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Abstract— This paper presents a link model which captures
the queue dynamics when congestion windows of TCP sources
change. By considering both the self-clocking and the link
integrator effects, the model is a generalization of existing models
and is shown to be more accurate by both open loop and
closed loop packet level simulations. It reduces to the known
static link model when flows’ round trip delays are similar,
and approximates the standard integrator link model when the
heterogeneity of round trip delays is significant. We then apply
this model to the stability analysis of FAST TCP. It is shown
that FAST TCP flows over a single link are always linearly
stable regardless of delay distribution. This result resolves the
notable discrepancy between empirical observations and previous
theoretical predictions. The analysis highlights the critical role
of self-clocking in TCP stability and the scalability of FAST
TCP with respect to delay. The proof technique is new and less
conservative than the existing ones.

I. INTRODUCTION

In the field of network congestion control [17], [22], one
line of work of fundamental interest is the dynamics of
congestion control protocols. Stability is crucial to ensure that
the system operating point is indeed the intended equilibrium,
with the desired efficiency and fairness. Local as well as global
behaviors of congestion control protocols have attracted much
attention; see e.g., [6], [11], [13], [14], [15], [16], [18], [19],
[20], [23] for local stability and [1], [9], [10], [26], [28] for
global stability.

Until recently, stability analyses have been based predom-
inantly on rate-based (rather than window based) source
models, and, almost without exception, on integrator link
(queue) models. In these models, sources control their data
rates explicitly and the rate of change of the queueing delay is
proportional to the difference between the aggregate incoming
traffic and link capacity. Typically, these results show that the
system is stable when round trip delays do not exceed some
upper bound. This is in line with our intuition that increased
feedback delay may have a destabilizing effect on a closed
loop system.

There are however features of TCP which play important
roles on stability but are not captured in the rate-based/
integrator model. Current TCPs are window based algorithms,
meaning that each sender controls its window size — an upper
bound on the number of packets that have been sent but not
acknowledged. The actual rate of transmission is controlled
or “clocked” by the stream of received acknowledgments
(ACKs): a new packet is transmitted only when an ACK is
received, thereby keeping the number of outstanding packets
constant and equal to the window size. Therefore, sources
control the amount of data they inject into the network rather

than the rate of doing so. Intuitively, this “volume control” is
safer in terms of stability than “rate control”. This self-clocking
has the consequences that the queue size traces the changes
in the window much faster than the integrator queue model
predicts, and that the sending rate cannot exceed the capacity
over long time frames. Both enhance stability.

For the case where flows’ round trip delays coincide and
no non-window-based cross traffic is present, the self-clocking
effect is dominant: the total ACK rate cannot exceed the link
capacity at any time and hence a window change translates
into a proportional change in the queue. Indeed, as an example,
homogeneous FAST TCP [27] flows are reported empirically
to be stable with any delay, in stark contrast to the prediction of
the integrator link model which asserts instability when delay
is large enough. This observation motivated the proposal of
a static link model to capture self-clocking effect under TCP
window control [24], [25]. Using the static link model, it has
been theoretically shown that FAST TCP flows are always
stable for the homogeneous case [8], [24], [25]. As the static
model fails to hold in heterogeneous cases, we certainly need
a better model to study the general case.

It turns out that both the integrator link model and the
static link model are incomplete; the former tends to lag the
true dynamics yielding conservative stability results, while the
latter leads the true dynamics yielding optimistic predictions
(See examples 1, 2, 3 and 5). After introducing basic nota-
tions and preliminary knowledge, we will show in Section II
that a natural combination of these two models leads to a
more accurate one. Open loop experiments are provided to
validate this joint model and reveal its underlying intuition.
To illustrate its application, we then specialize in Section III
to the stability of FAST TCP. Using the joint link model,
we prove that FAST running over a single link is stable for
any heterogeneous delays, and hence resolve the discrepancy
between previous experimental results and existing theoretical
predictions. Closed loop experiments are also reported where
accurate predictions on stability region is obtained and verified
with packet level simulations1. We conclude in Section IV and
provide some possible directions to extend the current work.

II. MODEL AND NOTATION

To capture the self-clocking effect in window based con-
gestion control, we avoid working directly with the sources’

1To the best of our knowledge, the current status of research on congestion
control protocols can provide quantitative results on equilibrium, while for
dynamics, most works focus on qualitative study and have not been able to
compare predictions with packet level simulations quantitatively.
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sending rates as states of the protocol. Instead, we use the
sources’ window sizes and the bottleneck queue size to rep-
resent the state of the closed loop system.

A. Preliminaries

We consider N window-based TCP sources sending over
a bottleneck link with capacity c. Let wn(t) denote the
congestion window of source n at time t, n ∈ {1, . . . , N}.
Let a packet that is sent by source n at time t appear at
the bottleneck queue at time t + τf

n . This forward delay τf
n

models the amount of time it takes to travel from source n to
the link, and it accounts for the constant forward latency but
not queuing delays. The backward delay τ b

n(t) is defined in
the same manner: it is the time from when a packet arrives
at the link to when the corresponding acknowledgment is
received at source n. Note that the backward delay includes
the time-dependent queuing delay at the bottleneck queue. The
round trip delay τn(t) seen by source n is the elapsed time
between when a packet is sent and when the corresponding
acknowledgment is received; naturally τn(t) = τf

n + τ b
n(t).

