, Matéjka, and Wiederholt, 2023; Strzalecki, 2025, for
surveys). Our paper connects to several strands of this literature, as well as the adjacent

literature on discrete choice.

The posterior-separable case. To date, most research on rational inattention has centered
on the class of posterior-separable costs introduced by Caplin, Dean, and Leahy (2022). For
an experiment P = (€2, (Py)gpeco), these cost functions take the form

c(P) = Z Pr(w)H (pu),
wesupp(Pr)

where P, € A(Q) is the unconditional signal distribution, p,, € A(©) is the posterior belief
about the state following signal realization w, 7 € A(©) is the prior, and H is a convex
entropy function assigning a cost to each posterior. By allowing for general entropy functions,
this formulation provides an extension of Sims’ mutual information cost, which arises when H
is proportional to Shannon entropy.?

We show that f-information, despite generalizing mutual information in a seemingly

distinct way, includes the class of posterior separable costs as a special case. In the posterior-

3 Applications include mechanism design (e.g., Mensch, 2022; Mensch and Ravid, 2022; Thereze, 2025;
Bloedel and Segal, 2025), information design (e.g., Lipnowski, Mathevet, and Wei, 2020; Bloedel and Segal,
2021; Yoder, 2022), and macroeconomics (e.g., Hébert and La’O, 2023; Angeletos and Sastry, 2025).



separable case, the transformation f and its conjugate f* can be expressed simply in terms
of the entropy H and its conjugate H™*, respectively. As a consequence, our analysis of
f-information yields optimality conditions for information acquisition problems with posterior
separable costs.

Given the body of work on posterior separable costs, we are obviously not the first to
derive such conditions. Indeed, it is well known that optimal behavior under these costs
can be characterized via concavification and related Lagrangian methods.* Nevertheless, our
analysis offers a new perspective by shifting the focus from the entropy H to its conjugate H*.

To illustrate, fix a posterior-separable cost with entropy H. Concavification yields a primal

first-order condition characterizing the optimal posterior p, at which action a is chosen:
a— Ay € 0H(p,), (4)

where action a is identified with the vector of state-contingent utilities it generates, the
subdifferential 0H (p,) € R® represents the marginal cost of producing posterior p,, and
Ar € R® is a Lagrange multiplier ensuring Bayes plausibility with respect to prior 7.> Versions
of condition (4) appear in Caplin, Dean, and Leahy (2022, Lemma 1), Denti (2022, Lemma
10), Lipnowski and Ravid (2023, Proposition 3), and Bloedel and Segal (2025, Corollary 2),
among others.

Condition (4) is particularly useful in revealed preference and mechanism design settings,
where the goal is to construct a utility function or an entropy function to rationalize a given
distribution of posteriors.® However, when the goal is to characterize the optimal behavior in
a given decision problem—i.e. to solve an information acquisition problem—one must invert
condition (4) to determine the posterior p, as a function of the payoffs and multiplier. When
H~ is differentiable, this inversion yields

pa = VH"(a—\;), (5)

which is equivalent to the dual first-order condition (3) obtained via our approach.

These observations underscore that, for the purpose of studying the predictions of models
of information acquisition, the central object is the conjugate H*. Indeed, equation (5) shows
that what matters is not the tractability of H, but rather that of its conjugate. To appreciate
this point, note that there is no guarantee that both H and H* have simple closed forms. For
instance, the posterior-separable costs in Hébert and Woodford (2021), Pomatto, Strack, and

4See, e.g., Gentzkow and Kamenica (2014), Caplin, Dean, and Leahy (2022), Denti (2022), Mensch (2022),
Lipnowski and Ravid (2023), Muller-Itten, Armenter, and Stangebye (2024), and Bloedel and Segal (2025).

®As we show, this multiplier ), is equivalent to the multiplier A in our optimality condition (3) divided
statewise by the prior, i.e. Az (0) = X(0)/7(0).

5In revealed preference exercises, the distribution of posteriors can be inferred by the analyst from the
decision maker’s choice behavior (see, e.g., Caplin and Martin, 2015; Caplin and Dean, 2015). In design
problems, the designer chooses the distribution to be implemented, subject to incentive compatibility (see, e.g.,
Mensch, 2022; Yoder, 2022; Bloedel and Segal, 2025).



Tamuz (2023), and Bloedel and Zhong (2024) have simple functional forms but, to the best of
our knowledge, their conjugates do not. The family of nested entropies that we introduce in
Section 10 offers an example of posterior-separable costs where both H admits a suggestive
interpretation and H* remains tractable.

Beyond posterior separability. While our analysis yields insights for the familiar posterior-
separable case, the class of f-information costs is broader. Prior work has underscored
the behavioral limitations of posterior separability (e.g., Denti, 2022), but our interest in
nonposterior-separable costs extends beyond these critiques. Most of our applications focus
on Csiszar information, a new and tractable family of f-information costs that intersects the
posterior-separable class only in the special case of mutual information. Csiszar information
is therefore of independent interest, distinct from the limitations of posterior separability.

Our paper thus contributes to a smaller but growing strand of the literature on non-
posterior-separable cost functions. We emphasize connections to three lines of related work.

First, several papers develop revealed-preference analyses of costly information acquisition
with general cost functions (e.g., Caplin and Dean, 2015; De Oliveira, Denti, Mihm, and
Ozbek, 2017).” While our main objectives differ, the second part of our paper takes inspiration
from this approach by studying the behavioral implications of f-information in canonical
decision problems. Focusing on Csiszar information in particular, we provide a behavioral
interpretation of the model’s parameters, derive identification and comparative statics results,
and study various ITA properties. A full revealed-preference characterization of f-information
is left for future work.

Second, a number of papers propose non-posterior-separable costs by imposing structural
restrictions directly on the cost function. Most closely related are Mu, Pomatto, Strack, and
Tamuz (2021, Theorem 2) and Bordoli and Iijima (2025), which relax the linearity axioms
of Pomatto, Strack, and Tamuz (2023) to derive costs based on Rényi divergences between
state-contingent signal distributions. Although both these costs and f-information build on
notions of statistical distance, we are not aware of a simple connection between them. Also
related are the sequential learning-proof costs of Bloedel and Zhong (2024), which are defined
via their robustness to dynamic optimization of the information acquisition process. Clarifying
their relation to f-information remains an avenue for future research.

Finally, two recent papers share our interest in deriving optimality conditions for non-
posterior-separable costs, albeit from complementary angles. Lipnowski and Ravid (2023)
show that a version of the primal first-order condition (4) extends to the class of iteratively
differentiable costs, which are locally—but not globally—posterior separable.® Their approach
hinges on smoothness properties of the cost function itself, whereas our derivation of the
dual condition (5) relies instead on the differentiability of the conjugate f*. This, in turn,

"See also Ellis (2018), Chambers, Liu, and Rehbeck (2020), Lin (2022), and Lipnowski and Ravid (2023).
8In contrast to our approach, Lipnowski and Ravid (2023) impose no functional form assumptions on the
cost function aside from iterative differentiability, and also allow for infinite state spaces.
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guarantees strict monotonicity of the underlying f-information cost, and hence captures the
assumption that there is no free information.

Focusing on the class of sequential learning-proof costs, Muller-Itten, Armenter, and
Stangebye (2024) introduce the concept of an ignorance equivalent: a vector of state-contingent
payoffs that serves as a summary statistic in information acquisition problems and, in some
contexts, obviates the need to fully solve for optimal strategies. In the special case of posterior
separable costs, the ignorance equivalent collapses to (a normalized version of) the Lagrange
multiplier in (4) and (5), which likewise plays an important role in our analysis.

Convex duality in choice theory. Our use of convex duality also connects to the literature
on decision-making under uncertainty and discrete choice.

We employ convex conjugacy to analyze a choice model through two complementary
representations, one focused on the properties of the information cost (via the transformation
f), and another that emphasizes its behavioral implications (via f*). The use of dual
representations has a long tradition in the robustness literature, both in decision theory
(Hansen and Sargent, 2001; Maccheroni, Marinacci, and Rustichini, 2006; Strzalecki, 2011)
and in robust optimization (Ben-Tal and Ben-Israel, 1991; Ben-Tal and Teboulle, 2007). A
similar perspective was brought to rational inattention by De Oliveira, Denti, Mihm, and
Ozbek (2017), who study the duality between values and costs in information acquisition
problems.

With regard to discrete choice, dual optimality conditions analogous to (5) date back
to the Williams-Daly-Zachary Lemma for additive random utility models.” Closest to our
work is the family of perturbed utility models, in which stochastic choice arises from control
costs of selecting the correct action. Hofbauer and Sandholm (2002) provide an analogue of
(5) for such models. More recently, Fudenberg, lijima, and Strzalecki (2015) introduce and
characterize the additive perturbed utility model, where the control cost is separable across
actions. We show that the special case of our framework based on Csiszar information is
closely related to additive perturbed utility, and several aspects of our analysis are directly
inspired by Fudenberg, lijima, and Strzalecki (2015).'°

A distinction between our paper and most of the discrete choice literature is that, in
the latter, stochasticity in behavior arises for reasons unrelated to information acquisition
(e.g., utility shocks or control costs). Fosgerau, Melo, De Palma, and Shum (2020) study
the intermediate case in which the decision maker faces a Bregman information cost—a cost
function over stochastic choice rules defined via a Bregman divergence. Using convex duality,
they provide an elegant extension of Matéjka and McKay (2015). However, their analysis
connects only partially to information acquisition, as Bregman information costs are not

generally Blackwell monotone (Cheng and Kim, 2025). Whenever Blackwell monotonicity

9See Strzalecki (2025) for a recent treatment.
Flynn and Sastry (2023) extend the additive perturbed utility model to settings with an uncertain state.
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fails, these cost functions cannot be interpreted as arising solely from an underlying process of
costly information acquisition; instead, they capture other forms of costly stochastic choice.

2 Set up

2.1 Information acquisition problems

We consider the problem of an agent who is faced with a choice under uncertainty and who
has the option to obtain costly information before committing to a specific course of action.

Let © be a finite set of states, and let A denote a finite set of actions. A state-dependent
Bernoulli utility function represents the agent’s preferences over actions. For brevity, we
identify each action with the corresponding utility profile. We therefore view A as a finite
subset of R®, and normalize the utility function so that a() € R is the utility from action a
in state 6. The decision maker’s prior belief is expressed through a probability distribution
7 € A(O) with full support.'! We refer to each pair D = (7, A) as a decision problem.

Before taking an action, the agent can acquire additional information about the state.
We model the acquisition of information as the choice of an experiment. An experiment
P = (Q,(Py)oco) consists of a finite set of outcomes 2 and a profile (Py)gco of distributions
Py € A(f2) contingent on the state, with the interpretation that the experiment produces
outcome w € 2 with probability Py(w) depending on the true state §. We denote by Pr € A(§)
the resulting unconditional outcome distribution defined as Pr(w) = Y gce m(8)FPp(w).

We restrict attention to the class £ of experiments with a finite outcome space.'? Given
our focus on decision problems with finite action sets, and the assumption of Blackwell
monotonicity we will impose on information costs, the restriction to experiments with finite
outcome spaces is without loss of generality and eases the exposition.

The cost of information is represented by a function C': € — [0, +0c] where an infinite cost
corresponds to an infeasible experiment. Information costs are measured in the same units as
the utility function and are additively separable from it. Therefore, conducting an experiment
P and then taking an action @ in state 6 results in a net payoff of a(f) — C(P). The value
of information arises from the ability to tailor action choices to the realized outcome of the
experiment. Given an experiment P with outcome space 2, an action strategy o = (A, (0w)weq)
assigns to each possible outcome w a probability distribution over actions, o, € A(A).

The decision maker selects an experiment P = (Q, (Py)gco) and an action strategy
o= (A, (0w)wen) to maximize their expected utility net of information costs:

3 w(0) Y Polw) Y oul(a)a(8) — O(P). (6)
0cO weN acA

We refer to (6) as an information acquisition problem.

"We denote by R® the vector space of real-valued functions on ©, and by A(©) the set of probability
distributions over ©. Since © is finite, A(©) can be identified with a convex subset of R®.

2Note that we refer to £ as a class, rather than a set, because £ does not form a well-defined set (there is
no such thing as the set of all finite sets). In doing so, we follow a common convention in set theory.
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Prior dependence. We allow the cost function to depend on the prior m, but to ease the
exposition we do not make this dependence explicit in the notation. Dependence on the prior
enters in the analysis only when the same cost function is applied across decision problems
that vary in the prior (as in Sections 5 and 6); this feature is otherwise irrelevant for our
paper, where most results treat the prior as fixed. For a discussion of prior dependence, see
Denti, Marinacci, and Rustichini (2022) and Bloedel and Zhong (2024).

2.2 Examples

As running examples, we focus on three classes of environments that feature prominently in
the literature:

Example 1 (Binary choice). The decision problem involves the choice between a risky
action r, whose payoff varies with the state, and a safe action s, which yields a constant
payoff of zero in all states.'® Such decision problems are common in economic applications
of rational inattention, including monopoly pricing and production (Ravid, 2020; Fabbri,
2024), coordination games (Yang, 2015; Morris and Yang, 2022; Denti, 2023), contract and
information design (Yang, 2020; Bloedel and Segal, 2021; Ambuehl, Ockenfels, and Stewart,
2025).

Example 2 (Guess the state). The action set A = {ap : 0 € O} consists of mutually exclusive
bets on the state of nature: each action agy yields a winning payoff of w > 0 if the true state is
#, and zero otherwise. In experimental economics, guess-the-state problems have served as
testbeds for models of rational inattention (Caplin, Csaba, Leahy, and Nov, 2020; Dewan and
Neligh, 2020; Dean and Neligh, 2023).

Example 3 (Exchangeable actions). Let A = {a1,...,a,} be a set of n distinct actions. The
state space has a product structure. The set of states © is a finite subset of R", and the i-th
dimension of the state corresponds to the utility of action 7, so that a;(6) = 6; for all § € ©.

The actions are said to be ezchangeable if for every permutations v: {1,...,n} — {1,...,n}
and every state 6 = (01,...,60,),

0y = (0300, 0h(y) €O and  w(0) = 7(6,).
Under this assumption the decision maker sees the actions as ex-ante homogeneous.

2.3 Background on kernels, Blackwell’s order, and stochastic choice rules

We consider cost functions that are increasing with respect to Blackwell’s informativeness
order. To state this standard assumption, we first introduce some additional terminology.

13The restriction to a zero-payoff safe action is without loss of generality. Given any binary action set
A = {a, b}, the decision maker’s optimal information acquisition in (6) is unchanged if we redefine the action
set as B = {r, s}, where r(0) = a(f) — b(#) and s(f) =0 for all § € O.
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Given two finite sets 2 and Z, a Markov kernel K = (Z, (K )weq) specifies, for every w € Q,
a probability distribution K, € A(Z) (experiments and action strategies are examples of
Markov kernels). We denote by A(Z)? the set of all Markov kernels which stochastically
maps € into Z.

A Markov kernel K € A(Z)% and a probability distribution o € A(Q) induce a distribution
K oa € A(Z), defined for every z € Z as

(Koa)(z) = Z K, (2)a(w).
weN
An experiment Q € A(Z)® is a garbling of an experiment P € A(Q)® if there exists a Markov
kernel K € A(Z)? such that Qyp = K o Py for every 6. In this case, we write Q = K o P.
Intuitively, @ is a garbling of P if @) is obtained by compounding the experiment P with noise
captured by K.

Definition 1. A cost function C' is Blackwell monotone if C(P) > C(Q) whenever @ is a
garbling of P.

When the cost function is Blackwell monotone, it is without loss of generality, in the
information acquisition problem (6), to restrict attention to experiments where the outcome
space {2 coincides with the set of actions A, and where the action strategy is the identity function
(see, e.g., Matéjka and McKay, 2015, Corollary 1). Any such experiment P = (A, (Py)gco)
describes a state-dependent stochastic choice rule (Caplin and Martin, 2015; Caplin and Dean,
2015). In sum, when C is Blackwell monotone, the problem (6) simplifies to

L2 m(0) Y Py(a)a(d) — C(P), (7)

0cO acA

max

PEA(A)
and a solution to this problem describes the decision maker’s stochastic choice rule. Since
A(A)® is compact, a solution exists provided that the restriction of C' to A(A)® is lower

semicontinuous and not identically equal to 4o0.

3 f-divergence and f-information

We study information acquisition problems under a new class of cost functions that extend
mutual information as well as the more general posterior separable costs. These cost functions
are based on a notion of statistical distance between probability distributions known as
multivariate f-divergence (Gyorfi and Nemetz, 1978; Garcia-Garcia and Williamson, 2012;
Duchi, Khosravi, and Ruan, 2018).

3.1 Multivariate f-divergences

Let R" be the non-negative orthant of R” and let 1 = (1,...,1) € R". We adopt the notation
R = (—00, +00], R = [—00, +00), and Ry = [0, +00]. An f-divergence is indexed by a function
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[+ R? — Ry that is convex, lower semicontinuous, and satisfies f(1) = 0. The effective
domain of f, defined as dom f, is the set of vectors € R’} such that f(z) < +oc.

Definition 2. Let Pi,..., P, and a be probability distributions over a finite set €2. The

f-divergence between P, ..., P, and « is

Df(Pla---,PnHOé) — Z a(w)f <P1<w) “"Pn(w)>7

we a(w)

where we adopt the convention that 0f(%, ..., 3) = limy o0 f(y + tz)/t for each x =
(z1,...,7,) € R? and any y € dom f.1

For n = 1, we obtain the classical notion of f-divergence for pairs of distributions (Ali
and Silvey, 1966; Csiszar, 1967): for «, 5 € A(),

Ds(Blla) = 3 a(w)f (W) |

weld a(w>

The quantity Ds(f||«) is a measure of how dissimilar the distributions 3 and o are. Under
this index, two distributions are more dissimilar when their likelihood ratio, weighted by f,
is higher in expectation. Binary f-divergences have found applications in many disciplines.
In economics—and, specifically, in rational inattention—the most prominent example is
Kullback-Leibler divergence, obtained by taking f(t) = tlogt —t + 1:15

0g P (w)

Dy(Blle) = Dxr(Bller) = Y Blw)log ——.

a(w)

weN

More generally, a multivariate f-divergences measures the dissimilarity between a col-
lection of distributions Pi,..., P, and a reference distribution «. As in the binary case,
this dissimilarity is measured in terms of a weighted expectation of the likelihood ratios
(P1/a,...,P,/a). These divergences enjoy several important properties, which generalize
known features of binary f-divergences.'® Next, we list the properties that will be relevant

for this paper.
Lemma 1 (Duchi, Khosravi, and Ruan, 2018). f-divergences satisfy the following properties:

(). For every Markov kernel K € A(Z)?,

Dy(Py,...,Pylla) > Ds(K o Pi,...,K o Py||K o ).

4This convention is standard and guarantees that D; is lower semicontinuous over A(Q)"**

. The quantity
limi— 400 f(y + tx)/t is well defined and independent of the choice of y; it is known as the recession function of
f computed at x. See Rockafellar (1970, Theorem 8.5) and Combettes (2018).

15We adopt the conventions that 0 log% =0 and tlog% =0=4o0 fort > 0.

'The assumption that f takes positive values is without loss. Given a divergence Dy, with f convex but
not necessarily non-negative, and a vector y € R™, the map defined as g(z) )+ Zl 1 ¥i(w; — 1) induces

the same divergence, i.e. Dy = Dy. By choosing y appropriately, one can ensure that g is non-negative.
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(ii). The function
(Pl, .. .,Pn,a) — Df(Pl, .. .,PnHOz)

is lower semicontinuous and convexr on A(Q)"F1.

Property (i), also known as the data processing inequality, captures the idea that garbling
the distributions Py, ..., P,, and a by a common kernel K makes the distributions Py, ..., P,
more similar to a. Property (ii) will allow us to employ tools from convex analysis in
conjunction with f-divergences.

3.2 f-information

The next definition is central to the paper. Given an experiment P € A(Q)e and a distribution
a € A(R2), we denote by D¢(P|la) the f-divergence between (P)pco and «.

Definition 3. Let D; be an f-divergence. The f-information of an experiment P € A(Q)®
is

I(P) = inf Dy(Pla).

A distribution o € A(§2) such that I;(P) = D¢(P||c) is an f-mean of P.

The principle behind f-information is that an experiment is more informative when its
state-contingent outcome distributions Py are more distinct from one another. The f-mean of
an experiment is a probability measure « that minimizes the f-divergence to (FPp)geco, and
can be interpreted as a generalized average of these distributions. The informativeness of the
experiment is then captured by the distance between the Py and their f-mean. Heuristically,
the closer these distributions are to their f-mean, the closer they are to one another—hence,
the less informative the experiment is about the underlying state.

A similar logic can be found in the more familiar definitions of mean and variance. Note
that the arithmetic mean of n real numbers x1, ..., x, is the unique minimizer of the quadratic
distance .7 (z; — y)? over all y € R. The variance of z1,...,7,, a measure of how much
these numbers differ from one another, is precisely the average quadratic distance from the
arithmetic mean.

By varying the function f, we obtain a number of important special cases from statistics

and rational inattention.

Example 4 (Mutual information). Shannon’s mutual information has been central to appli-
cations of rational inattention since Sims (2003) and is a special case of f-information. The
quantity
Is(P) = 3 7(0) D (Py]| Py)
0cO
is the mutual information of the state and the experiment’s outcome when their joint distribu-

tion is determined by prior m and experiment P. A well-known property of mutual information
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is that the f-mean of any experiment P coincides with its unconditional distribution P (see,
e.g., Steiner, Stewart, and Matéjka, 2017):

Iq(P) = i D P, .
s(P) Q?X?ﬂ)eeeﬂ(e) ke (Pollo)

Thus, mutual information is a special case of f-information obtained by setting

fla) =Y m(0) (x(0)logz(0) — x(6) +1).
0cO

Example 5 (Csiszar information). More generally, suppose f is additively separable and
takes the form

0cO

where ¢: R. — R, is a function that is convex, lower semicontinuous, and satisfies ¢(1) = 0.

In this case, the f-information of an experiment P simplifies as

(P = iat 5 x(O)Da ol (®)
where Dy, is the corresponding divergence defined over pairs of distributions. This special
case was first introduced by Csiszar (1972), and for this reason we refer to (8) as Csiszdr
information. The definition of f-information extends Csiszar’s notion beyond the additively
separable case.!” The importance of generalizing the additively separable case is illustrated in
the next example.

Example 6 (Posterior separable). The concept of f-information encompasses the class of
posterior separable costs, which has been the focus of the rational inattention literature
thus far. Let H: A(©) — Ry be a function that is convex and lower semicontinuous, with
H(w) = 0. We will refer to H as an entropy.'® For any such H, Caplin, Dean, and Leahy
(2022) consider the cost function

CH(P) = Z Pﬂ'(w)H(pw)

wesupp(Pr)

where supp(Pr) C Q is the support of the experiment’s unconditional distribution P, and
Pw € A(O) is the posterior following realization w, given by Bayes’ rule as

pw(e) - PH(W)W(H)/PWQ'U)

17Csiszar’s work was not motivated by information acquisition problems; rather, his primary aim was to

develop a generalization of mutual information with desirable properties for statistical applications.
18The term entropy typically refers to concave functions of probability distributions, with the term negentropy

reserved for their convex counterparts. For simplicity of exposition, we use entropy to refer to the convex case
throughout.
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for all & € ©. The cost function Cp is termed posterior separable. Under this cost, an
experiment is more costly if it induces more variability in the posterior belief, as measured by
the expected variation of the entropy H.

For a suitable choice of f, a posterior separable cost function is a special case of f-

information. Indeed, consider the transformation

H(zm) if 3geox(0)m(0) = 1,

400 otherwise,

fu(z) =

where xm = (2(0)7(6))sco. Note that Dy, (P|ja) < +oo implies a = Pr. Thus, If,(P) =
Dy, (P||Pr) = Cy(P) and Py is an fy-mean of P. In general, fx is not additively separable.

As is well known, mutual information (Example 4) can be represented as a posterior
separable cost function by taking H(p) = Dkp(p||7). Notably, the resulting f function differs
from the one described in Example 4 above, illustrating that different functions f can generate
the same cost function.

Next, we describe a few important properties of f-information that we will use in the
analysis of information acquisition problems.

Lemma 2. f-information has the following properties:
(i). Iy is Blackwell monotone.

(ii). For every experiment P € A(Q)® there is a € A(Q) such that 1;(P) = D¢(P| ).

(iil). Given an outcome space 2, I is convex and lower semicontinuous on A()®.

Property (i) is a fundamental requirement for I7(P) to be interpreted as a measure of the
amount of information that P contains. Property (ii) states that each experiment admits an

f-mean. Property (iii) will allow us to exploit tools from convex analysis.'’

4 Optimality conditions

In this section, we characterize solutions and value functions of information acquisition

problems in which cost is measured by f-information.

4.1 Information acquisition with mutual information

We first review the standard case in the literature, where the cost is given by mutual

information:

max Z m(0) Z Py(a)a(0) — rIg(P). 9)

(€]
PeA(A)® 425 acA

YGiven two experiment P,Q € A(f) and a weight ¢ € [0,1], their convex combination is defined as
tP+ (1 —t)Q = (Q, (tPs + (1 — t)Qo)sco). A sequence of experiments (P") in A(Q)® converges to P if, for
every 6 € © and w € Q, the sequence of real numbers (P3'(w)) converges to Ps(w).
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Here, Ig(P) is the mutual information between the experiment’s outcome and the state
(Example 4), and k > 0 is a constant that parametrizes the cost.

As discussed in Mackowiak, Matéjka, and Wiederholt (2023), the main appeal of mutual
information lies in its tractability.?’ This tractability is well exemplified by the results
of Matéjka and McKay (2015) and Caplin, Dean, and Leahy (2019), who prove that the
maximization problem (9) can be reduced to the simpler auxiliary problem

max kK Z m(0) log <Z ea(:)a(a)> . (10)

a€A(A)  p2g acA

This is a lower-dimensional problem that involves maximization on unconditional distributions
over actions, rather than maximization over experiments.

Theorem 1 (Matéjka and McKay, 2015; Caplin, Dean, and Leahy, 2019). Information
acquisition under mutual information has the following properties:

(i). A stochastic choice rule P = (A, (Py)gco) s a solution to (9) if and only if there exists

a solution o € A(A) of (10) such that for all 0 € © and a € A,

a(f)
ala)e™r

Pyla) = ————& (11)
> pep a(b)e =

Moreover, for any such P and «, it holds that o = Py.

(ii). The optimization problems (9) and (10) have the same value.

This result describes a two-step recipe to solve information acquisition problems under
mutual information. The first step is to find all distributions over actions a € A(A) that
solve the auxiliary optimization problem (10). Then, from each such «, optimal choice rules
can be derived mechanically from the formula (11). While the first step yields closed-form
solutions only in specific settings—for instance, the unconditional distribution Pj is uniform
in exchangeable decision problems (Example 3)—the auxiliary problem can be efficiently
solved numerically using, e.g., the Blahut-Arimoto algorithm (Cover and Thomas, 2006).2!

4.2 Duality

To study the behavioral implications of f-information, we associate to the transformation f a
new object that is dual to it.

Definition 4. The Fenchel conjugate of f is the function f*: R® — R defined by

f(x) = sup > w(0)y(8) — f(y).
yeRY pco
20A few papers propose axiomatic motivations: among others, de Oliveira (2019), Mensch (2021), Caplin,
Dean, and Leahy (2022), Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2023).
21Gee Armenter, Muller-Itten, and Stangebye (2024) for an alternative computational approach based on the

observation that the objective function in the auxiliary problem (10) is concave.
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Conjugation is one of the fundamental operations in convex analysis, with applications
across different disciplines. In economics, conjugation appears most directly in the model of a
competitive firm, where a firm’s profit function is the Fenchel conjugate of the cost function.

The next lemma describes the properties of the Fenchel conjugate of the transformation f.

Lemma 3. For a function g: R® — R, the following are equivalent:
(i) g = f* for some f-information Iy;
(ii) g is convex, lower semi-continuous, and monotone. Moreover, g(0) =0 and 1 € 0g(0).

Given a function g that satisfies the conditions in (ii), the corresponding transformation f

can be recovered as

Among these conditions, the monotonicity of f* follows from f being defined on the non-
negative orthant. The last property of f*, i.e. g(0) =0 and 1 € dg(0), is dual to the condition
that f is non-negative and satisfies f(1,...,1) = 0. All these results on Fenchel conjugates
are standard (Rockafellar, 1970).

The result suggests two equivalent perspectives from which to study information acquisition
problems, depending on whether one treats f or f* as the main object of analysis. While the
transformation f has a direct interpretation in terms of the cost of information, it will turn
out to be mathematically and conceptually simpler to describe the resulting optimal behavior
in terms of the conjugate f*.

Next, we illustrate the operation of conjugation in the context of our running examples:

Example 4 (continued). Mutual information corresponds to the transformation f(z) =
Y oco m(0) (z(0)logx(0) — x(0) + 1). Direct computation show that the conjugate is

0cO

Example 5 (continued). In the case of Csiszar information, where f(x) = > gcq m(0)P(x(0)),
the conjugate of f can be expressed in terms of the conjugate of ¢, the function ¢*: R — R
defined as ¢*(t) = supycp, ts — ¢(s). The conjugate of f is then given by

x(0
@ = X n0e (2.
0co m(9)
Example 6 (continued). Given a posterior separable cost, the conjugate of the transformation
fm can be expressed in terms of the conjugate of the entropy H. The conjugate of H is the
map H*: R® — R given by

H' (@) = max, 3 5(6)0(6) = Hp)
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The conjugate of the transformation fg is then

x
* —H* (=
fH(w) (7’[’) )
where the ratio /7 is intended statewise, i.e., x/m = (2(0)/7(0))sco. Since H is defined on

the simplex, fj; is translation invariant with respect to the prior:

fir(@ +em) = f(x) +c (12)

for every constant ¢ € R. Conversely, given any f-information cost, the conjugate f* satisfies

this translation invariance property only if f = fy for some entropy H.

4.3 Assumptions on f

Throughout the paper, we focus on functions f that satisfy the following assumption, which
ensure that the associated conjugate is particularly tractable:

Assumption 1. The function f satisfies:
o f s co-finite: limy o0 f(y+tx)/t = 400 for every y € dom f and all non-zero x € Rf.

o [ is essentially strictly convex: f is strictly conver on every convex subset of {x € R? :

of (@) # o).
e 1 belongs to the relative interior of dom f.

