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[1] A new methodology for three‐dimensional (3‐D) simulations of earthquake
sequences is presented that accounts not only for inertial effects during seismic events
but also for shear‐induced temperature variations on the fault and the associated
evolution of pore fluid pressure. In particular, the methodology allows to capture thermal
pressurization (TP) due to frictional heating in a shear zone. One‐dimensional (1‐D)
diffusion of heat and pore fluids in the fault‐normal direction is incorporated using a
spectral method, which is unconditionally stable, accurate with affordable computational
resources, and highly suitable to earthquake sequence calculations that use variable time
steps. The approach is used to investigate the effect of heterogeneous hydraulic
properties by considering a fault model with two regions of different hydraulic
diffusivities and hence different potential for TP. We find that the region of more
efficient TP produces larger slip in model‐spanning events. The slip deficit in the other
region is filled with more frequent smaller events, creating spatiotemporal complexity of
large events on the fault. Interestingly, the area of maximum slip in model‐spanning
events is not associated with the maximum temperature increase because of stronger
dynamic weakening in that area. The region of more efficient TP has lower interseismic
shear stress, which discourages rupture nucleation there, contrary to what was concluded
in prior studies. Seismic events nucleate in the region of less efficient TP where
interseismic shear stress is higher. In our model, hypocenters of large events do not
occur in areas of large slip or large stress drop.
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1. Introduction

[2] Active faults experience a wide range of slip rates,
from orders of magnitude below the plate rate (∼10−9 m/s)
to coseismic slip rates (∼100–101 m/s). Previous modeling
work [e.g., Lapusta et al., 2000; Lapusta and Liu, 2009]
successfully reproduced key features of both seismic and
aseismic fault behavior: nucleation and dynamic propaga-
tion of a rupture, postseismic slip, and slow slip (or creep)
throughout the interseismic period. It considered the
behavior of a fault governed by a rate‐ and state‐dependent
friction law, embedded in a linearly elastic infinite body,
and loaded by a tectonically slow rate, while fully incor-
porating inertial effects during rapid slip. Such simulations
of the entire slip history of a fault showed that the char-

acteristics of dynamic rupture events significantly affect,
and sometimes control the overall fault behavior, including
the spatiotemporal pattern of seismic slip accumulation, the
resulting post‐ and interseismic slip, the level of stress at
which the fault operates, and the net frictional heat gener-
ation. Hence it is important, even for simulations of long‐
term fault slip, to make the descriptions of dynamic events
as realistic as possible.
[3] Experimental and theoretical studies of the mechanical

behavior of faults have revealed that the fault strength reduces
tremendously during rapid slip from what is commonly
observed at low slip rates, due to a number of physical pro-
cesses that depend on the rock type and the fault condi-
tions [e.g., Sibson, 1973; Lachenbruch, 1980; Mase and
Smith, 1987; Tsutsumi and Shimamoto, 1997; Andrews,
2002; Hirose and Shimamoto, 2005; Noda and Shimamoto,
2005; Mizoguchi et al., 2006; O’Hara et al., 2006; Rempel
and Rice, 2006; Rice, 2006; Sirono et al., 2006; Han et al.,
2007; Mizoguchi et al., 2007; Beeler et al., 2008; Brantut
et al., 2008; Noda, 2008; Fukuyama and Mizoguchi, 2010;
Sulem and Famin, 2009; Sone and Shimamoto, 2009]. Many
of the mechanisms are activated by frictional heating during
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rapid slip characteristic of seismic events, including thermal
pressurization of pore fluids (TP), flash heating of the
microscopic contacting asperities, and frictional melting
[e.g., Rice, 2006, and references therein]. The temperature
rise in the vicinity of a fault has been studied based on
geological observations, including the existence of pseu-
dotachylytes [e.g., Sibson, 1975], the change in the ESR
signal [Fukuchi et al., 2005], the decomposition and reac-
tion of rock‐forming minerals [e.g., Hirono et al., 2008;
Hamada et al., 2009a, 2009b], and the recovery of fission
tracks [d’Alessio et al., 2003]. It is critically important to
incorporate frictional heating and the resulting weakening
processes into models of earthquake sequences so that the
seismological observations as well as outcomes from field
and experimental geology can be properly interpreted.
[4] Here we focus on the thermal pressurization of pore

fluids which was first proposed by Sibson [1973] to explain
the rare occurrence of pseudotachylytes. Coseismically,
rapid slip generates heat on a fault, increasing temperature
and hence pore pressure if the hydraulic diffusivity of the
surrounding rock is sufficiently low (Figure 1). The elevated
pore pressure reduces the effective normal stress on a fault,
causing dynamic weakening during an earthquake. This
mechanism has been considered in studies of dynamic rup-
ture propagation [Andrews, 2002; Noda, 2004; Cocco and
Bizzarri, 2004; Andrews, 2005; Bizzarri and Cocco, 2006a,
2006b; Suzuki and Yamashita, 2006; Noda et al., 2009], the
quasi‐dynamic nucleation of ruptures [Schmitt and Segall,
2008], and a long‐term cycle simulation of a spring‐slider‐
dashpot model [Mitsui and Hirahara, 2009]. Implementing
TP into continuum modeling of earthquake sequences is
challenging because of the limited numerical resources
available and a wide range of spatial and temporal scales that
need to be resolved.
[5] In this work, we develop a suitable methodology for

incorporating temperature and pressure evolution into
earthquake sequence simulations, fully accounting for both
inertial effects and dynamic weakening associated with TP

during seismic events. The main new development is a
spectral method for integrating off‐fault diffusion equations
for temperature and pore pressure that allows for variable
time stepping.
[6] We then apply the newly developed method to simu-

lations of earthquake sequences on a fault with a simple
heterogeneity in the hydraulic diffusivity. This is motivated
by field studies that show that hydraulic properties are often
heterogeneous along faults; they depend on the confining and
pore fluid pressures, temperature, chemistry of pore fluid, and
local lithology including the type of host rocks and their
deformation history [e.g., Wibberley and Shimamoto, 2003;
Faulkner and Rutter, 2003; Faulkner, 2004]. Tanikawa and
Shimamoto [2009] measured hydraulic properties of the
fault material collected from boreholes on the Chelungpu
fault, Taiwan, a source fault of the 1999 Chi‐Chi earthquake.
They showed that the hydraulic diffusivity is different by
1 to 2 orders of magnitude between the northern and
southern regions of the fault. That is why we consider
interaction of two fault patches with potentially different
hydraulic diffusivity. Our simulations reveal a number of
interesting features, including the resulting complexity of
fault slip, different locations for the maximum slip and
peak temperature increase, and propensity of earthquakes
to nucleate in the patch with less efficient TP, which is
contrary to prior studies. We also show that it is impor-
tant to study the consequences of fault heterogeneity in
the context of earthquake sequences.

2. Methodology for Including Temperature
and Pore Fluid Pressure Evolution in Long‐Term
Simulations of Fault Slip

2.1. Problem Formulation

[7] In this study, we extend the methodology of Lapusta
and Liu [2009] to explicitly include the evolution of tem-
perature T in the shear zone and the associated effects on
pore pressure p and fault strength t. We consider a planar
fault embedded in an infinite linear elastic space. The fault is
given by y = 0 in a Cartesian coordinate system xyz and
obeys the following fault constitutive relation (i.e., fault
friction),

�� ¼ V�

V
� V ; T y ¼ 0ð Þ; p y ¼ 0ð Þ; �; �y
� �

; ð1Þ

where ta(x, z, t), a = x, z, are the shear stresses on the fault,
t is the frictional strength, Va(x, z, t) are the components of
the slip rate vector, V =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
x þ V 2

z

p
is the magnitude of the

slip rate (often called simply “slip rate” in the following),
T(x, y, z, t) is the temperature, p(x, y, z, t) is the pore fluid
pressure, � is an additional state variable, and ty(x, z, t) is
the normal stress across the fault. Note that we consider
only cases with no opening (Vy(x, z, t) = 0) and hence the
relation (1) applies to the fault at all times.
[8] The temperature and pore pressure evolve due to shear

heating on the fault and diffusion off the fault, in the form
[e.g., Lachenbruch, 1980]

@T x; y; z; tð Þ
@t

¼ �th
@ 2T x; y; z; tð Þ

@y2
þ ! x; y; z; tð Þ

�c
; ð2Þ

Figure 1. A schematic diagram for thermal pressurization
(TP). Shear heating on the fault tends to increase temper-
ature and pore pressure during seismic events. The effec-
tiveness of TP depends on the competition between shear
heating and diffusion of heat and fluids off the fault. If
TP is efficient, it causes dynamic weakening of the shear
zone.
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and

@p x; y; z; tð Þ
@t

¼ �hy
@2p x; y; z; tð Þ

@y2
þ L

@T x; y; z; tð Þ
@t

; ð3Þ

where ath and ahy are the thermal and hydraulic diffusivities,
rc is the specific heat capacity, L is the pore pressure change
per unit temperature change under undrained conditions, and
w (x, y, z, t) is the shear heating source. Without loss of
generality, T and p are defined as changes from the initial
conditions. The shear heating source w (x, y, z, t) is caused by
fault slip. In the simulated examples, we assume that

! ¼ �V
exp �y2=2w2ð Þffiffiffiffiffiffi

2�
p

w
; ð4Þ

where w is the half width of the shearing layer that ac-
commodates the slip rate V. Our methodology does not
depend on the functional form of w as long as its Fourier
transform, W, can be accurately truncated as discussed in
section 2.2.
[9] The formulation (2)–(3) neglects the nonlinear terms

such as advective heat transfer and heat generation due to
compression of pore fluids [Mase and Smith, 1987].
Lachenbruch [1980] showed that the advective heat transfer
was not important in calculating the temperature rise.
Vredevoogd et al. [2007] examined all terms appearing in
the full formulation by Mase and Smith [1987] and con-
cluded that the conductive heat and fluid transfer are the
dominant terms. The formulation follows previous studies
[Andrews, 2002; Bizzarri and Cocco, 2006a, 2006b; Noda
et al., 2009; Bizzarri, 2009] in assuming that fault‐normal
diffusion of heat and pore fluids dominates over the fault‐
parallel one. This point is justified in section 2.3. We also
neglect the effect of inelastic pore volume change (dilatancy
and compaction) [e.g., Segall and Rice, 1995; Suzuki and
Yamashita, 2009]. It can be implemented in the numerical
calculation if we assume a similar distribution of a sink/
source term in the evolution equation for p. Investigation of
its effects is beyond the scope of this work and will be
pursued in a future study, given the large number of the
additional parameters.
[10] One can reformulate equations (2) and (3) to obtain,

if ath ≠ ahy,

@ pþ L0Tð Þ
@t

¼ �hy
@ 2 pþ L0Tð Þ

@y2
þ Lþ L0ð Þ !

