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Abstract— We investigate the network coding capacity for
line networks. For independent sources and a special class of
dependent sources, we fully characterize the capacity region of
line networks for all possible demand structures (e.g., multiple
unicast, mixtures of unicasts and multicasts, etc.) Our achiev-
ability bound is derived by first decomposing a line network
into single-demand components and then adding the component
rate regions to get rates for the parent network. For general
dependent sources, we give an achievability result and provide
examples where the result is and is not tight.

I. INTRODUCTION

To date, the field of network coding has focused primarily
on finding solutions for families of problems defined by
a broad class of networks (e.g., networks representable by
directed, acyclic graphs) and a narrow class of demands (e.g.,
multicast or multiple unicast demands). We here investigate a
family of network coding problems defined by a completely
general demand structure and a narrow family of networks.
Precisely, we give the complete solution to the problem
of network coding with independent sources and arbitrary
demands on a directed line network. We then generalize that
solution to accommodate special cases of dependent sources.
Theorem 1 summarizes those results.

Theorem 1: Given an n-node line network N (shown in
Fig. 1) with memoryless sources X1, . . . , Xn and feasible
demands Y1, . . . , Yn satisfying H(Yi|X1, . . . , Xi) = 0 for all
i ∈ {1, . . . , n}, the rate vector (R1, . . . , Rn−1) is achievable
if and only if, for 1 ≤ i < n,

Ri ≥
n∑

j=i+1

H(Yj |Xi+1, . . . , Xj , Yi+1, . . . , Yj−1), (1)

provided one of the following conditions holds:
A. Sources X1, . . . , Xn are independent and each Yi is a

subset of the sources X1, . . . , Xi.
B. Sources X1, . . . , Xn have arbitrary dependencies and

each Yi is either a constant or the vector (X1, . . . , Xn).
C. Each source Xi is a (potentially) distinct subset of inde-

pendent sources W1, . . . ,Wk and each demand Yi is any
subset of those W1, . . . ,Wk that appear in X1, . . . , Xi.

Lemmas 3, 4, and 5 of Sections III-B, III-C, and III-D give
formal statements and proofs of this result under conditions A,
B, and C, respectively. Case B is the multicast result of [1]
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Fig. 1. An n-node line network with sources X1, . . . , Xn and demands
Y1, . . . , Yn

generalized to many sources and specialized to line networks.
We include a new proof of this result for this special case as
it provides an important example in developing our approach.

Central to our discussion is a formal network decomposition
described in Section II. The decomposition breaks an arbitrary
line network into a family of component line networks. Each
component network preserves the original node demands at
exactly one node and assumes that all demands at prior
nodes in the line network have already been met. (See Fig. 2
for an illustration. Formal definitions follow in Section II.)
Sequentially applying the component network solutions in the
parent network to meet first the first node’s demands, then the
second node’s demands assuming that the first node’s demands
are met, and so on, achieves a rate equal to the sum of the rates
on the component networks. The given solution always yields
an achievability result. The proofs of Lemmas 3, 4, and 5
additionally demonstrate that the given achievability result is
tight under each of conditions A, B, and C.

Theorem 2 shows that the achievability result given by
our additive solution is tight for an extremely broad class of
sources and demands in 3-node line networks. In particular,
this result allows arbitrary dependencies between the sources
and also allows demands that can be (restricted) functions of
those sources (rather than simply the sources themselves).

The form of our solution lends insight into the types of
coding sufficient to achieve optimal performance in the given
families of problems. Primary among these are entropy codes,
including Slepian-Wolf codes for examples with dependent
sources. These codes can be implemented, for example, using
linear encoders and typical set or minimum entropy de-
coders [2]. The other feature illustrated by our decomposition
is the need to retrieve information from the nearest preceding
node where it is available (which may be a sink), thereby



avoiding sending multiple copies of the same information over
any link (as can happen in pure routing solutions).

Unfortunately, the given decomposition fails to capture all
of the information known to prior nodes in some cases, and
thus the achievability result given by the additive construction
is not tight in general. Theorem 3 gives a 3-node network
where the bound is provably loose. The failure of additivity in
this functional source coding example arises since the compo-
nent network decomposition fails to capture information that
intermediate nodes can learn beyond their explicit demands.
The same problem can also be replicated in a 4-node network,
where all demands also appear as sources in the network.
Theorem 4 shows that the gap between the additive solution
and the optimal solution can be large.