Under the first two assumptions, the conjugate function f* is everywhere finite (i.e.,
dom f* = R®), and differentiable. Moreover, being f* convex and differentiable, its gradient
V f* is automatically continuous. Conversely, if a function ¢ : R® — R is convex, monotone,
and differentiable, then its conjugate g*: R? — R is co-finite and essentially strictly convex.
See Rockafellar (1970, Corollary 13.3.1 and Theorem 26.3).

In the case of mutual information, f is co-finite and essentially strictly convex. For Csiszar
information, if ¢ is co-finite and strictly convex on its effective domain, then the corresponding
transformation f is co-finite and essentially strictly convex. In the posterior-separable case,
fm is automatically co-finite; if the entropy function H is essentially strictly convex, then fr
is essentially strictly convex.

The final assumption that 1 lies in the relative interior of dom f will serve as a constraint
qualification in our main theorem. In the more familiar posterior-separable case, this condition
holds whenever H is finite in a neighborhood of the prior.

4.4 Characterization theorem

We now characterize the solutions and values of information acquisition problems under
f-information. Mirroring the work of Matéjka and McKay (2015) and Caplin, Dean, and
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Leahy (2019) on mutual information, the key step in our analysis is to show that every
optimization

max Z 7(0) Z Py(a)a(8) — I7(P) (13)

€]
PeA(A)® y2g acA

can be reduced to an auxiliary, lower-dimensional problem. This is now a maxmin optimization
problem that takes the form

max min ala)f*(ar — N\) + Z A(6) (14)
a€A(A) AR® T 0cO

where the product ar is intended statewise, i.e., ar = (a(0)7(0))pco-
Theorem 2. Information acquisition under f-information has the following properties:

(i). A stochastic choice rule P = (A, (Py)oco) is a solution to (13) if and only if there exists
a saddle point (a, \) of (14) such that

Py(a) = a(a)Vo*(ar — A)
for all 6 € © and a € A. Moreover, for any such P and (o, \), « is an f-mean of P.

(ii). The optimization problem (13) and the maxmin problem (14) have the same value.

Condition (i) of Theorem 2 shows that the ratio of the choice probabilities of actions a
and b in state 6 takes the form
Po(@) _ ala) Vof*(ar =\
Py(b)  a(b) Vof*(br — A)

Similar to the case of mutual information, this expression is the product of two ratios. The
first term «(a)/a(b) pertains to the f-mean probabilities of a and b. The second ratio involves
an increasing function Vg f* of the utility profiles a and b, scaled by the prior 7w and shifted
by a vector A\ that depends on the decision problem at hand. As we show in the proof, A is in
fact the Lagrange multiplier associated to the constraints Y, 4 Py(a) =1, for § € ©.

Beyond characterizing optimal choice probabilities, Theorem 2 clarifies the significance
of the conjugate f*. The map V f* maps each utility vector a—adjusted for the prior and
the Lagrange multiplier—into vectors of likelihood ratios Py/«, succinctly capturing the
behavioral implications of the f-information cost function.

The f-mean « and the Lagrange multiplier A are characterized as a saddle point of the
maxmin problem (14). Since the objective function in this problem is affine in o and convex
in ), it follows that a pair (a, A) is a saddle point if and only if it satisfies the first-order

conditions
fflar —\) = max e (br —N) Va € supp(a), (15)
Z a(a)Vof*(ar —A) =1 Vo € ©. (16)
acA
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Condition (15) disciplines the consideration set {a € A : P:(a) > 0} since a(a) = 0 implies
Pr(a) = 0. Condition (16) ensures that

z Py(a) = Z a(a)Vof*(am — X)) = 1.

acA acA
The multiplier A\(f) can be viewed as the shadow price of acting in state 6, since relaxing the
associated constraint would allow the total mass > ,c4 Py(a) to deviate from one. Therefore,
A(0) can be seen as a measure of how profitable is for the decision maker to act in state 6.

Theorem 2 suggests a two-step approach to solve information acquisition problems. The

first step, which involves identifying the saddle points of the maxmin problem (14), results in
a closed-form solution only in specific cases. However, this problem can be solved efficiently
using numerical methods, such as the Saddle-Point Mirror Prox algorithm (Bubeck, 2015,
pp. 315-316).22 The second step is to compute the conditional choice probabilities from the
formula Py(a) = a(a)Vef*(ar — ).

4.5 Uniqueness
An inspection of the proof of Theorem 2 shows that any Lagrange multiplier A can generate
any optimal choice rule P:

Corollary 1. For each saddle point (&,\) of (14) and each solution P to (13), there exists an
action distribution a such that (a, \) forms a saddle point of (14) and P can be expressed as

~

Py(a) = a(a)Vef*(am — A).

Consequently, whenever an action «a is included in the consideration set, the corresponding
revealed posterior (Caplin and Martin, 2015; Caplin and Dean, 2015) is uniquely determined:

w(O)Pya) __ TOVof* (am =)
Pr(a) Y reo m(T)V, f* (aw - 5\> '
By standard arguments (see, e.g., Rockafellar 1970, Corollary 37.5.3), the saddle points of

pa(e) =

(14) constitutes a closed convex product set in A(A) x R®. Therefore, the set of optimal
choice rules can be identified with a closed convex subset of A(A), as in the case of mutual
information.

4.6 Mutual Information

With mutual information, the f-mean of an experiment is the unconditional signal distribution,
z(0)
making a = P;. Furthermore, Vg f*(z) = e*® . Thus, we have:

A(0)
Py(a)  ala)Vof*(ar—A)  Pe(a) e 5@ Pr(a)er®

Py(b) ~ a(b) VoS (ar —X) ~ Pr(b) po)-2g  Pa(b) O

22For numerical computations, it is often convenient to bound the search domain of the Lagrange multiplier;
we explain how to do this properly in Appendix A.
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This is the same expression derived from condition (i) of Theorem 1, taking x = 1. Thus,
under mutual information, after accounting for the unconditional choice probabilities, a form
of independence of irrelevant alternatives holds: the ratio of the choice probabilities of a
and b in state 6 depends solely on the utility difference between a and b in that state. Cost
functions based on f-information, however, allow us to describe a broader range of behavior.
The ratio Vg f*(am — X\)/Vaf*(br — A) potentially depends on the utilities of actions a and b
in all states and, through A, on what other actions are available.

In the case of mutual information, the Lagrange multiplier A can be computed in closed

z(0)
form for each fixed a. Given that Vg f*(z) = e~® | it follows from (16) that

A(0)
Z a(a)ea(e)fw =1.

a€A

Z

Simple algebra demonstrates that

A(0) = 7(0)log Z afa)e®?.
acA
Thus, with mutual information, \(#) is a weighted average of the utility the available actions
deliver in state . This serves as a measure of the desirability of acting in state .22 By

plugging the expression for the Lagrange multiplier into the maxmin problem (14) and using

(0)
the fact that f*(x) = > pcq m(0)e @ — 1, we obtain

max min ala)f*(ar — X\) + Z A(0) = max 7(0) log Z afa)e®?.
acA 60 a€AMA) peg acA
This is the auxiliary maximization problem in Theorem 1, taking x = 1.

In summary, a distinctive feature of mutual information is that the Lagrange multiplier
can be found analytically, allowing the focus to be exclusively on finding . As we will see in
the analysis of Csiszar information, this is a distinctive but not a unique feature of mutual

information.
4.7 Posterior-separable costs

For a general posterior separable cost, the stochastic choice rule takes the form:

Pr(a)VgH*(a — \/)

Pg(a) = 71_(9)

where, as before, A\/m = (A(0)/7(0))gco. We obtain that the posterior following action a is
given by
pa(g) = V@H*(a — )\/’R’)

23In particular, the Lagrange multiplier A coincides with what Muller-Itten, Armenter, and Stangebye (2024)
call ignorance equivalent.

24



This expression gives special meaning to the gradient VH*. This is a function mapping
the utility vector of each action a, modified by the multiplier A, into the posterior belief
conditional on a being chosen. Therefore, assumptions on the conjugate of H translate
directly into assumptions on posterior beliefs, and thus the decision maker’s behavior. As
discussed in 1.1, this optimality condition is dual to the more standard primal FOC arising

from concavification.

4.8 Symmetric decision problems

Symmetry assumptions are often used to construct illustrative examples and simplify the
analysis of applications. Under such assumptions, the solutions to information acquisition
problems based on f-information inherit the symmetries of the underlying primitives, as we
now explain.

We formalize symmetry through invariance with respect to a group of permutations I' of
the state space. Specifically, I' is a set of bijective functions v: © — © with the following
properties: the composition of any two elements of I' belongs to I', and the inverse of any
element of T belongs to I' as well. For each z € R® and v € T, Ty € R® stands for the
permuted vector x(0) = x(v(0)).

A decision problem D = (m, A) is said to be invariant with respect to a group I' if 7, =7
and {ay :a € A} = A for all v € I'. A simple example arises when 7 is uniform and A is
the set of bets that pay 1 in one state and 0 otherwise (Example 2). This decision problem
is invariant under all bijections . The applications in the following sections will introduce
further examples of decision problems with various forms of symmetry, including environments
with exchangeable actions (Example 3).

A function f:R9 — R is said to be invariant with respect to a group I if f(z,) = f(z)
for all z € R? and v € T". An example is provided by Csiszdr information (Example 5),
whose associated transformation f is invariant under any permutation ~ for which the prior is

invariant.

Proposition 1. Consider a decision problem D and a transformation f that are invariant
with respect to a group T' of permutations of the state space. Then, the maxmin problem (14)
has an invariant saddle point (o, \), meaning that:

(i). a(ay) = ala) forallac A andy eT.
(ii). Ay =X forally€T.

The resulting choice rule has the following symmetry property: P.gy(a) = Py(ay) for all 6 € O,
a€ A, andyeTl.

For instance, in the case in which I' is the full group of permutations of the state space, «
is uniform and A a is constant vector. We will refer to choice rules that satisfy the property
P, )(a) = Py(a,) simply as symmetric.
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Pivotal to Proposition 1 is the following lemma, which shows that the conjugate f* inherits
the symmetry properties of f:

Lemma 4. A transformation f is invariant under a permutation vy if and only if its conjugate
f* also is invariant, meaning that f*(z.) = f*(x) for all x € R®. Moreover, Vo) [ (x) =
Vof*(xzy) for all 0 € ©.

4.9 Essential smoothness

For some applications, we will study transformations f that are essentially smooth. This is
an additional regularity condition which ensures that the Lagrange multiplier A is unique and
that the f-mean « and the predictive distribution P, are mutually absolutely continuous.
Formally, a transformation f is essentially smooth if it satisfies the following properties: (i)
int(dom f) is not empty, (ii) f is differentiable on int(dom f), and (iii) limy, 400 ||V f(20)]| =
+00 whenever (z,,) is a sequence in int(dom f) converging to a boundary point of dom f.?*

These properties amount to a condition on the marginal cost of information:

Example 5 (continued). In the case of a Csiszar cost based on a univariate transformation
¢, the associated function f is essentially smooth if and only if ¢ is essentially smooth. A
sufficient condition for ¢ to be essentially smooth is that ¢ is finite and differentiable on
(0,4+00), and the derivative ¢’ is unbounded below—as in the case with mutual information
(Example 4). This ensures that as the likelihood ratio Py/« in some state 6 converges to 0,
the marginal cost of further lowering the likelihood ratio diverges to infinity.

It is a classic result in convex analysis that f is essentially smooth if and only if its
conjugate f* is strictly convex (Rockafellar, 1970, Theorem 26.3). We collect other properties
that will be helpful in the next sections.

Lemma 5. Let f be essentially smooth. Then:
(i) f* is strictly increasing.
(ii) If (a1, A1) and (g, A2) are two saddle points of the mazmin problem (14), then A1 = Aa.

Strict monotonicity of f* implies that the optimal choice rule P and its f-mean are
mutually absolutely continuous: for all § € © and a € A, Py(a) > 0 if and only a(a) > 0. The
second notable implication of essential smoothness is uniqueness of the multiplier.

Next we adapt these notions to the case in which costs are posterior separable. Since H*
is translation invariant, it cannot be strictly convex everywhere. We therefore introduce a
minimal relaxation of strict convexity. We say that H* is strictly convexr modulo translations
if for all t € (0,1) and z,y € R® such that = ¢ y + R,

H* (tz + (1 — t)y) > tH* (2) + (1 — t) H*(y).

24The notation int(dom f) stands for the topological interior of the effective domain of f.
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To characterize the dual property, we fix an enumeration of the state space, © = {61,...,0,},
and denote by H,_; the function

(p17 .. 7pn—1) — H(pla «o sy Pn—1, 1 —P1— ... — pn—l)-
Lemma 6. The following statements are equivalent:

(i). H* is strictly convex modulo translations.

(ii). Hp—1 is essentially smooth.

Motivated by Lemma 6, we say that H is relatively smooth if the function H,_; is
essentially smooth. Note that, in this definition, the specific enumeration of the state space
is inconsequential. The next result shows that relatively smooth entropies share the same
properties of essentially smooth transformations.

Lemma 7. Let H be a relatively smooth entropy. Then:
(i) H* is strictly increasing.

(ii) If (a1, A1) and (ag, A2) are two saddle points of the maximin problem (14), with prior
m € ri(dom H)), then A\j € Ay + R.

5 Csiszar information and discrete choice

We now focus on Csiszar information, which is additively separable and symmetric across
states. Its advantage, compared to the general case of f-information, is that its properties
depend on a univariate rather than multivariate transformation. It encompasses mutual
information cost as a special case and serves as a benchmark specification for the applications
that follow.

In the next two sections, we establish structural properties of Csiszar information. We show
it provides a new foundation for the perturbed utility model of discrete choice (Fudenberg,
Iijima, and Strzalecki, 2015), and that mutual information is essentially the unique Csiszéar
cost that is also posterior separable.

5.1 Preliminaries

We assume that in the transformation

fla) = m(0)d(x(6)) (17)

0cO
the map ¢ satisfies the following properties:

Assumption 2. The map ¢: Ry — R, is strictly convex on its effective domain, is lower

semicontinuous, and satisfies the conditions ¢(1) = 0, 1 € ri(dom ¢), and lim;_, %qﬁ(t) = +o0.

These assumptions guarantee that f satisfies the normalization f(1) = 0 as well as the

conditions in Assumption 1.
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5.2 Optimality conditions

For the case of Csiszar information, the optimality conditions in Theorem 2 take a simple
form. In particular, the optimal stochastic choice rule and Langrange multipliers can be
determined state-by-state.

For brevity, from now on we denote by 1 = ¢* the conjugate of ¢. It is easy to see that
1: R — R is increasing, convex, and differentiable, with ¢(0) = 0 and ¢’(0) = 1. In some
instances, it will be convenient to assume that 1 is strictly convex, which corresponds to ¢
being essentially smooth (Section 4.9).

The conjugate of the state-separable transformation f defined in (17) is then given by

« (0)
1@ =Y =00 (55)-

0c®

For convenience, we will work with the prior-adjusted Lagrange multiplier A\, € R® defined
statewise as A (6) = A(6)/7(0).2°
Applying Theorem 2, the optimal stochastic choice rule is then given by

Py(a) = a(a)¢’ (a(0) — Ax(0)), (18)

while the optimality condition for the Lagrange multiplier given by (16) simplifies to

> a(@)y’ (a(8) — A (9)) = 1. (19)

acA
In words, (18) states that the probability of taking action a in state 6 is the product of
two terms: a baseline probability a(a) that is independent of the state, and an increasing
function of the payoff a(f) that a yields in state 6, minus the multiplier A;(#). Moreover,
taking a as given, we can determine A\ (6) as the solution of (19) without accounting for the
multiplier A, (7) or payoffs {a(7) : @ € A} in any other states 7 # 6.25 In particular, since 1’
is increasing, we can interpret (19) as stating that A (6) represents a weighted average, under
the probability distribution ov € A(A), of the feasible payoffs {a(f) : a € A} in state 6.

As discussed in Section 4.6, for the special case of mutual information, we can solve (19)
for the Lagrange multiplier in closed-form as a function of «, thereby reducing the saddle-point
problem from Theorem 2 to the auxiliary maximization problem from Theorem 1. While such
closed-form solutions are not always available, they can indeed be obtained in some other

special cases of interest. The next example illustrates for the case in which ¢ is quadratic:

Example 6 (Chi-squared divergence). Let ¢(t) = x(t —1)2/2 for all t € Ry, where £ > 0 is a
constant. The corresponding ¢-divergence is known as the chi-squared divergence.

**The multiplier Ar represents the shadow cost of the constraint - _, w(0)Py(a) = 7(0) for every 0 € ©,
i.e., the joint state-action distribution must induce a marginal distribution over states equal to the prior, 7.

26Tf ¢ is essentially smooth (i.e., ¢ is strictly convex), then for each « there is a unique A () solving (19)
since v’ is strictly increasing.
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In this case, the conjugate function ¢ = ¢* is given by 1 (t) = max {t?/(2x) + t, —r/2} for
all t € R, and its derivative is ¢/(t) = max{t/k+ 1,0} for all ¢ € R. Therefore, (19) reduces to
Z a(a) max {a(0) — A\z(0) + k,0} = k. (20)

acA

To solve this equation for \;(f) as a function of «, it is convenient to rank the actions in
the support of « in descending order of their payoffs in state §. That is, we enumerate the
consideration set as supp(a) = {a1,...,a,} such that a;() > --- > a,(0).2” As we show in
Appendix C.5.1, the unique solution to (20) can then be expressed as

7 K
—a | 40— g ——
k=1 a(ak)> Zj:(? a(a;)

where the cutoff index i*(0) € [n] :== {1,...,n} is given by

.

i*(#) =max<ien]: )y alaj)(a;(0) —ai(f)) <k p=max{i € [n]:a;(0) > () — Kk} .
j=1
To interpret these expressions, notice that supp(Py) = {a; € A : 7 <i*(0)}, i.e., action a; is
considered in state 0 if and only if i < i*(0). Therefore, A\;(0) represents an average of the
payoffs to actions that are considered in state . For instance, if supp(FPy) = supp(«), then
A (0) = >0 1 afai)a;(9) is precisely the expected payoff in state 6 under the distribution .

5.3 Behavioral characterization of o and A\

Under Csiszar information, the saddle point (a, \) can be given a transparent characterization
in terms of the induced behavior. To this end, we begin by introducing two orderings—the
first over states, the second over actions—defined by a stochastic choice rule.

Definition 5. Let D = (m, A) be a decision problem and P = (A, (Py)geco) a choice rule. We
say that choice is bolder in state 6 than in state 7 if, for every action a € A,

a(f) =a(r) = Py(a) < P(a).

To build intuition, consider first the case in which a is a safe action that pays the same
payoff in every state. Then, choice is bolder in state 6 than in state 7 if the decision maker is
less likely to choose the safe action in . Definition 5 extends this logic to actions that are
merely safe with respect to the event {6, 7}.28

2T1f there are distinct actions a,b € supp(a) with a(f) = b(9), then we can rank a and b arbitrarily.

28 Alternatively, we can interpret Definition 5 as stating that the menu {b(6) : b € A} of payoffs in state 6 is
stronger than the menu {b(7) : b € A} of payoffs in state 7, in the sense that any action a yielding the same
payoff a(f) = a(7) in both states faces stiffer competition, and thus is less likely to be chosen, in 6 than in 7.
Under this alternative interpretation, Definition 5 can be viewed as the analogue of the ranking of menus in
the perturbed utility model of Fudenberg, Iijima, and Strzalecki (2015), suitably adapted to state-dependent
stochastic choice.
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Definition 6. Let D = (7, A) be a decision problem and P = (A4, (Py)gco) a choice rule. We
say that action a is more salient than action b for if, for every state 8 € O,

a0) =b(6) = Py(a) > Py(b).

In words, a is more salient than b if the former is always chosen with higher probability in
every state where the two actions are payoff equivalent.

For these two orderings to have bite, the decision problem must exhibit sufficient richness.
Given a decision problem D = (7, A) and a choice rule P = (A, (Py)pco), we say that states
0,7 € © are comparable if there exists an action a € A such that a(f) = a(r) and Pr(a) > 0.
Analogously, we say that actions a,b € A are comparable if there exists a state § € © such
that a(0) = b(0).

In such decision problems, the above orderings characterize the ordinal properties of the
saddle point (o, \).

Proposition 2. Let D = (w, A) be a decision problem, and let P = (A, (Py)oco) be a choice
rule that is optimal under a Csiszdr information with ¢ essentially smooth. Let (o, \) be a

corresponding saddle point. Then:

(i) If two states 6,7 € © are comparable, then choice is bolder in state 6 than in state T if
and only if \x(0) > \r(T).

(ii) If two actions a,b € A are comparable, then action a is more salient than action b if
and only if a(a) > a(b).

Proposition 2 provides a way to interpret behaviorally the endogenous variables (a, \).

We illustrate these definitions and the result in our running examples:

Example 1 (continued). Suppose the decision maker must choose between a safe and a
risky action, and assume P, has full support. Due to the safe action, every pair of states
is comparable. Using (19), it is easy to verify that A\;(6) > Ar(7) if and only if r(8) > r(7)
(provided that 1) is strictly convex). Hence, Proposition 2(i) implies that Py(r) > P;(r) if and
only if r(0) > r(7), i.e., the probability of choosing the risky action is a strictly increasing
function of its reward.

Next, suppose there exists a state * € © in which the risky and safe actions yield the
same payoff: r(6*) = 0. Then, the two actions are comparable, and Proposition 2(ii) implies
that a(r) > a(s) if and only if Pp-(r) > Pp-(s). In fact, the distribution o € A(A) can be
fully identified from observable choice behavior: the optimality condition (18) implies that
Py« (r)/Py«(s) = a(r)/a(s) and, since r and s are the only two available actions, it follows
that o = Py~.

Example 2 (continued). Consider a guess-the-state problem with at least three distinct
states and a uniform prior. The problem is invariant under the full group of permutations
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of the state space. Therefore, it admits an optimal symmetric choice rule P for which « is
uniform and A is a constant vector (Proposition 1). As a result, every pair of states and every
pair of actions are comparable, choice is equally bold in all states, and all actions are equally
salient.

Example 3 (continued). A problem with exchangeable actions is invariant under the subgroup

of permutations (61, ...,6,) = (0,1, - -,0(n)), where 7 is a permutation of the set {1,...,n}.

v(n
Thus, the information acquisition problem (admits an optimal symmetric choice rule P such
that « is uniform and A (0) = Az (7) for all pairs of states = (01,...,0,) and 7 = (71,...,7)
that differ only by a permutation of their components. If, in addition, ® = T™ for some finite
T C R, then any two states and any two actions are comparable, and all actions are equally
salient. According to the optimality condition (19), choice is bolder in state 6 than in state 7
if and only if the v’-weighted average payoff is higher in the former state.
For instance, under mutual information (Section 4.6), we have A\(0) > A;(7) if and only if
n o ef > 3" e, Meanwhile, under the chi-squared divergence (Example 6), if all actions
are taken with positive probability in all states, then we have A(f) > A.(7) if and only if
Yo 0i > > i, 7. Given any strictly convex v function, choice is bolder in state 6 than in

state 7 if all actions yield weakly higher payoffs in the former, i.e., §; > 7; forallt =1,...,n.

Building on the binary-choice example, we now give a different, cardinal characterization
of the optimal f-mean . We now consider decision problems that include a state 8* in which
all actions yield the same payoff. This assumption can be easily made to hold in controlled
experimental settings, where the existence of such states can be built in the design of the task
at hand. We show below that in any state 8* of this kind, the distribution o € A(A) coincides
with the choice probability Py« € A(A). This gives a a clear behavioral interpretation and
makes it identifiable from observed choices.

Corollary 2. Let D = (w, A) be a decision problem, and let P = (A, (FPy)oco) be a choice
rule that is optimal under a Csiszar information with 1 strictly convex. Let (o, \) be a
corresponding saddle point. If there is a state 0* € © such that a(6*) = b(6*) for all a,b € A,
then it holds that Py« = «.

The result is an immediate implication of the optimality conditions (18). In state 6%, (18)
simplifies to Py« (a)/Pp«(b) = a(a)/a(b) for all a,b € A. This implies that Py« = «, as desired.

5.4 A foundation for additive perturbed utility

A central insight of Matéjka and McKay (2015) is that optimal information acquisition can
provide a new foundation for, and interpretation of, classic models of stochastic choice. For
the special case of mutual information, their paper relates the stochastic choice rule from
Theorem 1 to Luce’s multinomial logit model. In our context, the multinomial logit model

31



posits that, in each state 6, the decision maker chooses each action a € A with probability
a(0)
[

Py(a) = ——5 (21)

dlpeae "
where k > 0 is a parameter of the model.

Matéjka and McKay (2015) observe that, in decision problems with exchangeable actions
(Example 3), the stochastic choice rule in Theorem 1 reduces exactly to the classic logit
formula (21). Beyond the exchangeable case, optimal behavior under mutual information
costs follows what, in light of Proposition 2, can be seen as a salience-adjusted variant of
the classic logit rule, whereby actions that are more salient are chosen with relatively higher
probability conditional on the state. This adjustment implies, among other features, that
strictly dominated actions are never chosen.

We now show that, more generally, optimal information acquisition under Csiszar infor-
mation provides an analogous foundation for the additive perturbed utility (APU) model of
discrete choice (Fudenberg, Iijima, and Strzalecki, 2015). In our notation, the APU model
posits that, in each state 6, the decision maker’s stochastic choice is given by the distribution
Py € A(A) defined as

Py = arg max a)a(f) — c(p(a))], 22
b= argma. %[p()() (p(a))] (22)

where c: [0,1] — R is a perturbation function that incentivizes randomization. Fudenberg,
lijima, and Strzalecki (2015) assume that c is strictly convex and continuously differentiable
on (0,1). For our purposes, we make the weaker assumptions that c is strictly convex on
its effective domain, is lower semicontinuous, and safisfies 1/n € ri(domc¢), where n is the
cardinality of the action set.

The model, which has found applications in the discrete choice literature as well as in
game theory, can be interpreted as representing ex-post optimization errors due to control
costs (Mattsson and Weibull, 2002; Flynn and Sastry, 2023), deliberate randomization as
a hedge against payoff uncertainty (Fudenberg, Iijima, and Strzalecki, 2015), or certain
forms of additive random utility (Hofbauer and Sandholm, 2002). As is well known, APU
generalizes multinomial logit: the model reduces to logit when the perturbation takes the
form c(t) = k (tlogt —t + 1).

By analogy to Matéjka and McKay (2015, Proposition 1), we show an equivalence between
behavior under Csiszar information and the APU model in exchangeable-action settings:

Corollary 3. In any exchangeable decision problem with n actions (as defined in Example 3),
if P is a symmetric choice rule that is optimal under Csiszdr information with transformation
¢, then P coincides with that of an APU model in which the perturbation function is given by

oft) = %d) (nt) . (23)

Moreover, given any perturbation function ¢ satisfying the normalizations ¢(1/n) = ¢/(1/n) =0,
there exists a transformation ¢ such that (23) holds for the corresponding Csiszdr information.
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Corollary 3 follows directly from comparing the optimality conditions (18) and (19) to
those of the APU model (22), and recalling that the optimal f-mean a can be taken to be
uniform in exchangeable decision problems.

For general, not necessarily exchangeable, decision problems, the optimal behavior under
Csiszar information corresponds to a salience-adjusted APU model of discrete choice. Formally,
consider a stochastic choice rule P that is optimal under Csiszar information, and let a be
the corresponding f-mean. For simplicity, suppose that « has full support. Then, in each
state 6, the optimal Py can be expressed as

pa)als) - a(e)o (L9 (24)

ala)

Py = arg max Z
PEA(A) 4ea

The coefficient a(a) € (0,1) affects the salience of action a € A. By Proposition 2(ii),
actions with higher salience are, all else equal, chosen with higher probability in (24). Therefore,
Csiszar information permits two forms of context-dependence that the APU model does not:
(i) action-dependence that arises when two actions a,b € A yield the same payoff a(8) = b(0)
in state 6 but have different salience a(a) # «(b), and (ii) menu-dependence arising from the
fact that the vector a of saliences may depend on the full set A of available actions.

The discrete choice literature has considered versions of the salience-adjusted APU model in
which « is treated as an exogenous parameter. For instance, Mattsson and Weibull (2002) and
Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2023) study the special case of (24)
corresponding to Shannon entropy (Example 4) and interpret « as the decision maker’s default
choice rule or initial bias, respectively. Meanwhile, Chambers, Masatlioglu, Natenzon, and
Raymond (2025) study the special case of (24) corresponding to the chi-squared divergence
(Example 6) and interpret « as representing the inherent salience of each action. These
approaches are suited to modeling a decision maker’s involuntary and automatic (“bottom
up”) allocation of attention.

By contrast, in our framework, « is determined endogenously. Thus, our approach is suited
to modeling a decision maker’s optimal and deliberate (“top down”) allocation of attention.
These optimality conditions also impose extra discipline on the salience weights. For instance,

under Csizar information, strictly dominated actions are never chosen.

5.5 IIA properties

Luce’s axiom of independence of irrelevant alternatives (IIA) is central to the theory of random
choice because it provides a behavioral foundation for the logit model. In studying alternative
models of discrete choice, a natural question is how they relate to IIA. In this section, we
examine the connection between IIA and the predictions of Csiszar information, extending
the analysis of Matéjka and McKay (2015) beyond mutual information.

In the standard setting of random choice, ITA relates the behavior of a decision maker
across different menus of options. In our framework, it translates into an assumption on the

decision maker’s behavior across decision problems, and hence on the underlying cost function.
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We say that a cost function satisfies the IIA axiom if for any two decision problems
(m,A) and (7, B), and any pair of corresponding optimal choice rules P = (A, (Py)pco) and
Q@ = (B, (Qe)oeco),

Pya) _ Qs(c)
P9 (b) QT (d)

for all actions a,b € supp(Fy) and ¢, d € supp(Q-), and all states 6,7 € O.

a(f) = c(7) and b(0) = d(r)

(25)

When O is a singleton, this reduces to Luce’s ITA condition. In the more general, state-
dependent case, the axiom requires that for any two payoffs u,v € R that are both feasible
in states § and 7—that is, u,v € {a(0) : a € A} N{b(7) : b € A}—the relative likelihood of
choosing the action that yields w over the one that yields v must be invariant with respect to:
(i) which actions implement the payoffs u and v, (ii) whether the realized state is 6 or 7, and
(iii) what other payoffs are available in those states.