The latency of source n is denoted dn and is defined as the
minimum achievable round trip delay, i.e. the round trip delay
when the bottleneck queue is empty.

The queueing delay of the bottleneck link is denoted by
p(t), and c > 0 is the capacity of the link. The queuing delay
observed by the nth source at time t is qn(t); it relates to the
queue delay by q(t) = p(t̃), where t̃ solves t = t̃ + τ b

n(t̃).
The bottleneck link may also carry non-window-based

traffic such as User Datagram Protocol (UDP) traffic. Let
xc(t) ∈ [0, c] be the rate (averaged over a suitable time
interval) at which non-window-based cross-traffic is sent over
the link. This implies that the available bandwidth, shared
between the window based sources sending over the link, is
c− xc(t).

Whenever a time argument of a variable is omitted it
represents its equilibrium value, e.g., p(t) corresponds to the
queueing delay variable at time t while p is its equilibrium
value. When working in discrete time the convention w(k) :=
w(tk) will be used.

B. Link model and validation

As described in Section I, previous work differs in how the
dynamic map between the window sizes and the buffer size is
modeled. Most existing literature on window based congestion
control, see [2], [4], [11], [16], [17], [29], assumes that the
sending rate is proportional to the window size divided by the
round trip delay and may further model the queue as a simple
integrator, integrating the excess rate at the link, i.e.,
Integrator link model:

ṗ(t) =
1
c

(
N∑

n=1

wn(t− τf
n )

dn + p(t)
+ xc(t)− c

)
. (1)

The model (1) does not, however, take into account the “self-
clocking” characteristic of window based schemes, where the
sending rate is regulated by the rate of the received ACKs. To
model this phenomenon, an alternative model is used in [24],

[27] and implicitly in [21], based on the empirical observation
that, due to “self-clocking”, transient effects are negligible.
The relation between the window size and the buffer size is
then described by the algebraic relation2

Static link model:
N∑

n=1

wn(t− τf
n )

dn + p(t)
= c− xc(t). (2)

In (2), a change in any of the sources’ congestion windows
wn results in a proportional change in the queueing delay
p one forward delay τf

n later. This is in contrast to the
integrator model (1) where a window change gives a smooth
queue transition. Obviously the two models are fundamentally
different. We will now combine their main features and arrive
at a more accurate joint model.

1) Joint link model: The joint model is justified heuristi-
cally in this section, with the aim of emphasizing the under-
lying intuition. See [12] for a rigorous derivation, where the
same model results from a thorough and detailed analysis of
the system at the packet level.

To understand the difference between (and the accuracy of)
the integrator model (1) and the static model (2), the key is
to examine cases where flows have heterogeneous round trip
delays or where non-window-based cross traffic such as UDP
exist. Consider the case of N flows sending over the bottleneck
link with constant window sizes, and consider the response to
a change in window size by a system initially in equilibrium.

The long term effect of a window change is that the queue
integrates the excess rate. This is well known, and captured
by the integrator model (1).

The short term effect of a window change is more complex,
and often wrongly ignored. Since the link is fully utilized
in equilibrium, the queue’s immediate response to a window
change (that is, transmission control injects an extra packet or
discards an ACK) is a proportional change in the queue size;
this will occur one forward delay τf

n after the window wn is
changed. If there is no cross traffic and the sources’ share the
same round trip time (RTT), there is no further transient. This
is due to the fact that sources’ sending rates are auto-regulated
by their individual ACK rates which sum up to the capacity;
subsequently the queue input rate will equal its output rate
(capacity). This is in line with the static queue model (2) which
neglects transient behavior. However, in the case when there
is stationary UDP cross traffic, sources can affect their ACK
rates over time intervals greater than one RTT (actually it is
a function of the amount of cross traffic, see [12]). This is
also true when no cross traffic is present but the heterogeneity
among sources’ RTT is large enough. As individual flows
operate on their individual RTT time scales and it takes one
RTT before a queue change affects the queue input rate, from
the perspective of flows with small round times, flows with
larger RTTs can be considered as non-responsive cross traffic
and the system is hence transient in this case as well.

2The original model was presented in discrete time for multiple bottle-
necks, here we use its continuous time version used in e.g. [8] and we consider
a single bottleneck.
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Adopting the standard fluid flow approximation, that packets
transmitted from a source form a continuous smooth flow, and
motivated by the previous discussion we capture both the short
and long term behavior in a single model,
Joint link model:

ṗ(t) =
1
c

(
N∑

n=1

(
wn(t− τf

n )
dn + p(t)

+ ẇn(t− τf
n )
)

+ xc(t)− c

)
,

(3)

which can be seen as a superposition of (1) and (2). The
derivative term ẇ(t− τf

n ) models the immediate proportional
change in the queue size due to a window change. Note that
it is the window size and its corresponding time derivative
only that have delayed variable arguments, which furthermore
are identical. This is rigorously motivated in the full model
derivation in [12]. A similar model was also implicitly used
for flow control stability analysis in [3].