�c
; ð5Þ

where L′ = Lath/(ahy − ath).
[11] Following Lapusta and Liu [2009], we use a spectral

boundary integral equation method (BIEM) to account for
elastodynamic effects of fault motion on fault stresses,
including inertial effects during rapid seismic events, as
explained in section 3.

2.2. Spectral Method for Integrating Equations
of Temperature and Pore Pressure Evolution

[12] We have developed a new spectral method to
numerically solve equations (2) and (5) which is suitable for
simulations of earthquake sequences. Previous studies
incorporated effects of the temperature and pore pressure
into dynamic rupture propagation with either an explicit

finite difference method [Noda, 2004; Noda et al., 2009] or
a boundary integral equation method (BIEM) [Bizzarri and
Cocco, 2006a, 2006b]. The former method can deal with
changes in physical properties (e.g., water viscosity, per-
meability and porosity of the rock) but requires short time
steps (shorter than the critical value determined by the
Courant‐Friedrichs‐Lewy condition). Thus, it is not appli-
cable to earthquake sequence simulations in which time
steps are taken adaptively [Lapusta et al., 2000] to simulate
both seismic events and interseismic periods. The BIEM of
Bizzarri and Cocco [2006a, 2006b] allows for long inter-
seismic time steps, but it requires storage of the time history
of the heat generation rate, tV, which makes the calculation
much more expensive in terms of computer memory. We
use BIEM for the elastodynamic computations, and the
time‐history storage of Vx and Vz is currently the limiting
factor in choosing the model size and resolution. Adding the
need to store the time histories related to pore pressure and
temperature evolution would significantly reduce the
applicability of the methodology, as the shear heating‐
related time histories required are much longer than the ones
we currently store for elastodynamics.
[13] To integrate equations (2) and (5) in time, we first

apply a Fourier transformation with respect to y, obtaining

@Q x; l; z; tð Þ
@t

¼ �l2�thQþ W x; l; z; tð Þ
�c

; ð6Þ

and

@ P x; l; z; tð Þ þ L0Qð Þ
@t

¼ �l2�hy Pþ L0Qð Þ þ Lþ L0ð Þ W
�c

; ð7Þ
where l spans the wave numbers associated with y, andQ,P,
andW are Fourier transformations of T, p, and w, respectively.
Equations (6) and (7) are no longer partial differential
equations, but a couple of independent ordinary differential
equations in the form

_F tð Þ ¼ �AF tð Þ þ B tð Þ; ð8Þ

where A does not depend on time. Given the value of F(t),
F(t + Dt) can be found analytically as

F t þDtð Þ ¼ e�ADt

Z Dt

0
B t þ t0ð ÞeAt0dt0 þ F tð Þ

� �
: ð9Þ

Assuming constant B(t) during the time step, we further
find

F t þDtð Þ ¼ B tð Þ
A

1� e�ADt
� �þ F tð Þe�ADt: ð10Þ

We use this analytical solution in our numerical procedure
as discussed in section 3. This diffusion solver is uncon-
ditionally stable since the numerical error in F(t) always
decays exponentially with Dt.
[14] Note that the temperature and pore pressure at the

center of the shear zone is given by

T x; 0; z; tð Þ ¼ 1ffiffiffiffiffiffi
2�

p
Z 1

�1
Q x; l; z; tð Þdl; ð11Þ
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and

p x; 0; z; tð Þ ¼ 1ffiffiffiffiffiffi
2�

p
Z 1

�1
P x; l; z; tð Þdl: ð12Þ

For an efficient numerical procedure, the support of the
shear heating source term, W, should be limited in the
direction of l. For the shear heating source (4), W is given by

W ¼ �V
exp �l2w2=2ð Þffiffiffiffiffiffi

2�
p : ð13Þ

Under the adiabatic and undrained conditions, if we restrict
the source term to the range −10/w < l < 10/w, only 1.5 ×
10−23 of the total contribution to T(x, 0, z, t) and p(x, 0, z, t)
would be missed. This is well below the round‐off error of
the double precision. Furthermore, equations (6) and (7)
indicate that higher wave number components decay fas-
ter, causing further shrinking of the region in the wave
number domain where the contribution to p(x, 0, z, t) is
nonnegligible. This is a very useful feature for considering
the diffusion problems in the wave number domain.
[15] In the numerical implementation, we consider a

finite region, [−∣le∣, ∣le∣], along the l axis. Note that
because of the symmetry about l = 0, we consider only the
region [0, ∣le∣]. For the examples with the shear heating
source (13), we set le = 10/w. In earthquake cycle simu-
lations, relevant time scales vary by orders of magnitude,
from the subsecond time for elastic waves to propagate
over a grid element to multiple earthquake recurrence in-
tervals which are in hundreds of years. Since the time
constants in the evolution of Q and P are proportional to
1/l2ath and 1/l2ahy (equations (6) and (7)), this variation in
time scales motivates discretizing l on a logarithmic scale,

ln lj xi; zkð Þ� � ¼ ln leð Þ þD ln lð Þ Nl � jð Þ; j ¼ 1; 2; . . . ;Nlð Þ: ð14Þ

where xi, lj, and zk are grid points along x, l, and z, Dln(l)
is the logarithmic grid interval, and Nl is the total
number of grid points along l axis. The integrations in
equations (11) and (12) are calculated using the trapezoidal
rule,

T xi; 0; zk ; tð Þ ¼
XNl

j¼1

Finv j; i; kð ÞQ xi; lj; zk ; t
� � ð15Þ

and

p xi; 0; zk ; t; tð Þ ¼
XNl

j¼1

Finv j; xi; zkð ÞP xi; lj; zk ; t
� �

; ð16Þ

where Finv(j; xi, zk) is a vector,

Finv j; xi; zkð Þ ¼

( ffiffiffiffiffiffiffiffi
2=�

p
lj xi; zkð Þ 1þD ln lð Þð Þ; j ¼ 1;ffiffiffiffiffiffiffiffi

2=�
p

lj xi; zkð ÞD ln lð Þ=2; j ¼ Nl ;ffiffiffiffiffiffiffiffi
2=�

p
lj xi; zkð ÞD ln lð Þ otherwise:

ð17Þ

In the examples, we choose Nl = 60 and Dln(l) = 0.3. The
numerical error in T and p is then below 10−6 relative to their

coseismic values, if the other variables are estimated accu-
rately enough, as discussed in section 2.3 and Appendix A.
Note that there is no need to calculate the spatial distributions
of T and p, to assume periodic conditions in the y direction,
or to conduct fast Fourier transforms.
[16] In principle, our method should work for other shapes

of the heat source distribution, but further tuning of the
wave number grid may be needed for each function. For
example, Fialko [2004] used a rectangular function, the
Fourier transformation of which is a sinc function. The sinc
function oscillates around 0 and its envelope decays
inversely proportionally to the wave number. Such decay is
much slower than that for the Gaussian function. In order to
resolve such a slow decay, we would need to consider a
much larger domain for l and at least several grid points in
each section between zeros which appear regularly in a
linear scale. Proper treatment of specific functions deserves
further study.

2.3. Comparison With an Analytical Solution
for a Prescribed Heat Source

[17] Here we demonstrate that our diffusion solver works
well for logarithmically wide range of time scales. A simple
relevant example of the temperature and pore pressure
evolution is a short‐term constant heat input that mimics a
coseismic period, followed by a long diffusion that mimics
the following interseismic period. Hence let us consider the
following heat generation history,

�V ¼ �Vð Þ0; 0 < t < Dtmin;
0 otherwise:

�
ð18Þ

Letting Q stand for either Trc/(tV)0 or (p + L′T )rc/((L + L′)
(tV)0), we can write equations (2) and (5) with (4) as

@Q

@t
¼ �*

@2Q

@y2
þ H tð Þ � H t �Dtminð Þð Þ exp �y2=2w2ð Þffiffiffiffiffiffi

2�
p

w
; ð19Þ

where H(t) is the Heaviside step function and a* is either ath

or ahy. The analytical solution for t > Dtmin is given by
[McKenzie and Brune, 1972]

Qana y; tð Þ¼ 1

2�*
y

ffiffiffi
�

�

r
exp

�1

�

� �
� yerfc

1ffiffiffi
�

p
� �" #�¼4�*t0þ2w2

y2

�¼2w2

y2

2
664

3
775
t0¼t

t0¼t�Dtmin

;

ð20Þ

and at y = 0, is given by

Qana 0; tð Þ¼ 1

2�*
ffiffiffi
�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�*t þ 2w2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�* t �Dtminð Þ þ 2w2

q� 	
:

ð21Þ

Figure 2 shows the comparison between the analytical and
numerical solutions, Qana(0, t) and Qnum(0, t), normalized by
the maximum value of the analytical solution,Qana(0,Dtmin),
with a* = 10−4 m2/s which is representative of the values used
in this study. The numerical solution compares very well with
the analytical solution until about 1013 s after heat generation,
which is much longer than the typical earthquake recurrence
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interval (∼tens to hundreds of years or 109–1010 s). Note that
the eventual truncation of the memory effect is caused by the
nonzero l1.a* ranges from 10−6 to 10−2 m2/s in this study, and
we have checked the accuracy of the solver for all those va-
lues. More detailed error analysis is presented in Appendix A.
[18] This calculation shows that fault‐parallel diffusion

should not affect the examples presented in the following
sections. For the fault‐parallel diffusion to manifest itself in
the simulation, the diffusion length, 2

ffiffiffiffiffiffiffiffi
�*t

p
, should become

comparable to the fault‐parallel grid spacing, h. We use h =
60 m in this study. a* = 10−4 m2/s, for example, would
result in such diffusion lengths in 107 s after a dynamic
event which is much longer than the typical event duration.
Furthermore, Figure 2 suggests that the value of Q decreases
to only 1 percent of the coseismic value at about 104 s after
an earthquake. Hence the pore pressure or temperature rise
on the fault would be dissipated because of the fault‐normal
diffusion long before the fault‐parallel diffusion would have
the chance to affect the neighboring fault cell.