As observed by Matéjka and McKay (2015), ITA is generally too restrictive and is violated
under mutual information. Specifically, given payoffs u,v € R and actions a,b € supp(P)
such that a(f) = u and b(f) = v, the likelihood ratio

Py(a) ala) u=v

Pb) ~ alb)”
depends not only on the payoff difference u — v, but also on the relative salience of the actions
a and b, as encoded by the f-mean o = P;. We therefore consider three relaxed variants of
ITA that are more appropriate in environments with costly information acquisition.
The first axiom, which restates Axiom 1 from Matéjka and McKay (2015), relaxes Luce’s
ITA by controlling for the specific actions that generate any given pair of payoff consequences,
thereby addressing the aforementioned complication that arises with unequal salience.

Definition 7. A cost function C satisfies IIA with respect to actions if, for every decision
problem D = (m, A) and optimal choice rule P = (A, (Py)geco), it holds that
Py(a) _ Pr(a)

a(f) =a(r) and b(f) =b(r) = 0 = P-(b) (26)

for all actions a,b € supp(Py) Nsupp(P;) and every pair of states 6,7 € O.

To interpret this condition, observe that

where pq, pp € A(O) denote the decision maker’s posterior beliefs upon taking actions a and
b, respectively. Therefore, (26) states that, if actions a and b are both constant on {6, 7},
then—conditional on the event {6, 7}—they are informationally equivalent signals about the
state.
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The second axiom postulates that the decision maker does not distinguish between states
0 and 7 that are payoff-equivalent, i.e., such that all actions in the decision problem are
constant on the event {0, 7}. This property is equivalent to Caplin, Dean, and Leahy’s (2022)
invariance under compression axiom for settings where the state space and prior are held
fixed.??

Definition 8. The cost function C satisfies ITA with respect to labels if, for every decision
problem D = (m, A) and optimal choice rule P = (A, (Py)geco), it holds that

a(@) =a(r) forallae A = PFy=PFP;
for every pair of states 6,7 € ©.

Intuitively, this axiom captures two assumptions: that states are merely labels that index
the payoff consequences of actions, and that the decision maker does not need to spend effort
distinguishing these labels when doing so is payoff-irrelevant.

The third and final axiom, which restates Axiom 2 from Matéjka and McKay (2015),
is a separability property reminiscent of Savage’s sure-thing principle, suitably adapted to
stochastic choice. It posits that, if two actions a and b coincide on the event {6, 7}, then the
likelihood ratio of choosing a over b is the same in both states, regardless of how a and b differ
on the complementary event ©\{6, 7}.

Definition 9. The cost function C satisfies IIA with respect to states if, for every decision
problem D = (m, A) and optimal stochastic choice rule P = (A, (Py)gco), it holds that
Pyla) _ Pr(a)

a(f) =b() and a(1) =b(1) = Py(b) = P-(b)

for all actions a,b € supp(Fy) Nsupp(P;) and every pair of states 0,7 € ©.

We note that IIA with respect to states is satisfied by the multinomial logit model (21),
which further implies that the likelihood ratios are equal to one.
With these definitions in hand, we have the following result:

Proposition 3. Given a Csiszdr information cost with ¢ essentially smooth:
(i). The cost function satisfies IIA with respect to labels and states.
(ii). In a decision problem (w, A), condition (26) holds for states 0,7 € © if A\ (0) = A\ (7).

(iii). If |©| > 5 and ¥ = ¢* is thrice continuously differentiable, the agent satisfies IIA with
respect to actions if and only if the cost function is proportional to mutual information.

29The invariance-under-compression axiom also applies to shifts in the prior, which we do not analyze here.
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The result singles out mutual information as the only type of Csiszar information that
satisfies IIA with respect to actions. This is a much stronger assumptions than ITA with
respect to states or labels. That every Csiszar information satisfies ITA with respect to states
follows from the additive separability of the transformation f. IIA with respect to labels is
implied by the fact that the transformation ¢ is not a direct function of the state.

The characterization of mutual information in the last part of Proposition 3 is related to
a result in the same spirit in Matéjka and McKay (2015, Proposition 2), but differs in two
respects. First, our primitives are different: unlike in their paper, we take the utility function
as given, and moreover we start from the assumption that the cost function belongs to the
Csiszar information class. Second, their result only shows that there exists a distribution «
over action such that the stochastic choice rule takes the adjusted-logit formula 11, but does
not ensure that this « is optimal or equal to the unconditional distribution P;.

The proof of Proposition 3(iii) applies tools from risk theory to the study of information
acquisition under Csiszar information. We introduce these tools in the following section.

6 Tools from risk theory and their applications

In this section we analyze the properties of Csiszar information by drawing on concepts from
expected utility theory. We show that the degree of convexity of the conjugate 1) = ¢* has a
central place in characterizing the solutions to information acquisition problems, much like
the concavity of a Bernoulli utility shapes behavior in expected utility theory.

To simplify the analysis, for the rest of this section, in addition to Assumption 2, we posit
that 1 is twice continuously differentiable and strictly convex. Under these assumptions, we

define
40
P(t)

As in the study of utility functions, Ry(t) is an index measuring the degree of convexity of the

Ry (t)

function ¢ at the value ¢t. With slight abuse of terminology, we refer to Ry, as the Arrow-Pratt
coefficient of 1.

6.1 Behavioral characterization of the Arrow-Pratt coefficient

Our starting point is the following observation, which relates the solution to an information
acquisition problem under Csiszar information and the coefficient R,.

Corollary 4. Given a decision problem (w, A) and a Csiszar information with transformation

@, if a stochastic choice rule P is optimal and (o, \) is its corresponding saddle point, then

Pg (a)
log 0

e @) @,
= log g+ /b P GENOIE (27)

for every state 0 and pair of actions a and b in the support of Py.
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The result follows from the optimality conditions in Theorem 2—see in particular Equation
(18)—together with the fact that Ry is the derivative of log+)’. It establishes that, at the
optimum, the log-likelihood ratio between action a and b in a state 6 is the sum of two terms:
the log-likelihood ratio between the two actions under the f-mean «, and the integral of the
Arrow-Pratt coefficient Ry, between a(6) — A (0) and b(0) — A (6).

Building on this result, we give a behavioral interpretation of the Arrow-Pratt coefficient
Ry and show that it measures how strongly the decision maker responds to a increase in
incentives for information acquisition. To formalize this idea, we focus on a subclass of
exchangeable decision problems (Example 3) that we call irreducible:

Definition 10. An n-action exchangeable decision problem is irreducible if there exists a
payoff vector d = (dy,...,d,) € R™ such that

0= {(dv(l), e ,dw(n)> : 7y is a permutation of {1,... ,n}} .
We denote such a decision problem by D(d).

In this decision problem, every state (viewed as a payoff vector) is a permutation of
the same state d. In an irreducible decision problem, the prior 7 is uniform; hence, an
n-action irreducible problem is fully determined by its payoff vector d. A simple example is a
guess-the-state problem (Example 2), corresponding to d = (w,0,...,0) with w > 0 as the
winning payoff.

Under Csiszar information, irreducible problems admit an optimal symmetric choice rule
P corresponding to a saddle point (o, A\) where « is uniform and A is a constant vector, i.e.,
A(0) = A(d) for all 8 € © (Proposition 1). The prior-adjusted Lagrange multiplier A, is also
constant, with A;(d) uniquely determined by

Uniqueness follows from the strict monotonicity of v.

We consider two irreducible decision problems D(d) and D(d') close if the Euclidean
distance between the payoff vectors d and d’ is small. This allows us to define perturbations
of a given problem d that introduce a small additional incentive to acquire information.

Definition 11. Let D(d) be an irreducible decision problem, and let i,5 € {1,...,n} be
indices such that d; = d;. Given € > 0, we say that d° € R" is an e-split of D(d) along the

dimensions ¢ and j if

&5 =di+e, d5=dj—¢, dj=dyforallk+i,j.

In the original problem defined by d, the choice between actions a; and a; is inconsequential
in state 6 = d, since the two actions yield the same payoff. The decision problem D(d¢) is a
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perturbation where the choice between a; and a; is now made consequential in state d® while
keeping fixed the payoffs of the other actions.

For example, consider the trivial problem d = (0,...,0), in which all actions yield zero
payoff. A e-split along the dimensions i = 1 and j = 2 produces the guess-the-state problem
d° = (¢, —¢,0,...,0) with € > 0 as the winning payoff. Here, the perturbation injects a small
incentive to acquire information. Table 1 presents a less trivial example.

D(d) ‘ a1 as as D(d) | a1 az a3
d=6,|1 0 0 =071 € —e

02 0 1 0 05 1 —e €
03 0 0 1 05 e 1 —e

(a) Original decision problem. 98 _ ¢ 6 1

(b) Perturbed problem corresponding to the
e-split d° along dimensions 2 and 3.

Table 1: Table (a) describes a guess-the-state problem. The set of states is © = {61, 69, 65},
the action set is A = {a1,a2,a3}, and each entry is the corresponding payoff. In each state,
payoffs are permutations of the vector d = (1,0,0). Table (b) describes a modified decision
problem where the original state 8; is now split into two states 6 and 65. In both states the
agent’s main goal is to play ai, but they now face an additional incentive to choose a9 in state
05 and az in 65. The same applies to states 02 and f3. Proposition 4 quantifies the decision

maker’s response to this incentive.

We are ready to present our behavioral characterization of the Arrow-Pratt coefficient R,.

Proposition 4. Consider an irreducible decision problem D(d), and let i,5 € {1,...,n} be
indices such that d; = d;. Consider a collection (de)ge(ovl), where each d° is an e-split of d
along the dimensions i and j. Then:
Ps (a;

og Cel (ai)

Psc(aj)

where each P€ is an optimal symmetric choice rule for D(d€) and Ar(d) is the prior-adjusted

= 2eRy(di — Ax(d)) + o(e),

Lagrange multiplier associated to d.

The perturbation d¢ modifies d by introducing a new, low-powered incentive for the
decision maker to acquire information—specifically, to learn which of the two actions a; or
a; is preferable in state d°. The parameter e captures the scale of this incentive, and the
log-likelihood ratio log Pg (a;)/Pjc(a;) represents the predicted response of the decision maker.
The proposition shows that this response, as a function of ¢, is proportional to the Arrow-Pratt

coefficient Ry, evaluated at d; — A (), up to a first-order approximation.

38



6.2 Violations of ITA and the Arrow-Pratt coefficient

The ITA with respect to actions axiom requires that the likelihood ratio Py(a)/Py(b) between
two actions a and b depends only on the payoffs of those two actions in that state. Under
Csiszar information, this property is generally violated, as the likelihood ratio can also depend
on the payoffs of other available actions in that state. We now connect such violations of ITA
to monotonicity properties of the Arrow-Pratt coefficient Ry,.

The next definition, adapted to state-dependent stochastic choice, is inspired by the work
of Fudenberg, Iijima, and Strzalecki (2015) on additive perturbed utility.

Definition 12. A cost function C exhibits increasing selectivity if, in every decision problem
D = (m, A) and for every optimal choice rule P = (A, (Py)gco), the following holds: for any
two states 6, 7 € © such that choice is bolder in 6 than in 7, and for every two actions a,b € A
in the support of Py,

_ _ Py(a) _ Pr(a)
a(@) =a(r) >b(0) =b(r) = 0 > P(b)’

Conversely, the agent exhibits decreasing selectivity if, under the same conditions,

() _ Pula
By(b) = Pr(b)

3
~

a(f) =a(r) > b(0) =b(1) =

Increasing and decreasing selectivity capture two patterns of violations of ITA with respect
to actions. Recall that states in which the decision maker is bolder are associated with
higher values of the multiplier: even though actions a and b yield the same payoff in states
6 and 7, both are chosen with lower probability in the bolder state 6, i.e. Py(a) < Pr(a)
and Py(b) < Pr(b). Increasing selectivity means that, in bolder states, the decision maker
is relatively more likely to favor the better action: the likelihood ratio Py(a)/Py(b) between
the better action ¢ and the worse action b is higher in 6 than in 7. Decreasing selectivity
describes the opposite pattern.

Increasing and decreasing selectivity are characterized by the monotonicity of the Arrow-
Pratt coefficient:

Proposition 5. Assume |©| > 5. Let v be thrice continuously differentiable. Then:
(). The agent exhibit increasing selectivity if and only if Ry is decreasing.
(ii). The agent exhibit decreasing selectivity if and only if Ry is increasing.

A corollary of this result is that ITA with respect to actions characterizes the case where
R, is constant, i.e. 1 is exponential, in which case Csiszar information reduces to mutual

information, as noted in Proposition 3(iii).
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6.3 Relation to posterior separable costs

As noted in Examples 4-6, Csiszar information nests mutual information, which is also posterior
separable. In fact, mutual information is essentially the unique cost function contained in both
the Csiszar information and posterior separable classes. This implies that, generically, the two
class of models lead to distinct predictions. Formally, we have the following characterization:

Proposition 6. Assume || > 3. For any Csiszdr information cost function C with v thrice
continuously differentiable, C' is posterior separable if and only if it is proportional to mutual

information.

The proof of Proposition 6 builds on the idea of studying the transformation 1 as a
Bernoulli utility function. Posterior-separable costs are characterized, in the dual space, by
a property of translation invariance—see (12). In turn, this property is equivalent to the
Arrow-Pratt coefficient R, being constant, which implies 1) is exponential.

As we demonstrate in the next section, the behavioral predictions of Csiszéars information
and those of posterior-separable costs can diverge even in very simple decision problems.

7 Inconclusive evidence and consideration sets

Inconclusive evidence refers to situations in which informative and uninformative signals
co-exist, a common occurrence in many real-world scenarios. For example, medical test results
often include not only positive and negative outcomes but also inconclusive ones. Except
for knife-edge cases, inconclusive evidence is inconsistent with models of costly information
acquisition based on mutual information or, more broadly, posterior separability (Denti,
2022). In this section, we demonstrate how Csizar cost can be used to analyze the possibility
of inconclusive evidence in information choice. We maintain Assumption 2, as well as the
hypothesis of Section 6: ¢ = ¢* is strictly convex and twice continuously differentiable.

7.1 Guess-the-state with outside option

To focus the discussion, we consider a guess-the-state problem, as in Example 2, with the
addition of an outside option. Let n > 2 be the number of possible states, and assume the
prior 7 is uniform. The decision maker has n + 1 feasible actions. For each state 6, there is
a risky action, ag, that corresponds to a bet on that state: ag(f) = w, while ag(7) = 0 for
all 7 #£ 0. The coefficient w > 0 is the reward for correctly guessing the state. In addition,
there is a safe action, b, that yields a constant payoff of ¢ > 0, independent of the state. This
setup mirrors the structure of many economic applications, such as selecting between risky
assets and bonds in a portfolio problem, or choosing whether to participate in projects with
uncertain returns or take a known outside option.

In this decision problem, inconclusive evidence emerges when risky and safe actions are
all chosen with positive probability: informative signals, prompting the selection of risky
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actions, co-exists with uninformative signals, leading to the choice of the safe action. Except
for knife-edge cases, such choice pattern is incompatible with mutual information:
Under mutual information, three distinct cases arise depending on the appeal of the safe
action. To describe these cases, let ¢ be the threshold defined by
1l » n—1\"
¢ =log <em + > . (28)
n

n

(i). For ¢ > &, no learning occurs and the decision maker never tries to guess the state:
Pr(b) =1 at the optimum.

(ii). For ¢ < ¢, the decision maker always tries to guess the state and never uses the safe
action: Pr(b) =0 at the optimum.

iii). In the knife-edge case where ¢ = ¢, multiple solutions exist. The decision maker ma;
g y
exclusively choose the safe action, completely avoid it, or mix across all actions with
positive probabilities.

Thus, under mutual information, inconclusive evidence emerges only in a knife-edge case
and is never the unique prediction of the model. To give an intuition for this negative result
and, more importantly, to address it, we next consider the case of Csizar information.

7.2 Predictions under Csiszar information

It will be useful once again to study 1 as if it was the Bernoulli utility function of a risk-loving
agent. By the optimality condition for « in the maximin problem (14), both the risky and
safe actions are part of consideration set only if

n—1

(0= Ar(0) + (0= An(0)) = (e = An(0)) (29)

for all & € ©. Mirroring the discussion in the previous section, the left-hand side of (29)
can be seen as the expected utility of a lottery that pays w with probability 1/n and 0
with probability (n — 1)/n, for an agent with wealth level equal to (the negative of) the
prior-adjusted Lagrange multiplier A (#).3® For (29) to hold, the quantity ¢ must correspond
to the certainty equivalent of the lottery.

The analogy with risk theory explains why inconclusive evidence is inconsistent with
mutual information. Under mutual information, v is exponential, meaning that the certainty
equivalent of a lottery is independent of the wealth level. As a result, (29) is independent of
Ax(0), and the equation can hold only for a knife-edge configuration of the primitives of the
problem.

Next we show that inconclusive evidence emerges as a robust prediction of the model as
soon a we move away from the case of constant absolute risk seeking.

39Due to the symmetry of the environment and strict convexity of v, the Lagrange multiplier is unique and
independent of the state—see Corollary 1 and Proposition 1.
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Proposition 7. Suppose Ry, = 1" /4 is strictly monotone on the interval (—w,w). Then,
there are thresholds ¢ and ¢, with ¢ < ¢, such that:

(). If ¢ > ¢, then Pr(b) =1 at the optimum.
(ii). If ¢ < ¢, then Pr(b) =0 at the optimum.
(iii). If ¢ € (¢, ¢), then supp Pr = A at the optimum.

To generalize the result beyond the case in which the Arrow-Pratt coefficient is strictly
monotone on a neighborhood of zero, we introduce a parametrization of the transformation ¢:
for all k € int(dom ¢), we define ¢, : Ry — R by

o(kt) — (k)

an(t) = BB (- 1), (k).

The original function ¢ corresponds to the case in which k = 1, meaning that ¢; = ¢. Note
that the parameter & has no effect in the case of mutual information: if ¢(t) = x(tlogt—t+1),
then ¢ = ¢ for all k € (0, 4+00).

The role of this parametrization is better understood through the conjugate of ¢, which
we denote by 1. To elaborate, take t;, € R such that 1’ (t) = k.3! Then, simple calculations

show that for all t € R,
Pt +ty) — ¥(te)

Yi(t) = ’ :

In particular, Ry, (t) = Ry(t +t;). Thus, the effect of the &k parameter is to cause a shift of

the Arrow-Pratt coefficient. Note that any shift can be generated in this way, as int(dom k)
coincides with the image of 9.

Proposition 8. Suppose Ry is strictly monotone on a non-empty open interval. Then, there

is an open set of parameters (k,w,c) such that under ¢y, supp Pr = A at the optimum.

7.3 Posterior Separability

Finally, we emphasize that the inability to represent inconclusive evidence is inherent to
all symmetric posterior-separable costs.®? As in Example 6, let H: A(©) — R, be an
entropy function: convex, essentially strictly convex, lower semicontinuous function, with
7 € ri(dom H). We say that H is symmetric if H(p) = H(q) for all posteriors p,q € A(©)
such that the vectors (p(0))pco and (¢(0))sco are permutations of each other.

Proposition 9. Let information costs be posterior separable, with H symmetric. Then, for
every w there exists a threshold ¢ such that:

(). If ¢ > ¢, then Pr(b) =1 at the optimum.

31The existence of ¢, is ensured by the fact that k € int(dom ¢).
32If the cost is not symmetric, it may be possible for the safe action to be chosen alongside some, but not all,
risky actions (see Appendix B).
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(ii). If ¢ < ¢, then Pr(b) =0 at the optimum.
(iii). If c = ¢, then for every t € [0,1] there is an optimal choice rule such that Pr(b) = t.

As with mutual information, inconclusive evidence is a non-generic prediction. In Appendix
B, we relate these observations to the more general, though more abstract, issue of studying
the size of the consideration set under f-information and posterior-separable costs. As is well
known, under posterior separability the size of the consideration set is at most the cardinality
of the state space in generic decision problems (see, e.g., Denti, 2022, Proposition 4). We show
that f-information can enlarge the consideration set, but by no more than one action. Hence,
while f-information expands the consideration set to accommodate phenomena such as the
use of inconclusive evidence, it does so in a parsimonious way, in line with the observation

that decision-makers face limited consideration sets.

8 Choice accuracy and learning incentives

The rational inattention literature highlights two main shortcomings of mutual information as
a model of information acquisition. As Dean and Neligh (2023) observe: first, “subjects are
less responsive to incentives than the Shannon model would predict”; and second, “subjects
do not behave identically in payoff-identical states when the environment admits a natural
notion of perceptual distance.” In the next three sections, we show that the f-information
framework can address both limitations.

First, we examine responsiveness to incentives. In a canonical task in which the agent’s
objective is to correctly identify the true state (Example 2), we study how the predicted
probability of a correct choice varies with the primitives of the problem. In our analysis, we
show how to identify information costs non-parametrically and investigate the properties of

the marginal cost of information.

8.1 Response functions

Let n and m be positive integers such that 1 < m < n. The decision problem involves n
equally likely states and n actions, where each action represents a bet on an event comprising
m states. A successful bet—one where the realized state belongs to the chosen event—ryields
a reward of w > 0; otherwise, the payoff is zero. To ensure symmetry, we assume that in
each state, exactly m actions yield the reward w, while the remaining n — m actions result
in zero payoff. Although this symmetric structure is somewhat special, it is well-suited for
implementation in laboratory experiments.

We now present three concrete examples. In each case, we index the set of actions by the
set of states, i.e., A = {ap : 0 € O}:

e Suppose m = 1. Each action ag is a bet on state 0: it pays w if the realized state is
and zero otherwise.
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e Suppose m =n — 1. Each action ag is a bet against state 6: it pays zero if the realized
state is § and w otherwise.

e Suppose the states are points uniformly spaced on a circle. Each action ag pays w if the
realized state is 6 or one of its m — 1 immediate clockwise successors.

As in the previous sections, we work with Csiszar information and assume ¢ satisfies
Assumption 2. We also assume that (0,+00) C dom ¢. Equivalently, the conjugate function,
1 = ¢*, is strictly convex and the image of ¢’ is (0, +00).

A key quantity of interest is the probability of correctly guessing the state as a function of
the learning incentive. The next proposition uses Theorem 2 to provide a characterization:

Proposition 10. For every state 0,

Py({a: a(0) = w}) = "0/ (w - 1),

where | is the unique solution of the equation
m n—m , ,
— )+ ——2'(=1) =v'(0).
"y — 1)+ T () = 0)

The coefficient [ is simply the multiplier A, (@), which by the symmetry of the problem is
independent of the state. Motivated by this result, for every v € (0,1) we define the decision
maker’s response function p : (0,400) — (0,1) as

py(w) = Y (w — ly(w)),

where [ (w) is determined by the equation

W (r =1y (w)) + (1 =)' (=l (w)) = ¥(0).

Allowing all v € (0,1) is only a matter of notational convenience, since rational values of
already provide a dense approximation.

The response function succinctly captures how the agent adjusts behavior in response
to learning incentives. Next, we analyze the first- and second-order properties of response

functions, comparing them to the benchmark case of mutual information.

8.2 First-order properties

In the case of mutual information the response function takes the form:

_ o er
py(w) = 76% 1 7'

Dean and Neligh (2023) provide evidence that in the case of two states and two actions
(i.e. v = 1/2), the response function implied by mutual information fails to adequately fit
experimental data. Intuition suggests that this issue may extend to other values of v and
alternative experimental designs, as the single parameter « does not offer enough flexibility.

The following result shows that Csizar information allows for a wider range of predictions.
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Proposition 11. For each vy, the response function satisfies the following properties:

(i). py(w) is strictly increasing in w.
py(w) is continuous in w.

(
(if). py(w)
(iii). py(w) = v as w — 0.
). py(w)

(iv). py(w) =1 as w — 4o0.

Conversely, any function that satisfies (i)—(iv) is a response function for ~ for some ¢.

Caplin, Csaba, Leahy, and Nov (2020), Dewan and Neligh (2020), and Dean and Neligh
(2023) all provide experimental evidence that response functions are increasing.®® Naturally,
continuity cannot be directly tested with finite data. Focusing on a specific class of continuous
functions, Dewan and Neligh (2020) offer mixed results on continuity. As the prize w
approaches 0, and all actions yield almost identical payoffs, property (iii) shows that the
agent’s choice converges to a uniform randomization. Property (iv) implies that the state
is learnable with arbitrary precision; it can be relaxed by dropping the hypothesis that ¢ is
finite on (0, 400).

Caplin, Csaba, Leahy, and Nov (2020) and Dewan and Neligh (2020) use response functions
to estimate the cost of information. As the proof of Proposition 11 makes clear, non-parametric
identification of ¢ cannot be achieved solely from observing the agent’s behavior for a fixed
7, as multiple function ¢ can generate the same p,. However, we establish that ¢ can be
identified by jointly varying both w and ~.

Proposition 12. If ¢1 and ¢o induce the same response function for every ~y, then ¢1 = ¢po.

The proof shows that identification is ensured even in the simpler case where ¢1 and ¢o
induce the same response function for every v of the form v =1/nory= (n—1)/n. It is
therefore sufficient to focus on simple decision problems where the decision maker is asked to
bet on or against a particular state. While exact identification requires observing the decision
makers behavior for every n, informative bounds can still be obtained using the following
expressions: for all w > 0,

W/(w) =supnp1(w) and ¢(=w) = infn (1= pus(w)). (30)

n>1 n
We conclude the study of first-order properties by extending Proposition 11 to the case
where both « and w are allowed to vary. To this end, we introduce the concept of inverse
response function. Given a response function p,, and given any x € (1,+00) and y € (0,1),

define y(z,y) and w(z,y) as the unique v and w that solve the system of equations:

pow) g L)

v 1—7

33Tt can be shown that, for any cost function, the marginal probability Py({a : a(d) = w}) of guessing

correctly is non-decreasing in the reward w. See, e.g., Dewan and Neligh (2020).
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That v(x,y) is well defined follows from the fact that p, is strictly increasing, continuous,
and satisfies p,(w) = v as w — 0 and p,(w) — 1 as w — oo. We refer to the mapping
(x,y) = w(z,y) as the inverse response function. While p, maps payoffs to choice probabilities,
the inverse response function maps observed choice behavior—expressed in likelihood ratios—
to the underlying payoff. Given ~(z,y), the quantity w(z,y) is the reward level that generates
the likelihood ratios (z,y).

The inverse response function allows us to test and identify the transformation ¢:

Proposition 13. The inverse response function satisfies the following properties:
(i
(ii

(ii

w(x,y) is strictly increasing in x and strictly decreasing in y.
w(z,y) is continuous in x and y.
w(z,y) - 0asx — 1 andy — 1.
(iv). w(z,y) = +00 as x — +o0 ory — 0.
(v

(vi

For all x and «', w(z,y) —w(a',y) is independent of y.

)
).
).
).
)-
).

For ally and v/, w(z,y) —w(x,y’) is independent of x.

Conversely, any function that satisfies (i)—(vi) is an inverse response function for some ¢.

Moreover, if ¢1 and ¢o induce the same inverse response function, then ¢1 = ¢2.

Properties (i)—(iv) of the inverse response function mirror those of the response function
stated in Proposition 11, and they admit a similar interpretation. Properties (v) and (vi), in
turn, reflect the separability inherent in Csiszar cost. Empirically testing these properties
would shed light on the extent to which this separability assumption constrains the model.
Finally, as the proof of the proposition illustrates, ¢ and the inverse response function are
connected by the following equation: for all z € (1,400) and y € (0, 1),

() = inf d ¢'(y)=— inf .
¢ () zéfé,l)w(‘”’z) and  ¢'(y) z€(11{1+oo)w(z,y)

These formulas are the dual version of the expressions in (30).

8.3 Second-order properties

Second-order properties of the response function, such as concavity or convexity, reflect the
decision maker’s marginal sensitivity to learning incentives. In this section, we show that
these properties reveal important characteristics of the marginal cost of information, such as
whether it increases or decreases with information acquisition.

For the remainder of this section, we assume that 1 is thrice continuously differentiable.
An important tool in our analysis is the Arrow-Pratt coefficient of 1), defined as:

"

Rw/ — W
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In choice theory, Ry is known as the prudence indez of 1) and figures prominently in the study
of precautionary savings (Kimball, 1990). In a very different context, our findings connect
Ry to the second-order properties of the response function.

We first investigate under what conditions the response function is concave:

Proposition 14. The following statements are equivalent:
(i). For all~, py is concave.

(ii). Ry (t) >0 fort <0, and Ry (t) <0 fort > 0.

(iii). Ry (t) <0 forte€ (0,1), and Ry (t) >0 fort > 1.

Thus, the response function is concave for every « if and only if the prudence index Ry (t)
is positive for ¢ < 0 and negative for ¢t > 0. Equivalently, this holds if ¢’ is concave on (0,1)
and convex on (1,+00). This condition can be interpreted as stating that the marginal cost
of information is increasing, for acquiring information means generating variability in the
likelihood ratio below and above one.

The response function cannot be globally convex, as it is bounded above by 1. We therefore
focus on the case where it is initially convex and later concave—an S-shaped profile. This is
precisely the shape exhibited by the response function under mutual information:

Example 3 (Continued). Under mutual information,

_Aw) (1) —ye?

ph(w) v 4+ (1—7)

RP’Y (w)

Thus, the Arrow-Pratt coefficient of the response function is decreasing in learning incentives.

In particular,

1—
R, (w)>0 <= w<log~—,
Y

and hence p, is first convex and then concave.

The next result investigates conditions under which a response function is S-shaped.

Formally, we say that p, is S-shaped if

wy > wy and  pi(wi) >0 = pl(wz) >0

It is inverse S-shaped if —p, is S-shaped. A sufficient condition for p, to be S-shaped is that
its Arrow-Pratt coefficient of risk loving, R, , is decreasing.

Proposition 15. The following properties hold:
(i). If Ry is decreasing, then p. is S-shaped. Moreover, ¢’ is inverse S-shaped.

(ii). If Ry is decreasing and " is monotone, then R, is decreasing. Moreover, Ry is

increasing.
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(ili). If R, is decreasing for all v, then Ry is decreasing.

Condition (i) shows that a decreasing prudence index Ry is a sufficient condition for the

response function to be S-shaped. Conditions (ii) and (iii) provide partial converses.

9 Perceptual Csiszar information

Under the common assumption of mutual information cost, states enter the analysis only
through their payoff consequences; other features of states, such as their physical characteristics
and distance from each other, play no role. As a consequence, under mutual information,
if two states 67 and 6y have the same prior probability, then exchanging the conditional
distributions Py, and Py, of an experiment P leaves its cost unchanged. In decision problems,
this is reflected in the property of IIA with respect to labels.