Consider the Laplace domain transfer function from the
window size of flow n to the queue derived from the linearized
version of (3)

Gpwn(s) =
L[p(t)]
L[wn(t)]

=
1
c

(
s + 1

dn+p

)
e−sτf

n

s + 1
c

∑N
i=1 wi/(di + p)2

. (4)

For the the case with homogeneous delay dn = d and no cross
traffic, applying the identity

∑N
n=1 wn/(d+p) = c shows that

the transfer function zero and pole will cancel and hence that
the map is a pure delay, scaled by 1/c. This agrees with the
description in the previous discussion as well as in the model
(2). Moreover, the dynamics will be more distinguishable with
increasing heterogeneity among the sources and cross traffic
as in (1). Finally, note that (4) is open loop stable, as expected
due to self-clocking.

2) Open loop validation experiments: The accuracy of the
joint model (3) as well as its similarities and differences with
the integrator model (1) and the static model (2) is illustrated in
the following open loop examples. A closed loop experiment
will be reported in Section III-E.

The models (1), (2) and (3) are validated with packet level
data generated by using the NS-2 FAST TCP module [7]. In
each experiment we consider 20 window based flows with
static windows, sending over a single bottleneck link. Non-
bottleneck links provide configurable forward and backward
delays. The sources are window based and the window sizes
are initially set to the same constant size and are not updated
dynamically, i.e. there is no dynamic feedback except for
the ACK-clocks. The system is started in equilibrium and
perturbed at time t = 10 s by a 10% step change in the first
source’s congestion window. In all experiments a packet size
of 1040 bytes is used.

Example 1: Homogeneous sources
All 20 window based flows share the same latency dn =
200 ms and the bottleneck link capacity is set to c =
100 Mbit/s. The window size is wn = 125 packets. Source 1,
which is subject to the window change, has a forward delay of
τf
1 = 100 ms. The solid gray line in Figure 1 shows the queue

size when the system is simulated in NS-2. The black dashed,

dotted and solid lines show the integrator model (1), the static
model (2) and the joint model (3) respectively. The fit of the
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Fig. 1. Homogeneous sources. Both the joint model and the static model
agree with the NS-2 simulation, but the integrator model lags significantly.

static and the joint models is excellent (neglecting packet level
“noise”); they are identical in this scenario. This suggests that
the true dynamics in this case is indeed a pure delay. Also
observe that the integrator model lags the NS-2 simulation.
Note that it takes 100 ms before the window change affects
the queue, as predicted by the models.

Example 2: A cross traffic scenario
This scenario is as in Example 1 but with bottleneck link
capacity c = 500 Mbit/s which is also shared by 400 Mbit/s
of UDP traffic. In this case the dynamics are clearly distin-
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Fig. 2. Cross traffic. Both the joint model and the integrator model agree
with the NS-2 simulation, but the static model leads significantly.

guishable; it takes over four seconds before the queue settles
again or over twenty round trip times. The static model is too
rapid in this case, as expected, while the other two are both
good. The joint model captures the rapid initial rise in queue
size, and initially tracks the upper envelope of the staircase
simulation results, while the integrator model tracks the lower
envelope. From 1 s after the transient, the joint model tracks
the mean while the integrator lags slightly.

Example 3: Heterogeneous sources
This scenario is as in Example 1 but with d1 = 50 ms,
distributed such that τf

1 = 25 ms, for the first source, and
dn = 250 ms for the remaining 19 sources, and wn = 135
packets.
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Fig. 3. Heterogeneous sources. The joint model captures both the initial
jump and the protracted rise; the integrator model misses the former, while
the static model misses the latter.

In this case there is a more pronounced initial increase in the
queue followed by a transient phase which dies out after about
250 ms. This corresponds to the time before the ACK-clocks
of the high delay sources adjust to the new conditions.

In summary, these three examples, from different aspects,
demonstrate that while the integrator link model may lag the
true dynamics and the static link model can lead the true
dynamics a lot, the joint model (3) succeeds in modeling
the two main system characteristic of “self-clocking”, i.e.,
the short term proportional change, as well as the long term
integrating effect that are present in the system. For rigorous
derivation of the model and more validation experiments,
see [12].

III. LINEAR STABILITY OF FAST TCP
FAST [27] is a high speed TCP variant that uses delay as

its main control signal. So far, all experiments with FAST
TCP have operated at a stable equilibrium regardless of what
the round trip delays are. This section will use the joint link
model (3) to show that FAST is indeed locally stable for a
single bottleneck with default step size.

Unlike [24], [25], this analysis is for flows with heteroge-
neous delays. In this case, there is no longer a natural time
step, and it becomes simpler to work in continuous time.