3. Numerical Algorithm for the Full Coupled
Problem of Fault Slip, Temperature, and Pore
Pressure Evolution

[19] In the examples shown in section 4, we assume the
following regularized rate‐ and state‐dependent friction law
[Rice et al., 2001] with the effective normal stress,

� ¼ f �e ¼ a sinh�1 V

2V0
exp

f0 þ b ln �=�0ð Þ
a

� �� �
�e; ð22Þ

where f is the friction coefficient, a and b are nondimen-
sional rate‐and‐state parameters, f0 and �0 are the friction
coefficient and state variable for the steady state sliding with
the reference slip rate V0, and se is the effective normal
stress. We use the standard effective stress law [Terzaghi,
1936],

�e ¼ ��y � p y ¼ 0ð Þ; ð23Þ

where ty is the normal component of the elastodynamic
fault traction, positive in tension. The evolution of � is
given by

d�

dt
¼ V

L
�ss Vð Þ � �ð Þ; �ss Vð Þ ¼ L=V ; ð24Þ

where L is the characteristic slip for the state evolution.
This state evolution law is typically called the “aging law”;
it incorporates logarithmic time strengthening of a fault
[Dieterich, 1972, 1979] which is important for simulating
interseismic healing.
[20] Note that laws in which friction strength is propor-

tional to the effective normal stress do not always hold in
cases of variable effective normal stress. For cases with
variable normal stress, Linker and Dieterich [1992] pro-
posed an experimentally based law in which a part of the
shear stress change in response to a normal stress change is
accomplished through gradual evolution and not abruptly.
This gradual evolution was shown to be critically important
in proper formulations of problems that involve slip between
elastically dissimilar materials [e.g., Cochard and Rice,
2000]. In the Linker‐Dieterich law, the evolution in t
after a change in se is associated with the same character-
istic distance, L, as for the evolution effect after a change
in V. In this study, we use parameters which result in
normal stress changes on slip scales much larger than L
(section 4.2), making the evolution in shear stress in
response to the evolution in normal stress instantaneous by
comparison and allowing us to adopt the formulation (22).
The same conclusion was reached by Noda et al. [2009] in
simulations of single instances of dynamic ruptures with
and without the Linker‐Dieterich effect, for a different set
of thermo‐poroelastic parameters than the one used in this
work. Hence it appears that normal stress variations due to
shear heating may be too slow to require the incorporation
of the Linker‐Dieterich effect, although we cannot exclude
the possibility that this effect would be important in some
parameter regimes.
[21] The elastodynamics can be efficiently calculated

using spectral BIEM [Geubelle and Rice, 1995; Lapusta
et al., 2000; Lapusta and Liu, 2009]. The traction vector
at a point on a fault, ta(x, z, t), = x, y, z, is expressed as

�� x; z; tð Þ ¼ �0� x; z; tð Þ þ 	� x; z; tð Þ � 
�V� x; z; tð Þ: ð25Þ

In equation (25), ta
0 is the traction that would act on the

fault if it were constrained against any slip or opening,
hx = hz = m/2cs and hy = mcp/2cs

2 where m is the shear
modulus, and cp and cs are the P‐ and S wave speeds,
respectively. The last term in equation (25), haVa(x, z, t),
represents radiation damping [Rice, 1993]; 	a is a func-
tional term representing the stress transferred by elastic
waves. In our calculation, Vy is always zero (e.g., there is
no opening or material interpenetration) and hence 	y is
always zero as well, so that ty = ty

0. Hence, the elasto-
dynamic normal stress does not vary with time, although
the effective normal stress that enters friction does vary
with time, due to variations in pore pressure. That is why,
in the following, the subscripts a and b represent only the
fault parallel components, x and z. In the calculation pre-
sented in this paper, we set a lower limit to se as 1 MPa.

Figure 2. Comparison of numerical and analytical solu-
tions for the diffusion equation (equation (19)). Numeri-
cally calculated Q is in good agreement with the analytical
solution until about 1013 s or 100,000 years, which is long
enough compared to the earthquake recurrence intervals.
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[22] Following Lapusta and Liu [2009], the stress transfer
functional 	a is calculated in the spectral domain,

Φ� k;m; tð Þ ¼
Z t

t�tw

CD�� k;m; t � t0ð Þ _D� k;m; t0ð Þdt0

þ CS�� k;mð ÞD� k;m; tð Þ; ð26Þ

where Fa, Da, and _Da are 2‐D Fourier transforms of 	a, slip
da, and Va, respectively, k and m are coordinates in the wave
number domain associated with x and z, {CDab} is the
matrix of convolution kernels for the dynamic wave prop-
agation, tw is the length of the time window in which the
dynamic wave propagation is accounted for, and {CSab} is
the matrix for calculating static stress transfers (for details,
see Geubelle and Rice [1995] and Lapusta and Liu [2009]).
Note that Lapusta and Liu [2009] developed the wave
number‐dependent truncation for the time convolution in
equation (26) which is not used in this work. The integration
in equation (26) is estimated by the midpoint rule.
[23] At each discretized time point, we equate equations (1)

and (25) to solve for Va and ta with Newton‐Raphson
method, assuming constant values, integrated over the
previous time step, for da, temperature T (or its Fourier
transform Q), pore pressure p (or its Fourier transform P),
and state variable �. Let us denote the vector containing
Va(xi, zk, t) and ta(xi, zk, t) by Y(t), and the vector con-
taining da(xi, zk, t), �(xi, zk, t), Q(xi, lj(xi, zk), zk, t), and
P(xi, lj(xi, zk), zk, t) by Y(t). Suppose we know Y(tn),
Y(tn), and _Da(t) (t ≤ tn). Our goal is to obtain the values of
all variables at the time tn+1 = tn + Dt, where the time step
Dt is calculated using the same considerations as those of
Lapusta and Liu [2009] (section 4.2).
[24] Let us introduce the following formalism that will

allow us to show that our updating procedure can be con-
sidered as a predictor‐corrector scheme. Integration of Y
from t̂ by Dt̂ using certain known values, Yc and Yc, can be
expressed in the following general form:

Y t̂ þDt̂ð Þ ¼ �Dt̂ Yc;Ycð Þ �Y t̂ð Þ; ð27Þ

where cDt̂� denotes the operator that advances components of
Y from their values at t̂ through the time step Dt̂. The ex-
pressions used for computing the various components ofY are

� t̂ þDt̂ð Þ ¼ � t̂ð Þ þ Vc�Dt̂;

� t̂ þDt̂ð Þ ¼
�ss Vcð Þ þ � t̂ð Þ � �ss Vcð Þð Þe �VcDt̂

Lð Þ; VcDt̂=L10�6ð Þ;

� t̂ð Þ þ VcDt̂

L
�ss Vcð Þ � �cð Þ; VcDt̂=L � 10�6ð Þ

;

8>>><
>>>:

Q lj; t̂ þDt̂
� � ¼ Wc lj

� �
�th�cl2j

þ Q lj; t̂
� �� Wc lj

� �
�th�cl2j

 !
e ��thl2j Dt̂ð Þ;

P lj; t̂ þDt̂
� �þ L0Q lj; t̂ þDt̂

� � ¼ Lþ L0ð ÞWc lj
� �

�hy�cl2j

þ P lj; t̂
� �þ L0Q lj; t̂

� �� Lþ L0ð ÞWc lj
� �

�hy�cl2j

 !
e ��hyl2j Dt̂ð Þ; ð28Þ

where Wc(lj) is obtained from equation (13) using tc and Vc.
The dependence on the spatial indices i and k are omitted in

equation (28) for compactness. Note that the integration of �
for Vc Dt̂/L > 10−6 which is based on a constant value of
V = Vc for t̂ < t < t̂ + Dt̂, is numerically more stable during
coseismic periods than the integration scheme based on a
constant _� (see Appendix B).
[25] We use two iterations to obtain second‐order accurate

estimates of the variables. After the first iteration, a first‐order
accurate predictionsY*(tn+1) andY*(tn+1) are obtained. After
the second iteration, we correct these estimations to obtain
second‐order accurate estimatesY**(tn+1) andY**(tn+1), and
adopt them as the final value at tn+1.
[26] The detailed steps are as follows.
[27] 1. Obtain the first prediction Y*(tn+1) from (27)–(28)

using Yc and Yc equal to the values at tn throughout the time
step,

Y* tnþ1ð Þ ¼ �Dt Y tnð Þ;Y tnð Þð Þ �Y tnð Þ: ð29Þ

[28] 2. Obtain the first prediction for the functional,
	*a(tn+1), by numerically integrating equation (26) assuming
_Db(t′) = _Db(tn) for tn < t′ < tn+1 and using Fourier transform of
d*a(tn+1) for Da(tn+1).
[29] 3. Using 	*a(tn+1), Y*(tn+1), equations (1) and (25),

obtain the first prediction for Y(tn+1), Y*(tn+1).
[30] 4. Make the second prediction for Y(tn+1), Y**(tn+1),

by using the first prediction for integration during the sec-
ond half of the time step, Dt,