As several authors have noted (e.g., Hébert and Woodford, 2021; Morris and Yang, 2022;
Dean and Neligh, 2023; Pomatto, Strack, and Tamuz, 2023), this invariance property leads to
unrealistic predictions in decision problems where it is inherently more difficult to distinguish
between states that are more similar. For example, in problems where an agent must bet on
whether a one-dimensional state, such as the return of an asset, is positive or negative, under
mutual information the optimal choice probability will display a jump exactly at the state
equal to 0, rather than varying smoothly across nearby states as common sense suggests.

These observations apply not only to mutual information, but also to Csiszar information.
For this reason, in the next two sections we study generalizations of Csiszar information that
take into account the structure of the state space. Our goal is to identify a generalization
with three features: (i) it remains a special case of f-information, with a conjugate that is
analytically manageable; (ii) it has enough parameters to capture relevant features of the
state space; and (iii) its parameters have transparent interpretations.

9.1 Encoding states as attributes

Our approach builds on the hypothesis that the decision maker learns by categorizing states
through a simplified mental model that emphasizes a selected set of attributes of the state
space. We interpret the attribute space as a subjective representation of the state space.
Formally, learning proceeds in two stages: each state is first mapped into an attribute, and
information is then acquired as if attributes were the primitive states.?*

Definition 13. A personal state space consists of a finite set IV and a kernel K = (N, (Kp)pco)
such that for all i € N there is # € © such that Ky(i) > 0. We refer to N as the set of
attributes and to K as the encoder.

34The idea that decision makers may simplify their choice environments through a smaller set of attributes
has several analogues in prior work. For example, see Gul, Natenzon, and Pesendorfer (2014) and Walker-Jones
(2023).
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Each attribute is a property of the state that the agent considers focal for reducing
uncertainty about the environment. For instance, if § € R is a one-dimensional variable,

9«

N could be a partition of © into “low,” “medium,” or “high” values. If # € R? is a high-
dimensional vector describing the details of a health plan, N could consists of a set of coarse
labels such as “cheap but minimal” or “expensive but comprehensive.” The kernel K describes
the probability Kjy(i) with which a state 6 is perceived as belonging to attribute i. To
avoid redundancy, we require that each attribute is associated with some state with positive

probability.

Definition 14. Let ¢: R, — R, be a function that satisfies Assumption 2, and let (N, K)
be a personal state space. The perceptual Csiszdr information is defined for every experiment
P =(Q,(Py)oco) as

I(P)= inf inf ) Dy(Q; . K =P,
1= gt g, romaaia) e o
where v =Y pcq m(0) Ky, and Q o K: © — A(Q) is the kernel defined as >;c y Qi(w)Ky(i) =
Py(w) for allw € 2,0 € ©.

First, states are mapped to attributes via the kernel K. Second, the agent acquires infor-
mation about the attribute via an experiment @, subject to the standard Csiszar information
J@) = Jnf ;V v (i) Dy(Qillc)- (31)
Here, v represents the unconditional probability of attributes, obtained by combining the
prior with the encoder. Given any target experiment P about the state, the agent chooses the
cheapest experiment ) about the attribute that replicates P, in the sense that Q o K = P. If
the target experiment cannot be replicated in this manner, then it is deemed infeasible and
assigned infinite cost.

This interpretation closely parallels classic notions from information theory (see, e.g.,
Cover and Thomas, 2006, Chapter 7). In this analogy, states correspond to external messages
to be processed; the experiment () functions as a communication channel; attributes serve as
codewords transmitted through the channel; and the kernel K maps messages to codewords.
In light of this analogy, we refer to K as an encoder and we refer to () as a channel.

The defining feature of the model is that the encoder K is exogenously given, while the
channel @ is chosen optimally.?® We therefore view the encoder K as modeling the agent’s
hardwired perceptual limitations. Formally, it delineates an upper bound on what the agent
can learn about the state: an experiment P is replicable if and only if it is a garbling of K.

35By contrast, in Shannon’s theory of channel coding, the channel Q is exogenously given and the encoder K
is optimally designed, and in Sims’s (2003) interpretation of the benchmark rational inattention model based
on mutual information, both the encoder and channel are optimally chosen.
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Meanwhile, the channel () models the agent’s deliberate allocation of attention, given these
limitations.?%

We illustrate these concepts through several examples:

e Perfect perception: When N = © and K is the identity map, every experiment P is
replicable, and the perceptual Csiszar cost reduces to a standard Csiszar information
with transformation ¢.

e Deterministic categorization: Each i € N indexes an event B; C © in a partition
{Bi}ien of the state space. The encoder is defined by Ky(i) = 1if 0 € B;, and Ky(i) =0
otherwise. In this case, the agent can acquire information about which partition cell the
state belongs to, but not the state itself. This setup captures an agent who bins states

into coarse categories.

o Perceptual distance: Let N = ©, and let d: © x © — R4 be a metric on the state space.
Given a decreasing function v: Ry — R4 with v(0) > 0, define the encoder K as

C d,7)
Ko(m) = = = 30,00

This specification models an agent who struggles to distinguish between nearby states.

(32)

It is flexible enough to nest (or approximate) the preceding examples as special cases,
and will put it to work in Section 9.4.

Holding the transformation ¢ and the attribute set N fixed, the Blackwell ranking over
encoders fully characterizes the ordinal ranking over perceptual Csiszar costs:

Proposition 16. Consider two perceptual Csiszdr costs, Iy and Iz, with parameters (¢, N, K7)
and (¢, N, K3), respectively. The following statements hold:

(i). If Ky is a garbling of K, then I1(P) > Is(P) for all P € £.

(ii). If dom(¢) = Ry, then I;(P) > Is(P) for all P € € only if K; is a garbling of K.

9.2 Optimality conditions
In solving for the optimal choice probabilities, the next assumption streamlines the analysis.
Assumption 3. The set of vectors {(Ky(i))peco : i € N} is linearly independent.

Interpreting the encoder as a matrix with states as rows and attributes as columns,
Assumption 3 requires this matrix to have full column rank. This, in turn, implies that the

36In the language of cognitive psychology, the model parallels a hybrid earlylate selection theory of attention:
the kernel K operates as an early-stage selective filter, involuntarily determining which stimuli are available for
voluntary late-stage processing (Broadbent, 1958; Pashler, 1998; Bordalo, Gennaioli, and Shleifer, 2022).
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number of attributes |N| is weakly smaller than the number of states |©|, consistent with the
idea that attributes provide a coarse description of the state space.

Under Assumption 3, perceptual Csiszar information belongs to the class of f-information
costs and admits a remarkably simple conjugate.

Proposition 17. Consider a perceptual Csiszar information I with parameters (¢, N, K).

Under Assumption 3, I coincides with an f-information with conjugate

1EN 0cO

£ = X vligy (Z ﬁf((ﬁ))xw) ,

Y =¢* and p;(0) = "D,

The distribution p; denotes the conditional distribution over states given attribute i.

Using Theorem 2, we obtain from Proposition 17 a characterization of the optimal choice
rule in the perceptual Csiszar model. For a vector z € R, we denote by Elz] = (E;[z]),cx €
RY the vector of conditional expectations E;[x] = 3 pcq pi(0)z(#). Given any saddle point
(a, A) of the maxmin problem (14), the optimal choice probabilities are

Py(a) = a(a) Y Ko(i)¢' (Eila] — Ei[As]) . (33)

1EN

This expression admits the decomposition

Py(a) = Y Ko(i)Qi(a),

1EN

where
Qi(a) = a(a)y' (Eila] — Ei[Ax])

is the probability that action a is chosen when attribute i is focal. Assumption 3 guarantees

each Q; is a valid probability distribution over actions.?”

9.3 Working in the attribute space

The optimality condition described by (33) suggests that, in order to find the optimal choice
rule, it is necessary to solve for the full saddle point («, ). Since I, unlike standard Csiszar
information, is not additively separable across states, computing the multiplier A may seem
difficult. In particular, the value of A in state # may depend on the full profile of payoffs in
the other states.

37Indeed,

1= Koli) <Z Qi(a)> forall§€© = > Qi(a)=1 foralli€ N.

ieN acA acA
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We show, however, that the problem can be simplified: it suffices to study a lower-
dimensional saddle-point problem, where the original state space © is replaced by the space
of attributes IV, and the perceptual Csiszar information [ is replaced by the standard Csiszar
information J. The analysis can therefore be reduced to an auxiliary information acquisition
problem in which information costs are separable and amenable to the tools developed in
Sections 5 and 6.

Specifically, given any decision problem D = (0,7, A), we define the reduced problem
D = (N, v, A), where

A:{E[a] ERN:CLEA}.

That is, D is the projection of D onto the attribute space. To simplify the exposition, in the
next proposition we assume that a # b implies E[a] # E[b], so that the sets A and A are in a
one-to-one correspondence.>
Proposition 18. Let D = (0,7, A) be a decision problem and consider a perceptual Csiszdr
information cost I with parameters (¢, N, K). Assume a # b implies E[a] # E[b].

Let J be the associated Csiszdr information as defined in (31). Then, the following

statements are equivalent:
(i). P=(A,(Py)oco) is optimal in D = (©, 7, A) under the perceptual Csiszdr cost I.

(ii). There exists a choice rule Q = (A, (Q;)ien), which is optimal in D = (N, v, A) under
the standard Csiszdar cost J, such that

Py(a) = Z Ky(i)Qi(Ela]) for alla € A,0 € O. (34)
i€EN

Proposition 18, which does not require Assumption 3, shows that the optimal choice rule
P can be computed in two steps. First, solve for the optimal rule Q in the reduced decision
problem D = (N, v, fl) with Csiszar information cost J. Second, recover P from @ using
(34). Since the second step is purely mechanical, the perceptual Csiszar model retains the
tractability of the standard Csiszar framework.

In particular, Theorem 2 implies that the first step reduces to finding a saddle point
(@,A\) € A(A) x RY. Moreover, as shown in Section 5, the multiplier A can be computed
attribute-by-attribute as the solution to

> a@w (a) =X ()) =1 forall ic N, (35)
acA

where A, (i) = A(i) /v(i).

The following example illustrates:

38The result extends to cases with a # b and E[a] = E[b], which can be resolved using any tie-breaking rule
between actions with the same projection.
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Example 8 (Perceptual mutual information). Suppose ¥(t) = e! — 1, so that J is mutual
information. Then, every saddle point (&, \) € A(A) x RY in D satisfies

M (i) = log Z a(a)e®™®  for all i € N.
acA

As a result, all optimal choice rules in D take the form

N gy AP
AP PR W

Thus, we obtain a perceptual version of Matéjka and McKay (2015). The choice rule resembles
a state-dependent mixed logit model.?’

Finally, as a corollary, we also obtain a continuity result on Py(a) as a function of 6:

Corollary 5. For alla € A and 0,7 € O,

[Po(a) = P (a)| < a(Bla)) - [ Ko — K: |1 - max ' (Eila] = M(3)).

where || - || is the L'-norm.

A notable implication of Corollary 5 is the coarser bound:
[FPo(a) — Pr(a)| < [|Ko — K- |1

That is, the encoder K bounds the slope of the map 6 — Py, uniformly across all decision
problems. This implies that the perceptual Csiszar model can generate the discrete-state
analogue of the continuous-choice property from Morris and Yang (2022). It achieves this by
placing hard constraints on what the agent is able to learn; as discussed in Lipnowski and
Ravid (2023), this would be the only way to achieve continuous choice, uniformly across all
decision problems, in a continuous-state version of the model.

9.4 Application: perceptual distance in one-dimensional problems

We conclude our presentation of perceptual Csiszar information with an application to a
canonical one-dimensional discrimination task. The state space is a finite, equally spaced
subset of the real line, ® C R. For clarity, we index the states in increasing order and write
O ={61,...,0,}, with 0,11 —0; = A >0foralli=1,...,n— 1. Since discrimination tasks
are typically formulated in continuous settings, this construction can be viewed as a uniform
discretization.

The agent chooses between a risky actions r and a safe action s. The payoff of the risky
action varies monotonically with the state: § > 7 implies r(0) > r(7). A simple example is a

39A version of this choice rule appears in a sender-receiver context in Bloedel and Segal (2021).
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binary bet where action r pays 1 if the state is positive, and —1 if the state is negative. As in
Example 1, the the safe action’s payoff is normalized to zero.

We consider a decision maker whose perceptual acuity diminishes with proximity between
states. To encode this structure, we set N = {1,...,n} and interpret Ky, (j) as the probability
of encoding state ¢; as 0;.

A central object of interest in discrimination tasks is the relationship between stimulus
intensity and choice frequency. In our framework, this is captured by the function 6 —
Py(r), commonly referred to as psychometric function. Pyshchometric functions observed in
experiments are typically S-shaped (Khaw, Li, and Woodford, 2021). This means that Py(r)
increases with 6, consistent with action r being more appealing in high states, and that this
function is convex at low stimulus levels and concave at high ones. In our discrete setting, we

say that the psychometric function is convex at 0; if
Pei (T) - P9i71(7") < P9i+1(r) - P9i (T)7

and concave at 0; if the inequality is reversed.
The next proposition relates these features of the psychometric function to properties of
the encoder.

Proposition 19. (i). The psychometric function is monotone increasing if the encoder
satisfies the monotone likelihood ratio property (MLRP):

0>1andi>j implies Ko(i)K:(5) > K. (i)Kgp(j).

(ii). Assume the encoder satisfies the MLRP. The psychometric function is convex at 6; if
1Kp, | + 3Ky, first-order stochastically dominates Ko,.

(ii). Assume the encoder satisfies the MLRP. The psychometric function is concave at 0;
if Ko, first-order stochastically dominates %K&;l + %K9i+l.

The MLRP captures the idea that higher states are more likely to be encoded as higher
attributes, reflecting perceptual consistency with the ordering of states. Next we provide an
example of a class of encoders that satisfies the MLRP.

Example 9. For all § € © and i € N, define the encoder

v(10 — 8il)
ZjeN v(16 — 9j|)’

where v: Ry — (0,400) is a decreasing function. This specification assigns higher encoding

Ky(i) =

probability to nearby states, with the decay governed by « (cf. Equation (32)). The encoder
satisfies the MRLP if v is log-concave.

Convexity and concavity of the psychometric function can be derived from primitive
properties of convexity and concavity of the encoder. A simple example follows:
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Example 10. Let £ and x be two probability distributions over attributes satisfying the
MLRP: for all ¢, 7 € N with i > j, £(7)x(j) > &(7)x (7). For each state 6 and attribute 4, define
the encoder as

Ko(i) = v(0)&@) + (1 —7(8))x()

where v: R — (0,1) is an increasing function. In this specification, the encoder forms a
convex combination of two baseline perceptual modes, £ and y. The distribution £ represents
perception biased toward high states, while x represents perception biased toward low states.
The mixing function v governs the relative weight of these modes: as the true state 8 increases,
more weight is placed on the high-state mode &.

One can verify that the encoder inherits the MLRP. In addition, %K 0,1+ %K 9,4, first-order
stochastically dominates Ky, whenever v is convex at ¢;. In the case where 7 is concave at 0;,
the reverse dominance relation holds. Consequently, an increasing psychometric function with

an S-shape arises when ~ is convex for low values of # and concave for high values.

10 Nested entropies

We build on the idea of encoding states into attributes to introduce a new class of posterior-
separable costs based on nested entropies. These entropy functions combine analytical
tractability—via a well-behaved conjugate—with a suggestive interpretation in terms of
“nests” of states sharing similar attributes. As we show, they connect closely to Hébert and
Woodford’s (2021) neighborhood-based costs and to Walker-Jones’s (2023) multi-attribute
Shannon entropy, as well as to the nested logit model from discrete choice.

10.1 Nested Shannon entropy

Let (N, K) be a personal state space, consisting of a finite set of attributes NV and a Markov
kernel K = (N, (Ky)gco) that encodes states into attributes (Definition 13). We assume that
for every attribute ¢ there exists a state 6 such that Ky(i) > 0. Given a prior 7 over the state
space, the induced distribution over attributes is v = > "pcg m(8)Ky. For each attribute 4, the
conditional distribution of states given i is denoted by u;, with p;(0) = Kg(i)7(0)/v(3).

Definition 15. Let (N, K) be a personal state space, and fix weights ¢ > 0 and n; > 0 for
each i € N. The nested Shannon entropy Hns: A(©) — Ry is defined as

Hxs(p) = inf{CDKL )+ > r(i)mDxr qllluz)} (36)
1EN

where the infimum is taken over all attribute distributions r and Markov kernels ¢ = (©, (¢;)ien)
such that Y ;- r(i)g; = p.

As with perceptual Csiszar information, the decision maker is envisioned as learning by

categorizing states into attributes: the cost of a posterior p € A(0) is computed indirectly,
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as the cost of the cheapest extension of p to state-attribute pairs. Such an extension is
represented by a pair (r,q), consisting of an attribute distribution » € A(/N) and a Markov
kernel ¢ € A(©)Y, such that 3,cy 7(i)g; = p. The pair (r,q) induces a joint distribution over
states and attributes whose marginal over states is p.

The cost of a candidate extension (r,q) decomposes into across-attribute and within-
attribute components:

CDKL + Z 771DKL QZ”/%)
1EN

This expression can itself be viewed as an entropy function over joint distributions of states
and attributes, measuring the divergence from the “prior” determined by 7 and the encoder
K. The parameters ¢ and (7;);en govern the relative importance of the across-attribute and
within-attribute components.

10.2 Special cases

Several special cases illustrate the logic of nested Shannon entropy and clarify the interpretation

of its parameters. To simplify the exposition, we assume throughout that
ni=mn forallie N.

When learning across attributes is less costly than learning within attributes (¢ < 7), the

nested Shannon entropy is bounded above by the standard Shannon entropy, scaled by n:

HNs(p) < nDKL(p”ﬂ')'

Grouping states into attributes allows the decision maker to simplify the learning problem
and thereby incur lower information costs. In the special case where the costs of learning
across and within attributes are identical (n = (), the nested Shannon entropy coincides with

the standard Shannon entropy:

Hys(p) = nDxu(p||T).

These results follow directly from the chain rule for KL divergence (Cover and Thomas, 2006,
Chapter 2).

In the extreme case where learning within attributes is prohibitively costly (n — +00),
the decision maker can acquire information about states only indirectly, through attributes.
In this limit, an extension (7, q) of a posterior p to state-attribute pairs has finite cost only if
q; = p; for all ¢ € N. Consequently, the limiting entropy is

Hys(p) = inf {CDKL(TIIV) € AN), Y r(iui = p} : (37)

iEN

This special case aligns closely with perceptual Csiszar information:
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Proposition 20. Let C' denote the posterior-separable cost function induced by the entropy in
(37). If the set of vectors {(Ky(i))gco : i € N} is linearly independent, then C coincides with
the perceptual Csiszdr information cost parametrized by (N, K, ¢), where ¢(t) = ((tlogt—t+1)
forallt e Ry.

Nested Shannon entropy thus relaxes some of the rigidities inherent in perceptual Csiszar
information by introducing a trade-off between learning indirectly through attributes and
directly about states, governed by the parameters ¢ and 7. Under perceptual Csiszar informa-
tion, learning is restricted to the attribute space, which forces many information structures to
have infinite cost: an experiment is feasible only if it is a garbling of the encoder. By contrast,
nested Shannon entropy assigns finite cost to every posterior (except in the limiting cases
¢ — 400 or n — +00).

For fixed values of ¢ and 7, the encoder determines the structural relationship between
states and attributes. As with perceptual Csiszar information, this relationship is subjective,
reflecting the agent’s perceptual limitations.

In the extreme case of perfect perception—when Ky(i) > 0 implies K,(i) = 0 for all
T # f—mnested Shannon entropy reduces standard Shannon entropy scaled by (:

Hys(p) = ¢(Dkw(p||T).

Here, because attributes fully reveal the underlying states, only the attributes themselves are
costly to learn.

At the opposite extreme of null perception—Ky = K, for all §,7 € ©—nested Shannon
entropy reduces to standard Shannon entropy scaled by #:

Hxs(p) = nDku(pl|7).

In this case, attributes convey no information about the states, so the decision maker optimally
learns directly about the states instead.

Finally, we highlight an intermediate case of imperfect perception: deterministic cate-
gorization. Here, each i € N corresponds to a cell B; C © in a partition {B;};en of the
state space. The attribute reveals exactly which cell contains the state, and nothing more:
Ky(i) =1if 6 € B;, and Ky(i) = 0 otherwise. In this case, the minimization problem defining

nested Shannon entropy admits a closed-form solution:

Proposition 21. Under deterministic categorization, for each p € A(®), the infimum in (36)

s achieved by
r(i) =p(B;) and q;(0) = p(0|B;).

Under deterministic categorization, each partition cell B; can be interpreted as a nest
of states with shared attributes. This interpretation is reinforced by the close relationship
between HYg, the conjugate of Hyg, and the nested logit model in discrete choice, which we

detail next.
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10.3 Conjugate function and optimality conditions

The conjugate of the nested Shannon entropy admits a tractable closed-form expression:

Proposition 22. For every x € R®,
ni/¢
His(a) = Clog | = w(i) | 32 pa()er®/n
iEN 9co

In discrete choice theory, this functional form is known as the surplus function of the
generalized nested logit model (Wen and Koppelman, 2001). Whereas in discrete choice nests
group alternatives that consumers regard as substitutes, here nests capture states that share
similar attributes in the learning process, such as perceptual proximity.

Under deterministic categorization, this expression collapses to the surplus function of the
canonical nested logit model:

ni/¢
Hi(w) = Clog | S m(By) | Y w(0]B;)e™ O/
iEN 9<B;

In this formulation, each state either belongs to a nest or not. By contrast, the more general
specification above allows for graded participation across nests, with the degree of overlap
determined by the encoder’s noise.

In discrete choice applications, it is standard to restrict attention to the parameter region
1; < (, ensuring a random-utility interpretation. In our setting, however, no such restriction
is warranted: the case n; > ( corresponds to situations where learning about attributes/nests
is less costly than learning about states within attributes/nests.

Leveraging the closed-form expression for the conjugate, we can apply Theorem 2 to derive
explicit optimality conditions (up to the f-mean a = P, and the Lagrange multiplier \). In
particular, for every action a in the consideration set, the posterior p, at which a is chosen is

given by

i —C
a(8)=Ar (0) iz

a(r)=Ax(7)
Sien v(Om@)e e (2@ pi(r)e )
pa(G) = VGHKIS(G - )‘ﬂ) = 7 ,

‘ a(n)Ax(n)\ ¢
e () (Sreomlrle™ » )

where A, denotes the prior-adjusted Lagrange multiplier. This expression admits a suggestive

decomposition:
pa(e) = Z ra(i)q@z,i) (0)’
€N
where 7,(7) represents the probability of nest i,
a(r)=An(r) ) +

(i) (Sreom(re”™

Ta(i) = nj
a(T)*}r(T) ) <

ZjeN v(4) (2766 pi(r)e M
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and q(4,4)(¢) is the probability of state § conditional on nest 4,

n a(0)—Ar (60)

pi(f)e i

4(a,i) (0) = : a(r)=An () °
Yrcoii(T)e M

The pair (14, q,) thus extends p, to state-attribute pairs, mirroring the two-stage structure of
nested logit models.

10.4 Relation to neighborhood-based costs

Nested Shannon entropy bears a close resemblance to two other families of cost functions in the
literature: the neighborhood-based costs of Hébert and Woodford (2021) and the multi-attribute
Shannon entropy (MASE) of Walker-Jones (2023). Like our approach, these families embed
structural features of the state space into the cost function. To facilitate comparison, we focus
on the leading parametric specification of neighborhood-based cost, which is also built on KL

divergence and encompasses MASE as a special case.

4

Given a finite index set I, a covering B = {B;};c; of the state space,*! and constants

k; > 0, Hébert and Woodford (2021) define the entropy function

Huw(p) =Y _ ki p(i) D (pil|mi), (38)
i€l

where p(i) = p(B;) is the posterior probability of event B;, p; € A(B;) is the corresponding
conditional posterior given by p;(0) = p(0|B;) for all § € B;, and 7; € A(B;) is the analogous
conditional prior. Hébert and Woodford interpret each event B; as a neighborhood of states
that are costly to distinguish. These neighborhoods are analogous to nests or attributes in
the nested Shannon model, and (38) resembles the ¢ — 0 limit of (36), but without the
minimization step.

The connection between nested Shannon entropy, neighborhood-based costs, and MASE
is most transparent when the neighborhood structure takes the form B = {By} U {B;}ien,
where N is a set of attributes, By = O, and {B;};cn is a partition of ©. In this setting, the
chain rule for KL divergence yields

Huw(p) = ko Dxr(plIT) + Y (ko + %) (i) Dk (pil| i)
iEN

This expression is exactly the MASE entropy function of Walker-Jones (2023). It also coincides
with the nested Shannon entropy under deterministic categorization, with nests {B;};cn and
scaling parameters ¢ = ko and 7; = ko + K; (Proposition 21). Thus, this special case of the

190ne can extend Definition 15 by nesting more general entropy functions—that is, general convex transfor-
mations of probability distributions. We restrict attention to the Shannon case (KL divergence) for clarity of
exposition, but our main results, such as the closed-form expression for the conjugate, remain valid.

“Each B; is a subset of states, and © = U;c1B;.
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nested Shannon model aligns with the subclass of neighborhood-based models that exhibit
tree-like neighborhood structures, and is equivalent to MASE.

Beyond this special case, however, nested Shannon entropy and neighborhood-based costs
diverge in subtle but important ways. When neighborhoods overlap, there are multiple ways
to extend a posterior belief p to state-neighborhood pairs. For example, if a state 0 lies in
two distinct neighborhoods B; # Bj, nested Shannon entropy splits the probability mass p(6)
across the two events and—when several such splits are possible—selects the allocation that
minimizes cost. By contrast, the neighborhood-based entropy accounts for the probability
p(0) twice, since 6 is included in both events.*? In the next section, we show a simple class of
decision problems where the two cost functions lead to qualitatively different predictions.

10.5 Application: the challenge of multi-dimensional learning

To conclude our presentation of the nested Shannon model, we apply it to a simple multi-
dimensional discrimination task. This serves two purposes: to highlight a novel connection
between optimal information acquisition and concepts in psychology, and to illustrate behav-
ioral differences between the nested Shannon and neighborhood-based models.

We consider a setting where the state is two-dimensional and the decision maker finds
it hard to engage in multi-dimensional learning: it is easy to learn about each dimension of
the state separately, but difficult to learn about both simultaneously. For instance, in the
perceptual experiments of Tversky and Russo (1969), it is easy for lab subjects to correctly
determine which of two rectangles has the larger area when they differ only by width or height,
but harder to do so when they differ along both dimensions. Similarly, in a market setting, it
may be easy for a consumer to choose correctly between products that differ only in terms of
quality or price, but harder for them to do so when the products differ in both respects.

The premise that multi-dimensional comparisons are more difficult than uni-dimensional
ones—while largely absent from the rational inattention literature—is familiar from several
lines of research in psychology and economics. For instance, this theme is central to recent
work on similarity and comparison complexity in the stochastic choice literature (e.g., He and
Natenzon, 2024; Shubatt and Yang, 2024).43

Setting. Formally, we consider the following simplified setting. The state space is a four-
element product set, © = {u,d} x {l,r}, and the prior is uniform, 7(6) = 1/4 for all § € ©.
For mnemonic convenience, we interpret the state as the location of a visual stimulus, where

the first dimension indexes its vertical position (“up” or “down”) and the second dimension

42In particular, the induced measure § on I in (38) typically has total mass strictly greater than one.

43Under the standard mutual information cost, the decision maker may endogenously simplify a multi-
dimensional state by optimally learning only about a particular linear combinations of its dimensions (e.g.,
Ké&szegi and Matéjka, 2020), but there is no sense in which multi-dimensional learning is intrinsically harder
than uni-dimensional learning.
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indexes its horizontal position (“left” or “right”). It is convenient to define the events
U={(ul),(u,r)}, D=6\U L={(ul),(dl)}, R=06\L.

That is, {U, D} defines a partition of states based on their vertical positions (“Up” or “Down”),
while {L, R} defines a partition based on their horizontal positions (“Left” or “Right”).

For each event ¢ € {U, D, L, R}, we define a; € R® as the action that pays a reward of 1 if
¢ € 7 and pays 0 otherwise. We also define the actions agiag, ot € R® as

aains(0) = 1, if o€ {(w1),(dr)} and au(0) = 1, if6 € {(u,r),(d)}
- 0, otherwise, ° 0, otherwise.

That is, agiag pays a reward of 1 when 6 lies on the diagonal, and pays 0 otherwise; symmetri-
cally, agiag pays a reward of 1 when 6 lies on the off-diagonal, and pays 0 otherwise.** We

consider the three binary-choice decision problems defined via the action sets

Ay ={ay,ap}, Az ={ar,ar}, A3 = {adiag doft}

In decision problem 1 (resp. 2), the decision maker faces a symmetric bet on the first (resp.,
second) dimension of the state. Meanwhile, in problem 3, the decision maker faces a symmetric
bet on whether the state lies in the diagonal or off-diagonal of the state space.

Note that these decision problems are permutations of each other. Therefore, a decision
maker whose cost function is symmetric with respect to all permutations of the state space
(e.g., mutual information) will have the same choice accuracy in all three problems. However,
for a decision maker who finds multi-dimensional learning challenging, intuition suggests that
choice accuracy should be higher in decision problems 1 and 2, which only require learning one
dimension of the state, than in decision problem 3, which requires learning both dimensions.

Focusing on the limiting case where learning about a single dimension is nearly costless,
we show that this behavioral pattern arises from a natural specification of the nested Shannon
model, but cannot be generated by any specification of the neighborhood-based model.

Nested Shannon costs. We consider a nested Shannon cost with the following parameters.
The set of attributes is N = {U, D, L, R}, where each attribute i € N indexes the corresponding
event defined above; the prior v € A(N) over attributes is uniform, so that v(i) = 1/4 for all
i € N; the conditional distributions p; € A(©) are uniform on the associated events, so that
11i(0) = 31(0 € i) for all i € N and 6 € ©; and there is > 0 such that 7; = n for all i € N.
We treat ¢ > 0 as a parameter that can be varied, and focus our analysis on the limit ¢ — 0.4?