A. Window model of FAST TCP

The sending rate of FAST TCP is implicitly adjusted via
the congestion window mechanism. Each sender updates its
window size in discrete time according to

wn(k + 1) = (1− γn)wn(k) + γn
dn

dn + q̂n(k)
wn(k) + γnαn

(5)

where αn ∈ Z+ and γn are protocol parameters [27]. This
update is performed once every RTT. The queuing delay qn(k)
is estimated by the source and the kth estimate is denoted by
q̂n(k). The window algorithm operates in time scale of RTTs
while the estimator is such that it operates on a time scale
of packets; for the case of high bandwidth and latency, the
estimator operates at a much faster time scale than the window
algorithm. This work will therefore ignore estimator dynamics
and use q̂n(k) = qn(k) in (5).

To obtain a continuous time approximation of the window
control, first rewrite (5) as

wn(k + 1)− wn(k)
τn(k)

=
γn

τn(k)
· dn

dn + qn(k)
wn(k)

− γn

τn(k)
wn(k) +

γnαn

τn(k)
. (6)

Using a first order Euler approximation of the derivative and
applying the identity τn(t) = dn +qn(t) yields the continuous
time window update

ẇn(t) = −γn
qn(t)

(dn + qn(t))2
wn(t) + γn

αn

dn + qn(t)
. (7)

Linearizing (7) around (w, q), and noting that in equilibrium
αn/q = wn/(dn + q) [= (c− xc)αn/

∑
m αm], gives

˙̃wn(t) = −γn
q

τn
2
w̃n(t)− γn

αndn

qτn
2

q̃n(t) (8)

where w̃n and q̃n represent perturbed variables. Adopting
the standard convention that whenever a round trip time, or
forward and backward delay, appears in a variable argument,
it is replaced by its equilibrium value [18], [25], yields

q̃n(t) = p̃(t− τ b
n) (9)

around equilibrium.

B. Loop Gain

Combining the Laplace transform version of the linear
window dynamics (8) and the communicated price (queuing
delay) (9) with the frequency domain version of the linear
queue dynamics (4), results in a negative feedback system with
open loop transfer function

L(s) =
N∑

n=1

µnLn(s) (10)

where
µn =

αn

cq
=

αn

c
∑

m αm
(11)

and

Ln(s) =
s + 1

τn

s + 1
τ̂

dnγne−τns

τ2
ns + γnq

(12)

where
1
τ̂

=
N∑

n=1

µn
1
τn

. (13)

When xc = 0, we can interpret τ̂ as a weighted harmonic
mean value of τn. In particular, when all flows have equal αn,
giving µn = 1/N , τ̂ is the harmonic mean of τn.

C. Stability analysis

For notational simplicity, we will consider the case γn = γ
in the rest of this paper. Intuitively, for given parameters, the
stability degrades as q → 0, as each Ln(s) will have larger
gain and lose more phase. We now focus on the case of q → 0,
i.e., the open loop transfer function tends to

L(s) =
N∑
n

µn

s + 1
τn

s + 1
τ̂

γe−sτn

sτn
. (14)
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Fig. 4. An example of a line of slope 1/(ωτ̂) which bounds L(jω), denoted
by the center cross. Note that the individual terms Ln(jω), denoted by the
individual crosses, are not all below this line.

Define H(ω) as the half plane under the line that passes
−1 + j0 with slope 1/(ωτ̂). Formally, we have

H(ω) =
{

x | arg(x + 1)− arctan
(

1
ωτ̂

)
∈ (−π, 0)

}
. (15)

Lemma 1. If
N∑

n=1

µn

τn

(
cos(ωτn)− sin(ωτn)

ωτn

)
+

1
τ̂ γ

> 0 (16)

then in the limit αn → 0, with αn/αm fixed for all m,n,

L(jω) ∈ H(ω). (17)

Proof. The limit αn → 0 gives q → 0 since q =
∑

m αm, and
by definition L(jω) ∈ H(ω) becomes equivalent to

arg(L(jω) + 1)− arctan
(

1
ωτ̂

)
∈ (−π, 0). (18)

Substituting (14) and noting that

arg
(

jω +
1
τ̂

)
+ arctan

(
1

ωτ̂

)
=

π

2
, (19)

condition (18) can be further rewritten as

arg

(
N∑

n=1

µn

(
jω +

1
τn

)
γe−jωτn

jωτn
+ jω +

1
τ̂

)
∈
(
−π

2
,
π

2

)
(20)

which is equivalent to

Re

(
N∑

n=1

µn

(
jω +

1
τn

)
γe−jωτn

jωτn
+ jω +

1
τ̂

)
> 0

⇐⇒
N∑

n=1

µn

τn

(
γ cos(ωτn)− γ sin(ωτn)

ωτn

)
+

1
τ̂

> 0.

Dividing by γ > 0 gives the hypothesis of the lemma.

The construction used for Lemma 1 is depicted in Figure 4,
for τ1 = 1, τ2 = 5, µ1 = µ2 = 1/2, at ωτ̂ = 3.