Y** tnþ1ð Þ ¼ �Dt=2 Y* tnþ1ð Þ;Y* tnþ1ð Þð Þ
� ��Dt=2 Y tnð Þ;Y tnð Þð Þ �Y tnð Þ: ð30Þ

Note that we can rewrite this as

Y** tnþ1ð Þ ¼


�Dt=2 Y* tnþ1ð Þ;Y* tnþ1ð Þð Þ

� ���Dt=2 Y** tnð Þ;Y** tnð Þð Þ
�

� ��Dt Y tnð Þ;Y tnð Þð Þ �Y tnð Þ;

ð31Þ

showing that [cDt/2(Y*(tn+1), Y*(tn+1)) � c−Dt/2(Y**(tn),
Y**(tn))] � is a corrector operator. In this step, for the
evolution of �, we use a scheme based on constant V if max
{V(tn), V*(tn)} Dt/L > 10−6, and one based on constant _�
otherwise.
[31] 5. Repeat 2 to obtain the second prediction for the

functional, 	**a (tn+1), assuming _Da(t′) = ( _Da(tn) + _D*a(tn+1))/
2 for tn < t′ < tn+1 where _D*a(tn+1) is Fourier transform of
V*a(tn+1).
[32] 6. Repeat 3 to obtain the second prediction forY(tn+1),

Y**(tn+1).
[33] 7. Adopt values with ** as the final estimate, and store

( _Da(tn) + _D**a (tn+1))/2 as the history for tn < t′ < tn+1. Previous
studies [e.g., Lapusta et al., 2000; Lapusta and Liu, 2009]
used ( _Da(tn) + _D*a(tn+1))/2 as the history for tn < t′ < tn+1. We
compare these two schemes in a 2‐D dynamic rupture
calculation on a fault governed by a linear slip‐weakening
law, and show that the amplitude of oscillations due to
numerical error is smaller in the scheme used in this work
(see Appendix D).
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[34] Note that the integration scheme for � is slightly
different from Lapusta and Liu [2009] who used

� t̂ þDt̂ð Þ ¼ � t̂ð Þ þ VcDt̂

L
�ss Vcð Þ � � t̂ð Þð Þ ð32Þ

as a component of cDt̂� when VcDt/L ≤ 10−6. As shown in
Appendix C, this yields a first‐order accurate scheme for such
slip rates, whereas the scheme used in this work is second‐
order accurate. We have tested both schemes in numerical
simulations, and see no remarkable difference between them.

4. Application Example: Effect of Heterogeneous
Hydraulic Diffusivity

4.1. Model Geometry and Physical Properties

[35] We use the developed methodology to explore the
effect of heterogeneous poroelastic properties on earthquake
sequences and individual seismic events. We assume a
simple distribution of the poroelastic properties that creates
two patches of different hydraulic diffusivity and hence
different effectiveness of the shear‐heating induced thermal
pressurization (TP). Our study is motivated by observations
of heterogeneous hydraulic properties of natural faults.
Hydraulic properties on faults vary depending on the depth
[Faulkner, 2004], local geology, the type of host rocks, and
the deformation history. Tanikawa and Shimamoto [2009]
measured hydraulic properties of fault rocks collected at
boreholes by the Chelungpu fault, Taiwan, a source fault of
the 1999Chi‐Chi earthquake, at about 200m and 300m below
the surface in the northern and southern regions, respectively.
They concluded that the south has higher permeability (larger
ahy) than the north by several orders of magnitude.
[36] The geometry of the simulated fault and the

assumed distributions of physical properties are illustrated
in Figure 3. The physical parameters used in this study are

listed in Table 1. We consider a potentially seismogenic
fault region with velocity‐weakening steady state friction
surrounded with a velocity‐strengthening region. Outside
the velocity‐strengthening region, steady slow slip with
slip velocity Vpl = 10−9 m/s is prescribed in the z direction.
The overall fault segment, with dimensions of 90 km and 63
km in the x and z directions, respectively, is periodically
repeated to produce an infinite fault plane. Note that the
spectral BIEM using a Fourier basis requires periodic
boundary conditions along the fault, and hence we cannot
rigorously introduce the effect of a free surface. The seis-
mogenic fault segment contains two square patches, 15 km ×
15 km each, with uniform physical properties within each
patch (Figure 3). In this study, only hydraulic diffusivity ahy

may be different for the two patches. Between the seismogenic
patches and the surrounding velocity‐strengthening region,
there is a smooth transition zone in which properties that differ
in the patches and/or in the surrounding velocity‐strengthening
region vary according to a smoothed boxcar function:

X x; z; tð Þ ¼ Xout þ Xþ � Xoutð ÞB x� 10; 7:5; 12:5ð ÞB z; 7:5; 12:5ð Þ
þ X� � Xoutð ÞB xþ 10; 7:5; 12:5ð ÞB z; 7:5; 12:5ð Þ;

ð33Þ
where X stands for the fault property that varies with space, the
numbers are in km, and

B x;W1;W2ð Þ

¼
1; jxj < W1;

0; W2 < jxj;
1

2
� 1

2
tanh

W2

jxj �W1 �W2
þ W2

jxj �W1

� �
otherwise:

8>>><
>>>:

ð34Þ

Note that if the two patches have the same value of a physical
property, then that physical property is uniform in the region

Figure 3. Schematics of the fault geometry and parameter
distributions. X stands for the physical properties that may
vary spatially (b, L, ahy, L, and w). Our main goal is to
explore the effect of different hydraulic diffusivity ahy at
the two square fault patches.

Table 1. Physical Properties and Model Parameters

Symbol Value

Elastic Properties
Shear modulus m 30 GPa
Poisson’s ratio n 0.25
Shear wave speed cs 3 km/s

Frictional Properties
Reference slip rate V0 1 mm/s
Steady state friction at V0 f0 0.6
State evolution distance Lout 1000 mm

L+ = L− 4 mm
Direct effect parameter a 0.01
Evolution effect parameter bout 0

b+ = b− 0.014
Hydrothermal Properties

Specific heat rc 2.7 MPa/K
Thermal diffusivity ath 10−6 m2/s
Hydraulic diffusivity ahyout 10−2 m2/s

ahy+ 10−2–10−5 m2/s
ahy− 10−2, 10−4 m2/s

Undrained Dp/DT Lout 0
L+ = L− 0.1 MPa/K

Half width of shear zone wout 1000 mm
w+ = w− 10 mm, 5 mm

Initial and Boundary Conditions
Effective normal stress se0 30 MPa
Loading rate Vpl 10−9 m/s
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−17.5 km< x < 17.5 km and −7.5 km< z < 7.5 km that includes
both patches and the transition zone between them.
[37] We assume elastodynamic and rate‐and‐state friction

properties similar to those given by Lapusta and Liu [2009]
and previous studies. The elastodynamic (bulk) properties
are as follows: shear modulus m = 30 GPa, Poisson’s ratio n
= 0.25, and S wave speed cs = 3 km/s. Rate and state
parameters f0, V0, and a are uniform over the entire fault and
equal to 0.6, 1 mm/s, and 0.01, respectively. Rate and state
parameter b varies so that b = bout = 0 in the velocity‐
strengthening region and b− = b+ = 0.014 in and between the
velocity‐weakening patches. The characteristic slip L is
uniform in the patches at 4 mm and increases to 1 m in the
velocity‐strengthening region in order to arrest ruptures
there more efficiently. The initial effective normal stress se
is set at 30 MPa. Such relatively low se contributes to
keeping shear zone temperatures below the melting point, as
discussed further in section 4.4.2. Note that we are not
suggesting that uniform distribution of se is characteristic of
the active faults. In general, the effective effective normal
stress tends to increase with depth. We adopted this
assumption because it is simple and may be applicable to
active faults in regions where high excess pore pressure is
expected to exist at depth (e.g., sedimentary basins, oil
fields, and subduction zones) [e.g., Suppe and Wittke, 1977;
Rice, 1992; Tanikawa et al., 2008].
[38] For thermal properties, we use the thermal diffu-

sivity ath = 1.0 × 10−6 m2/s and the specific heat capacity
rc = 2.7 MPa/K, which are representative of the values
obtained in various studies. Thermal transport properties
depend on the rock type and condition. Rempel and
Rice [2006] and Rice [2006] estimated ath = 0.5–0.7 ×
10−6 m2/s and rc = 2.7 MPa/K for the Median Techtonic
Line (MTL), southwest Japan, at the ambient conditions at
7 km (126 MPa effective confining pressure and 210°C).
Kano et al. [2006] and Tanaka et al. [2006] quantitatively
discussed the heat transport process from the fault plane
based on observations at boreholes in the northern region
of the Chelungpu fault. Kano et al. [2006] used ath =
0.34 × 10−6 m2/s and rc = 3.74 MPa/K to explain the
measured temperature anomaly around the fault plane at a
borehole by TCDP (Taiwan Chelungpu Drilling Project) at
1110 m below the ground surface. Tanaka et al. [2006]
explained the temperature anomaly observed at a shallow
borehole (at 300–330 m depth) using laboratory‐measured
thermal transport properties of samples collected there. They
reported ath = 1.47 × 10−6 m2/s and rc = 0.73 MPa/K.
[39] Hydraulic transport properties vary by orders of

magnitude, which motivates our study of a fault with vari-
able hydraulic properties. Rempel and Rice [2006] and Rice
[2006] estimated L = 0.34–0.98 MPa/K and hahy = 0.86–
3.52 × 10−6 m2/s for the hydraulic transport properties on
MTL, at the ambient conditions at 7 km, based on the
study by Wibberley and Shimamoto [2003]. The MTL is
one of the most mature faults in Japan; it has slipped 100–
200 km since mid‐Cretaceous [e.g., Takagi and Shibata,
2000]. Studies on the permeability structure around the
fault core of less mature faults show higher permeability
by orders of magnitude [e.g., Tsutsumi et al., 2004; Noda
and Shimamoto, 2005]. Using the laboratory measurements

by Tanikawa and Shimamoto [2009] for porosity and
permeability of the fault rocks from the Chelungpu fault
at 30 MPa effective pressure, and assuming water ther-
mal expansivity of 5 × 10−4 and water viscosity of 2 ×
10−4 Pas, we can estimate L = 2.4–7 × 10−2 MPa/K (north),
4.1–5.1 × 10−2 MPa/K (south), and ahy = 7.2–7.5 × 10−5