II. PRELIMINARIES

The following notation is useful in the discussion that fol-
lows. For random variables A1, . . . , An, set S ⊆ {1, . . . , n},
and indices j, k ∈ {1, . . . , n}, AS = (Ai : i ∈ S) and
Ak

j = (Aj , . . . , Ak) denote vectors of A variables and Ak
j (1 :

m) = (Ak
j (1), . . . , Ak

j (m)) denotes consecutive samples of
Ak

j .
An n-node line network (N, Xn

1 , Y n
1 ) is a directed graph

N = (V,E) with V = {1, . . . , n} and E = {(1, 2), . . . , (n −
1, n)}, as shown in Fig. 1. Node i observes source Xi ∈ Xi

and requires demand Yi ∈ Yi. The random process (Xn
1 (1 :

∞), Y n
1 (1 : ∞)) is drawn i.i.d. according to probability

mass function p(xn, yn). A rate allocation for the n-node line
network N is a vector (Ri : 1 ≤ i < n), where Ri is the rate
on link (i, i + 1). We assume that there are no errors on any
of the links. Line networks have been studied earlier in the
context of reliable communication (e.g., [3]).

A simple line network is a line network with exactly one
demand (Yi = c at all but one node in the network). We next
define the component networks N1, . . . ,Nn for an n-node line
network (N, Xn

1 , Y n
1 ). (See Fig. 2.) For each 1 ≤ i ≤ n,

component Ni is an i-node simple line network. For each 1 ≤
j < i, the source and demand at node j of network Ni are
X

(i)
j = (Xj , Yj) and Y

(i)
j = c, respectively; the source and

demand at node i are X
(i)
i = Xi and Y

(i)
i = Yi.
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Fig. 2. Component networks

III. RESULTS

A. Cutset bounds and Line Networks

Lemmas 1 and 2 relate the cutset bounds to the achievable
rate region.

Lemma 1: In an n-node line network (N, Xn
1 , Y n

1 ), the
cutset bounds are satisfied if and only if

Ri ≥ max
j≥i+1

H(Y j
i+1|X

j
i+1) ∀1 ≤ i < n. (2)

Proof: The reverse part is immediate since (2) is a subset
of the cutset bounds. For the forward part, let (R∗

i : 1 ≤ i < n)
satisfy (2), and let T be a cut. Each cut is a union of intervals
(T = ∪l

k=1T (k) with T (k) = {m(k), . . . ,m(k)+ l(k)−1} ⊆
{1, . . . , n} and m(k − 1) + l(k − 1) < m(k)). Then,

l∑
k=1

R∗
m(k)−1 ≥

l∑
k=1

max
j≥0

H(Y m(k)+j
m(k) |Xm(k)+j

m(k) )

≥
l∑

k=1

H(YT (k)|XT (k))

≥ H(YT |XT ). (3)

Since T is arbitrary, (3) gives the cutset bounds.
Lemma 2: Let (N, X3

1 , Y 3
1 ) be a 3-node line network for

which the cutset bounds are tight on each of the component
networks. Then the achievable rate region is the set R =
{(R1, R2) : Ri > Rm

i }, where

Rm
1 = H(Y2|X2) + H(Y3|X3

2 , Y2),
Rm

2 = H(Y3|X3).
Proof: Converse: Let C1 and C2 be rate R1 and R2 m-

dimensional codes for links (1, 2) and (2, 3) of N, and suppose
(1/m)H(Yi(1 : m)|Xi(1 : m), Ci−1) ≤ ε. Then,

mR2 ≥ H(C2) ≥ mH(Y3|X3),
mR1 ≥ H(C1) ≥ H(Y2(1 : m), C2|X2(1 : m))

= mH(Y2|X2) + H(C2|X2(1 : m), Y2(1 : m)).

Now,

H(C2|X2(1 : m), Y2(1 : m))
≥ I(C2;Y3(1 : m)|(X3

2 , Y2)(1 : m))
≥ mH(Y3|X3

2 , Y2)−H(Y3(1 : m)|C2, X3(1 : m))
≥ mH(Y3|X3

2 , Y2)−mε.