This specification captures the idea that the decision maker’s subjective representation of
the environment treats each dimension of the state as a separate source of uncertainty. Note

that v and (u;);en correspond to the marginal and conditional distributions of the prior .

4 For the purposes of this application, setting the reward to equal 1 is just a normalization.
45The proof of Proposition 23 provides a full characterization of behavior for all values of ¢ > 0.
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We assume that n > 0 is constant across attributes and take ¢ — 0 in order to isolate the
effect of multi-dimensionality. In particular, these parametric restrictions ensure that the cost
function is symmetric with respect to permutations of each dimension of the state and imply
that it is nearly costless for the decision maker to learn about each dimension separately.

Proposition 23. For each decision problem j € {1,2,3}, let P7 € A(A;)® be an optimal
stochastic choice rule under the above nested Shannon cost. As { — 0, it holds that:
1/n .
£ ) =1
Ri@) > 1a)=1).  Pj@) > 1a®)=1),  Fia)» o T

elTlH, otherwise.

The behavioral pattern in Proposition 23 is intuitive. In the limit ¢ — 0, where it becomes
nearly free to perfectly distinguish between the events in {U, D} and {L, R}, the choice
accuracy in both problems 1 and 2 becomes nearly perfect. Meanwhile, in problem 3, the
choice accuracy is governed by the parameter n € (0,+oc], which determines the cost of
learning jointly about both dimensions. Note that this choice accuracy is decreasing in 7, with

1
: 3 _ _ : 3 _ -
7171_% Pj(a) =1(a(f) =1) and ngg-loo Py(a) = 5

Therefore, the parameter 1 € (0, +00] fully controls the difficulty of multi-dimensional learning.

Neighborhood-based costs. We now present an impossibility result demonstrating that
the neighborhood-based model (38) cannot produce this behavioral pattern, regardless of the
neighborhood structure. In particular, we show that, under any such cost function, if the
choice accuracy in both problems 1 and 2 is nearly perfect, then choice accuracy in problem 3
must also be nearly perfect and the cost function itself must be nearly identically zero.
Formally, we call a neighborhood structure B nonredundant if it contains no singleton
neighborhoods, i.e., B € B implies | B| > 2. Since singleton neighborhoods do not contribute to
the entropy (38), nonredundancy is an innocuous assumption that merely simplifies notation.

Proposition 24. Fiz any indez set I, nonredundant neighborhood structure B, and convergent

sequence of coefficients (K")ier — (Kf)ier € Ri. For each decision problem j € {1,2,3} and

n €N, let P € A(A;)® be an optimal stochastic choice rule under the neighborhood-based

cost defined via (38) with this neighborhood structure and coefficients (K}')ier. If it holds that
lim P,"(a) =1(a(d) =1) and lim Py"(a) = 1(a(d) = 1),

n—oo n—oo

then it also holds that

ki =0 foralliel and lim Pg”n(a) =1(a(f) =1).

n—oo

The contrast between Propositions 23 and 24 reflects the difference between the ways nested
Shannon and neighborhood-based cost functions aggregate costs across nests/neighborhoods.
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Namely, the nested Shannon model allows us to decouple the operations of learning about
nests and learning within nests, while the neighborhood-based model generally does not.%6
To illustrate, consider a neighborhood-based cost with neighborhood structure B’ = {U, D}
and strictly positive coefficients. Under this cost function, it is free to learn about the first
dimension of the state, as doing so does not require distinguishing the states within U and D.
However, it is costly to learn about the second dimension, which does require distinguishing
the states within U and D. This implies that choice accuracy is perfect in problem 1, and
imperfect in problems 2 and 3. By symmetric reasoning, the neighborhood-based cost with
neighborhood structure B” = {L, R} makes it costly to learn about the first dimension and
free to learn about the second dimension; this implies perfect choice accuracy in problem
2, and imperfect choice accuracy in problems 1 and 3. In either case, learning about one
dimension of the state requires distinguishing between states within the neighborhoods that
hold the other dimension fixed, rendering both uni- and multi-dimensional learning costly.
By contrast, under the nested Shannon cost with nests {U, D, L, R}, the premise of optimal
encoding implies that the decision maker can learn exclusively about one dimension of the
state while learning nothing about the other. In problems 1 and 2, this flexibility effectively
allows the decision maker to choose between facing the neighborhood structure B’ or B”,
resulting in perfect choice accuracy in both problems. Choice accuracy is only imperfect in
problem 3, where learning about both dimensions is necessary. We conclude that this feature
of the nested Shannon cost is crucial for modeling the challenges of multi-dimensional learning.

46The “deterministic categorization” special case discussed in Section 10.4 is an exception.
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Appendix

A Bounds on Lagrange multipliers

In this section we derive bounds on Lagrange multipliers that are useful for both analysis and
computations. We denote by || - ||oo the uniform norm on R®:

] = masx (6)].

Lemma 8. Under f-information, if A is a Lagrange multiplier for a decision problem
D = (m, A), then for ally € R®,

AO)y((0) < (2+ o) | max ||a|lee + | f(1 — .
3OO < 2+ o) (ma ol +17(2 - )]

Proof. Let z € RS?. As in the proof of Theorem 2, we denote by P, the set of vectors
Pe R?XA such that Y ,c4 Pyp(a) = z(0) for all € ©. Furthermore, let V(z) be the value of
the following optimization problem:

max Z m(0) Z Py(a)a(l) — I7(P),

PePo co acA

where, given © = {61,...,0,},

[{(P)= iuf Za(a)f(iil(g),...,ljjézx)).

acA(A) eyl

As shown in the proof of Theorem 2, the value function V': RS? — R is concave and A is a
supergradient of V at & = 1. Moreover, for all z € R9,
max » a(@)z(@)w(0) — f(z) < V(x) < Z 7(0)x(0) max a(f) — f(z).

a€A 9co gco acA

The lower bound is achieved by restricting attention to choice rules P for which there is
a € A(A) such that Py(a) = a(a)z(0) for all a € A and # € ©. The upper bound follows from
It(P) > f(x) for all P € P,.

Let y € R®. By the definition of supergradient, we have:

D AO)y(O) = V(A +y) - V().
0cO

Using the bounds on V' described above, we obtain
> _
V49 = - (14 maxly(6)] ) max [a(0)] - 171+ )l
V(1) < max |a(0)].

acA,0cO

The desired result follows. O
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Let Bc(x) be the closed ball of radius € > 0 centered around z, under the uniform norm:
Be(z) = {y €R® ||z — yllo <},
Proposition 25. (i) If f is essentially smooth, then for all decision problems
D

and all € > 0 such that B.(1) C dom f,

2
<[ Z
M < (£ +1) (nguauw + max |f<x)|>

where X\ is the unique Lagrange multiplier associated with D.

(ii) If H is relatively smooth, then for all decision problems D, with 7 € ri(dom H), and all
e > 0 such that B(m) N A(©) C dom H,

e < (24 ) (max|rauoo+ max \H(p)—H<w>\>,

€  mingeo m(0) acA pEB(T)NA(O)
where X\ is the unique Lagrange multiplier associated with D such that Y gce A(0) = 0.

Proof. For each 6 € O, let dy9 be the Dirac measure concentrated on ©.
(i). The desired result follows from applying Lemma 8 with y = +€dy.
.. . _ (S
(ii). Recall that, under posterior separable costs, f(x) = H(xm) — H(w) for all z € RY
such that >y z(0)m(6) = 1. If we apply Lemma 8 with 7y = €(d9 — J,) for a pair of states 6

and 7, we obtain:

m(0)  w(r) min,ce 7(p) pEBL(m)NA(O)

Using the normalization }° cg A(p) = 0, we obtain:

(T

2 1
B (r <e + min,ce 71'(/))) (r;leaf)li lalloo + peBﬁ%{A(e) 1H(p) - H(ﬂ-)o
(0

=0) < <2 + 1) (I;leaj( l|lallco + max  |H(p) — H(”)’) .

) €  min,ece m(p) pEB(T)NA(O)

Since 6 and 7 are arbitrary, we obtain

)‘(9)’ < (2 + 1) (max lallo +  max |H(p) — H(”)’) :

>

> 3
IN

3

IAO)] <

7(0) € minyee m(p) acA pEB(T)NA(O)
The desired result follows. O

The proposition allows us to search for the Lagrange multiplier within a compact set
of vectors, instead of the entire R®. This permits the direct application of computational
techniques to find the saddle points of (14)—see, e.g., Bubeck (2015, Chapter 4).

65



B The size of the consideration set

The findings in Section 7 on inconclusive evidence suggest a broader distinction between
posterior separable costs and f-information in terms of the size of the consideration set. This
section explores these differences by moving beyond the guess-the-state setting and analyzing
abstract decision problems. A corollary of this analysis will be a proof that mutual information
is the essentially unique Csiszar cost that is posterior separable.

For the remainder of this section, we fix a state space © with cardinality n. We denote
by ©(O, ) the set of decision problems with state space © and prior 7. Each D € ©(0,7)
can be represented by a n X m payoff matrix, where m is the number of feasible actions in
D. This representation allows us to defined a topology on ©(©, ) as follows: a sequence of
decision problems (D') converges to a decision problem D in (O, ) if (i) each D! has the
same number of feasible actions as D, and (ii) the payoff matrix associated with D! converges
to the payoff matrix associated with D as [ approaches infinity.

The next result provides a bound to the size of the consideration set under posterior
separable costs.

Proposition 26. Under posterior separable costs, with m € ri(dom H), the consideration set
has the following properties:

(i). Every decision problem D € D(0©,w) admits an optimal choice rule P such that
| supp Pr| < n.

(ii). If H is relatively smooth, then the set of decision problems D € © (0, w) that admit an
optimal choice rule P such that | supp Pr| > n is nowhere dense in ©(0, ).

Thus, under posterior separable costs, the size of the consideration set is at most the
cardinality of the state space, modulo knife-edge cases. Part (i) of the proposition is known in
the literature (see, e.g., Denti 2022, Proposition 4). We provide a proof for part (i) and (ii)
based on our characterization theorem of optimal information acquisition.

To connect Proposition 26 with the findings on inconclusive evidence from Section 7,
observe that in the guess-the-state problem with outside option, there are n possible states
and n+ 1 feasible of actions—comprising n risky actions and one safe action. Under symmetric
costs (assumed in Proposition 9), all risky actions are taken with the same probability at the
optimum. Thus, for inconclusive evidence to emerge, all n + 1 actions must be taken with
positive probability. This requirement conflicts with the fact that there are only n states, as
Proposition 26 demonstrates in a broader context.

Under f-information, the consideration set expands in a precise sense:

Proposition 27. Under f-information, the consideration set has the following properties:

(i). Every decision problem D € D(©,w) admits an optimal choice rule P such that
|supp Pr| <n+1.
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(ii). If f is essentially smooth, then the set of decision problems D € ©(0©, ) that admit an
optimal choice rule P such that | supp Pr| > n + 1 is nowhere dense in ©(0, ).

The intuition behind Propositions 26 and 27 is as follows. Under f-information, the

optimality conditions for « in the max-min problem (14) require that, for all a,b € supp P,
fflam = X) = f*(br = N).

This defines a system with m = supp | P;|—1 equations and n unknown variables, corresponding
to the values of the Lagrange multiplier in each state. If supp |Py;| > n+1, the system becomes
overdetermined and, generically, has no solution. Under posterior separability, since H* is
translation invariant, any Lagrange multiplier A can be shifted by an arbitrary constant ¢ € R,
meaning that A 4 7c is also a valid multiplier. This eliminates one degree of freedom, making
the system overdetermined whenever supp |Py| > n.

As the analysis on inconclusive evidence demonstrates, there are settings where, under
Csiszar information, the size of the consideration is exactly n + 1, highlighting a distinction
from posterior separable costs. The next result generalizes these findings.

To state the result, let ©(0) denote the set of decision problems with state space ©. Each
D € ©(0) can be represented by a prior 7 € A(O) and a n X m payoff matrix, where m is
the number of feasible actions in D. This representation allows us to defined a topology on
D(0) as follows: a sequence of decision problems (D!) converges to a decision problem D in
D(O) if (i) each D' has the same number of feasible actions as D, and (i) both the prior and
the payoff matrix associated with D! converge to those of D as [ approaches infinity.

Proposition 28. Let 1) = ¢* be strictly convex and twice differentiable, with Ry = " /1’ be
strictly monotone on a non-empty open interval. If n > 3, then there exists an open set of
decision problems D € D(0) such that |supp Pr| = n+1 at the optimum under ¢-informativity.

The proof is constructive: the critical decision problem retains the structure of the guess-
the-state problem with an outside option from the Section 7, but with an additional state and
an extra action to regulate the value of the Lagrange multiplier. If Ry is strictly monotone on
a neighborhood of zero (as in Proposition 7), these additional state and action are unnecessary,
and the result holds for n > 2.

A corollary of Propositions 26 and 28 is that mutual information essentially is the unique

intersection of class of posterior separable costs with Csiszar information.

Corollary 6. A Csiszdr cost with 1 = ¢* strictly convex and thrice continuously differentiable
s posterior separable if and only if it is mutual information, i.e., there is some k > 0 such
that ¥(t) = k(e/* — 1) for all t € R.
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B.1 Proofs
B.1.1 Proof of Proposition 26-(i)

Let P be an optimal choice rule; denote by m and [ the cardinalities of A and supp P,
respectively. If I < n, then the desired result holds. Suppose therefore that [ > n. Next we
construct another optimal choice rule @ such that |supp Q| < I. By induction on [, this
implies that there exists an optimal choice rule whose consideration set has no more than n
actions.

Let (a, \) be a saddle point of (14) that generates P. Notice that «, which is equal to
Py, is a solution of the following system of linear equations (label the system’s independent
variable by 8 € R4):

> B(a)VoH*(a — Ar) = 7(6), 6 co, (39)

a€EA
B(a) =0, a ¢ supp P;. (40)

This linear system has n + m — [ equations and m unknowns. Since [ > n, there must be a

non-zero vector § such that

> Bla)VoH*(a— Ar) =0, 0co, (41)

a€A
B(a) =0, a ¢ supp Pr. (42)

Note that both 8 and —f are non-zero solutions of (41) and (42). Hence, we can assume
without loss of generality that $(a) > 0 for some a € A.
We define v € R4 as follows: for all a € A,

(@) = ala) - 5(a) min 50

Claim 1. The vector v has the following properties:

(i). v(a) > 0 for all a € A.

(ii). v(a) =0 for some a € supp Px.

(iii). ~ s a solution of (39) and (40).

(iv). v € A(4).

(v). (v, ) is a saddle point of (14).
Proof. (i). If B(a) <0, then v(a) > a(a) > 0. If S(a) > 0, then

afa) )

B(a) ~ u:B(b)>0 B(b)

Y(a) 20 <=
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Thus, v(a) > 0 also when £(a) > 0. This proves (i).
(ii). Take any a, with S(a) > 0, such that

a(a) . a(b)
= min ——=.
Bla)  b:5b)>0 B(b)
Then, y(a) = 0. Moreover, (42) ensures that a € supp Py. This proves (ii).

(iii). This follows from a being a solution of (39)-(40) and S being a solution of (41)—(42).
(iv). By (i), v(a) > 0 for all a € A. Since H* is translation invariant,

> VeH*(a— Ar) = 1.
0cO

It follows from (39) that

> (@)= (a) (Z VoH"(a — m)

a€A acA fcO®
=2 (Z v(a)VoH"(a — /\77)> => w(0) =1.
0c® \acA 0O

We conclude that v € A(A).
(v). Since suppy C supp Py and (Py, \) is a saddle point, we have:

in H*(a—A;)> min_ H*(a— \;) =max H*(a — Ar).
. R A

Hence, it follows from (39) that (v, ) is a saddle point. O

Let @ be the optimal choice rule generated by (7, A). Under posterior separability, Q. = ~.
Thus, supp Q C supp P by (40). Moreover, supp Qr # supp Pr. Indeed, by (ii) of Claim 1,
there exists a € supp Py such that y(a) = 0. Given that v(a) = 0, we must have Qr(a) = 0.
It follows that supp @, # supp Pr. Overall, we conclude that supp @ is a proper subset of
supp Pr. This shows that |supp Q| < |supp Pr| = [, as desired. This concludes the proof of
part (i) of Proposition 26.

B.1.2 Proof of Proposition 26-(ii)

For every decision problem D € D(0O,7), we fix an enumeration of the action set, A =
{ai1,...,am}, where m is the number of feasible actions. With a slight abuse of notation, we
identify o with an element of A({1,...,m}).

We first prove a continuity property of the Lagrange multiplier. We denote by Ap the
unique Lagrange multiplier associated with a decision problem D, under the normalization
that > pce Ap(#) = 0. Uniqueness comes from H being relatively smooth.

Claim 2. If D' — D, then Api — Ap.
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Proof. By the definition of convergence between decision problems each D' has the same
number of action as D, which we denote by m. By Proposition 25, the sequence (Api) is
bounded. Thus, we can assume that it converges to some A without loss of generality. For
each [, let (al, Api) be a saddle point for the decision problem D!. Since the sequence (o/)
is bounded, we can assume that it converges to some « in A({l,...,m}) without loss of
generality. By the continuity of H* and VH*, the pair (o, \) is a saddle point for the decision
problem D. Thus, A = Ap. This proves that Api — Ap. ]

Let D be the set of decision problems that admits an optimal choice rule P such that
| supp Pr| > n. Let c1D be the closure of D.

Claim 3. For each D € clD, there is a set of actions B, with |B| > n, such that

*( — i *(
r;leaj(H(a (Ap)x) E%IEH(G (AD)x).

Proof. Let (D') be a sequence in I such that D! — D. By the definition of convergence
between decision problems, each D! has the same number of action as D, which we denote by
m. Bach decision problem D! = (0, 7, A') has a saddle point (a!, \p:) such that |supp of| > n.
Possibly passing to a subsequence, we can assume that supp ! = supp o/t C {1,...,m} for
all I; accordingly, We define I = supp a'. For all [, since (al, Api) is a saddle point, we obtain:

max H*(al = (\pi)n) = min H* (af = (Api)s)

By Claim 5, Apt = Ap. Since H* is continuous,

‘max H*(a; — (Ap)x) = min H*(a; — (Ap)x).

i=1,....,m el

Hence, we can choose B = {a; : i € I}. O

Take an arbitrary decision problem D € clD and an arbitrary € > 0. Let A ={a1,...,am}

be an enumeration of the action set. By Proposition 26-(i), the decision problem D has a
saddle point (o, Ap) such that |suppal < n. We define D¢ = (O, 7, A°) as follows: for all
Pe®andi=1,...,m,

a; (0 if ¢ € supp a,

2£(6) = i(0) i pp

a;(0) —e if i ¢ supp .
Note that (a, Ap) is a saddle point of D¢. Thus, in particular, Ap = Ape and (o, Ape) is a
saddle point of D¢. Tt follows that, for every i ¢ supp «,

H*(ai — (Ape)r) = H*(a5 — (Ap)x) < H*(ai — (Ap)x)
< min H*(aj — (Ap)r)

~ jEsuppa
= min H*(a§ — (Ap)r) = max H*(a{ — (Ape)r),
JjEsupp o i=1,...,n

where we use the fact that H* is strictly increasing (Lemma 7). We deduce from Claim 6 that
D¢ ¢ clD. Since D € clD and € > 0 are arbitrary, we conclude that clID has empty interior.
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B.1.3 Proof of Proposition 27-(i)

The structure of this proof parallels that of Proposition 26-(i). We repeat several steps to
emphasize both the analogies and the differences.

Let P be an optimal choice rule, and denote by m and [ the cardinalities of A and supp P,
respectively. If [ < n 4+ 1, then the desired result holds. Suppose therefore that [ > n + 1.
Next we construct another optimal choice rule @ such that |supp Q| < I. By induction on I,
this implies that there exists an optimal choice rule whose consideration set has no more than
n + 1 actions.

Let (, \) be a saddle point of (14) that generates P. Notice that « is a solution of the
following system of linear equations (label the system’s independent variable by § € R*4):

> Bla)Vof*(ar —N) =1, 6 co, (43)
acA
Y. Bla= ) a(a), (44)
a€supp Pr a€supp Pr
B(a) = a(a), a ¢ supp Pr. (45)

This linear system has n + 1 4+ m — [ equations and m unknowns. Since [ > n + 1, there must
be a non-zero vector 8 such that

> B(a)Vof*(am — X) =0, 6co, (46)

a€A

a€supp Pr
B(a) =0, a ¢ supp Pr. (48)

Note that both 8 and —f are non-zero solutions of (46)—(48). Hence, we can assume without
loss of generality that S(a) > 0 for some a € A.
We define v € R4 as follows: for all a € A,

() = ala) = pla), min 50,

Claim 4. The vector v has the following properties:
(i). v(a) >0 for all a € A.

(ii). v(a) =0 for some a € supp Px.

(iii). v is a solution of (43)-(45).

(iv). v € A(4).

(v). If y(a) > 0, then a(a) > 0.
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(vi). (v,A) is a saddle point of (14).
Proof. (i). If B(a) <0, then v(a) > a(a) > 0. If f(a) > 0, then
ala) N a(b)

20 = By 2 e B0y

Thus, v(a) > 0 also when 3(a) > 0. This proves (i).
(ii). Take any a, with S(a) > 0, such that
b
o(a) = min &.
Bla)  u:8(0b)>0 B(b)
Then, y(a) = 0. Moreover, (48) ensures that a € supp P;. This proves (ii).

(iii). This follows from « being a solution of (43)—(45) and S being a solution of (46)—(48).
(iv). By (i), v(a) > 0 for all a € A. By (44) and (45),

doa@y= > e+ D Aa)

acA a€supp Pr aé¢supp Pr
= 2 el+ Y ale)=> al@)=1
a€supp Pr a¢supp Pr a€A

It follows that v € A(A).
(v). For a ¢ supp Py, we have vy(a) = a(a). For a € supp Py, we have:
Pr(a) = a(a) Z T(0)Vof*(am — N).
0cO

Thus, supp Pr(a) C supp a. Thus, in any case, y(a) > 0 implies a(a) > 0, as desired.
(vi). Since suppy C supp « and («, A) is a saddle point, we have:

min f*(ar —A) > min f*(am — \) = max f*(ar — ).

aesupp vy aE€supp « acA

Hence, it follows from (43) that (v, ) is a saddle point. O

Let @ be the optimal choice rule generated by (v, A). We claim that |supp Q| < . To
verify this claim, first we observe that supp Q. C supp Pr. Indeed, Q(a) > 0 implies

v(a) >0 and Z w(0)Vof*(ar —\) > 0.
0co

Since «y(a) > 0 implies a(a) > 0 (see (v) of Claim 4), we obtain that Qr(a) > 0 implies
Pr(a) = ala) Z () Vo f*(ar — ) > 0.
SS]

This proves that supp @ C supp Pr. We also note that supp Q, # supp Pr. Indeed, by (ii)
of Claim 4, there exists a € supp P, such that y(a) = 0. Given that y(a) = 0, we must have
Qr(a) =0. Tt follows that supp Qr # supp Pr. Overall, we conclude that supp Q is a proper
subset of supp Py. This shows that | supp Q| < |supp Pr| = [, as desired. This concludes the
proof of part (i) of Proposition 27.

72



B.1.4 Proof of Proposition 27-(ii)

The structure of this proof parallels that of Proposition 26-(ii). We repeat several steps to
emphasize both the analogies and the differences.

For every decision problem D € D(0O,7), we fix an enumeration of the action set, A =
{a1,...,am}, where m is the number of feasible actions. With a slight abuse of notation, we
identify o with an element of A({1,...,m}).

We first prove a continuity property of the Lagrange multiplier. We denote by Ap the
unique Lagrange multiplier associated with a decision problem D. Uniqueness comes from the
fact that f is essentially smooth.

Claim 5. If D' — D, then A\pi — Ap.

Proof. By the definition of convergence between decision problem, each D! has the same
number of action as D, which we denote by m. By Proposition 25, the sequence (Api) is
bounded. Thus, we can assume that it converges to some )\ without loss of generality. For
each [, let (a!, A\p1) be a saddle point for the decision problem D'. Since the sequence (a!)
is bounded, we can assume that it converges to some « in A({l,...,m}) without loss of
generality. By the continuity of f* and V f*, the pair («, \) is a saddle point for the decision
problem D. Thus, A = Ap. This proves that Api — Ap. ]

Let D be the set of decision problems that admits an optimal choice rule P such that
| supp Pr| > n+ 1. Let clD be the closure of D.

Claim 6. For each D € clD, there is a set of actions B C A, with |B| > n, such that

* . — i * .
I;leaj{f (am — Ap) gélélf (am — Ap).

Proof. Let (D') be a sequence in I such that D! — D. By the definition of convergence
between decision problems, each D! has the same number of action as D, which we denote by
m. Each decision problem D! has a saddle point (a!, \p:) such that |supp a!| > n. Possibly
passing to a subsequence, we can assume that supp ol = supp o/t! for all I; accordingly, we
define I = supp a!'. For all [, since (a!, Ap1) is a saddle point, we must have:

max f*(alm — A\pi) = min f*(alr — Ap).
i=1,...,m i€l

By Claim 5, Api — Ap. Since f* is continuous,

_Inax [ (a;m = Ap) = eIn [ (a;m — Ap).

Hence, we can choose B = {a; : i € I}. O

Take an arbitrary decision problem D € clD and an arbitrary € > 0. Let A ={a1,...,am}
be an enumeration of the action set. By Proposition 27-(i), the decision problem D has a
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saddle point (a, Ap) such that |supp o] < n+ 1. (Recall that, since f is essentially smooth,
supp « coincides with the consideration set). We define D¢ = (O, m, A°) as follows: for all
Pe®andi=1,...,m,
. a;(0) if i € supp «,
(0) = .
a;(0) —e if i ¢ supp .
Note that («, Ap) is a saddle point of D¢. Thus, in particular, A\p = Ape. It follows that, for

every i ¢ supp «,

f*(afw — /\De) = f*(af-ﬂ — )\D) < f*(anr — )\7_))

< min (a7 — Ap)
JEsupp o

€

ST — Ape) = max f*(aim — Ape),

= min f*(a max
It Mt}

jEsupp o

where we use the fact f* is strictly increasing. We deduce from Claim 6 that D¢ ¢ clD. Since

D € clD and € > 0 are arbitrary, we conclude that clID has empty interior.

B.1.5 Proof of Proposition 28

Let © = {6;,...,0,} and A = {ay,...,an}, with m > n > 3. The core of the proof is
constructing a decision problem D = (O, 7, A) and a pair (o, \) € A(A) x R® such that:

(i). (o, A) is the unique saddle point of D.
(11) Supp &« = {ala R an+1}‘

(iii). For all j > n + 1,

where )\ﬂ-(ez) = )\(91)/71'(97,)

Toward this goal, we introduce parametrizations for D and (a, ). The decision problem D is

parametrized as follows:

e Given 7 € (0, 1), each state 61,...,0,_; has prior probability 7/(n — 1), and state 6,
has prior probability 1 — 7.

e For j=1,...,n—1, action a; pays p > 0 in state 8;, pays z € R in state 0,,, and pays
0 in every other state.

o Action a, pays z in state 0, and o € (0, p) in every other state.
e Action a,+1 pays y € R in state 6, and « € R in every other state.

e For j =n+2,...,m, action a; pays y — 1 in state 6, and x — 1 in every other state.
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The pair (a, \) is parametrized as follows:
o Given a € (0,1), a(ar) = ... = a(a,) = a/n and a(an+1) =1 — a.
o Given A\€R, A(#1) =... = A(0,_1) = AMn —1)/7 and A(#,) =0

To sum up, D is parametrized by 7@ € (0,1), p > 0, 0 € (0,p), and z,y,x € R. The pair
(o, \) is parametrized by @ € (0,1) and A € R. By construction, suppa = {a1,...,a,+1}. In
addition, action aj, with j =n +2,...,m, is dominated by action a,11. Thus,

n n

Do (ai(0:) = A(6:)) < Y (ans1(6:) — Ar(6:)), (49)

i=1 i=1

It remains to choose parameter values so that (a, A) is the unique saddle point of D.
For (a, \) to be a saddle point, the necessary and sufficient conditions are as follows. For
A to be optimal given «, we need:

an=2) (0-2)+ %zp’ (¢ =A)+(1=a) (z=2)=¢(0), (50)

a'(z) + (1= a)¥'(y) =4'(0).  (51)

%w' (p=2)+

For « to be optimal given A, we need:

775?__12)1/) (0 — 5\) + (1 —m)Y(z) =Y (:c — 5\) + (1 =m)(y), (52)

7 (0= A) + (1= 7)p(z) = 7 (2= A) + (1= D). (53)

v(p=2)+

n—1

We denote by X a non-empty open interval of the real line such that R, is strictly
monotone on X. To simplify the exposition, we assume that X N (—o0,0) # &. Similar
arguments apply to the case in which X N (0, +o00) # &.

We choose A > 0 such that Ry is strictly monotone on

(—5\ — €, —5\—1-6)

for all € sufficiently small. Take p € (0,¢) and o € (0, p) such that

¢(p_x)+2%f¢(o_x):¢(a_x). (54)

n—1

Note that ¢ admits an explicit expression:
=3+ (2w (p-A) + 270 (0- X))
n—1 n—1 '

The fact that o € (0, p) comes from 1) being strictly convex and increasing. By choosing €

sufficiently small, we can be sure that
p—A<0 and o—A<0.
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To satisfy (50), we impose the restriction that = > A, and we define & by:

n (¥ (z=A) —v'(0))
W (&= 3) = (p=3) ~ (-2 0-2) v (o)

a =

Note that, as 2 | A, we have & | 0. Next, to satisfy (53), we impose the restrictions that z > 0
and y < 0, and we define 7 by:

__ ¥(2) = () |
¥z =)+ () —v (0= A) —¥()

Then, thanks to (54), equation (52) is automatically satisfied. Finally, to satisfy (51), we
define y by:

()" (W(0) — ay'(2))

1—a

y:

Note that y is well defined as long as we choose z sufficiently close to zero. Overall, this
parameter choice ensures that (a, ) is a saddle point of D.
Now we prove that («a, A) is the unique saddle point of D. We will use the following result:

Claim 7. We have:

Y (p=3) + 1220 0-3) £ (o= 3). <55>

29 (07 @) = R (57 @)

Since R, is strictly monotone on the interval (—)x —6,—Ate

n—1

Proof. Notice that

the composite function 1’ otp—?

\_/

is strictly convex or strictly concave on the interval (1/) ( ) , ( A+ (—:)) Then, the
desired result follows from applying ¢/’ 0 1)~! to both sides of (54).