(north), 2.7 × 10−2 to 7.3 × 10−4 (south). In our study, we
choose L+ = L− = 0.1 MPa/K, ahy− = 10−2 or 10−4 m2/s, and
ahy+ = 10−5–10−2 m2/s, which are within the range of the
reported values for seismogenic regions. In the velocity‐
strengthening region, we assign values Lout = 0 and ahyout =
10−2 m2/s which disable thermal pressurization there. Rice
[2006] determined the characteristic slip L* required for TP
in the case of slip on a mathematical plane,

L* ¼ 4

f 2
�c

L

� 	2 ffiffiffiffiffiffi
�th

p þ ffiffiffiffiffiffiffi
�hy

p� 	2
V

: ð35Þ

With f = 0.6, rc = 2.7 MPa/K, L = 0.1 MPa/K, ath = 1 ×
10−6 m2/s, and V = 1 m/s, the hydraulic diffusivity of
ahy = 1 × 10−2 m2/s results in L* = 81 m which is much
larger than total slip in one coseismic event. Thus, TP is
not efficient if ahy = 10−2 m2/s is assumed. For ahy = 1 ×
10−4 m2/s, the characteristic slip reduces to 0.8 m, which
makes TP and the associated dynamic weakening quite
pronounced during seismic slip.
[40] In most of the study, we use w = 10 mm for the width

of the shearing zone; this parameter determines the shape of
the heat source in equation (4). Similar values have been
assumed in several previous studies based on field data
[Tanikawa and Shimamoto, 2009]. However, smaller values
for the width of the actively shearing zones have also been
reported and may be more realistic. The localization of shear
deformation in zones of submillimeter thickness have been
observed at exhumed faults and in drill cores [Chester and
Chester, 1998; Chester et al., 2004; Heermance et al.,
2003; Mizoguchi and Shimamoto, 2004] as well as in spe-
cimens after rotary shear experiments [Beeler et al., 1996;
Mizoguchi and Shimamoto, 2004]. Further studies are
needed to give better constraints or a model for w which
may evolve throughout the earthquake cycle. Note that
submillimeter shear zones cause very rapid weakening at the
rupture front that is difficult to resolve numerically. This
limits simulations with thin shear zones to cases of single
dynamic ruptures in 2‐D models with faults that are of the
order of a ten meters [Noda et al., 2009]. Hence we use w =
10 mm for the problem to be numerically tractable. In
addition, narrower slip zones lead to temperatures high
enough to cause melting, as we demonstrate in section 4.4.2
for w = 5 mm. Since melting is not included in our con-
stitutive description, such calculations would be no longer
physically self‐consistent, as discussed in section 4.4.2.
Incorporation of rock melting and other chemical reactions
into fault constitutive laws is an important future step to
further investigate the geologically realistic earthquake
generation process.
[41] The initial conditions, at t = 0, are assigned assuming

that the fault is in steady state sliding, with Vz equal to the
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loading rate of Vpl = 10−9 m/s and Vx = 0. This determines
the corresponding initial values of the state variable � and
the shear stress tz, with tx = 0. Since T and p measure
changes from the initial values, their values at t = 0 are zero.
At t = 0+, a Gaussian‐shaped perturbation is added to t0z

with the amplitude of 3 MPa and the standard deviation
of 1/

ffiffiffi
2

p
km. The perturbation is centered at x = −10 km

and z = −5 km unless otherwise noted. The long‐term
behavior of the model is unaffected by the location of the
initial perturbation, as discussed in section 4.5.

Figure 4. Snapshots of slip rate distribution for a sequence of earthquakes in the case with ahy− =
10−2 m2/s, and ahy+ = 10−4 m2/s. (first and fourth columns) Model‐spanning events are associated with
a backward rupture propagation as indicated by arrows. (second and third columns) Smaller events
preferably extend along the boundary between creeping and locked regions.
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4.2. Numerical Parameters

[42] Lapusta and Liu [2009] discussed the following cri-
terion for spatial discretization in terms of the resolution of
the cohesive zone at the rupture front. A rate‐ and state‐
dependent friction law in the aging formulation yields the
slip‐weakening rate WRS at the rupture front given by

WRS ¼ b�e

L
: ð36Þ

The cohesive zone size R0 at the rupture speed c → 0+ is

R0 ¼ 9�

32

�*

W
¼ 9�

32

�*L

b�e
; ð37Þ

where m* is equal to m for mode III and m/(1 − n) for
mode II. R0 has to be discretized by at least three to five
grid points for adequate numerical resolution [Day et al.,
2005]. With our selection of the physical properties, we
have WRS ≤ 105 MPa/m which leads to R0 ≥ 252 m. We

choose the spatial grid interval to be h = 60 m so that
R0/h ≥ 4.2. We have tested calculations with h = 100 m
and found that the main features of the earthquake sequences
discussed in the following sections do not change. Note that
TP may affect the needed resolution by enhancing the
weakening rate. Under the adiabatic and undrained condi-
tions which give the upper bound to the rate of pore pressure
rise, the weakening rate due to TP is given by

WTP ¼ f �Lffiffiffiffiffiffi
2�

p
w�c

; ð38Þ

which is 28 MPa/m with f = 0.8 and t = 24 MPa which are
the estimate of the values at the rupture front. Therefore, TP
only modestly affects the numerical resolution in the cases
considered in this study. If we use a much thinner shear zone
or a larger value of L, the resolution of weakening due to TP
would control the spatial grid size.
[43] We adopt the same time step controller as used by

Lapusta et al. [2000] and Lapusta and Liu [2009]:

Dt ¼ max Dtmin;Dtevolf g; ð39Þ
where

Dtmin ¼ h=3cs ð40Þ
and

Dtevol ¼ min
i;k

� xi; zk ; tð ÞL xi; zkð Þ=V xi; zk ; tð Þ; L xi; zkð Þ=3V xi; zk ; tð Þ½ �;
ð41Þ

with L(xi, zk), x(xi, zk, t), and V(xi, zk, t) being the charac-
teristic slip, the friction‐dependent coefficient, and the slip
rate for the cell (i, k), i = 1,2, …, Nx and k = 1,2, …, Nz,
respectively. Coefficients x(xi, zk, t) depend on friction
properties and are obtained from stability analyses given in
Appendix B. Note that the choice of the friction parameters
for the seismogenic region yields x = 0.63 for se = 30 MPa.
Hence the coefficient 1/3 in (41) is more restrictive unless x
is decreased by pore pressurization. The stepping scheme
(39)–(41) results in time steps that range from Dtmin = 1/150
s to Dt = 3.82 × 105 s in the simulations we have done.
[44] The discretization used in computing the evolution of

temperature and pore pressure is explained in section 2.3
and Appendix A.

4.3. Complexity of Long‐Term Fault Slip

4.3.1. Long‐Term Slip Accumulation
and Magnitude‐Time Sequence
[45] The developed methodology allows us to simulate all

stages of the earthquake cycle, from the interseismic slip, to
the accelerating slip in the nucleation zone, to the subse-
quent dynamic rupture, and to the following postseismic
slip. As an example, consider the simulation with ahy− =
10−2 m2/s and ahy+ = 10−4 m2/s. Figure 4 illustrates the
evolution of slip rate in the time period that includes four
seismic events, starting with the tenth simulated event. The
panels show snapshots of slip velocity distribution on the
fault, on the logarithmic scale. White and light yellow colors
correspond to coseismic slip rates, darker yellow and orange
point to aseismic slip faster than the plate rate, red corre-

Figure 5. Earthquake sequences in the cases with uniform
hydraulic diffusivity of (a) ahy− = ahy+ = 10−2 m2/s and (b)
10−4 m2/s. Slip accumulation at the middepth of the fault,
z = 0, is shown, with gray lines plotted every 10 years and
black lines plotted every 1 s for coseismic periods. All events
span the entire seismogenic region, and more efficient TP
produces larger coseismic slip.
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sponds to slip rates close to the plate rate, and near‐black
indicates locked portions of the fault. The numbers between
the panels give the interpanel time. Figure 4 (first three
panels of first column) illustrates the tenth event in the
simulation. The event starts at the left side of the seismo-
genic region and propagates toward the right with the rup-
ture speeds in the range of 1–2 km/s. Figure 4 (fourth and
fifth panels) show immediate postseismic slip (right after
and about 10 h after the event, respectively). The inter-
seismic state of the fault, with the black locked region, is
shown in Figure 4 (bottom row, first column). Note that the
tenth event ruptures the entire seismogenic part of the fault.
In the following, we are going to call such events “model
spanning.” Figure 4 (second and third columns) illustrates
the following two earthquake cycles, both of which contain
a smaller seismic event that fully ruptures only the left
patch. Figure 4 (fourth column) shows the thirteenth event
which again ruptures the entire seismogenic region. More
detailed results from this simulation are discussed in the
following.
[46] To explore the effect of heterogeneous hydraulic

properties on the long‐term fault behavior, we start with the

cases of homogeneous hydraulic properties ahy− = ahy+

(Figures 5 and 6) for comparison. Figure 5 shows snapshots
of slip distribution along the middepth of the fault (z = 0)
every 10 years (gray lines) and every 1 s coseismically
(black lines). Figure 6 gives the moment magnitude of the

Figure 6. Moment magnitude of the earthquakes obtained
in the simulations shown in Figure 5 for (a) ahy− = ahy+ =
10−2 m2/s and (b) ahy− = ahy+ = 10−4 m2/s. In both cases,
characteristic events of the same size occur regularly.