So R1 ≥ H(Y2|X2)+H(Y3|X3
2 , Y2)−ε and R2 ≥ H(Y3|X3),

implying that by picking arbitrarily small ε, (R1, R2) ∈ R.
Achievability: Since the cutset bound is tight on the com-

ponents N2 and N3, for sufficiently large m there exist m-
dimensional codes C2

1 , C3
1 , and C3

2 of rates R2
1, R

3
1, and R3

2

for link (1, 2) in N2, (1, 2) in N3, and (2, 3) in N3 for which

R2
1 ≤ H(Y2|X2) +

ε

3
, (4)

R3
1 ≤ H(Y3|X3

2 , Y2) +
ε

3
, (5)

R3
2 ≤ H(Y3|X3) +

ε

3
, (6)



and 1
mH(Yi(1 : m)|Xi(1 : m), Ci

i−1) ≤ ε
3 for i = 2, 3. Let

C1 = C2
1C3

1 and C2 = C3
2 . Then, (C1, C2) is a code for N

with rate R1 = R2
1 + R3

1 < Rm
1 + ε and R2 = R3

2 < Rm
2 + ε,

and 1
mH(Yi(1 : m)|Xi(1 : m), Ci−1) < ε for i = 1, 2.

B. Independent sources, arbitrary demands

Lemma 3: Consider an n-node line network (N, Xn
1 , Y n

1 )
with Xn

1 independent and Yi = XD(i), D(i) ⊆ {1, . . . , i} for
each 1 ≤ i ≤ n. Then, the rate region is fully characterized
by the cutset bounds. In particular, for 1 ≤ i ≤ n− 1,

Ri ≥ H(X∪j≥i+1D(j)\{i+1,...,n})

is achievable.
Proof: Let Q(i, k) = ∪i≤j≤kD(j). By Lemma 1, the

cut-set bound gives

Ri−1 ≥ max
k≥i

H(XQ(i,k)|Xk
i )

= max
k≥i

H(XQ(i,k)\{i,...,k})

= max
k≥i

∑
j∈Q(i,k)\{i,...,k}

H(Xj). (7)

Since D(i) ⊆ {1, . . . , i}, Q(i, k) ⊆ {1, . . . , k} and Q(i, k) \
{i, . . . , k} ⊆ Q(i, k + 1) \ {i, . . . , k + 1}. Thus (7) becomes

Ri−1 ≥
∑

j∈Q(i,n)\{i,...,n}

H(Xj).

We wish to achieve this bound by coding for the component
networks separately. Let Ri ≥ H(XQ(i+1,n)\{i+1,...,n}) + ε
for 1 ≤ i < n. Since the demand in network Nj is XD(j) and
for every1 ≤ l ≤ j, node l of Nj has sources XD(l)∪{l}, by
calculating the demand across the various links starting from
the very last link, rates

Rj
l =

∑
k∈D(j)\[{l+1,...,j}∪Q(l+1,j−1)]

H(Xk)

are achievable on network Nj . Adding the rates from compo-
nent networks implies

Ri =
n∑

j=i+1

Rj
i

=
n∑

j=i+1

∑
k∈D(j)\[{i+1,...,j}∪Q(i+1,j−1)]

H(Xk)

=
n∑

j=i+1

∑
k∈D(j)\[{i+1,...,n}∪Q(i+1,j−1)]

H(Xk)

≤
∑

k∈Q(i+1,n)\{i+1,...,n}

H(Xk)

= H(XQ(i+1,n)\{i+1,...,n})

is achievable.

C. Dependent sources, multicast

Lemma 4: Let (N, Xn
1 , Y n

1 ) be an n-node line network with
Xn

1 arbitrarily dependent and Y n
1 feasible multicast demands

(Yi = c or Yi = Xn
1 for each i). Then Theorem 1 holds.