An analogous lemma for the general case of αn ≥ 0 is
given in Appendix A.

Remark: The techniques used here are significantly different
from ones in the existing literature on linear stability of TCP,
in two aspects. First, the usual approach is to find a convex
hull that contains all individual Ln(jω) curves and then
argue any convex combination of them is still contained by
the convex hull. See, e.g., [23], [18], [6]. However, the proof
of Lemma 1 deals directly with L(jω) instead of Ln(jω).
Second, for each ω, a separate region is found to bound
L(jω) away from the interval (−∞,−1]. That is, the half
plane H(ω) defined by (15) depends on ω. In existing works,
convex regions are typically used to bound the whole curves
and hence are independent of ω. One exception is [20], where
the frequency range is divided into two parts and different
convex regions are used in the two parts. These two features
lead to tighter bounds, which is necessary for the analysis of
this problem.

We are now ready to prove the following main theorem.

Theorem 2. If γ ≤ 0.94, the model (10) for FAST TCP
operating over a single link is locally stable.

Proof. Define F (θ) = cos(θ) − sin(θ)/θ and denote its
minimal value by Fmin. Then

N∑
n=1

µn

τn

(
cos(ωτn)− sin(ωτn)

ωτn

)
≥ Fmin

N∑
n=1

µn

τn
=

Fmin

τ̂
.

(21)
By (16), if γ < −1/Fmin, then the condition of Lemma 1 is
satisfied and the Nyquist curve cannot encircle −1, since

(−∞,−1] ∩
⋃
ω>0

H(ω) = ∅.

It is straight forward to find Fmin is −1.0631 which is
attained when θ = 2.7437, the smallest positive solution to
tan(θ) = θ/(1−θ2). (F (θ) is plotted in Figure 5). Therefore,
the assumption on γ guarantees

γ < 0.94 <
1

1.0631
= − 1

Fmin
. (22)

Remark: Note that an effective value of γ = 0.5 is used
for the FAST implementation [27]. For this case, Theorem 2
immediately establishes FAST TCP’s stability for any pattern
of round trip delays. This fully explains the fact that FAST
TCP has been stable for all experimental cases studied.

Theorem 2 is proved by finding a uniform bound for all
flows’ τn. If we have more detailed knowledge about the round
trip delay distribution, we may achieve even better bounds. Let
us now consider some special cases.

1) N = 1: If there is a single flow, µ1 = 1 in (14) and
the joint link model degenerate to the static link model. In
this case, FAST is stable for all γ < π/2. In this case, (22)
is loose simply because the frequency, ω = 2.7437/τ , which
minimizes F (ωτ) does not coincide with a frequency at which
the Nyquist plot of L(s) crosses the real axis.
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k 1 1.5 2 5 10 20
Stability bound 0.940 1.052 1.294 1.164 0.947 0.945

TABLE I
MAXIMUM γ FOR STABILITY FOR CASES WITH TWO FAST FLOWS WITH

DIFFERENT RTT; HETEROGENEITY, k; AND q = 0

2) N = 2: Consider two FAST flows with µ1 = µ2

(corresponding to the current practice that all FAST flows
share the same α). Write τ1 = kτ2, where k measures the
heterogeneity. Define

F (θ, k) = cos(θ)− sin(θ)
θ

+
1
k

(
cos(kθ)− sin(kθ)

kθ

)
and let its minimal value over θ be Fmin(k). It then follows
that a sufficient condition for stability is

γ <
k + 1

k

1
−Fmin(k)

. (23)

Table I lists the stability bounds for a few values of k. It is
straightforward to show that the bound first increases and then
decreases in k and asymptotically when k →∞, the bound is
again 0.94, the same as the case of k = 1.

3) N = ∞: In reality, the link is likely to be shared by
many flows. It is then interesting to find the statistical mean
value of the stability bound for those scenarios. We will now
consider the case of many flows with continuously distributed
RTTs, letting αn → 0 with αm/αn fixed.

Let M(τ) =
∑

τn≤τ αn/cq, and let all τn be in the range
Ω = (τ , τ̄), with τ̄ possibly infinite. If there are many flows
with RTTs drawn from a continuous distribution, then applying
µ(τ) = M ′(τ) to (16) gives∫

Ω

µ(τ)
τ

(
cos(ωτ)− sin(ωτ)

ωτ

)
dτ +

1
γ

∫
Ω

µ(τ)
τ

dτ > 0.

(24)
Noting that

d

dθ

sin(θ)
θ

=
cos(θ)

θ
− sin(θ)

θ2
,
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Fig. 6. Maximum value for γ for stability with RTTs in (1, k).

and setting θ = ωτ , (24) becomes

1
γ

> −

∫
ωΩ

µ

(
θ

ω

)(
sin(θ)

θ

)′
dθ∫

ωΩ

µ(θ/ω)
θ

dθ

(25)

= −

[
µ

(
θ

ω

)
sin(θ)

θ

]ωτ̄

ωτ

+
∫ ωτ̄

ωτ

µ′(θ/ω)
ω

sin(θ)
θ

dθ∫ ωτ̄

ωτ

µ(θ/ω)
θ

dθ

(26)

where ωΩ = (ωτ, ωτ̄) and (·)′ denotes derivative. This must
hold for all ω > 0.