Figure 7. Effect of spatial variation in hydraulic diffusivity
on earthquake sequences in the cases with ahy− = 10−2 m2/s
and (a) ahy+ = 10−3, (b) 10−4, and (c) 10−5 m2/s. The mean-
ing of the lines is the same as in Figure 5. As the hetero-
geneity in ahy becomes stronger, the pattern of slip
accumulation becomes more complex with one cycle having
multiple events of different sizes.
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seismic events, Mw, as a function of time. The beginning of
dynamic rupture is defined as the time when the maximum
slip rate exceeds 0.1 m/s [Bizzarri and Belardinelli, 2008].
The end of dynamic rupture is defined as the time when the

slip rate drops below 0.1 m/s and does not increase back to
the values above 0.1 m/s in the time equal to the elastody-
namic time window tw. We see that if ahy is uniform in the
seismogenic zone, earthquake sequences are simple, with only
one characteristic model‐spanning event (Figures 5 and 6).
The case with uniformly more efficient TP (Figures 5b
and 6b) produces larger events and thus a longer recur-
rence interval.
[47] For cases with different ahy in the two patches, the

behavior is more complex. When the difference is large
enough, the patch with more efficient TP produces larger
slip during a model‐spanning event similarly to what is
observed in the 1999 Chi‐Chi earthquake, Taiwan [e.g., Ma
et al., 2003], and thus the patch does not rupture in every
event (Figures 7b and 7c). Note that Manighetti et al. [2005]
reported that the hypocenter and the maximum slip typically
occur at different locations in natural earthquakes. The slip
deficit in the other patch is filled with several smaller events.
For less significant difference in ahy (i.e., ahy− = 10−2 m2/s,
ahy+ = 10−3 m2/s), most of the events are model‐spanning
but there is a variation in Mw (Figures 7a and 8a). Hence

Figure 8. Moment magnitude of the earthquakes obtained
in the simulations shown in Figure 7, with ahy− = 10−2 m2/s
and (a) ahy+ = 10−3, (b) 10−4, and (c) 10−5 m2/s. Increasing
heterogeneity in ahy produces a longer period between
model‐spanning events, with several smaller events in
between.

Figure 9. Distribution of shear stress tz(x, z = 0, t)
along the middepth of the fault plotted every year for
the cases of Figure 5, with (a) ahy− = ahy+ = 10−2 m2/s
and (b) 10−4 m2/s. More efficient TP results in lower
intersesmic shear stress.
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heterogeneity in ahy results in more complex earthquake
sequences, with supercycles that contain events of variable
sizes (Figure 8).
4.3.2. Heterogeneity in the Interseismic Shear Stress
[48] Our simulations show that regions with lower

hydraulic diffusivity, and hence more efficient TP, have
lower interseismic shear stress. Figures 9 and 10 show time
histories of the dominant shear stress component, tz, at z = 0
for the cases with ahy− = ahy+ and ahy− > ahy+, respectively.
If the seismogenic region were steadily sliding at Vpl, the
shear stress there would be 17.2 MPa. This can be taken
as a measure of static friction, corresponding to the fric-
tion coefficient of 0.57. In regions where TP is not effi-
cient (ahy = 10−2 m2/s), tz differs from that value only
modestly (Figure 9a and the region given by −17.5 km <
x < −2.5 km in Figures 10a, 10b, and 10c). For smaller
ahy, the corresponding regions experience larger slip and
stress drop, and the interseismic shear stress decreases
(Figure 9b; the region given by 2.5 km < x < 17.5 km in
Figures 10a, 10b, and 10c), to values as low as 5 MPa or
the equivalent friction coefficient of 0.17. For sufficiently
low hydraulic diffusivities, the decrease is large enough to
stop several ruptures propagating from the left patch of
higher hydraulic diffusivity. After such smaller events
arrest, stress concentrations are left ahead of the arrested
rupture front (red vertical streaks in the region given by
2.5 km < x < 17.5 km in Figures 10a, 10b, and 10c),
which persist throughout the interseismic period.
[49] Previous studies [e.g., Bizzarri and Cocco, 2006b]

showed that more efficient thermal pressurization causes
larger slip and thus larger stress drop, by conducting si-
mulations of dynamic rupture propagation with prescribed
initial conditions on the fault. We would like to emphasize
that our study is substantially different. In simulations of a
sequence of earthquakes, as we conduct here, the initial
conditions for each dynamic event are determined by the
simulation itself based on prior behavior of the model. We
are investigating the entire source process for the sequence
of earthquakes, and the effect of thermal pressurization is
discussed in that context.
[50] Note that the distribution of shear stress before a

typical dynamic event (aside from several initial events) is
quite different from what is often assumed (e.g., steady
state sliding or uniform background shear stress) in single‐
rupture calculations with heterogeneous fault properties.
This point highlights the importance of studying the
effect of fault heterogeneity in the context of earthquake
sequences.
[51] In our model, the shear stress in the patch of lower

ahy remains lower even before events that span the entire
seismogenic region, because of its ability to sustain rupture
propagation at low prestress. Previous studies [Perrin et al.,
1995; Zheng and Rice, 1998; Lapusta and Rice, 2003; Noda
et al., 2009; Rice et al., 2009] also focused on propagation
of ruptures at low shear prestress compared to the static
strength of rocks in the laboratory. Such low shear prestress
can be inferred for natural faults, for example, from the
measurements of the principal stress directions at boreholes
around the San Andreas fault [Hickman and Zoback, 2004;
Townend and Zoback, 2004]. Our simulations show that
dynamic fault weakening indeed determines the level of
long‐term shear stress acting on a fault.

Figure 10. Distribution of shear stress tz(x, z = 0, t)
along the middepth of the fault plotted every year for the
cases of Figure 7, with ahy− = 10−2 m2/s and (a) ahy+ =
10−3, (b) 10−4, and (c) 10−5 m2/s. Locally efficient TP lowers
intersesmic shear stress there. For the case of the strongest
heterogeneity in ahy, (Figure 10c), the interseismic shear
stress in the less permeable region is as low as 5MPa, which is
several times lower than static friction, by which we mean the
low‐velocity friction resistance of the fault.
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4.4. Complexity of Individual Earthquakes

4.4.1. Characteristics of Model‐Spanning Events
[52] By conducting earthquake sequence calculations that

resolve all inertial effects during each seismic event, we can
study not only long‐term fault behavior but also character-
istics of individual dynamic events consistent with long‐
term history of fault slip.
[53] To visualize propagation of typical model‐spanning

events, we plot (Figure 11) the corresponding snapshots of
coseismic slip rate distribution along the middepth of the fault
for the events indicated by arrows in Figures 5, 6, 7, 8, 9,
and 10. The evolution of slip rate becomes more complex
for cases with larger heterogeneity in hydraulic diffusivity.
In particular, we observe broadening of the area of active
slip in the right patch for cases with more efficient TP there.
This can be attributed to the backward rupture propagation
from the right patch to the left patch, after ruptures start to
achieve much larger slip in the right patch. Figure 11c
shows the backward rupture front in the event shown in
Figure 4 (first column) (the tenth event with ahy− = 10−2 m2/s
and ahy+ = 10−4 m2/s). The propagation is driven by the
stress concentration around the high‐slip region. While the

Figure 11. Snapshots of slip rate distribution, Vz(x, z = 0), in typical model‐spanning events, plotted
every 1 s, for cases with ahy− = 10−2 m2/s and (a) ahy+ = 10−2, (b) 10−3, (c) 10−4, and (d) 10−5 m2/s.
The events shown are marked in Figures 5–10. More efficient TP increases the final slip not by
increasing the maximum slip rate but by widening the slip pulse and causing backward rupture propa-
gation (Figures 11c and 11d). Also see Figure 4.

Figure 12. The source time function at a location (x =
−10 km and z = 0) that experiences both forward and
backward rupture fronts during this event. The amount of
slip due to the backward rupture is a significant fraction
of the total slip during this event.

NODA AND LAPUSTA: EARTHQUAKE SEQUENCE WITH TP B12314B12314

14 of 24



peak slip rate at this backward rupture front is much smaller
than the one for the forward rupture front (Figure 12), the
additional slip due to this backward propagation can be a
significant fraction of the total slip in some areas of the fault
(Figures 7c and 12). If such features occur in natural events,
then seismic inversions would need to assume quite a gen-
eral source time function (Figure 12) to accurately capture
the event kinematics.
[54] As shown in Figure 11, rupture speed varies locally

because of the heterogeneous prestress and the resulting
complex rupture process (see Figures 10c and 11d). Note
that Figure 11 shows rupture behavior along a section at
z = 0. As a result, the local rupture speed may appear to
exceed cs if rupture propagates obliquely to the middepth
plane. This occurs, for example, in two locations in the
case plotted in Figure 11d: near the nucleation, which is
off the middepth plane, and between x = 10 and 20 km.
[55] It is interesting to point out that the larger final slip

does not necessarily corresponds to the larger maximum
slip rate, when different events are compared. If we

compare slip rates in the region 0 < x < 20 km for the
events shown in Figure 11, the case of Figure 11d has the
smallest peak slip rates there but the largest final slip
(Figures 5 and 7).
[56] As discussed in section 4.2, the rate‐and‐state

weakening (i.e., the evolution of the state variable �) is the
dominant weakening mechanism at the rupture front in the
cases presented in this study. Figure 13 represents tz as a
function of dz at x = 10 km, with circles and crosses indi-
cating initiations and terminations of dynamic events. A
sharper drop in tz at the rupture front due to rate‐and‐state
weakening is followed by the more gradual weakening due
to TP, if the latter is efficient. More efficient TP produces
more significant dynamic weakening as well as larger slip
[e.g., Andrews, 2002; Bizzarri and Cocco, 2006b; Noda
et al., 2009].
[57] Note that, in the seismogenic region, most of the slip

and thus heat is generated coseismically. The area below the
curves in Figure 13 represents the local heat generation,
which is clearly smaller for cases with more efficient TP.