Proof: Let M = {1 ≤ i ≤ n : Yi = Xn
1 } be the multicast

receivers. We denote the vertices of M by {m1, . . . ,mk},
where mi < mj when i < j. For each 1 ≤ i < n, let
d(i) = min{m ∈ M : m > i}. Consider an achievable rate
allocation (Ri : 1 ≤ i < n) for N. For any 1 ≤ i < n, the
cutset bound on Ri is tightest possible if we choose the set of
vertices for the cutset to be the set {i + 1, . . . , d(i)}. This is
true because adding extra vertices to this set adds additional
sources to it without increasing the set of demands. Therefore,
for all 1 ≤ i < n,

Ri ≥ H(Xn
1 |X

d(i)
i+1 ) = H(Xd(i)

1 |Xd(i)
i+1 ) = H(Xi

1|X
d(i)
i+1 ),

(8)
where the first equality follows since H(Xn

1 |X
d(i)
1 ) = 0 as the

demand is feasible for the network. Next, we show that for the
component networks {Nj}1≤j≤n, there exist rate allocations
{(Rj

i : 1 ≤ i ≤ j − 1)}n
j=1 that come arbitrarily close to

satisfying the above bounds with equality. Observe that it
suffices to restrict our attention to the networks {Nj}j∈M .

On the component Nm1 , it suffices to encode Xj at rate
H(Xj |Xm1

j+1) + ε/n [4]. Summing over all sources that use
the link (i, i + 1) gives

Rm1
i =

i∑
j=1

[
H(Xj |Xm1

j+1) +
ε

n

]
= H(Xi

1|X
m1
i+1) + ε

= H(Xi
1|X

d(i)
i+1 ) + ε. (9)

Notice further that for any l > 1, Rml
i = 0 for all i < ml−1

since Xn
1 is available at node ml−1 in Nml

. Hence, the rate
required over the link (i, i + 1) is zero for all i < ml−1. For
ml−1 ≤ i < ml, [4] again gives

Rml
i = H(Xn

1 |X
ml
ml−1+1) +

i∑
j=ml−1+1

[
H(Xj |Xml

j+1) +
ε

n

]
≤ H(Xi

1|X
ml
i+1) + ε

= H(Xi
1|X

d(i)
i+1 ) + ε. (10)

Finally, adding the rates over component networks gives
n∑

j=i+1

Rj
i = R

d(i)
i ≤ H(Xi

1|X
d(i)
i+1 ) + ε ≤ Ri + ε.

This shows that the cutset bound in (8) is tight and is
achievable by the approach based on component networks.
Further, each Rj

i is of the form H(Yj |Xj
i+1, Y

j−1
i+1 ).

D. A class of dependent sources with dependent demands

In this section, we consider sources and demands that are
dependent in the following way. We assume the existence of
underlying independent sources W k

1 such that the sources are
Xi = WS(i) and the demands are Yi = WD(i) for 1 ≤ i ≤ n
for {S(i)}n

i=1 and {D(i)}n
i=1 subsets of {1, . . . , k}. In order

for the demands to be feasible, we require D(i) ⊆ ∪i
j=1S(j)

for each 1 ≤ i ≤ n. Lemma 5 characterizes the rate region for
line networks with the above kind of sources and demands.



We need the following notation in order to state the lemma.
For 1 ≤ j < n, define di(j) and si(j) as the first occurrence
after the vertex j of Wi in a demand and source respectively.

Lemma 5: Let (N, Xn
1 , Y n

1 ) be an n-node line network with
Xi = WS(i) and Yi = WD(i) as defined above. Then the
achievable rate region is

Rj ≥
k∑

i=1
i:si(j)>di(j)

H(Wi) ∀1 ≤ j < n.

Proof: We proceed by first decomposing the network N

into k different networks {Ni}k
i=1, each corresponding to a

different Wi out W k
1 .

For each 1 ≤ i ≤ k and A ⊆ {1, . . . , k}, let X̃i
A = Wi

if i ∈ A and X̃i
A = c otherwise. Let Ni be an n-node

line network with sources X̃i
S(1), . . . , X̃

i
S(n) and demands

X̃i
D(1), . . . , X̃

i
D(n). Note that each Ni is a line network in

which both the sources and demands are either Wi or constant.
By result of Sec. III-C, it follows that the cutset bound is tight
for such network and the rate allocation (Rj,i : 1 ≤ j < n}),
defined by

Rj,i =
{

H(Wi) if si(j) > di(j)
0 otherwise

is achievable. Thus, for the parent network N, the rate al-
location (Rj : j ∈ {1, . . . , n}) is achievable, where Rj =∑k

i=1 Rj,i. Further, as all the sources are independent, this
approach is optimal. Therefore, the rate region for the network
N is given by all (Rj : j ∈ {1, . . . , n}) such that

Rj ≥
k∑

i=1
i:si(j)>di(j)

H(Wi).