Take any other saddle point (3, \)—since f is essentially smooth, the Lagrange multiplier
is unique. By (49), we must have $(a;) = 0 for all i > n+2. Next, we verify that 3(a;) = (a;)
forall 2,7 =1,...,n — 1. To show this, we can use the optimality conditions for the Lagrange

multiplier in states ¢; and 6;, which imply:
Blar) (¢ (p=2) =w (0-2)) = Baj) (¢ (0= 1) —v' (0-1)).

We conclude that 8(a;) = B(a;).
Next we argue that §(ap+1) = 1 — @. This follows immediately from the optimality
condition for the Lagrange multiplier in state 6,,:

(1= Blant1))¥'(2) + Blant1)¥' (y) =¢'(0) = Blans1) =1 -
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Hence, we are done with proving uniqueness as soon as we show that f(ay,) = S(a1). To do so,
we use the optimality condition for the Lagrange multiplier in the first state, which, together
with (50), imply:

(Tb—lézﬁ(al) (nilw,(p_j\)+Z:i¢,(0_/—\)>+ﬁ((;mwl<a_/—\>
S (e (- ) B (0-0) )+ v (- ).

n n—1

By (55), we must have $(a1) = 5(a,). This proves that («, A) is the unique saddle point of D.
The next result concludes the proof of the proposition.

Claim 8. If (D') is a sequence of decision problems that converges to D in D(0), then, for
all | sufficiently large, the consideration set has n + 1 elements at the optimum.

Proof. By the definition of convergence between decision problems, each D! has the same
number of action as D, which we denote by m. For each [, let (al, A be a saddle point of D!
We identify each o! with an element A({1,...,m}). We apply the same convention to a.

We claim that o/ — o and A = . The sequence (') is bounded because A({1,...,m})
is compact. The sequence (') is bounded by Proposition 25. Thus, we can assume that
o — a* and X' — \* for some o* € A({1,...,m}) and \* € R®. By continuity of ¥ and ¢/,
(a*, \*) is a saddle point of D. Since (a, A) is the unique saddle point of D, we deduce that
(a*, N*) = (a, A).

l

Since ol — «, supp ! D supp a for all [ sufficiently large. In addition, by (49), for all I

sufficiently large,

n n

jzggiﬁm;%ﬁ (af(0:) = ALu(0)) < z;w (ah(0) = AL (6)) -
i= i=

This proves that supp ! C « for all [ sufficiently large. It follows that supp of = « for all [

sufficiently large. O

B.1.6 Proof of Corollary 6

The “only if” direction is well known. For the “if” direction, suppose that ¢-informativity is
posterior separable. By Propositions 26 and 28, the Arrow-Pratt coefficient is not strictly
monotone on any open interval. Since 1 is thrice continuously differentiable, this implies
that Ry is continuously differentiable, and therefore constant: there exists x > 0 such that
Ry(z) = 1/ for all 2 € R. We obtain that ¢(x) = x(e®/* — 1) for all z € R, which in turn
implies that ¢(z) = ¢¥*(z) = k(xzlogez —x + 1) for all x € Ry

77



C Proofs of the results in the main text

C.1 Proof of Lemma 2

(i). The result is a consequence of the data-processing inequality for f-divergences (Lemma 1):
I/(KoP)= inf D¢KoP
sl oP)= inf Dy(KoP|s)

< inf Dy(KoP|Koa)< inf
aEA(Q

D+(P|a) = I;(P).
< e f(Plla) = I§(P)

(ii). If I;(P) = 400, then I;(P) = Ds(P|a) for all @ € A(Q2). Suppose instead that
I;(P) < +00. By Lemma 1, Df(P| ) is lower semicontinuous in . Thus, since A() is
compact, there exists a € A(§2) such that Dy(P|la) = mingeao) Dy (P||8)-

(iii). To verify convexity, take P,Q € A(Q)® and ¢ € [0,1]. By (ii) above, there are
a, B € A(Q) such that Ir(P) = Ds(Plla) and I5(Q) = D#(Q||5). Then, since Dy is convex
on A(2)® x A(Q) (Lemma 1),

tp(P) + (1= D)I;(Q) = tDy(Plla) + (1~ )Dy(Q15)
> Dy(tP+ (1 - 0)Qllta + (1~ 1)8)
> I;(tP + (1 - 1)Q).

We conclude that Iy is convex.

To verify lower semicontinuity, let (P™) be a sequence in A(Q)® with limit P. By (i),
for every n there is o™ € A(Q2) such that I;(P") = Ds(P"||a™). Since A(2) is compact,
we can assume that the sequence (o) is convergent without loss of generality. Setting
a = lim, 4o @™, we obtain

lim inf Iy (P") = lim inf Dy(P"[a”) > Dy(P|la) > I;(P)

where we use the lower semicontinuity of Dy (Lemma 1). This demonstrates that Iy is lower
semicontinuous.

C.2 Proof of Theorem 2

We begin by recasting (13) as a constrained optimization problem. With a slight abuse of
notation, we write P = (A, (Py)geco) to denote the improper choice rule that specifies, for
every 6 € O, a non-negative measure over actions Py € Rﬂ.

For every x € R?, let P, the set of improper choice rules P € RﬁXQ such that
Y aca Pola) = x(8) for all § € O©.

The f-divergence Ds(P||or) between an improper choice rule P and a probability distribu-
tion o € A(A) is defined in the obvious way, extending Definition 2 to non-negative measures.
Similar to the case of proper choice rules (cf. Lemma 1), the function (P,«) — Ds(P||«x)
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is lower semicontinuous and convex on }REXA x A(A). In addition, D¢(Plla) > f(x) for all

a:e]R? and P € P,.
Let I7(P) be the f-information of an improper choice rule P:

I(P) = inf Dy(Pla)

Similar to the case of proper choice rules, the function P+ I(P) is lower semicontinuous
and convex on ]R?XA. In addition, for every P € ]RS?XA, there exists a € A(A) such that
I;(P) = Dy(P|a).

For every x € R?, we consider the constrained optimization problem

max eeeﬂ(é’)%%(a)a(@ —1;(P). (56)

We go back to (13) when 2 = 1. We denote by V(z) the value of (56). We say that A € R® is
a Lagrange multiplier for (13) if

V@A)= sup > w(0) ) Pyla)a(0) — I¢(P) — D A(0) <Z By(a) - 1) :

PeR}*® peco acA 0c© acA
Lemma 9. The value function V : R?r — R satisfies the following properties:
(i). domV =dom f.
(ii). For every x € RY, there exists P € Py such that
Vi)=Y (0) Y Po(a)a(6) — I;(P).
e acA
(iii). V is concave.

Proof. (i). Fix € RY. If V(z) > —oo, then there exist P € P, and o € A(A) such that
D¢(P|la) < +00. Since f(x) < D¢(P| ), we obtain x € dom f.

Conversely, suppose that f(z) < 4+00. Given a distribution v € A(A), we define P € ]RfX@
by Py(a) = a(a)z(f). Note that >, 4 Pyp(a) = 2(0) for all § € ©. Moreover, D¢(P|a) = f(x).
Thus, P € P, and I¢(P) < +0o. We deduce that € dom V.

(ii). If V() = —oo0, then f(x) = +o0 by (i). It follows that I¢(P) > f(x) = +oo for all
P € P,. We obtain that

V(z)=—o0= Z m(0) Z Py(a)a(l) — I7(P).

ISC] a€A

for all for all P € P,.
Suppose instead that V(x) € R. Since,the function

P> w(0) > Pyla)a(d) — I;(P)

0cO acA
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is upper semicontinuous, the desired result follows from the compactness of P,.
(iif). Take z,y € RS and t € (0,1). By (ii), there are P € P, and Q € Py such that

V(z) =) m(0) ) Po(a)a(t) — I(P),

0co acA
Viy) = 7(0) Y Qo(a)a(d) — If(Q).
0co acA

Using the fact that Iy is convex, we obtain

(1—=t)V(x) +tV(y)
=3 7(0) 11— H)Py(a) + tQu(@)a(8) — (1 — )Ix(P) — t;(Q)

00 acA
<Y w(0) > 11— t)Ps(a) +tQq(a)]a(d) — I;((1 - t)P +tQ)
00  acA

<V((1—t)z + ty).
This demonstrates that V is concave. O

Since dom f = domV and 1 € ri(dom f) by Assumption 1, we have 1 € ri(dom f).
Given that V is concave, the superdifferential of V' at z = 1, defined as 0V (1), is nonempty
(Rockafellar, 1970, Theorem 23.4): there exists A € R® such that for all z € R?,

—3TA0) = V(z) - 3 AO)z(0)

0cO 0cO

Note that A € 9V (1) if and only A is a Lagrange multiplier for (13).
We define the Lagrangian function £ : RﬁX@ x R® — R by

LPA) =Y 7(0) Y Py(a) =D AMO) Y (Pola) — 1)

6O ach 6O acA
=> > (a A(0))Py(a )+ > A0
acA co 66

The Lagrangian function is concave in P and affine in «. It defines the maxmin problem

max min L(P,\). (57)
PERGXA AER®

By standard arguments (see, e.g., Rockafellar, 1970, Theorem 28.3), a pair (P, ) is a saddle
point of (57) if and only P is a solution of (13) and A is a Lagrange multiplier for (13). We
have shown that (13) admits a solution and a Lagrange multiplier. Thus, the maxmin problem
(57) admits a saddle point. Moreover, the saddle value of (57) is V(1).

Next is a key step in the proof: it allows us to connect the Lagrangian function £ to the

conjugate function f*.
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Lemma 10. For all A € R® and o € A(A),

max_ 3 3 (al A(6))Py(a) — Dy(Plla) = " a(a)f*(ar — A).

AXO
PERL™® (e A 0cO acA

The mazimum is achieved by P € foa such that, for all 0 € © and a € A,
Py(a) = a(a)V f*(ar — N).

Proof. Since f is co-finite (Assumption 1), if D¢(P|la)) < +o0 and a(a) = 0, then Py(a) =0
for all # € ©. Thus, direct computations show that

sup > > (af A0))Fy(a) = A(0)) — Dy (Plle)

PeR}*® qcApco

— 3 afa) sup Y (af 9))222))—f<x)

a€supp(a) $€R@ (JS(S] a(a)
= > ala) sup > (a(0)7(6) = AO)y(6) - ()
a€supp(a) ?/GR+ 0eO
= Y a@ffer-N) = Y aa)fH(ar - A).
a€supp(a) acA

The second part of the statement follows from the fact that

frlam =) = (a@)m(0) = XO))y(0) - fly) < yedf(ar—\).

0cO
See Rockafellar (1970, Theorem 23.5). Since f* is differentiable (being f co-finite and
essentially strictly convex, see Assumption 1), df*(am — ) = {V f*(am — \)}. O

The next lemmas establish a relationship between the maxmin problems (14) and (57).
To ease the exposition, we denote by L the function

(o, A) — Zoe( ) [ (am— A —i—Z)\
acA 0cO
Lemma 11. The mazmin problems (14) and (57) have the same value, V(1).
Proof. By a minimax theorem (Rockafellar, 1970, Corollary 37.3.1), the maxmin problem

(14) has a saddle value. We have argued above that the saddle value of (57) is V(1). By
Lemma 10,

inf  sup L(P,A\)= inf sup L(a,\).
AER® PE]RAXG ACR® aEA(A)

Hence, (14) and (57) have the same value, V(1). O

Lemma 12. Let (P, \) be saddle point of (57). Take any o € A(A) such that D¢(P|la) =
I;(P). Then, (o, \) is a saddle point of (14). Moreover, Py(a) = a(a)Vof*(am — ) for all
€O andac A
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Proof. Since (P, ) is saddle point of (57), L(P,\) > £(Q, ) for all Q € R4*®. In other
terms,

> D (@(®)m(8) — A0))Py(a) — Dy(Pl|e)

acAfHeO

— sup  sup >0 3 (a(6)(6) — A(6)Qola) — D(QlIA):

BEA(A) QeRr}*® acA beo

It follows from Lemma 10 that L(a,A) > L(B,\) for all 5 € A(A). Moreover, Py(a) =
a(a)Vef*(am — A) for all € © and a € A.

It remains to verify that L(a, \) < L(a, 1) for all [ € R®. Since (P, )) is saddle point of
(57), P is a solution of (13). Thus, in particular, >°,c 4 Po(a) =1 for all § € ©. We have just
argued that Py(a) = a(a)Vef*(am — A) for all § € © and a € A. Thus, for all § € O,

Z a(a)Vof*(amr — N) = 1.

acA

This is the first-order condition for the problem of minimizing L(a,l) over I € R®. We
conclude that L(a, \) < L(a,1) for all [ € R®. O

Lemma 13. Let (v, A) be a saddle point of (14). Define P € fog by Py(a) = a(a)Vef*(ar—
A). Then, (P,\) is a saddle point of (57). Moreover, I;(P) = D¢(P|c).

Proof. By Lemma 10,

> > (a®)m(0) = A(0))Py(a) — Dy(Plla) + > m(0)A(0) = L(e, A).

a€AfcO 0cO

Since (o, A) is a saddle point of L, L(a, ) > L(5,\) for all § € A(A). It follows from Lemma
10 that L(a, \) is equal to

sup — sup > (a(O)m(0) — A(0))Qo(a) — Dy(Q[IB) + D ().

BEA(A) QeR%*® 4eA geo )

Overall, we deduce that L(P,\) > L(Q,\) for all Q € Rﬁxe. Moreover, If(P) = D¢ (P||a).
It remains to show that £(P,\) < L(P,1) for all I € R®. The first-order condition for the

problem of minimizing L(a,1) over I € R® is

Z a(a)Vof*(am — A) = 1.

a€A

Thus, P € Py. As a result, L(P,\) = L(P,1) for all | € R®. O

Theorem 2 follows from Lemmas 11-13.

82



C.3 Proofs of the results in Section 4.8

Proof of Lemma 4. If f is invariant, then for all z € R®

Fr(ay) = sup Y ay(0)y(0) — f(z4) = sup Y x(0)y,-1(0) - f(z) = f*(x).

yeR? gco yeR? gco

Thus, f invariant implies f* invariant. An analogous argument shows that f* invariant implies
f invariant. To prove the last part of the claim, set z* = V f*(x). By the subdifferential
inequality, for all y € R®,

)= @)= > 2" (0)(y(0) — 2(9)).
0cO
Since f* is invariant, f*(y,) = f*(y) and f*(zy) = f*(x). Moreover, simple algebra shows
that

> (O)(0) — x(0) = D 2(0)(y,(0) — 24(0)).

0cO fco

We obtain that for all y € R®,

Fryy) = F*(2y) 2 D 23(0)(y(0) — 24(6))-

0O
Since R® = {y, : y € R®}, we deduce that r% = Vf*(xy), as desired. O

Proof of Proposition 1. Let (a, A) be a saddle point of the maxmin problem (14). For
every v € I', we define a, as follows: a(a) = a(a,-1) for all a € A. We claim that (a., A,) is
also a saddle point of (14).

First we show that «, is a best response to Ay, that is,

Z ay(a)f*(amr — \y) = max [ am — A\y).

a€A

We begin by observing that

Z Ozaf(a)f*(cmr —Ay) = Z aqy(a) f*(amy — Ay)

a€A acA
= 3 4y @F (a7 = A))
acA
_ Z a(a,y—l)f*(a’flﬂ- —A) = Z ala) f*(am — \)
a€A acA

where the first equality uses the invariance of 7, the third equality the invariance of f (which
implies the invariance of f*), and the last equality the invariance of A. An analogous argument
demonstrates that

* N _ * o
I;leaj(f (am — Ay) I;lélj(f (am — N).
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Since « is a best response to A,
E a(a) f*(ar — X\) = max f*(am — ).
acA acA

It follows that o is a best response to A,.
Next we show that A\, is a best response to a., that is,

Ay € arggﬂig% > ay(a)flar — 1)+ > 1(6)
acA 0c©
Reasoning as above,
D ay(a) flam — Ay) 4+ DA (0) =D ala)flam —A) + > A(H)
acA 6cO acA 0cO
In addition, for all [ € R®,
> ay(a)fflar =)+ > 10) =D ala)ff(ar —1L-1)+ Y 1,-1(0)
a€A 0cO acA 0cO
Hence, since )\ is a best response to «,
)\Ealrgmlnz:ouY ) (am — 1 +Zl —1(
[eR )

Since R® = {ly1:le R®}, it follows that A, is a best response to ..
Since the choice v € I" was arbitrary, any pair (., A\y) is a saddle point of (14). We define
a € A(A) and X € R® as follows:

5 d
a = |I‘| Z ay an A= |I‘| Z Ay
yel’ vyerl’

where |I'| is the cardinality of I". Since the saddle points of (14) form a convex product
set in A(A) x R® (see, e.g., Rockafellar 1970, Corollary 37.5.3), we deduce that (&, \) is a
saddle-point as well. Since I' is a group, a(a) = &(a) for all a € A and v € v, and /_\7 =\ for
all v € 7. We conclude that (@, \) is an invariant saddle point of (14).

The resulting optimal choice rule is given by

Py(a) = (@) Vo f*(am — A).
For every v € ', we have that

Pygy(a) = a(a)Vyg) f*(am — A) = a(a)Vof*(aymy — 5\7)
= a(ay)Vef (aym — 5\) = Py(ay)

where the first line uses the relation V) f*(z) = Vo f*(2,) (Lemma 4), and the second line
the invariance of &, 7, and . O
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C.4 Proofs of the results in Section 4.9

Proof of Lemma 5. (i). It suffices to show that Vg f*(z) > 0forall@ € © and z € X. Define
y =V f*(z). Then, x € 0f(y) (Rockafellar, 1970, Theorem 23.5). Since f is essentially smooth,
0f(z) = @ for all z ¢ int(dom f) (Rockafellar, 1970, Theorem 26.1). Thus, y € int(dom f).
Since dom f C R9, we conclude that y(6) > 0 for all 6 € ©.

(ii). Let (a1, A1) and (ag, A2) be two saddle points D. By the product structure of the
set of saddle points, (a1, A2) is a saddle point as well. This means that A\; and Ay are two

solutions of the following optimization problem:

min > aa)fF(ar —A) = > A(0)
AERE A 6co

Since f* is strictly convex, the objective function of this optimization problem is strictly
convex. Thus, the solution must be unique: A\; = Ao. ]

Proof of Lemma 6. Let © = {0;,...,0,} be an enumeration of the state space. For each
z € R" ! we define
H*_l(l'l, Ceey l‘nfl) == H*($1, ey n—1, 0)

n

The function HY_; : R"~! — R inherits the properties of H*. It is monotone increasing,
convex, and differentiable. In addition, H};_, is strictly convex if and only if H* is strictly
convex modulo translations. Direct computations show that the conjugate of H}_; is the
function H,,_1. The desired result follows. ]

Proof of Lemma 7. (i) It suffices to show that VoH*(x) > 0 for all # € © and z € X.
Define p = VH*(z). Then, z € 0H (p) (Rockafellar, 1970, Theorem 23.5). Note that

an—l(ph cee 7pn—1) = (xl —Tnyee 3 Tn—1 — xn)-

Since H,,_1 is essentially smooth, (p1,...,pn—1) € int(dom H,_1) (Rockafellar, 1970, Theorem
26.1). Thus, p1,...,pn—1 > 0 and p; + ... + pp—1 < 1. We conclude that p; > 0 for all
i=1,...,n, as desired.

(ii) Let (a1, A1) and (ae, A2) be two saddle points. By the product structure of the set of
saddle points, (a1, A2) is a saddle point as well. This means that A; and Ay are two solutions

of the following optimization problem:

min Z 1(@)H*(a — \/m) — Zx\

©
AERD cA )

Since H* is strictly convex modulo translations, the objective function of this optimization
problem is also strictly convex modulo translations. Thus, the solution must be unique up to
translations: A7 — Ay € R. O
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C.5 Proofs of the results in Section 5
C.5.1 Details for Example 6

Let v € A(A) be given. Enumerate supp(a) = {a1,...,a,} so that a1(0) > --- > a,(6).
First, note that the map t € R — £(t) = 7 a(a;) max {a;(0) —t+x,0} € Ry is
unbounded above and strictly decreasing on (—oo,t), where ¢ = sup{t € R : £(t) > 0}. It
follows that there exists a unique \;(6) € R such that £ (\;(0)) = k, i.e., such that (20) holds.
Moreover, for this value of \; (), there exists at least one i € [n] such that a;(0) > \:(0) — K
(for otherwise we would obtain the contradiction that ¢ (A;(#)) = 0). Therefore, the index

*(0) = max {i € [n] : 4;(8) > Ar(6) — K} (58)

is well-defined. Since a1(f) > --- > a,(6) by convention, max {a;(#) — A\(0) + k,0} # 0 if
and only if ¢ € {1,...,7*(0)}. Thus, (20) can be equivalently written as the linear equation

i*(0)
3 alay) (a;(0) — Ae(B) + K) = &,

J=1

which delivers the expression for A, () stated in Example 6:

i*(0)
) K
An(0) = (“J) a;(0) — —i—— + 5.
=1 Zkzel) a(ak) ’ Zj:(? a(aj)

Now, plugging this value of A\;(6) into (58) implies that

~

*(0)
P<it0) = ald)>A(0)—k = k>3 ala)(a(0) — ald)).
j=1

Consequently, we have

i*(0) i
i>i"(0) = k<) ala)(a(8) —ai(d) < ) ala;) (a;(0) — ai(8))
1 1

Jj=

<.
I

where the final inequality holds because a;(6) > --- > a,(6). We conclude that

i*(0) = max {Z €ln]: k> Za(aj) (a;(0) — ai(H))} .
j=1
This completes our analysis of Example 6.

C.5.2 Proof of Proposition 2

We use the optimality condition (18) to prove both parts of the proposition. Note that, since
1) is increasing and strictly convex, both v and v’ are strictly increasing.
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First, for part (i), suppose that states 8, 7 € © are comparable, where action a € A satisfies
a(f) =a(r) =k € R and Pr(a) > 0. Then (18) implies that a(a) > 0 and

Py(a) = Pr(a) = a(a) - (¢ (k = Az (0)) = o' (k = Ax(7))) .

If \z(0) > Az(7), then since ¢’ is increasing, it follows that Py(a) < Pr(a). Conversely, if
Py(a) < Pr(a), then since ¢ is strictly increasing, it follows that A(0) > \(7), as desired.

Next, for part (ii), suppose that actions a,b € A are comparable, where state § € ©
satisfies a(f) = b(#) = k € R. Then (18) implies that

Py(a) — Py(b) = ¢ (k = A(9)) - (a(a) — (D)) ,

where ¢’ (k — A\(0)) > 0 because v is strictly increasing. It follows that Py(a) > Py(b) if and
only if a(a) > «(b), as desired.

C.5.3 Proof of Proposition 3

(i). IIA with respect to states follows directly from the optimality condition (18). To verify
ITA with respect to labels, let 6,7 € © satisfy a(f) = a(r) for all a« € A. Take any saddle
point (a, ). Since ¢ is strictly increasing (as ¢ is essentially smooth), the prior-adjusted
Lagrange multipliers A;(6) and A(7) are the unique solutions to condition (19) in states 6
and 7, respectively. Therefore, since a(f) = a(7) for all @ € A, (19) implies that A;(0) = Az (7).
By Corollary 1, any optimal choice rule is generated by a saddle point of the form (&, 5\) with
A = \. IIA with respect to labels then follows directly from the optimality condition (18).

(ii). The result follows directly from the optimality condition (18).

(iii). By inspection, it is easy to see that mutual information satisfies ITA with respect
to actions. For the converse, suppose that |©| > 5 and take any Csiszar information cost
for which 1 is thrice continuously differentiable and strictly convex (recall that v is strictly
convex if and only if ¢ is essentially smoooth). If this cost satisfies IIA with respect to actions,
then Proposition 5 (proved separately in Appendix C.6.2 below) implies that the Arrow-Pratt
coefficient is constant: R, = 1/k for some £ > 0. The desired result then follows from the

next lemma:
Lemma 14. For allt € R,
Y(t) = {fé ely Rodugs i >,
- —f? o Ji Rulwdu g if t <O0.

Proof. Since Ry is the derivative of log¢’, and ¢'(0) = 1, it follows from the fundamental
theorem of calculus that .
, efo Fulwdu ¢4 >
P(s) =

0
e J§ R (u)du if s <O0.

Using the normalization 1(0) = 0, we obtain the desired result from another application of
the fundamental theorem of calculus. O
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C.6 Proofs of the results in Section 6
C.6.1 Proof of Proposition 4
By the optimality conditions (18) and (19),

Pi(ag) _ | /(i eu—(d)

®Bsi(as) Wi+ e An(d))

where A\ (d) is determined by the equation

1 1 1
—1!(di + e — A (d)) + =1/ (di + ev — Ae(d)) + = D ¢/ (dy, — Ar(de)) = 1.
n n n
k#i,j
By the implicit function theorem, A (d) is a differentiable function of € € (0,1). Moreover,
Ar(d9) = Ar(d) as € = 0. Then, the desired result follows from a first-order Taylor expansion

f th
of the map V' (d; + eu — M\r (d))
Qp’(dz +ev — )\W(de))

at € = 0, using the fact that Ry, is the derivative of log .

€ — log

C.6.2 Proof of Proposition 5

We prove (i). The proof of (ii) is specular and left to the reader.

“If” Let (O, 7, A) be a decision problem. Let P an optimal choice rule, with corresponding
saddle point («, \). Suppose that choice is bolder in state 6 than in state 7. Take actions
a,b € A in the support of P, such that

a(0) = a(r) > b(0) = b(7).

Note that states # and 7 are comparable (because a(f) = a(7)). Thus, A:(0) > A (7)
(Proposition 2). Using the optimality condition (27), we obtain:

Py(a)at) _ (o)

log Py(b)ala) = o) Ry(x — A (0)) da
a(0)
> Ry(x — A (7)) dw
b(0)
P e ) o — tog E@0)
o) By(@ = dn(7)) do =1 &P (b)ala)’

where the inequality follows from R, be decreasing. We deduce that ]IZZEZ)) > ]IZ:((Z)), as desired.

“Only if” By contraposition, suppose Ry, is not decreasing. Then, there exist x1,22 €
R such that z1 > z2 and Ry(z1) > Ry(x2). Since ¢” is differentiable, Ry = 9" /¢’ is
differentiable as well. By the mean value theorem, there exists z3 € (21, z2) with R} (z3) > 0.
As 4" is continuously differentiable, ;, is continuous, so 12;,() > 0 for all z sufficiently close

to x3.
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Thus, there is a nonempty open interval X on which R, is strictly increasing. Choose
Zz,z € X such that £ > z. By slightly perturbing these points if necessary, we can ensure

1, 1
V(@) + ¢ (2) # 1.
2 2
For concreteness, we focus on the case
1, 1,
SU(@) + 50 (@) > 1, (59)

the other case being analogous (see comment at the end of the proof).

We now construct a decision problem (0, 7, A) and an optimal choice rule P = (A, (FPy)gco)
with saddle point (c, \) such that the agent fails to satisfy increasing selectivity.

Let the state space and the action set be:

0 =1{1,2,3,4,5} and A ={a,b,c}.

We specify prior, payoffs, f-mean, and Lagrange multiplier state by state.
State 8 = 1. In the first state, action a pays z, action b pays z, and action ¢ pays y < 0.
The prior-adjusted Lagrange multiplier takes value 0. For each y < 0, we select £(y) € (0,1)

such that )

£w) (0@ + 30'@) + (1= €W ) = 1= (0.
Equation (59) guarantees the existence of such £(y), with {(y) — 0 as y — 0. Set a(a) =
ab) =¢€(y)/2 and a(c) =1 —£(y). Then (19) holds.

State 0 = 2. Pick € > 0 sufficiently small so that z —e € X, x —e € X, and

1, 1,
51/1 ($_6)+§¢ (—¢)>1 (60)

By choosing y close to zero (so £(y) is close to 0), we can ensure that there is z such that

Vo) = =g (1w (v @ + 3¢ @)
Then, in state § = 2, action a pays Z, action b pays z, and action ¢ pays z + €. The
prior-adjusted Lagrange multiplier takes value e. Then (19) holds.

State # = 3. Same as 0 = 1, but swap the payoffs of a and b.

State 6 = 4. Same as 6§ = 2, but swap the payoffs of a and b.

State 6 = 5. Here, a and b pays —1, and action ¢ pays 1. By the intermediate value
theorem, there exists w € [—1, 1] such that

WY (=14 w) + (1= £(y)Y' (1 4+ w) = ¢'(0). (61)

Set w as the prior-adjusted Lagrange multiplier in state § = 5. Then (19) holds.
We now complete our construction by selecting the prior. From (59) and (60) we have:

L@ Y@ @ -+ @) > 1> () + ().
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Since ¥'(—1 + w) < ¢'(1 + w), there exists ¢ € (0,1) such that

S/@) + (@) (@~ )+ e )+ (1 W (L4 w)
=S (W) + () + (1 - O (1 +w) (62)

We set the prior as follows:
(1) =n(2)=7n3)=n(4)==> and =n(5)=1-C.

It follows from (62) that « is a best response to A in the maxmin problem (14). This concludes
our construction.

Note that states # = 1 and § = 2 are comparable (indeed, a(1) = a(2)). Moreover, the
prior-adjusted Lagrange multiplier is larger in the second state: Ar(1) =0 < e = A\;(2). Thus,
choice is bolder in the state § = 2 than in state # = 1 (Proposition 2). Moreover,

Pi(a) a(b)  [7 7 O de — log 12(@) ab)
log B1(b) ala) _/x Ry () dx >/x Ry(x —€)dz = log Py(b) a(a)
Py (a) Ps(a

where we use the fact that Ry, is strictly increasing on X. We deduce that P B

—

Hence, the agent does not exhibit increasing selectivity, as claimed.

In the case where %1//(3_;) + %w/(g) < 1, we require y > 0. Furthermore, the payoffs in
state § = 5 are reversed: actions a and b yield a payoff of 1, while action ¢ yields —1. The
remainder of the proof follows with these modifications almost verbatim.

C.6.3 Proof of Proposition 6

See Corollary 6 in Appendix B.

C.7 Proof of the results in Section 7
C.7.1 Proof of Propositions 7 and 8

We begin by characterizing optimal information acquisition for a fixed function ¢ using
Theorem 2. By symmetry of the environment, we can assume the Lagrange multiplier is
independent of the state without loss of generality (see Proposition 1 and Corollary 1).
Consequently, we identify A with an element of the real line. Since v is strictly convex, A is

unique (see Section 4.9).
Claim 9. For all 0,7 € ©, a(ag) = a(ar) in any saddle point of (14).