Figure 13. Shear stress tz as a function of slip dz at the fault location given by x = 10 km and z = 0, for
the cases with ahy− = 10−2 m2/s and (a) ahy+ = 10−2, (b) 10−3, (c) 10−4, and (d) 10−5 m2/s. Circles and
crosses mark the initiation and termination of model‐spanning events. More efficient TP produces larger
slip and a longer apparent slip‐weakening distance, as pointed out by Rice [2006].
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This indicates that efficient TP may explain low heat gen-
eration along mature faults such as San Andreas [e.g.,
Lachenbruch, 1980].
4.4.2. Different Locations of Maximum Slip
and Maximum Temperature Increase
[58] Intuitively, one would expect that the maximum

temperature increase along seismogenic faults would occur
at the locations of the largest slip, based on models in which
the fault strength does not vary appreciably with the fault
slip. In our models with heterogeneous hydraulic diffusivity,
the highest slip is reached at the locations with the lowest
stress, and hence it is not clear what the relation between the
slip and the temperature increase would be. To understand
that relation, we plot (Figure 14) snapshots of the temper-
ature T(x, z = 0) and the effective normal stress se(x, z = 0)
during the same events as in Figure 11. Indeed, we find that
if the heterogeneity in ahy is strong enough, the maximum
temperature rise during a model‐spanning event is achieved
between the patches (at slightly negative x), and not in the
patch with more efficient TP which produces larger slip. As
indicated by the series of snapshots in Figures 14c and 14d,
the backward rupture propagation discussed in section 4.4.1
significantly contributes to the temperature increase in the
region of less efficient TP. For the cases with ahy− =

10−2 m2/s and ahy+ = 10−2 and 10−3 m2/s, the distribu-
tion of T is more or less uniform in the ruptured area.
[59] Such distribution of the temperature increase can be

explained if we consider both the slip distribution and fault
weakening. If ahy+ = 10−2 m2/s, the decrease in the effective
stress due to the build up in pore pressure p is at most about
0.1 of se0 (Figure 14a). For smaller ahy, p increases, and
hence the effective normal stress decreases, more signifi-
cantly (Figures 14b, 14c, and 14d). The more significant
dynamic weakening causes larger slip but their combination
results in smaller heat generation as discussed in section
4.4.1, and hence smaller temperature increase. The slip
associated with the backward rupture propagation, while
much smaller, causes a comparable temperature increase due
to much higher fault resistance.
[60] Note that a thinner shear zone (smaller w) would

cause a higher temperature rise. Figure 15 shows the
sequence of earthquakes and the temperature rise during
one of the model‐spanning events (indicated by an arrow
in Figure 15a) for the case with ahy− = 10−2 m2/s, ahy+ =
10−4 m2/s, and w = 5 mm. The maximum temperature rise
in this case is higher than 1000 K which should cause
melting. Since the fault constitutive law assumed in this
work does not incorporate melting, we have chosen the

Figure 14. Snapshots of the temperature increase T(x, y = 0, z = 0) and effective normal stress se(x, y = 0,
z = 0) every 1 s during the model‐spanning events marked in Figures 5a, 6a, 7, 8, 9, and 10. The location of
the maximum temperature increase does not have the maximum slip. This is because the maximum slip
occurs in the region with lower se (see Figure 7).
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size of the fault, the effective normal stress for p = 0, and
the width w of the shear zone so that the maximum tem-
perature never reaches 1000 K in our simulations.

4.5. Earthquake Nucleation in the Region of Less
Efficient TP

[61] Segall and Rice [2006] investigated the effect of TP
on rupture nucleation, showing that efficient TP promotes
nucleation by decreasing the nucleation size (or the critical
stiffness). The critical stiffness for the undrained and adia-
batic limit is given by [Segall and Rice, 2006]

kuaw ¼ �e
b� a

L
þ L
�c

ffiffiffiffiffiffi
2�

p
w


 �
; ð42Þ

where (b − a) > 0. With our selection of the physical
properties, the second, TP‐related, term in equation (42)
increases the critical stiffness by the factor of 2.5 in com-
parison with the one for the standard rate‐and‐state friction,
which is se(b − a)/L. Note that equation (42) is derived
assuming no diffusion of heat or pore pressure from the fault
and hence provides an upper bound for the effectiveness of
TP in assisting the nucleation.

[62] We find that all seismic events in our model nucleate
in the patch with higher hydraulic diffusivity and hence less
efficient TP. This is because that patch has higher inter-
seismic shear stress, while the study of Segall and Rice
[2006] assumed uniform initial conditions. Seismic events
in our model nucleate close to the creeping, velocity‐
strengthening zones. During interseismic period, creeping
motion penetrates into the seismogenic patches (Figure 4,
bottom row), driven by the stress concentration at its tip. If
the width of the region creeping within the seismogenic
zone becomes comparable to the nucleation size, slip
accelerates into an earthquake as shown in Figure 4 (top
row). The penetration of creeping motion takes place in both
patches, but its width is typically narrower in the patch of
lower ahy than in the patch of higher ahy (Figure 4, bottom
row), due to the different levels of the interseismic shear
stress in the two patches (Figure 10). That is why, despite
the smaller nucleation size in the patch with more efficient
TP, the simulated earthquakes in our model always nucleate
in the patch with less efficient TP, as the latter has higher
interseismic stress.
[63] Since there is some penetration of creep into the

region of more efficient TP as well, it may be possible to
achieve earthquake nucleation there for a different set of the
hydraulic properties that promote nucleation even more.
However, such changes in hydraulic properties may lead to
other changes, such as even lower interseismic stress in that
region. Further parameter study in the context of earthquake
sequences is required to systematically address this problem.
[64] Note that in all simulations so far, the initial per-

turbation in stress was positioned so that the first event
initiates in the left patch, which has less efficient TP in the
cases with heterogeneous hydraulic properties. This is also

Figure 15. (a) Slip accumulation and (b) temperature rise
during one of the model‐spanning event in the case with
ahy− = 10−2 m2/s, ahy+ = 10−4 m2/s, and w = 5 mm. A thin-
ner shear zone causes larger temperature rise, which would
cause melting.

Figure 16. Slip accumulation on the fault with the same
properties as those in the case of Figure 7c (ahy− =
10−2 m2/s, ahy+ = 10−3 m2/s) but with the initial stress
perturbation located in a different place (centered at x =
10 km and z = −5 km, versus x = −10 km and z = −5 km
in the case of Figure 7c). The first event nucleates in the
patch with more efficient TP because of the modified
initial condition, but the following ones nucleate in the
patch with less efficient TP, as in all previous cases.
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the preferred location for all subsequent events. Hence we
need to check that the location of the initial stress per-
turbation does not effect our conclusions about nucleation
locations. Figure 16 presents a sequence of earthquakes
with ahy− = 10−2 m2/s, ahy+ = 10−3 m2/s, and the initial
stress perturbation centered at x = 10 km and z = −5 km. The
first event indeed nucleates in the right patch, responding to
the initial stress distribution. However, all subsequent events
still nucleate in the left patch, as before, demonstrating that
the preferred location of nucleation in our model is indeed
the effect of heterogeneous ahy, and the associated hetero-
geneity in the interseismic shear stress, and not the effect of
the initial stress condition.
[65] As a side note, in the cases with ahy− = ahy+, there is

no heterogeneity and yet events keep nucleating at the same
side of the fault as the first nucleation due to the initial stress
perturbation. This is because ruptures accelerate and cause
slightly larger slip and stress drop away from the nucleation
region, due to inertial effects, even for the fault with the
uniform physical properties. This is why the side of the fault
that nucleates a seismic event has more favorable stress
before the next seismic event, keeping the nucleation on the
same side of the fault.

5. Conclusions

[66] We have developed a methodology for simulating
earthquake sequences that accounts for the evolution of
temperature and pore pressure on the fault due to frictional
heating, including 1‐D diffusion off the fault. The diffusion
equations for temperature and pore pressure are integrated in
time using a spectral method with a Fourier basis. This
newly developed diffusion solver is unconditionally stable
and computationally affordable. It is highly suitable for
earthquake sequence simulations in which time steps are
taken adaptively and vary by orders of magnitude. The
methodology continues to account for inertial effects during
seismic events, as in prior studies [Lapusta and Liu, 2009].
We have proposed several improvements in the numerical
integration scheme.
[67] The effect of heterogeneous hydraulic diffusivity on

long‐term fault behavior and features of individual events
have been examined by simulating the interaction of two
fault patches. If the two patches have the same properties,
the model behavior is simple, with only one characteristic
model‐spanning event. The earthquake sequences become
more complex as heterogeneity in hydraulic diffusivity,
motivated by field and laboratory measurements, is intro-
duced. The patch with the more efficient thermal pressuri-
zation experiences larger coseismic slip when it ruptures,
due to dynamic weakening. It does not rupture in every
event and maintains much lower interseismic stress than the
static frictional strength. The slip deficit in the other patch is
filled with more frequent smaller events.
[68] In model‐spanning events, the highest temperature

increase does not occur in the area of the largest slip, as one
would intuitively expect based on models in which there is
no substantial dynamic weakening. The largest slip is
experienced by the region with the more efficient thermal
pressurization, and hence much of slip there occurs at a low,
dynamically weakened, value of shear stress. This limits the
temperature increase there in comparison with the fault areas