As an example, assume RTTs follow a uniform distribution.
As units of time are arbitrary, this can be modeled without loss
of generality as

µ(τ) =
{

1/(k − 1) τ ∈ (1, k)
0 otherwise, (27)

with k > 1. In that case, (26) becomes

1
γ

> max
ω>0

(
−
[
sin(θ)

θ

]ωk

ω

/∫ ωk

ω

dθ

θ

)
(28)

= max
ω>0

(
sin(ω)k − sin(ωk)

ωk log(k)

)
. (29)

As shown in Appendix B, the right hand side approaches
−Fmin as k → 1, in accordance with (22), while for k > 1 the
bound is strictly looser as shown in Figure 6, and asymptotes
to 1/ log(k) for large k. Already for k = 1.69, the upper
bound exceeds 1, while for k = 10.79 it becomes 2. If γ > 2
then the discrete rule (5) becomes intrinsically unstable since
each update overshoots by more than the current error, and so
it is not helpful to increase γ beyond 2 in the continuous time
model.

Note that in this case, µ(τ) reflects both the distribution of
RTTs and also differences in α values of different flows. If
all FAST flows use the same α which is true for the current
implementation, then µ(τ) is the distribution of RTTs.
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Fig. 7. Nyquist plot of the system of Section III-D. Triangles show the
unstable frequency, ω = 1.
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Fig. 8. Close-up of the Nyquist plot of the system of Section III-D.

D. A counter-example

Because the above argument proves stability for γ so close
to 1, it is tempting to seek to show stability for all γ ≤ 1.
However, the following example breaks that hope. It also
illustrates how heterogeneity can potentially hurt stability.

Example 4: A counter example
Consider a network with a single bottleneck link carrying two
flows. The flows have RTTs τ1 = 0.1 ms and τ2 = 2750 ms,
with α1 = 1 and α2 = 108 with c = 1018 packets per second.
This gives q = 10−10, µ1 = 10−8, µ2 = 1 − µ1 and τ̂ =
2749 ms.3

With γ = 1, in contrast to the implemented γ = 0.5, this
extreme system is unstable. Instability arises because of the
high heterogeneity between the RTTs of the flows, and the
greater heterogeneity between the weights given to the flows.

The Nyquist curve for this network with γ = 1 is shown
with the solid line in Figure 7. The dashed lines show the
individual curves µ1L1(jω) and µ2L2(jω), and the triangles
show these curves for the frequency ω = 1 at which L(jω)
first crosses the real axis. The magnified view of this curve
near the point −1+j0 in Figure 8 shows that the Nyquist curve
does indeed encircle −1 and the resulting system is unstable.

In this example, most of the weight is given to flow 2,
and the instability occurs when ωτ2 ≈ 2.75, minimizing the
curve in Figure 5 with F (ωτ2) ≈ −1.06. Although τ1 is very

3The parameters in this subsection are quite extreme. The example here is
primarily of theoretical interest as it gives an upper bound on the γ which can
yield guaranteed stability. We report unstable cases with realistic parameters
in Section III-E.

small, µ1 is even smaller, making the coefficient µ1/τ1 in (16)
negligible, and allowing (16) to be violated by the τ2 term.
However, the extra factor of 1/τ1 provided by the numerator
of the first factor in (12) allows the imaginary part of µ1L1(j)
to balance that of µ2L2(j) where the curve crosses the axis.

This example shows that two flows are sufficient to cause
instability, even though a network with a single flow (or
multiple homogeneous flows) is always stable. It is also
possible to construct a network of three flows with slightly
less extreme parameters (µ1 = 1.2 × 10−5, µ2 = 0.982,
µ3 = 0.0179, τ1 = 300 ms, τ2 = 150.1 ms and τ3 = 0.2 ms).
The final Nyquist plot looks very similar to that of Figure 7.

E. (De)stabilized FAST TCP: closed loop experiment

In this subsection, we will use cases with γ > 1 to compare
stability predictions of all three models. The objectives here
are twofold. First to investigate the critical step size for FAST
to maintain stability. This can potentially suggest a larger
step size for quicker response. Second, by comparing three
models’ predictions, this closed loop experiment will further
strengthen the validation results in Section II-B.1 where open
loop experiments are reported.