Proof. By the optimality condition for A,



Combining these two equations, we obtain:
a(ag)d(w — Az) + (1 — a(ag))y' (0 — Ar) = afar)y' (w — Ax) + (1 — alar))y'(0 — Ax)
Since ¢'(w — Az) > ¢/ (0 — A\;), we deduce that a(ag) = ala;). O

Thus, we can identify o with a single number, an element of the unit interval [0, 1], with
the convention that « is the f-mean probability of the safe action. Inconclusive evidence
corresponds to the case in a € (0,1).

Claim 10. For every w, there exists a unique ¢ such that

n—1

%w(w —¢)+

The threshold value ¢ has the following properties:

(i). ¥ <c<w.

(ii). I, , then the max-min problem (14) has a saddle point (o, A) = (1,¢/n).
(iii). If ¢ > ¢, then Pr(b) =1 at the optimum.
(iv). If c < ¢, then Pr(b) <1 at the optimum.

Proof. To verify the existence of ¢, note that ¢ > w implies

n —

Lp(—¢) > v(0)

1

—p(w —c

g )+
by strict monotonicity of 1. If instead ¢ < 7, then

n —

g(w e + L) > lw — ne) > $(0),

where we use the fact that 1 is strictly convex and monotone. Thus, by the intermediate

value, there exists ¢ € (3, w) such that

n—1

Sp(w )+ " (-0) = ().

The uniqueness of ¢ follows from %zb(w —c)+ "7711/1(—0) being strictly decreasing in ¢. This
demonstrates the first part of the statement, as well as property (i).
To prove properties (ii)—(iv), note that (1, A) is a saddle point of (14) if and only if

W(e = Ae) = 9/(0),
2= L (= An) < (e — An).

%d)(w )+

Equivalently, A, = c and

n—1

() + " L) < w(0).
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Thus, (1, ) is a saddle point of (14) if and only if Ay = ¢ and ¢ > ¢. This shows (ii) and (iv).
To prove also (iii), suppose ¢ > ¢ and let («, A) be a saddle point of (14). As shown above,

Ar = c¢. Since ¢ > ¢,
n—1

1
Lyt o)+ " L) < 9(0),
This implies that o = 1. We deduce that (iii) hold. O

Claim 11. For every w, there exist unique A and c such that

Lyw -2+ 22

n

%Ww - Aﬂ') +

n—1

The threshold values A and ¢ have the following properties:

(). 0<A, <wand ¥ <c<w.

(ii). If ¢ < ¢, then the maz-min problem (14) has a saddle point (o, \) = (0, A).
(iii). If ¢ < ¢, then Pr(b) = 0 at the optimum.

(iv). If ¢ > ¢, then Pr(b) > 0 at the optimum.

Proof. Existence and uniqueness of ), as well as the fact that A\, € (0,w), follow from ¢’
being strictly increasing and continuous. The value of ¢ is obtained by inverting the second

equation:

e= 07 (0w =20 + A ) 4 Ay

n

To prove the bounds for ¢, it suffices to observe that

w7 (0w = A0) + 00 ) A < T W - M)+ A =,
w(-a0)) + 20> 07 (0 (2 =00 ) ) a = 2

n—1

o (o= 20+

n

where we use the fact that 1 is strictly increasing and convex. This demonstrates the first
part of the statement, as well as property (i).
To prove properties (ii)—(iv), note that (0, A) is a saddle point of (14) if and only if

(= )+ T (A) = 9(0),
9w =)+ (A 2 Yo = M),
Equivalently, A = A and
= v (0w - a0+ 000 )+ Ar ¢



This shows (ii) and (iv). To prove also (iii), suppose ¢ < ¢ and let (a, A) be a saddle point of
(14). As shown above, A = A. Since ¢ < ¢, we obtain:

n —

(= Ag) + (- A) > (e~ )

This implies that & = 0. We deduce that (iii) hold. O
Claim 12. If Ry is strictly monotone on (—w,w), then ¢ < c.

Proof. It is easy to see that ¢ < ¢. This is because ¢ > ¢ implies Py (b) = 1 at the optimum,
while ¢ < ¢ implies Pr(b) = 0 at the optimum. Thus, to prove that ¢ < ¢, we only need to
rule out the case in which ¢ = ¢.

By contradiction, suppose that ¢ = ¢. Then, the maxmin problem (14) has saddle points
(1,¢/n) and (0, ). By uniqueness of the Lagrange multiplier, ¢ = n\. We obtain:

n—1

(=) = ¥(0), (63)

%w’(w —o)+ nT_lw’(—E) =¢/(0). (64)

%1/1(10 —¢)+

We now use the fact that Ry, is strictly monotone on (—w,w) to reach a contradiction. The
key observation is that

W @)
(6 1(2)

Hence, since Ry, is strictly monotone on (—w,w) and 1~ is strictly increasing on its entire
1

S @) = Ry (@)

domain, the composite function v’ o 1)~ is either strictly convex or strictly concave on the
interval (¢(—w), ¥ (w)). In any case, (63) implies that

1 . n-1 _
—'(w —¢) + ——'(—¢) # ¥'(0),
n n
which contradicts (64). We conclude that ¢ < ¢, as desired. O

This proves Proposition 7. To prove Proposition 8, suppose that R, is strictly monotone
on a non-empty open interval. Thus, there must exists z,z € R, with < Z, such that
Ry, is strictly monotone on (z — €,z + €) for any e > 0 sufficiently small. Define k = ¢'(z)
and k = ¢'(Z). Since Ry, is strictly monotone on (z — €,7 + €), Ry, is strictly monotone on
(—€, +¢€). Thus, for all k € (k, k) and w € (0, €), the Arrow-Pratt coefficient of vy, is strictly
monotone on (—w,w). Proposition 8 follows.

C.7.2 Proof of Proposition 9

By symmetry of the environment, we can assume that the Lagrange multiplier is independent

of the state—see Proposition 1 and Corollary 1. Thus, we identify A\ with an element of the
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real line. Consequently, given that ff; is translation invariant with respect to the prior (see
page 21), we obtain: for all § € ©,

fbr = X)) > filagmr — ) < H*(¢,...,c¢) > H(w,0,...,0).
Claim 13. There exists a unique ¢ such that
H*(¢,...,¢) = H (w,0,...,0)
Moreover, ¢ > ¢ if and only if H*(c,...,c) > H*(w,0,...,0).
Proof. To prove the existence of ¢, note that ¢ > w implies
H*(e,...,¢) > H*(w,0,...,0)

by monotonicity of H*. If instead ¢ < 7, then

H*(w,0, ZH* ag) <w 7w> > H*(c,...,c),

" oco n n

where the first equality uses the symmetry of H* (which follows from the symmetry of H),
the second inequality the convexity of H*, and the third inequality the monotonicity of H*.
Hence, by the intermediate value theorem, there exist ¢ such that

H*@,...,8) = H (w,0,...,0).

The fact that ¢ is uniquely pinned follows from the fact that H*(c, ..., c) is strictly increasing
in ¢. This, in turn, comes from the fact that H* is translation invariant:

H*(e,...,c)=H*0,...,0) +c.
This also proves the last part of the proposition. O

Applying Theorem 2, we obtain (i) and (ii) of Proposition 9. If ¢ > ¢, a(ay) = 0 for all
0 € ©, which implies a(b) = Pr(b) = 1. If ¢ < ¢, then a(b) = Pr(b) = 0.
Regarding (iii), take any ¢ € [0, 1]. Define o(b) = ¢ and, for every 6 € ©, a(ag) = (1 —1t)/n.

Claim 14. For ¢ = ¢, the pair (,0) is a saddle point of (14).

Proof. Since ¢ = ¢, (15) holds. Now we check that (16) also holds. Notice that for all 6 € ©,

=Y Vofilarm) = Y n(r)Vofilagr) = Y V- H*(ag) =1
€O

TEO TEO

QH

where the first equality follows from Lemma 4. Similarly, V ff;(sm) =1 for all § € ©. Hence,
1-1¢
Vo i (bm) + —— > Voflarm) =t +1-t=1
TEO

This shows that also (16) is satisfied. We conclude («, 0) is a saddle point of (14) forc = ¢é. O

The choice rule corresponding to («,0) has Pr(b) = a(b) = t. This proves (iii).
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C.8 Proofs of the results in Section 8
C.8.1 Proof of Proposition 10

Let (a, A) be a saddle point of (14). Since ¢ is essentially smooth, the Lagrange multiplier is
unique (Lemma 5). Moreover, by the symmetry of the environment, it is independent of the
state (Proposition 1).

For every state 0, let Ay be the set of actions that pays w if the realized state is 8. The

optimality condition for the Lagrange multiplier in states 6 is:
a(Ag)Y (w — Ax(0)) + (1 — a(A)) ¥ (=A(0)) = 4'(0).
Thus, taking any two states 6 and ,
a(Ag) [P (w = Ar(0)) — ¢ (=Ax(0))] = (A7) [¢'(w — Ax(0)) — ¢'(=Ax(0))]

where we use the fact that A;(f) = A\z(7). Since ¢/ is strictly increasing and r > 0, we
conclude that a(Ap) = a(A;). Furthermore, because each action pays w in exactly m states,

we have:

Z a(Ap) = m.

0co
Since a(A4y) = a(A;) for all 6,7 € O, we conclude that a(A4g) = m/n for all § € ©. The
desired result follows.

C.8.2 Properties of [, (w)

Lemma 15. The Lagrange multiplier has the following properties:
(i). Iy(w) is strictly increasing in w.
(ii). ly(w) s strictly increasing in 7.
(iii). Iy(w) is continuous in w.
(iv). Iy(w) = 0 as w — 0.
(v). ly(w) = 400 as w — +o0.
(vi). Iy(w) =0 asy — 0.
(vii). Iy(w) = w asy — 1.
Proof. (i). Suppose w' > w?. Using the fact that 1/ is strictly increasing, we obtain:
' (wh = L") + (1= (=l w?) > 3 (0? = 1 (w?)) + (1= )Y (=1 (w?)
=y (wl — ly(wl)) + (1 =)y (—lv(wl)) .
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We conclude that 1, (w!) > I, (w?).
(ii). Suppose v! > ~2. Using the fact that 1/ is strictly increasing, we obtain:

M (= L) + (1= (b)) > 7% (w = Law) + (1 =)' (e (w))
= vy (r —la (w)) + (1 — N (—l71 (w)) .

We conclude that .1 (w) > L2(w).

(iii). Let (w™) be a sequence of rewards with limit w. Each [ (w™) satisfies 0 < I, (w™) <
w™. Thus, the sequence (I, (w™)) is bounded. Without loss of generality, we can assume it
has a limit, I. For every m,

YW (W™ =1y (w™)) + (1 = )¢ (1 (w™)) = ¢'(0).

Taking the limit as m — oo, we obtain from the continuity of ¢’ that:

Y (w = 1)+ (1 = )¢’ (=1) = 4'(0).

Since [ (w) is the unique solution of this equation, we conclude that [ = [ (w).
(iv). By (i), Iy(w) is increasing in w. Define [, (0) = inf,~¢ Iy (w). Since Iy(w) > 0 for all
w, we have [,(0) > 0. Furthermore, for every w > 0,

W (w =1y (w)) + (1 =)' (=l (w)) = ¥'(0).

Taking the limit as w — 0, we obtain from the continuity of v’ that:

¥'(=14(0)) = ¢/(0).

We conclude that [, (0) = 0.

(v). By (i), I,(w) is increasing in w. Define I, = sup,,~ ly(w). By contradiction, suppose

l, < +00. Recall that ¥'(w) — 400 as w — +o00. Thus, by choosing w sufficiently large, we

can ensure that
v (w=1) + (1= (=) > w/(0).
This implies that I, (w) > [, a contradiction with the definition of I,. We conclude that
l} = +00, as desired.
(vi). By (ii), Iy(w) is increasing in 7. Define lo(w) = inf, ¢ (g 1) [y (w). Since I, (w) > 0 for
all v, we have lop(w) > 0. Furthermore, for every v € (0, 1),

W (w =1y (w)) + (1 =)' (=l (w)) = ¥'(0).

Taking the limit as v — 0, we obtain from the continuity of ¢’ that:

W' (=lo(w)) = ¢'(0).

We conclude that [o(w) = 0.
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(vii). By (ii), I, (w) is increasing in 7. Define I3 (w) = sup,¢ (1) ly(w). Since I, (w) < w for
all v, we have {1 (w) < w. Furthermore, for every v € (0,1),

V' (r =1y (w)) + (1 = 7)Y (=ly(w)) = ¢(0).

Taking the limit as v — 1, we obtain from the continuity of v’ that:

¥ (w = li(w)) = 4'(0).

We conclude that /3 (w) = w. O

C.8.3 Proof of Proposition 11

(i). We have:
py(w) = ' (0) — (1 = 79’ (=1y(w)).

Since 1, (w) is strictly increasing in w (Lemma 15) and 1’ is a strictly increasing function, the
right-hand side of the above equation is strictly increasing in w. We conclude that p.,(w) is
strictly increasing in w.

(ii). It follows from the facts that I, is a continuous function (Lemma 15), and ¢’ is a
continuous function.

(iii). The property that p,(w) — v as w — 0 follows from the facts that [, (w) — 0 as
w — 0 (Lemma 15), ¢/ is a continuous function, and ¢'(0) = 1.

(iv). The property that p,(w) — 1 as w — +oo follows from the equation

lim py(w)=1-(1-7) lim ¥¢'(—ly(w)) =1,

w—s+o00 w——+00
where we use the fact that I, (w) — 400 as w — 400 (Lemma 15), and the assumption that
P'(t) = 0 as t — —oo.

To prove the last part of the proposition, we use a guess-and-verify argument. Let
p~ ¢ (0,400) = (0,1) be a strictly increasing, continuous function, with p,(w) — v as w — 0
and p,(w) = 1 as w — +o00. To simplify the exposition, set p,(0) = .

If py is generated by some ¢, the two functions are related by the following equations:

py(w) = ' (w — ly(w)), (65)
1= py(w) = (1 = 7)Y (=1 (w)), (66)

where 1) = ¢*. We guess a functional form for the Lagrange multiplier:

w

lv(w):w—l_’_w.

This guess allows us to define v’ using (65) and (66) for t € (—oo, 1):

o) — Lp, (ﬁ) ift €0,1)
& (1=, (YB51)) it <o
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To complete the construction, we define ¢'(t) =t/ for t € [1,+00).

Using the properties of p., one can verify that ¢’ is strictly increasing and continuous.
Moreover, the image of ¢ is (0, +00). We also have that ¢/(0) = 1. Consequently, we can
define ¢ as follows:

; Jo'(s)ds ift >0,
v =9 [P (s)ds if t < 0.
Setting ¢ = v¢*, one can easily verify that p, is the response function generated by ¢, with
Lagrange multiplier [, (w) = w — THe-

Note that the value of ¥/(t) for ¢t > 1 is essentially undetermined. Any other completion

of ¢’ that preserves continuity, monotonicity, and full range would work. This indicates that

multiple ¢ can generate the same response function for a fixed ~.

C.8.4 Proof of Proposition 12

Suppose ¢ and ¢o induce the same response function for all . By Lemma 15, I, (w) — 0 as
v — 0 and I, (w) = w as v — 1. Thus, for all w > 0 and ¢ € {1,2},

tag 22—ty g 1 ) = )

1 —
ti 220 — g i1 ) = wi(-w)

where we use the fact that ¢ is continuous. Since ¥](0) = 1 = ¢4(0), we obtain that 1] = 5.
Given that 1 (0) = 0 = 12(0), Y| = ¢4 implies ¥; = 1)9, which in turn implies ¢; = ¢o.

C.8.5 Proof of Proposition 13

Under Csiszar costs,
w 1—py(w
) ey ana ) ),
gl L=y
Using the fact that ¢’ = (¢')~!, we obtain:
w(z,y) = ¢'(z) — ¢'(y). (67)
It follows that properties (i)—(vi) are satisfied. In addition, the inverse response function

identifies ¢:

() = inf d &(y)=— inf .
¢ () Ze%l)w(fv,Z) and  ¢'(y) Ze(lll}m)w(z,y)

To prove the second part of the proposition, let (x,y) — w(x,y) be a function that satisfies
(i)—(vi). We define ¢ : (0,400) — R by:
infyc 1) w(t, y) ift>1,
d'(t) =<0 ift=1,

—infoe 4oy w(z, t) ift <1
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Claim 15. The function ¢' satisfies the following properties:
(). ¢ is strictly increasing.
(ii). ¢’ is continuous.
(iii). The image of ¢’ is R.
Proof. (i). First, take t > s > 1. We have:
o) = Inf w(ty)= nf wlty)—wlsy)+uwlsy)

=w(t,1/2) —w(s,1/2) + inf w(s,y)
y€(0,1)

> inf Jy) =& (s),
yelg)ﬁl)w(s y) = ¢'(s)

where we use the facts that w(t,y) — w(s,y) is independent of y and w(t,y) > w(s,y). This
also shows that ¢'(t) > 0 for all ¢ > 1.
Now, take 1 > ¢ > s. We have:
—¢'(t) = inf w(x,t)= inf w(x,t)—w(x,s)+w(x,s)
z€(1,4+00) z€(1,400)

=w(2,t) —w(2 inf
w2 ) - w(2s)+ it w(.s)

< inf ,8) = —ad'(s),
xe(11171+oo)w(x s) ¢'(s)

where we use the facts that w(z,t) — w(z, s) is independent of z and w(z,t) < w(z,s). This
also shows that ¢'(¢) < 0 for all ¢ < 1. We conclude that ¢’ is strictly increasing.
(ii). First, we verify continuity at ¢ > 1:

lim ¢/(s) = lim ( inf w(s,y)) = lim ( inf w(s,y) —w(t,y) + w(t,y))

s—1 s—1 yE(O,l) s—1 yE(O,l)

= lim (w(s, 1/2) —w(t,1/2) + yéi%fl) w(t, y))

s—t R

= (i 1/2) ~w(t.1/2)) + inf w(t.y) = #0),

where we use the facts that w(t,y) — w(s,y) is independent of y and w(s,y) — w(t,y) as
s —t.
Next, we verify continuity at ¢t < 1:

lim ¢/(s) = — lim ( inf )w(m,s)) = lim ( inf  w(x,s) —w(z,t)+ w(m,t))

s—t s—t \ z€(1,+o00 s—t \ ze(1,400)

= lim <w(2, s) —w(2,t)+ inf w(:v,t))

s—t z€(1,400)

= (lmws) —wEn) + it wlet) = d0),
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where we use the facts that w(z,t) — w(z,s) is independent of x and w(x,s) — w(z,t) as
t—s.

Now, we verify right-continuity at ¢t = 1:

lim¢'(s) = inf '(s) = inf inf w(s,y) =0,
sl ¢ ( ) s€(1,400) ¢ ( ) s€(1,4+00) ye(0,1) ( y)
where we use the facts that ¢ is decreasing and w(s,y) =+ 0as s — 1 and y — 1.

Finally, we verify left-continuity at ¢t = 1:

lim¢'(s) = sup ¢'(s)= sup | — inf w(x,s)|=— inf inf  w(x,s) =0,
8T1¢() 36(0,1)¢() s€(0,1) \  €(l,+o0) (z:5) 5€(0,1) z€(1,+00) (z,5)

where we use the facts that ¢ is decreasing and w(s,y) — 0 as s — 1 and y — 1. Overall, we
conclude that ¢’ is continuous.

(iii). Since ¢’ is continuous, it is enough to show that ¢'(t) — +oo as t — 400 and
¢'(t) — —oo as t — 0. We have:

lim ¢/(t) = lim ( inf w(t,y))

t——+o0 t——+o0 yG(O,l)

— i inf w(t,y) — w(2 2
(A (ﬁhnw( y) —w(2,y) + w( ,y)>

_ ( lim w(t,1/2) — w(2, 1/2)) + ( inf w(2,y)> — too,

t—+o00 y€(0,1)

where we use the facts that w(t,y) — w(s,y) is independent o y as w(t,y) — +00 as t — +00.
Moreover:

—lim¢’(t)—hm< inf )w(a:,t))
S

t—0 t—0 (1,+oo

= %13(1) <xe(11171£00) w(z,t) —w(x,1/2) + w(x, 1/2))

z€(1,400)

_ (}%w(z,t) —w(2,1/2)) + ( inf  w(z, 1/2)) = +o0,

where we use the facts that w(z,t) — w(x, s) is independent o z as w(z,t) — 400 as t — 0.
We conclude that the range of ¢’ is R. O

We define /' = (¢’)~!. Using the properties of ¢, one can verify that ¢’ is strictly
increasing and continuous. Moreover, the image of ¢ is (0, +00). We also have that ¢'(0) = 1.

Consequently, we can define 1 as follows:

7 fotw’(s)ds ift >0,
v = {—fto W(s)ds if t < 0.
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Setting ¢ = 1*, we observe that ¢’ is the derivative of ¢ on (0, +00).
Let (x,y) — w(z,y) be the inverse response function generated by ¢. As shown in (67),

B(e.y) = ¢(2) - 0W) = inf w(ed)+ inf w(s.y).

We obtain: for all s/,

W(z,y) = tei(%fl) (w(z,t) —w(r,y) + wz,y)) + se(if,lfoo) w(s,y)

dnt (1) —w(s ) +uey) +_infwsy)

— —w(s' inf 't inf
wia,y) —w(sy)+ nf (s 0+ inf w(sy),

where we use the fact that w(z,t) — w(x,y) is independent of z. It follows that:

v(z,y) + inf "y) =w(z,y) + inf inf ")+ inf ,Y).
eyt ol el =wv@y)+ ol e+ bl vy)

Since infgy e (1 4o0) infye(o,1) w(s', 1) = 0, we conclude that w(z,y) = w(x,y). Thus, (z,y) -

w(x,y) is the inverse response function generated by ¢.

C.8.6 Proofs of the results in Section 8.3

We begin with deriving properties of the Lagrange multiplier. With respect to Lemma 15, we
use the additional hypothesis that v is thrice continuously differentiable.

Claim 16. The Lagrange multiplier I (w) is twice continuously differentiable in w. Moreover:
(i). For all w € (0, +00), I (w) € (0,1).

(ii). I3 (w) — 0 as vy — 0.

(iil). I (w) — 1 as vy — 1.

(iv). For all w € (0,400),

V() = Ry (w — by (w)) (w) (1, (w))” + Ry (—Ly (w)) (I (w))*(1 = 1 (w)).  (68)

Proof. By the implicit function theorem,

) 7w — by (w)) |
V! (w =Ly (w)) + (1 = 7)P" (=1, (w))

Since ¢ > 0, we deduce that I’ (w) € (0,1). In addition, because l,(w) — 0 as v — 0 and

ly(w) — w as ¥ — 1, we obtain that I’ (w) — 0 as v — 0 and I/ (w) — 1 as v — 1. Finally,

differentiating I (w) in w, we obtain the desired formula for I(w) after some elementary

algebraic manipulation. O
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Next, we compute the Arrow-Pratt coefficient of the response function. We have:

py(w) = ' (w — ly(w)),
py(w) = " (w — Iy (w)) (1 = I} (w)),

pA) = " — Ly ) (0~ 1 )2 — s — Ly ).
We obtain:
Ry () = S0 = Ryl = )1~ ) — 1
2l 0
= Ry L)1~ ) - By(-L)Gw)? (9

where the last line uses the formula for I2/(w). In addition, we observe:
Ryr(w) = limg Ry, (w), (70)
Ry (—w) = = lim Ry, (w), (71)
where we use the facts that I” (w) — 0 as v — 0, and I,(w) — r as v — 1. Finally, using the
formula ¢’ = (¢')~!, we obtain: for all ¢ € (0, +00),

Ro(t) =~ 5. (72)

Proof of Proposition 14. (i) implies (ii). Suppose p,, is concave for all v, namely, R, <0
for all v. Then, (ii) follows from (70) and (71).
(1) implies (). Suppose Ry (t) <0 for t > 0, and Ry (t) > 0 for t < 0. Using (69), we
have:
Ry, (w) = Ry (w — by (w))(1 = I} (w))* = Ry (15 (w)) (I} (w))* <0,
where we use the facts that I, (w) € (0,w) and I (w) € (0,1). This proves that p, is concave.
(ii) if and only if (iii). We obtain from (72) that:

Ry()20 = Ry(dt) <0.
The equivalence of (ii) and (iii) follows from the fact that ¢ > 1 if and only if ¢'(¢) > 0. O
Next we prove Proposition 15, in successive claims.
Claim 17. If Ry is decreasing, then p, is S-shaped for all .

Proof. To ease the exposition, we drop the subscript . Suppose w; > w9 and p”(w1) > 0.
Then, R,(w) > 0. Using (69), we obtain:

Ry (wi — W(w1))(1 = '(w1))? 2 Ry (~1(wn))(I' (w1))*. (73)

Next we distinguish two cases.
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Case (i): Ry(w1 —l(w1)) > 0. Since Ry is decreasing, it follows that all w3 € [wa, w1],
Ry (=l(w1)) = Ryr (=l(w3)) = Ry (w3 — l(wz)) = Ry (w1 — l(w1)) =0,

where we use the fact that both w — I(w) and I(w) are increasing in r (indeed, 1 > I'(w) > 0).
Using (68), we deduce that I”(ws) > 0 for all w3 € [wa,w1]. It follows that I'(wg) < U'(w1).
We obtain:

Ry (wy — L(w2))(1 = '(w2))® > Ry (wy — L(w))(1 = ' (wy))?

We conclude that R,(w2) > 0, which implies p"(w2) > 0.
Case (ii): Ry (w1 — l(w1)) < 0. By (73), Ry(—l(w1)) < 0. Since Ry is decreasing, it
follows that all ws € [wa, w1],

0> Ry (—l(w1)) > Ry (—l(w3)) > Ry (w3 — l(w3)) > Ry (w1 — l(wr)),

where we use the fact that both w — [(w) and [(w) are increasing in w (indeed, 1 > I'(w) > 0).
Using (68), we deduce that I”(w3) < 0 for all ws € [we, w1]. It follows that I(we) > I'(wy).
We obtain:

Ry (wa = U(w2))(1 = ' (w2))* > Ry (wy = L(wn))(1 = I'(w1))?

We conclude that R,(wz) > 0, which implies p”(ws2) > 0 O

Claim 18. If Ry is decreasing, then ¢’ is inverse S-shaped.

Proof. Suppose t; > tp and ¢"(t;) < 0. Then, Ry (t1) < 0. We deduce from (72) that
Ry (¢'(t1)) > 0. Since ¢’ is increasing, ¢'(t1) > ¢'(t2). Since Ry is decreasing, Ry (¢ (t2)) >
Ry (¢'(t1)) > 0. Using (72) again, we deduce that Ry (t2) < 0, which in turn implies
¢ (t2) < 0. We conclude that ¢’ is inverse S-shaped. O

Claim 19. If Ry is decreasing and v is convex or concave, then R, is decreasing for all .

Proof. To ease the exposition, we drop the subscript . First, we consider the case in which
¢ is convex, namely, Ry > 0. If w; > ws, then,

Ry(w1) = Ry (wy — L(w1))(1 = I'(w1))? = Ry (=L(w1)) (I (w1))?
< Ry (wa — L(wa))(1 = I'(w2))? = Ry (—1(w2))(I'(w2))?* = Rp(wa),

103



where we use the facts that w — [(w) and [(w) are increasing in w, Ry is decreasing and
non-negative, and I'(w) is increasing in w—see (68). Thus, R, is decreasing when ¢’ is convex
and Ry is decreasing.

Now we consider the case in which ¢’ is concave, namely, Ry < 0. If w; > ws, then,

Rp(w1) = Ry (wy — L(wy))(1 = ' (w1))* = Ry (=1(wy)) (I (wy))?
< Ry (wy — W(w2)) (1 = I'(w2))? = Ry (—1(w2))(I'(w2))? = Rp(wa),

where we use the facts that w — {(w) and [(w) are increasing in w, Ry is decreasing and
non-positive, and I'(w) is decreasing in w—see (68). Thus, R, is decreasing when ¢ is concave

and Ry is decreasing. O

Claim 20. If Ry is decreasing and ¢’ is convex or concave, then Ry is increasing.
Proof. Suppose t; > t3. Using (72), we have
Ry(t1) 2 Ry(t2) <= Ry(¢'(t1))V"(¢(t2)) < Ry (¢ (£2))0" (¢ (1))
Recall that ¢’ is increasing. Thus, since Ry is decreasing,
Ryr(¢'(t1)) < Ry (¢ (t2))-

If ¢’ is convex, then Ry > 0 and ¢ is increasing. If instead ¢’ is concave, then Ry < 0 and
1" is decreasing. In any case,

Ry (¢'(t1))9" (¢ (t2)) < Ry (¢ (£2))0" (¢ (t1)),

as desired. O
Claim 21. If R, is decreasing for all vy, then Ry is decreasing.
Proof. Suppose wy > wg > 0. Since R, is decreasing,

R, (w1) < R, (wo).
Taking the limit as v — 0, we obtain from (70) that:

Ry (w1) < Ry (wa).
Suppose now that 0 > w; > wsg. Since R, is decreasing,

—R, (—w1) < =R, (—w2).

Taking the limit as v — 1, we obtain from (71) that:

Ryr(w1) < Ry (ws).

Finally, suppose wy > 0 > wo. For all wz € (0,w1], Ry (wi) < Ry (ws3). By continuity,
Ry/(w1) < Ry (0). Analogously, for all wy € [ws,0), Ry (ws) < Ry (wz). By continuity,
Ry (0) < Ry (wz). We deduce that Ry (w1) < Ryr(w2). We conclude that Ry, is decreasing.

]
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C.9 Proofs of the results in Section 9
C.9.1 Proof of Proposition 16

We prove each point in turn.
Point (i). Suppose that Kj is a garbling of K>, i.e., there exists I' : N — A(N) such that
Ki; =T o K. We proceed in two steps.