Next, we show that the same can be obtained by decomposing
N into simple networks N1, . . . ,Nn. To this end, we first
decompose the network Ni into simple networks Ni

1, . . . ,N
i
n,

noting that the minimum rate Rl
j,i required for the link (j, j +

1) in Ni
l is 0 if there is a demand or a source present in one

of the nodes j+1, . . . , l and H(Wi) otherwise. Hence, Rl
j,i =

H(X̃i
D(l)|X̃

i
S(j+1), . . . , X̃

i
S(l), X̃

i
D(j+1), . . . , X̃

i
D(l−1)). This is

an optimal decomposition, since

Rj,i =
n∑

l=j+1

Rl
j,i.

Adding the rates over components Ni,

Rl
j =

k∑
i=1

Rl
j,i

=
k∑

i=1

H(X̃i
D(l)|X̃

i
∪l

t=j+1S(t), X̃
i
∪l−1

t=j+1D(t)
)

= H(XD(l)|X∪l
t=j+1

, X∪l−1
t=j+1XD(t)

) (11)

is achievable for Nl. Finally, note that
n∑

l=j+1

Rl
j =

n∑
l=j+1

k∑
i=1

Rl
j,i =

k∑
i=1

Rj,i = Rj .

Thus the rates for N can also be obtained by summing link-
wise the rates for the component networks. By (11), the sum
is of the form claimed in Theorem 1-C.

E. 3-node line networks with dependent sources
We now restrict our attention to 3-node line networks of the

kind shown in Fig. 3. Sources X3
1 are arbitrarily dependent and

their alphabets are finite; demands Y 3
2 take the form Y2 =

f(X1) and Y3 = g(X3
1 ) for some f : X1 → Y1 and g :∏3

i=1 Xi → Y2. The following result shows the tightness of
our decomposition approach in this case.

Theorem 2: Given ε > 0, for every rate vector (R1, R2)
achievable for N, there exist achievable rate allocations R2

1

and (R3
1, R

3
2) for component networks N2 and N3 such that

R2
1 + R3

1 < R1 + ε and R3
2 = R2 + ε.

)2 = f(X1 )

X X1 X 2 3

Y3 =g(X1 ,X2 ,X3Y

Fig. 3. The three node line network

Proof: Let (R1, R2) be achievable for N. Then, for m
large enough, there exist codes (am, bm) for the first and sec-
ond link, respectively such that (1/m)H(am(X1(1 : m))) <
R1 + ε, (1/m)H(bm(am(X1(1 : m)), X2(1 : m))) < R2 + ε,
and Pr(Ŷ 3

2 (1 : m) 6= Y 3
2 (1 : m)) < ε.

Let Bm(k) = bm(am(X1(m(k− 1) + 1 : mk)), X2(m(k−
1) + 1 : mk)), Fm(k) = (f(X1(m(k − 1) +
1), . . . , f(X1(mk))), Xi,m(k) = Xi(m(k − 1) + 1 : mk).
Allowing a probability of error ε, the problem of coding for the
network N can be reformulated as a functional source coding
problem for the network N(i) with sources X1,i and X2,i and
the demand (Fi, Bi) as shown in Fig 4. Prior results on func-

2,i

i

iB

X X1,i

F

Fig. 4. An equivalent functional coding problem

tional coding ([5], [6], [7]) can now be applied. Specifically,
by evaluating the functional rate distortion function in [6], [7]
at zero distortion, the minimal rate at which X1,i can be coded
is given by

R∗ = infbX1,i

I(X1,i; X̂1,i|X2,i)

where, the infimum is over the set P consisting of all X̂1,i

for which X̂1,i → X1,i → X2,i forms a Markov chain and



H(Fi, Bi|X̂1,i, X2,i) = 0.
We show that the above rate can be split into two parts - the
rate required to to encode X1,i so as to reconstruct Fi with
X2,i as the side information, and the rate required to be able
to reconstruct Bi with X2,i and Fi as the side information. To
this end, let XF,B ∈ P. Then, the following hold:

I(XF,B ;X1,i|X2,i)
= I(XF,B , Fi;X1,i|X2,i)− I(Fi;X1,i|X2,i, XF,B)
= I(XF,B , Fi;X1,i|X2,i)
= H(XF,B , Fi|X2,i)−H(XF,B , Fi|X2,i, X1,i)
= H(XF,B , Fi|X2,i)−H(XF,B , |X2,i, X1,i, Fi)
= H(Fi|X2,i) + H(XF,B |Fi, X2,i)

−H(XF,B , |X2,i, X1,i, Fi)
= H(Fi|X2,i) + I(XF,B ;X1,i|Fi, X2,i). (12)

Since Fi is a function of X1,i, 1
i H(Fi|X2,i) is an achiev-

able rate for the network N1. Further, since XF,B ∈ P, it
follows that XF,B → X1,i → (Fi, X2,i) is a Markov chain.
Combining it with the fact that, H(Bi|XF,B , X1,i, Fi) =
0, we note that I(XF,B ;X1,i|Fi, X2,i) is a sufficient rate
for functional source coding with regards to the function
Bi given X2,i and Fi as the side information. Therefore,
( 1

i I(XF,B ;X1,i|Fi, X2,i), 1
i H(Bi)) is an achievable rate for

the network N3, hence proving the theorem.

F. Networks where additivity does not hold

Theorem 3: There exists a 3-node network (N, X3
1 , Y 3

1 ), for
which adding the best rate allocations from the component
networks does not yield an optimal code.

Proof: Consider the example shown in Fig. 5(a).

X1 2

X Y

f(X,Y) X

Rate=1
X

1
X1 2

X Y

f(X,Y)

Rate=1

(a) (b)

Fig. 5. (a) A set of achievable rates for N. (b) An optimal rate allocation
for component N1.

Let X be distributed uniformly on {0, 1} and Y be inde-
pendently distributed uniformly on {0, 1, 2, 3}. Let

f(x, y) ,

{
0 (x, y) ∈ {(0, 0), (0, 2), (1, 1), (1, 2)}
1 (x, y) ∈ {(0, 1), (0, 3), (1, 0), (1, 3)}

Fig. 5(a) shows an achievable rate allocation that can be
achieved by the transmitting X over both links. We next show
that best possible rate allocation achievable by optimizing
over the achievable rate regions of the component networks
is strictly greater than the above rate allocation. To this end,
consider N1 (see Fig. 5(b)). By [5], the best possible rate on
link (1,2) is 1.

To prove our claim, it suffices to show that the rate re-
quired over link (1, 2) N2 is non-zero. This follows because
H(X|Y, f(X, Y )) > 0, and the cutset bound requires at least
rate H(X|Y, f(X, Y )) > 0 across link (1, 2).

Theorem 4: For any n ≥ 3, there exists an n-node network
(N, Xn

1 , Y n
1 ), such that for any achievable (Rj

i : 1 ≤ i < j)
for Nj , there exists an achievable (Ri : 1 ≤ i < n) for N with

n∑
j=i+1

Rj
i > Ri + Ω(n).

Proof: Let X and Z be independent sources uniformly
distributed over {0, 1} and {0, . . . , n} respectively. Define f :
{0, 1} × {0, . . . , n} → {0, . . . , n} as

f(x, z) =
{

z if z ∈ {1, . . . , n− 1}
x if z = n.

Consider the n-node line network (N, Xn
1 , Y n

1 ), where X1 =
X , X2 = X3 = . . . Xn−1 = Z, Xn = Y1 = c, and Yi =
f(X, Z ⊕ (i− 1)(mod n)) for 2 ≤ i ≤ n.

By the functional source coding bound, the rate required
on each link of the i-th component is at least 1. This rate is
achieved by sending X on all the links. Thus,

∑n
j=i+1 Rj

i =
n− i. In contrast, rate 1 is sufficient for network N (sending
X over all the links). Therefore,

∑n
j=i+1 Rj

i −Ri ≥ n− i−1.
The left side is at most O(n) for a network with n components.
Hence,

∑n
j=i+1 Rj

i −Ri = Ω(n).
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