Example 5: Closed loop validation
Two FAST TCP flows share a single link with capacity of
10 000 pkt/s. The propagation delays of the two flows are
400 ms and 700 ms, respectively. Both flows use α = 50.
The open loop transfer functions for all three models and
the critical step size (γc) for stability predicted by those
models are summarized below. The integrator model predicts
a critical step size much smaller than the one from the static
model, while the joint model yields a prediction in between
as expected.
• Integrator model: γc = 1.23

L(s) =
N∑

n=1

µn
1/τn

s + 1/τ̂

dnγne−τns

τ2
ns + γnq

(30)

• Static model: γc = 1.80

L(s) =
N∑

n=1

µn
dnγne−τns

τ2
ns + γnq

(31)

• Joint model: γc = 1.69

L(s) =
N∑

n=1

µn
s + 1/τn

s + 1/τ̂

dnγne−τns

τ2
ns + γnq

(32)

We now report NS-2 packet level simulations [7].4 Figure 9
shows the queue trajectories with γ = 1.23 and 1.80, the
critical step size predicted by the integrator link model and
the static link model. It is clear that the queue is not stable
with γ = 1.80, which means the static model is too optimistic
for stability analysis. We further show queue trajectories with
γ = 1.65 and 1.75 in Figure 10. The case with γ = 1.65

4To validate the link model, the code was modified to update the window
once per RTT, and for modeling simplicity the RTT estimate was evaluated
over 0.1 RTT. All queue trajectories are plotted after initial transients, to
emphasize the local stability of the congestion avoidance phase.



8

is still stable which suggests that the integrator model is too
conservative. Note the queue starts to oscillate with γ = 1.75,
suggesting that the critical step size (γc = 1.69) predicted by
the new joint model is surprisingly accurate.
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(b) γ = 1.80

Fig. 9. Queue trajectories with critical step sizes predicted by the integrator
link model and the static link model.
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(a) γ = 1.65
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Fig. 10. Queue trajectories around critical step sizes.

IV. CONCLUSION

We have presented a link model which captures the queue
dynamics when congestion windows of TCP sources change.
The model is shown to be much more accurate than existing
ones. It agrees with the known static link model when flows’
round trip delays are similar, and approximates the standard
integrator link model when the heterogeneity of round trip
delays is significant. Using this new model, we have shown
that FAST TCP is always stable for networks with a single
bottleneck link. This extends the existing stability result on
homogeneous FAST flows to cases with heterogeneous de-
lays and resolves the notable discrepancy between empirical
observations and existing theoretical predictions. The analysis
highlights the critical role of self-clocking in TCP stability and
the scalability of FAST TCP with respect to delay. Throughout
this paper, various open loop and closed loop simulations are
used to validate our predictions. In particular, we are able to
predict stability region of the closed loop system accurately
compared to packet level simulations.

There are several possible directions in which to extend this
work. For example, we have assumed the number of flows is
fixed and it is certainly very interesting to see the effect of
this more accurate link model on networks with dynamically
arriving and departing flows [5]. The model itself is of use
for any window based TCP algorithm, and it would be useful
to investigate its impact on other protocols. So far, we have

only looked at its implications for stability. It will be of
great interest to see its prediction of performance, such as
queue distribution. Finally, the model and analysis remain to
be extended to general networks which can potentially have
multiple congested links.
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network congestion control – an inner feedback loop with implications
on inelastic flow impact. In Proceedings of the 45th IEEE Conference
on Decision and Control, San Diego, USA, December 2006.

[13] R. Johari and D. Tan. End-to-end congestion control for the Internet:
delays and stability. IEEE/ACM Transactions on Networking, 9(6):818-
832, December 2001.

[14] K. Kim, A. Tang and S. H. Low. Design of AQM in supporting
TCP based on the well-known AIMD model. In Proceedings of IEEE
Globecom, 2003.

[15] K. Kim, A. Tang and S. H. Low. A stabilizing AQM based on virtual
queue dynamics in supporting TCP with arbitrary delays. In Proceedings
of IEEE CDC, 2003.

[16] S. Liu, T. Basar and R. Srikant. Pitfalls in the fluid modeling of RTT
variations in window-based congestion control. In Proceedings of IEEE
Infocom, 2005.

[17] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control.
IEEE Control Systems Magazine, 22(1):28–43, Feb. 2002.

[18] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle. Linear stability
of TCP/RED and a scalable control. Computer Networks Journal,
43(5):633–647, 2003.

[19] L. Massoulie. Stability of distributed congestion control with heteroge-
neous feedback delays. IEEE Transactions on Automatic Control, 47(6):
895-902, June 2002

[20] F. Paganini, Z. Wang, J. C. Doyle and S. H. Low. Congestion control for
high performance, stability and fairness in general networks. IEEE/ACM
Transactions on Networking, 13(1):43-56, February 2005.

[21] R. Shorten, F. Wirth and D. Leith. Modelling TCP in droptail and other
environments. Automatica, To appear, 2007.

[22] R. Srikant. The Mathematics of Internet Congestion Control. Birkhauser,
2004.



9

0 5 10 15

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

θF~ (θ
) =

 m
in

(0
,c

os
 θ

) +
 m

in
(0

,−
sin

(θ
)/θ

)  

F~
min = Fmin

min(0,−sin(θ)/θ) min(0,cos θ)

Fig. 11. Plot of F̃ (θ) along with min(0, cos(θ)) and min(0,− sin(θ)/θ).

[23] G. Vinnicombe. On the stability of networks operating TCP-like
protocols. In Proceedings of IFAC, 2002.