First, we claim that every P that is replicable under K is also replicable under Ks. Let
P = (Q,(Py)oco) be given. Suppose there exists a Q € A(2)Y that replicates P under K7,
i.e., such that Py = >,y K19(1)Q; for all € ©. Then, for every 6 € ©, we have

PeZZ(ZKze )Qz— > Ko )(er(i)Qz),
i€EN \jEN JEN 1EN
where the first equality is by K1 = I' o K5 and the second equality interchanges the order of
summation. Define QoT' € A(Q)Y as [QoT]; := 3 ;cnT(1)Q; for all j € N. Then QoT
replicates P under Ko, i.e., Pp =3 ey K2(j)[Q o I']; for all § € ©. This proves the claim.
Next, we claim that, for every P that is replicable under K7, it holds that If, (P) > Iy, (P).
Let P = (Q, (Ps)geo) and Q € A(Q)Y that replicates P under K; be given. By the above work,
QoT € A(Q)N replicates P under Ko. Define vy 1= Y ycq m(0) K1 and vo := Y geq m(0) Ko p.
Given any a € A(Q2), it holds that

> vn(i)Dy(Qilla) = Y (Z ) D Kagli) ) ¢(Qill)

ieN iEN \0€O jeEN
= > w (ZF i)Dy QAIOZ))
jEN iEN
> Y 12(j)Dy ([Q o Tjlle),
JEN

where the inequality holds because Lemma 1(ii) implies that the map Dy(-||a) : A(R2) — Ry
is convex. Taking o to be the fi-mean of P, we obtain the claim:

It,(P) = ) v(5)Dy ([QoTjllar) >
JEN

inf > w(j)Ds ([QoT)|8) = If,(P).

PEA) oy

Finally, to complete the proof, note that: (a) Iy, (P) < +oo implies P is replicable under
K1, and (b) Iy, (P) = +oo implies Iy, (P) > Iy, (P). Thus, Iy, (P) > I, (P) for all P € &.
Point (ii). Suppose that dom(¢) = R;. We prove the contrapositive. To this end, suppose
that K is not a garbling of K. Take P = Kj. Then Q € A(N)Y defined as Q;(j) = 1(j = 1)
replicates P under K. Moreover, since dom(¢) = R, we have I, (P) < +o0o. Meanwhile, by
the supposition, there does not exist any R € A(N)" that replicates P = K under K5 (as
any such R would witness that K is a garbling of K5). Therefore, If,(P) = +o0. It follows
that Iy, (P) > Iy (P), which proves the contrapositive.
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C.9.2 Proof of Proposition 17

We begin by recalling a general fact about Fenchel conjugates of composite functions due
to Hiriart-Urruty (2006). For each i € N, let h* : R® — R be a convex function. Let

*: RV — R be an increasing convex function. Define f* : R® — R as the composition
f*(z) = g* (hf(x))ien) for all z € R®. By construction, f* is convex. Letting f = (f*),
g = (g%)*, and h; = (h})* for each i € N, we have the following result:

Lemma 16 (Hiriart-Urruty, 2006). For all € RY,

fa) = mf{ 9+ 3wl ())}

where the infimum is over all y € RY and 2z = (2;)ien € (R9)N such that 3 ,cy 2 = =

We now use Lemma 16 to prove the proposition. Let f* be the asserted conjugate function
for the perceptual Csiszar model stated in Proposition 17. Note that it can be written as the
composition f* = g* o (h});en of the increasing convex functions ¢g* and h} defined as

X (Y *
7= Y vl (U0) e nite) =3 Kol
iEN 0€0
the primal functions of which are given by

0 if 2(0) = Ky(7) for all § € O,

+o0o otherwise.

9(y) =Y _v(D¢(y(i)) and hi(z) = {

iEN
Applying Lemma 16, we obtain: for every z € R®,
flz) = inf{z v(i)¢ (y(i))} )
1EN

where the infimum is over all y € RY such that Y,y y(i)Kg(i) = x(6) for all 6 € ©.
Consequently, given P € A(Q)® and a € A(Q), simple algebra shows that

> vli) Y atw)s (Q*“))}

iEN weQ a(w)

D¢(P|la) = inf {

where the infimum is over all @ € (R)Y such that 3,y Qi(w)Kp(i) = Py(w) for all § € ©
and w € ). Summing over w for each 6 in the replication constraint, we obtain that:

Z(ZQZ ) )=1 foralld €O

iEN \we

Assumption 3 then implies that >° co Qi(w) =1 for all i € N. The desired result follows.
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C.9.3 Proof of Proposition 18
Let D = (©, 7, A) be given. For any (¢, N, K), we have
max Z () Z Py(a)a(8) — I(P)

PEA(N® oce  aea
:PGHAH(B;()@ QGEI;)N%%W(Q)%PQ(G)G(Q) - J(Q) s.t. Q oK=P
= x| 6%(; m(0) %[Q o Kls(a)a(0) — J(Q)

= max v(i) Z Qi(a)Eifa] — J(Q)

QEAMNIEN  aea
= max » v(i) )y Qia)ali) - J(Q),
QEAMYieN  gea
where the first equality follows from Definition 14, the second equality is by substitution of
the constraint, and the remaining equalities rearrange terms. The desired result follows.

C.9.4 Proof of Proposition 19

(). Assume the encoder satisfies the MLRP. By standard arguments (Karlin and Rinott, 1980;
Milgrom, 1981), Ky and u; are increasing in 6 and 14, respectively, according to first-order
stochastic dominance. Since 7(#) is increasing in 6, E;[r| is increasing in 1.

By Proposition 18, the reduced Lagrange multiplier F;[\,] is a solution of the equation
a(r)d! (Eilr] = Ei[Ax]) + a(s)y' (0 = Ei[A]) = '(0).

Since v’ is a strictly increasing function, E;[r| is increasing in i, the quantity F;[r — A\;] must

be increasing in i. It follows that

is increasing in ¢. We obtain that
Py(r) =Y Ko(i)Qi(r)
1EN
is increasing in 6, given that Ky is increasing in 6 according to first-order stochastic dominance.
(ii). As shown above,
Po(r) = 3 Ko(i)Q(r)
1EN
where the quantity Q;(r) is increasing in 7. Simple algebra shows that the psychometric
function is convex at 6; if and only if
> (;Kei_l + ;Ké)m) Qi(r) = > Kg,Qi(r).
iEN ieN
Consequently, if %K@Fl + %K@i ., first-order stochastically dominates Ky,, then the psycho-
metric function is convex at 6;.

(iii). Same argument as in (ii), with the directions reversed.
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C.10 Proofs of the results in Section 10
C.10.1 Proof of Proposition 20

For notational convenience, we let Kys € A(N)® denote the encoder associated with (37).
The linear independence assumption implies that {u;};cn is affinely independent.
By direct calculation, C' can be equivalently written, for every experiment P € A(Q)®, as

C(P) = min { Z R,(w) CDKL(TwHV)} )

wesupp(Ryp)

where the minimum is taken over all K € A(N)® and R € A(Q2)®*" subject to

Z Ko(i)Ry = Py for all 0 € © (74)
iEN
and
Twi =i for all w € supp(R,) and i € supp(Ty). (75)

In the above, p € A(© x N) is an induced prior belief on © x N given by p(6,7) = 7(6)Kp(3),
R, € A(Q) is given by Ry(w) = > (9. ycoxn P(0, 1) Rg,q)(w), and r, € A(©x N) is the posterior
belief on © x N conditional on signal w. Moreover, 7,, € A(N) is the marginal distribution of
ry on N, and 7, ; € A(O) is the conditional distribution on © conditional on attribute i € NV,

which can be expressed as

p(6,7)Rp,)(w)
ZTE@ p(T’ Z)R(T,Z) (W)

Take any P for which the constraint set is nonempty, and any (K, R) and associated
p satisfying (74) and (75). Let p € A(N) be the marginal of p on NN, defined as p(i) =
> oco p(8,1). Plugging (76) into (75) yields, for all # € ©, w € supp(R,), and i € supp(7,,),

rw,i(Q) =

(76)

p(0,1)Rig.iy(w) = pi(0) - Y p(7,9) Rz iy (). (77)

TEO

Summing over w € supp(R),), this delivers

p(ﬁiz) = p;(0) for all # € © and i € supp(p). (78)

Plugging this back into (77) and defining p; € A(O) as p;(0) = p(0,i)/p(i), we obtain

Ry = > pi(T)Rirzy  for all (6,4) € supp(p).
TEO

For each i € supp(p), this implies that there exists R; € A(Q) such that R; = Rz for all
(6,7) € supp(p); moreover, for any (0,i) ¢ supp(p), we can replace R ;) with R; without
affecting the constraints (74) and (76) or the cost. Finally, for each i ¢ supp(p), let R; € A(Q)
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be arbitrary. Denote the resulting experiment on N as R € A(Q)N. By construction, when R
is viewed as a f-independent experiment on © x N, the pair (K, R) satisfies (74) and (75)
and attains the same cost as (K, R).

Meanwhile, note that constraint (74) implies 7(6) = > ;cn p(6,1) for all 6 € ©. Together
with (78), this yields 7 = ;o p(i)pi. Since we also have m = ;o n v(i)p; and {p;}ien is
affinely independent, it follows that p = v. We thus obtain p(6,7) = v(i)u(0) (0)Kns,0(7)
for all @ € © and i € N. We conclude that K = Kxg and R, = R, :== Y,y v(i )ﬁ

Overall, we obtain: for any P € A(Q)®,

C(P)= RGIE%S)N {MES%(R )Ry(w) CDKL(erl/)} subject to Ro Kng = P.

= i ) ¢ Dki(R;i|| Ry bject to Ro Kns = P,
Reril%g)l\’{g;vy(l)c kL (Ril| )} subject to R o Kns

where we use a standard change of variables for KL divergence. The result follows.

C.10.2 Proof of Proposition 21

Under deterministic categorization, we have v(i) = 7(B;) and p; = 7(- | B;) for all i € N.
Fix any p € A(©). Note that the extension (r,q) defined as r(i) = p(B;) and ¢; = p(- | B;)
for all i € N satisfies > ;< 7(7)g; = p and achieves a finite value in (36). Hence, problem (36)
is feasible. Thus, since the feasible set is compact and the objective is lower semi-continuous, a
minimizer in (36) exists. We show that (r, q) is the essentially unique minimizer; formally, any
minimizer (r/,¢') must satisfy 7’ = r and ¢} = ¢; for all i € N such that supp(p) N B; # 0.4
To this end, take any extension (7, ¢’) that achieves the infimum in (36). Since it achieves
a finite value, we must have ¢; < p; for all i € supp(r’). Therefore, feasibility implies that:
(i) ¢ € supp(r’) if only if supp(p) N B; # 0, and (ii) for every i € supp(r’) and 6 € B,
¢;(0) = p(0)/r' (7). Tt follows that 7" = r and ¢, = ¢; for all i € N such that supp(p) N B; # 0.

C.10.3 Proof of Proposition 22

By inspection, the function HYg in Proposition 22 can be written as the composition Hygq =
g* o (h)ien of the functions g* : RN — R and h? : R® — R defined as

g*(y>:<log<2v<i>ey<“/<> and i (x) =milog | > mi(0)e” @/ | .
1EN [USC)

It is easy to see that ¢g* and all the h] are increasing. It can also be verified, via Holder’s
inequality, that all these functions are convex. Hence, Lemma 16 implies that (H{g)* = Hns.

71f there is a nest B; such that supp(p) N B; = @ and hence r(i) = 0, we can define ¢;, ¢} € A(©) arbitrarily.
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C.10.4 Proof of Proposition 23
For the specified parameters, the conjugate function in Proposition 22 simplifies as

n/¢
H*(x) = ¢(¢,m) +Clog | Y (Z e””“’”") : (79)

€N \ b€i

where N = {U, D, L, R} and ¢((,n) € R is a constant that depends only on ¢ and 7. As in
Example 6, we also define f* : R® — R as f*(z) = H*(£) and f: R = Ras f = (f*)*.

Claim 22. H* is strictly convex modulo translations.

Proof. By construction, H* is convex and translation invariant. Thus, it suffices to show
that H* is non-affine modulo translations. To this end, take any ¢ € (0,1) and z,y € R®
such that x —y ¢ R. There must exist some i € {U, D, L, R} such that, letting i = {60, 7},
x(0) —y(0) # x(1) — y(7). Holder’s (strict) inequality then implies that

(O (1=0UON/1 . (10w (o2 @/m)" (@)1 (eram) (evtr)in)

where the inequality is strict because the hypothesis that z(0) — y(0) # x(7) — y(7) implies
that the vectors (e*(?)/n, e=(1)/m) (e¥(@)/n e¥(1)/M) € R? are linearly independent. Therefore,

n/¢
11+ (1= t)y) = e(on) = Clog | 3 (Z eltx (O] )

iEN \b'et
tn/¢ (1=t)n/¢
< Clog Z Z e=(0)/n Z e¥(@)/n
ieN \#'ci o'ci

n/¢]t n/¢
<[> (Z ez(@’)/n) < |3 (Z ey(9’)/n) ,

1€EN \0'€i 1EN \0'€i

where the strict inequality follows from the preceding display and an analogous application
of Holder’s (weak) inequality to each term of the outer sum, and the final line follows from
applying Holder’s (weak) inequality to the entire outer sum. Upon simplification, we obtain
the desired strict inequality H*(tx + (1 — t)y) < tH*(x) 4+ (1 — t)H*(y). O

Next, denote by I' the group of permutations generated by 1,72 : © — ©, where each
7; permutes the ith component of the state.*® That is, y1(u,-) = (d,-), n1(d,") = (u,"),
Y2(+,1) = (-,r), and y2(-,7) = (-,1). By inspection, each decision problem D; = (m, A;) with
j € {1,2,3} is invariant with respect to I'. In particular:

48The permutation group I includes 71, vz, the composition 1 0 42 = 72 0 71, and the identity map.
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e In problem 1, ay = ay, = ap, and ap = ap, = ay,,-
e In problem 2, ar = ar~, = ary, and ar = ary, = QL ~,-
o In problem 3, adiag = Goff,y; = Goft,y, AN Goff = Adiag,y; = Odiag,yo -

Moreover, by inspection, the conjugate H* in (79) is invariant with respect to I'. Therefore,
f* is also invariant because 7 is uniform. By Lemma 4, it follows that f is also invariant with
respect to I'. Using these facts, Proposition 1 then implies that, for each decision problem
j € {1,2,3}, there exists a saddle point (o, \) € A(A;) x R® such that o/(a) = 1/2 for
all a € Aj and N o= )\37'1 = A%z,
invariance, we can set A = 0 without loss of generality. Moreover, letting P/ € A(AJ )9

which implies that § — M\ () is constant; by translation

denote the associated optimal choice rule for each problem j € {1,2,3}, Proposition 1 implies:
o In problem 1, P(lu’l) = P(lum) and P(ldJ) = P(ld’r); it suffices to find P(lu,l)<aU) and P(ld,l)(aU).
o In problem 2, P(2u,l) = P(Qd,l) and P(2u,r) = P&T); it suffices to find P(Qu’l) (ar) and P(2U7T)(aL).

e In problem 3, P(?’u’l)(adiag) = P&T)(adiag) = P(3u7r) (aoff) = P(?Zl,l) (aof) and P(?’u,r)(adiag) =
P(Sd’l)(adiag) = P(3u’l) (aoff) = P&T) (aof); it suffices to find P(3u7l)(adiag) and P&l) (Qdiag)-

Claim 23. For each problem j € {1,2,3}, P’ is the unique optimal stochastic choice rule.

Proof. We focus here on problem j = 1; the other cases are analogous and hence omitted.

Take any saddle point (8%, ¢') € A(A1) x R® for problem 1. Claim 22, Lemma 6, and Lemma

7 together imply that /! — A! € R, i.e., ! = 0 modulo translations. Hence, (5!, 0) is also a

saddle point for problem 1. Since f* is translation invariant (as 7 is uniform), this saddle

point generates the same choice rule P! if 81 = a!. Thus, it suffices to show that 8! = ol.
For saddle point (3!,0), the optimality condition (16) reads

B (av)Vof*(avs) + (1= B (av)) Vof*(aps) =1 forall 0 € ©.

Combining these conditions for states 6 € {(u,1), (d,l)}, we obtain

8 (av,r) [V(U,Z)f*(aU,w) - V(d,z)f*(aU,n)] = (1 - ﬁl(aU,w)) {V(d,z)f*(az),n) - v(u,l)f*(aD,ﬂ‘)} :

Lemma 4 with the permutation y; € T' implies that V(,;f*(avx) = V(a1 f*(apx) and
Vian S (avx) = Vi f*(apx). Moreover, direct calculation yields V(1) f*(avx) > Va1 f*(avr)-
It follows from the above display that 8'(ay) = 1 — B(ay). Hence, we obtain 8! = o!. O

In the posterior separable case, as noted in Section 4.7 the optimal choice rule is given by

o’ (a)

()

Pj(a) = VoH*(a) = 2VyH*(a)
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for all § € ©, j € {1,2,3}, and a € A;. Observe that the gradient VH* is given by

/<
=(0)/n S er/m)’
VoH*(z) = ), - 2(n)/n ( - ) i
ieN9ei 2urei© Y jen (ZTEJ. eI(T)/n)

We now specialize this formula to the three decision problems, considering each in turn.
Problem 1. Per the above, it suffices to find V(, ) H*(ar) and V (q;)H*(ay). First, we have

V “ H (a = X
wnH"(av) 2 ol/n 2. el/n)”/C +2(el/n+ 1)’7/C + on/¢
el/n (el/n + 1>n/<

X
em+1 7 (2. e1/m)"C 42 (el/n 4+ 1)V 4 on/c

where the first term in brackets corresponds to ¢ = U and the second term in brackets

corresponds to ¢ = L. After simplification, this becomes

1/ n/¢
el/¢ el/n (#)

ViwnyH* (ay) = + X
BV (el/g—&—l)n/c 1 e/m+1 7 i 19 (el/g+1)n/C 1

X

. (80)

| =

Next, we have

ay) = |z X
(d)l) U 2 (2- 61/,7)17/( +2(el/n + 1)’7/4 + on/¢

el/n (el/” + 1)77/(
X
el/mn 41 (2- 61/77)77/4 +2(el/n + 1)77/( 1 oon/¢

where the first term in brackets corresponds to i = D and the second term in brackets

corresponds to ¢ = L. After simplification, this becomes

. U/ (LgHy/C

+ X
el/¢ 42 (el/++1)’7/<+ ) el/n41 el/¢ 49 (Lgﬂ)n/c+l

1
VapH (av) = |5 x (81)

To calculate the desired limits, we note that, for any n > 0,
el/n1\" <
e.
2

1
1 * —_ — . _ . —
glgr(l)VmJ)H (av) = 5 1+ YT 5

Therefore, (80) implies that

112



and (81) implies that

el/n

1
hm V(dJ)H*((lU) = — - 0 + 0 = O

¢—0 2 el/my1
By the symmetry properties noted above, we conclude that lim¢_,0 P} (a) = 1(a(6) = 1).
Problem 2. The calculations are symmetric to those for Problem 1, and hence omitted.
Problem 3. Per the above, it suffices to find V(, ;) H*(adiag) and V(q;)H*(adiag). Noting
that aqiag pays the reward in exactly one state within each nest i € {U, D, L, R}, we obtain

)n/C ] U

el/n (el/”—i-l 1
X _ - -
e+l g (e 1)"C | 2 et T

V(u,l)H*(adiag) =2

n/¢ T
1 ) (61/77 + 1) 1 1
el g (e 1)”C | 2 e+l

VianH (adiag) =2

Note that both of these expressions are independent of ( > 0. Hence, by the symmetry
properties noted above, they yield the desired form of P3 for all ¢ > 0, viz., as ( — 0.

C.10.5 Proof of Proposition 24

Define P! € A(41)® and P? € A(A2)® as Pj(ay) = 1(0 € U) and PZ(ay) = 1(f € L) for all
f € ©. The associated unconditional action probabilities and posteriors are given by

1
Pla)=1/2 and p.(0) = 51(&(0) =1) forallae€ A1, 0 €0,
1
P%(a)=1/2 and p2(0) = 51(a(9) =1) forallae€ Ag, 0 € 0O.
Suppose that lim,, o Pgl’"(aU) = P} (ay) and limy, 0 Pg’"(aL) = Pj(ar), which implies that

lim P}"(a) = Pl(a) and  lim pi™ =pl forall a € Ay,

n—oo n—00
lim P2™(a) = P?(a) and lim p2" =p? forallac Ay
n—0o0 n—oo

Throughout the proof, we adopt the following notational conventions. First, for each vector
of coefficients k € Ri, we denote by C(-; k) : € — R4 the associated neighborhood-based cost
defined via (38). Second, for each i € I, we extend the KL divergence Dkr(-||m;) on A(B;) to
the orthant Rfi by defining (with minor abuse of notation) the map Dxy,(+||m;) : Rfi — R, as

()
Dy, (z||m;) = z(6)lo .
alelim) = 3 a(0) £(27)
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This extension, which is without loss of generality, allows us to take derivatives of Dk, (+||m;)
in the usual way on ]Rfi. Finally, we define the maps H" : R? — Ry and H : R? — R, as

H"(w):ZH?E(z)DKL(:L‘ZHm) and H(x ZFL.I‘ ) Dk (x4 ||m3),
el el

where Z(i) = > ycp, 2(0) and z;(0) = x(0)/Z(i) for all i € I and 6 € B;. This is shorthand
notation for the entropy (38) with coefficients ™ and x*, respectively, extended to the orthant.
We first show, via three claims, that the coefficients converge to x; = 0 for all 7 € I.

Claim 24. k] < +o00 for every i € I.

Proof. Suppose, towards a contradiction, that there exists ¢ € I with k7 = 400. Since |B;| > 2

by the nonredudancy assumption, there is some E € {U, D, L, R} such that B; N E # () and

B;\E # (). We suppose here that E = U; the other cases are specular and hence omitted.
Consider the decision maker’s cost in problem 1. For each n € N, it holds that

C(PY™;5") = PY"(ay) H" (pk) + (1 = P2 (ap)) H" (p2)
> k[ PE"(aw) e () Dxe (pltillmi) | -

Note that limy, o Pa;" (i) = $|B;NU| > 1/2, where the inequality is by B; NU # . Moreover,
limy, 00 p(llsl = piUz and supp(p}wﬂ-) C supp(m;) = B;, where the strict inclusion is by
B;\U # 0. Thus, by continuity of KL divergence, given any € € (0,1) and sufficiently large n,

1
C(Plvn; K/TL) > /ﬂ},? |:(1 - 6) Z -DKL (péU,l”ﬂ-Z):| :

Since the term in brackets is strictly positive and k* — K} = +00, we obtain C(PY"; k") —

+00. This contradicts the optimality of P1" in decision problem 1 for large n, as desired. [

Claim 25. It holds that

1 1
: In, ny __ 1. %\ 1 1
nh_)ngoC(P iKY =C(PRY) = §H(an) + iH(paD)7 (82)
1 1
. 2n, n\ __ 2. %\ __ 1 1

Moreover, in each decision problem j € {1,2}, it holds that

P’ € argmax Z 7(0) Z Qo(a)a(l) — C(Q; K"). (84)

QEA(4;)® peco a€A;

Proof. For each j € {1,2}, define the map C7 : A(4;)® x RL — R, as

=Y Qxla) | D riT,(0)

acAJ el

) 9
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where {qa }qeai € A(O) are the posteriors induced by Q. In words, C7(+; &) is the neighborhood-

based cost with coefficients «, restricted to the subdomain of stochastic choice rules on A;.
Take any j € {1,2}. We assert that C7 is jointly continuous. To this end, take any

convergent sequence (QF, k¥) in A(A;) x RL with limit point (@, ). By the triangle inequality,

QR ) = CI(Qm)| < |C(@QF,wY) = C(QF, )| + |CT QM m) = CUQum)]. (8)

We consider each term on the RHS of (85) in turn. For the first term, we have

CH(@QF kh) = CT(QF m)| < 37 Q@)D |k — | @i 0) D (abilms)
a€A;
HZ- — Ri| X sup DKL (szﬂ'z)
ieEN pi€A(B;)

—0 ask— oo,

where the first line is by the triangle inequality and the final line uses the fact that Dgy, (+||7;)
is bounded on A(B;). For the second term, note that Q¥ — @ implies Q¥ — @, and
(qéf)aeA]- — (qa)aca; (being that Aj; is finite). It follows that

lim C’j(Q K) = Z hm Qk ZHZ hm {qa ) Dk, (qazllm)}

k—o0
aeAJ
= Z Q7r Z’iz qa DKL QazHﬂ'z) = j(Q7ﬁ)‘
acAj el

Since both terms on the RHS of (85) converge to 0 as k — 00, we obtain limy_,., C7(Q"; k) =
CI(Q; k). We conclude that ¢V is jointly continuous, as asserted.

Since Claim 24 establishes that k* € Ri, continuity of the C7 directly implies (82) and
(83). Moreover, note that continuity of the C/ also implies, via Berge’s Theorem of the
Maximum, that the correspondences Q7 : R = A(A;)® defined as

Q' (k) = argmax Z 7(0) Z Qo(a)a(f) — C7(Q; K)
QEA(4)° gco acAj
are upper hemi-continuous. Since each P/»" € QJ(k™) by hypothesis, this implies that
PJ € QJ(k*) for each j € {1,2}. This establishes (84), completing the proof of the claim. [J

Claim 26. x; =0 for everyi € I.

Proof. Suppose, towards a contradiction, that there exists k € I with x;, > 0. Since |By| > 2
by the nonredundancy hypothesis, there is some E € {U, D, L, R} such that By N E # () and
Bi\E # (). We suppose here that E = U; the other cases are specular and hence omitted.
Consider decision problem 1. Since supp(ps,) = U and Bi\U # 0, it follows that
supp(Pay k) & Br = supp(mx). We show that this yields a contradiction to (84) in Claim 25.
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To this end, for each € € (0,1), define Q¢ € A(A;1)® as Q4(-) = ¢/2 + (1 — €) P (+) for all
€ ©, so that Q%(-) = 1/2 and the associated posteriors are ¢& = er + (1 — €)p. € A(O) for
each a € Ay. For the limit coefficients x*, the value of decision problem 1 under Q€ is

V(e):=)_ m(0) Y Qjla)at) — C(Q) =1~¢/2 - C(Q%r").

0cO acAl

Note that V(0) = 1 — C(P?!) is the value under P!. Moreover, V(¢) > V(0) if and only if

% J[C(P; kY — C(QS k%)) > 1. (86)

Thus, to obtain a contradiction to (84), it suffices to show (86) for some € > 0. Note that

C(PY %) — C(Q5 ) = % (ol ~ Hlge,) + 5 (HL,) ~ H )
> SVHG) - (phy i) + 5V, - (o), — i)
- % (VH(QZU) ' (pCILU B W) +VH(qap) - (pCILD B W)) ’

where the inequality holds because H is convex and differentiable at full-support beliefs.
Therefore, to show that (86) holds for some € > 0, it suffices to show that

VH(qq,) " (ptle — 7r> +VH(qg,) (plllD — 7r) — 400  ase— 0. (87)

We establish (87) in what follows.
First, note that for any # € © and full-support p € A(0O), it holds that

VoH(p) = 3}0( Z"%P ) Dk (pi| i)
el

= Y K <8P(Z)DKL(sz7TZ +p(i) YV DKL(szm)apl(T))

icl:0eB; 9p() r€B; 9p(9)
= Y wki(Dxu(pillmi) + VoDkr(pillm:) — VD (pillmi) - pi)
i€l :0€eB;
— Z k; log (pz(g)) ,
icl:0eB; mi(0)

where the second line is by the chain rule and the third and fourth lines are by direct
calculation. Now, take any a € A;. The above display implies that

VH(qS) - (ph—7) = Y VoH(g5) (ph(6) — 7(0))

e
=2 mi ) o (q‘” 9)> (ra(8) = (9)), (88)
i€l 0eB;
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where the second line is by the preceding display and interchanging the order of summation.
Moreover, note that

qe (0) — 671'(9) + (1 — 6)p(11(0)
o €7 (i) + (1 — €)pg (i)

We assert that each term in the sum in (88) is non-negative. Fix any i € I and 0 € B;. We

forallie I, 0 € ©. (89)

prove the assertion for a = ay; the case where a = ap is specular. Note that py,, (i) = 1|B;NU|.
Case 1: py, (0) > m(6). This implies py () = 1/2. Plugging this and 7(i) = 1/|By| into
(89), a short calculation reveals that g5 ;(0) > m;(0) if and only if [B;| > [B; N U|. Since the
latter inequality trivially holds, we conclude that log (qgwi(ﬁ) / 7rz-(0)) (p}lU(H) - ﬂ(&)) > 0.
Case 2: py, (0) < m(0). This implies p; (0) = 0. If B;NU = 0, then (89) implies
oy, i(0) = mi(0). If B;NU # 0, then (89) implies g5 ,(0) < m;(#). In either case, we obtain
log (g5,,4(0)/mi(6)) < 0. We conclude that log (g5,, ,(0)/mi(0)) (pk, (0) — =(6)) > 0.
This proves the assertion. It follows that, for every € € (0, 1),

VH(gS,,) - (pa, —7) + VH(gS,) (ps, —7)

—
> Y log (qjgjg())) (vks )= =(0))

0c By (90)
K o qZU,k(e) 1 .
= ee%k:\Ul g( i (0) ) (an(e) (9))7

where k € I is the index that, by supposition, satisfies kx > 0, B, N U # 0, and Bp\U # 0.
Plugging the definition of pclbU and (89) into the final expression, we obtain

€ 0 . . .
K Z log (qjgjg())> (plllU(e) _ W(g)) = Zk z 10g< |Bi| + (1|Bk|) | B, N U])

0€BL\U 0€BL\U

— 400 ase— 0,

where the limit is infinite because ki > 0, Bi\U # 0, and |Bx N U| > 1. Plugging this into
(90) then establishes (87), and hence the desired contradiction. We conclude that x; = 0. O

Claim 26 delivers the first conclusion of the proposition. It remains to show that x* =0
implies that lim, Pg’"(a) = 1(a(f) = 1) for all 0 € © and a € A3. Suppose, towards
a contradiction, that there exist some 7 € © and a € Aj such that a(r) = 1 and yet
lim inf,, oo P3"(a) < 1. Then there is a subsequence (P3" ).cy such that

limsup > 7(0) Y Py (a)a(d) — C(P*™; k™) < limsup >_ 7(0) Y Py™*(a)a(f) < 1.

k—oo gco a€As k—oo pcg a€As

Define P? € A(A3)® as Pj(a) = 1(a(f) = 1) for all § € © and a € As3. Since k* = 0,
lim > w(0) > Pjla)a(f) — C(P* k™) =1—C(P% k") = 1.

k=0 056 a€As

This implies that, for sufficiently large k, P3™ is not optimal in decision problem 3. This
delivers the desired contradiction, and thereby completes the proof.
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