[24] J. Wang, A. Tang, and S. H. Low. Local stability of FAST TCP. In
Proceedings of IEEE Conference on Decision and Control, Dec. 2004.

[25] J. Wang, D. X. Wei, and S. H. Low. Modeling and stability of FAST
TCP. In IMA Volumes in Mathematics and its Applications, Volume 143:
Wireless Communications. P. Agrawal, M. Andrews, P. J. Fleming,
G. Yin, and L. Zhang (eds.), Springer Science, 2006.

[26] Z. Wang and F. Paganini. Global stability with time-delay in network
congestion control. In Proceedings of IEEE Conference on Decision
and Control, December 2002.

[27] D. Wei, C. Jin, S. H. Low, and S. Hegde. FAST TCP: motivation,
architecture, algorithms, performance. IEEE/ACM Transactions on
Networking, To appear in 2007.

[28] L. Ying, G. Dullerud and R. Srikant. Global stability of Internet
congestion controllers with heterogeneous delays. In Proceedings of
American Control Conference, 2004.

[29] Y. Liu, F. L. Presti, V. Misra, D. Towsley, and Y. Gu. Fluid models and
solutions for large-scale IP networks. In Proceedings of the 2003 ACM
SIGMETRICS, 2003.

APPENDIX A
BOUNDS ON GAIN FOR NON-NEGLIGIBLE QUEUES

For the general case of αn ≥ 0, we will prove a weaker form
of Lemma 1 which is still sufficient to prove Theorem 2.

Lemma 3. Let

F̃ (θ) = min(0, cos(θ)) + min
(

0,− sin(θ)
θ

)
. (33)

If γ ≤ (π/2)2 and

N∑
n=1

µn

τn
F̃ (ωτn) +

1
γτ̂

> 0 (34)

then L(jω) ∈ H(ω). Moreover, F̃min := min
θ≥0

(F̃ (θ)) = Fmin.

The function F̃ (θ) is shown in Figure 11, along with its
two constituent terms.
Proof. By (12), a sufficient condition for L(jω) ∈ H(ω) is

arg

(
1 +

N∑
n=1

γµn
jω + 1/τn

jω + 1/τ̂n

τn − q

jωτ2
n + γq

e−jωτn

)
− arg(j + ωτ̂) ∈ (−π, 0). (35)

Using (19), this is equivalent to

arg

(
jω + 1

τ̂

γ
+

N∑
n=1

µn

τn

(jω + 1
τn

)(τn − q)
jωτn + γq/τn

e−jωτn

)
∈
(
−π

2
,
π

2

)
. (36)

Thus it is sufficient that the real part of the left hand side be
strictly greater than 0 for all ω:

1
γτ̂

+
N∑

n=1

µn

τn

τn − q

(ωτn)2 + (γq/τn)2

Re
((

jω +
1
τn

)(
γq

τn
− jωτn

)
e−jωτn

)
> 0 (37)

or equivalently

N∑
n=1

µn

τn

(
1− bn

γ

)(
a2

n + bn

a2
n + b2

n

cos(an)

− a2
n − a2

nbn

a2
n + b2

n

sin(an)
an

)
+

1
γτ̂

> 0 (38)

where an = ωτn and bn = γq/τn.
Because q/τn ≤ 1, it is sufficient that

N∑
n=1

µn

τn

(
An min(0, cos(an)) + Bn min

(
0,− sin(an)

an

))
+

1
γτ̂

> 0 (39)

where An = (1 − bn/γ)(a2
n + bn)/(a2

n + b2
n) and

Bn = (1− bn/γ)(a2
n − a2

nbn)/(a2
n + b2

n).
Note that Bn ∈ [0, 1]. Also, An ≥ 0 and

An ≤
a2

n + bn(1− (a2
n + bn)/γ)

a2
n + b2

n

,

giving An ≤ 1 if 1− (a2
n + bn)/γ ≤ bn, which is true if an >

π/2, since γ ≤ (π/2)2. Thus An ∈ [0, 1] when cos(an) ≤ 0.
Since each term in (39) is non-positive, it is bounded below by
(µn/τn)F̃ (ωτn) and the first part of the lemma is established.

It remains to show F̃min = Fmin. Now F̃min ≤ Fmin < −1.
For F̃min < −1, the minimum must occur when both cos(an)
and sin(an)/an are negative as both are bounded in magnitude
by 1. When that occurs, F (an) = F̃ (an), giving F̃min ≥ Fmin,
and hence the result.

APPENDIX B
DEGENERATE CONTINUOUS RTT DISTRIBUTION

To see that the right hand side of (29) approaches −Fmin

as β → 1 from above, let a = k − 1 and note that

sin(ω)k − sin(ωk)
ωk log(k)

=
sin(ω) + a sin(ω)− sin(ω + ωa)

ω(1 + a) log(1 + a)

=
ωa[− sin′(ω) + O(a)] + a sin(ω)

ωa + O(a2)

→ − cos(ω) +
sin(ω)

ω
= −F (ω).