right next to the area of the largest slip, which have some-
what lower slip but much higher shear stress. It is these
areas, right next to the region of more efficient thermal
pressurization, that experience the largest temperature
increase. The temperature increase is further promoted there
by backward rupture propagation, which occurs due to stress
concentration caused by the area of rapid large slip. One of
the implications is that if the hydraulic properties are het-
erogeneous along a fault, with some areas efficiently
weakening during a large seismic event while the neigh-
boring regions maintain relatively high friction resistance, it
is possible that those neighboring regions would experience
fault melting.
[69] We find that the dynamic events persistently nucleate

in the patch of less efficient thermal pressurization, despite
the fact that the theoretical estimate of the nucleation size is
larger in that region [Segall and Rice, 2006]. This is because
the interseismic shear stress there is much higher. We cannot
exclude that the earthquake locations may change for a
different parameter regime. In general, there would be a
competition between the level of interseismic shear stress,
which is higher inregions of less efficient pore pressuriza-
tion, and the nucleation size, which is larger there and hence
more difficult to achieve. However, one observation pro-
vides a hint that natural faults may also tend to have
nucleation in places of less efficient TP. In our models,
earthquake hypocenters are away from areas of the largest
slip, since the hypocenters occur in the patch with less
efficient TP and the largest slip occurs in the patch with
more efficient TP. Such difference in the location of the
hypocenters and areas of largest slip is also true for many
earthquakes [see Manighetti et al., 2005, Figure 12].
[70] The result on the nucleation locations highlights the

importance of considering the effect of heterogeneity in fault
properties on fault slip in the context of long‐term simula-
tions. This is because the heterogeneity eventually results in
characteristic features of stress state on the fault, and it is the
combination of the heterogeneous strength and stress that
determines the fault behavior. This effect cannot be captured
in considerations of a single nucleation instance or a single
dynamic rupture on a heterogeneous fault.
[71] The methodology developed in this work provides an

important tool for studies of relatively realistic coseismic fault
behavior, with substantial physically motivated dynamic
weakening and its interaction with fault heterogeneity and
aseismic slip. An important next step would be to incorporate
other known mechanisms that affect fault resistance to slip,
such as melting [Sirono et al., 2006; Nielsen et al., 2008],
reaction‐related pore pressurization [Sulem and Famin,
2009], temperature dependency of the conventional rate‐
and state‐dependent friction law [Chester, 1994; Blanpied
et al., 1998; Noda, 2008], and flash heating [Rice, 1999,
2006; Beeler et al., 2008; Noda, 2008; Bizzarri, 2009].

Appendix A: Diffusion Solver

[72] Here we present a detailed error analysis of the dif-
fusion solver presented in section 2.3. The test problem
considered here is the same as in section 2.2, the diffusion
response equation (19) of a quantity Q to a constant co-
seismic heat input (19). Our spectral method has three
numerical parameters, lmax, lmin, and Dln(l). As discussed in

NODA AND LAPUSTA: EARTHQUAKE SEQUENCE WITH TP B12314B12314

18 of 24



section 2.2, we adopt lmax = 10/w because the contribution
from the components with ∣l∣ > 10/w is well below the
round‐off error of the double precision. Here we explore
the effect of the other two parameters, lmin and Dln(l).
Figure A1 compares the numerical and analytical solu-
tions by plotting their difference on the fault (y = 0),
∣Qnum(0, t) − Qana(0, t)∣, normalized by the maximum
coseismic value of Q, Qana(0, Dtmin), for a range of values
of lmin (Figure A1a) and Dln(l) (Figure A1b), Different
parameter values are indicated by Nl, the number of dis-
cretization points between lmax and lmin. For reference, we
plot Qnum(0, t) = 0 (black line) to show how the error would
look if the numerical solution were identically zero at all
times. As lmin decreases, the difference between the
numerical and analytical solutions decreases, and the dif-
ference stays smaller for a longer time. As Dln(l) decreases,
the difference (numerical error) also decreases, but the
decrease eventually saturates. This is because Qana(0, t) can
be approached only by decreasing both lmin andDln(l) at the
same time, but lmin is kept constant in Figure A1b. The

virtue of the method used in this study is the exponential
convergence. As Figure A1b shows, the numerical error
decreases exponentially due to a linear increase in Nl.
[73] Based on this parameter study, we choose Dln(l) =

0.3 and Nl = 60, which corresponds to lmin = 2.06 × 10−7/w.
The comparison between the analytical and numerical so-
lutions for this case is shown in Figure 2. The chosen
parameters correspond to numerical error well below 10−6

of the coseismic values. Q here stands for either tem-
perature T or combination of temperature and pore pres-
sure (p + L′T). The coseismic temperature rise is of the
order of 100 K which corresponds to pore pressure rise of
the order of L′ × 100 K = ath/(ahy − ath)10 MPa. This is
much smaller than 10 MPa because ahy is larger than ath

by orders of magnitude in this study. The coseismic pore
pressure rise is at most 30 MPa. Hence the relative error
of 10−6 in either of those quantities would affect stress
with values of order of 10 Pa, which is comparable to the
accuracy of out Newton‐Raphson method. There, we
choose 10−6 as relative error in stress.

Appendix B: Comparison of Stability Between
Two Integration Procedures for the State
Variable Evolution

[74] In this work, we use a different numerical inte-
gration of the state variable evolution than the one in
Lapusta et al. [2000] and Lapusta and Liu [2009]. Here
we study the difference in the stability between the two
time‐integration schemes by considering which one would
allow us to take larger time steps in a numerically stable
way. For VDt/L > 10−6, our numerical integration of the state
evolution is based on a constant value of V throughout the
time step:

� tnþ1ð Þ ¼ �ss V tnð Þð Þ þ � tnð Þ � �ss V tnð Þð Þð Þe �V tnð ÞDt
Lð Þ; ðB1Þ

while Lapusta et al. [2000] used the approach based on
constant _�,

� tnþ1ð Þ ¼ � tnð Þ þ V tnð ÞDt

L
�ss V tnð Þð Þ � � tnð Þð Þ: ðB2Þ

Lapusta et al. [2000] noted that one way to constrain
numerical time steps is to consider linearized stability of
steady sliding of the discretized system and, in particular, of
perturbed motion of a single cell while the other cells con-
tinue steady sliding at a given slip rate. If the grid is properly
refined, then the perturbation on a single cell dies away.
Demanding that the time discretization preserves this prop-
erty, we get a condition for the size of the time step allowed.
The equation of motion for the single cell is equivalent to
that for a spring‐slider system, with the spring stiffness
representing the effective elastic stiffness of the cell.
Lapusta et al. [2000] conducted such analysis for the
quasi‐static motion and integration scheme (B2). Here we
perform such analysis for both integration schemes, (B1)
and (B2), and for both quasi‐static and quasi‐dynamic
situations.

Figure A1. Comparison between the analytical solution to
the test problem and the numerical solution based on the dif-
fusion solver developed in this study. The difference
between the two solutions is normalized by the maximum
analytical value of the diffusing quantity Q.
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[75] After linearization around a steady state solution
with V = Vss and nondimensionalization using L as the
characteristic length, Vss as the characteristic velocity, and
ase as the characteristic stress, the rate‐and‐state friction
law becomes

~� ¼ ~V þ �~�;

~� 0 ¼ �~V � ~�;

ðB3Þ

where ∼ denotes nondimensional quantities, b = b/a,
and ′ represents the derivative with respect to the nondi-
mensional time, tVss/L. The equation of motion for the
quasi‐static spring‐slider model is

� ¼ K Vsst � ð Þ; ðB4Þ
where K is the spring constant. The linearized and non-
dimensional form of this equation is

~� ¼ ��~; ðB5Þ

where � = KL/ase. Time evolution of slip ~ is given by

~ 0 ¼ ~V : ðB6Þ

Numerical integration from tn to tn+1, over the nondimen-
sional time step D~t (= dtVss/L), yields

~nþ1

~�
sl
nþ1

( )
¼ 1� �D~t ��D~t

�D~t 1þ � � 1ð ÞD~t


 � ~n
~�n

( )
¼ Qsl D~tð Þ

~n
~�n

( )
:

ðB7Þ

based on equation (B2) [Lapusta et al., 2000] and

~nþ1

~�
sa
nþ1

( )
¼ 1� �D~t ��D~t

�D~t 1þ � � 1ð ÞD~t


 � ~n
~�n

( )
¼ Qsa D~tð Þ

~n
~�n

( )
;

ðB8Þ

based on equation (B1), where D~t = 1 − e−D~t and the
superscripts sl and sa refer to the two state variable inte-
gration schemes. If the maximum absolute value of the
eigenvalues of Qsl (D~t) or Qsa (D~t) is smaller than 1,
then the perturbation on the single cell decays in the
discretized case, just as we would expect in the contin-
uous model. This gives a necessary condition to choose a
proper D~t for numerical stability [Lapusta et al., 2000].
This quasi‐static analysis is relevant to the stability of
steady state sliding at low enough slip rates for the
inertial effects to be negligible.
[76] Now let us formulate a one‐degree of freedom model

for the quasi‐dynamic case,

� ¼ K Vsst � ð Þ � 
V ; ðB9Þ

which can be thought of as a spring‐slider‐dashpot model.
This model is relevant to steady state sliding at slip rates
high enough for the radiation damping term to be important
(e.g., behind the front of a crack‐like rupture, where slip
often occurs nearly in steady state). The linearized equation
of motion can be written as

~� ¼ ��~ � � ~V ; ðB10Þ

where z = hVss/ase. The evolution of perturbations based on
equations (B1) and (B2) are now given by

~nþ1

~�
dl
nþ1

( )
¼

1� �D~t
1þ �

� �D~t
1þ �

�D~t
1þ �

1þ �

1þ �
� 1

� �
D~t

2
664

3
775 ~n

~�n

� �

¼ Qdl D~tð Þ ~n
~�n

� �
; ðB11Þ

and

~nþ1

~�
da
nþ1

( )
¼

1� �D~t
1þ �

� �D~t
1þ �

�D~t
1þ �

1þ �

1þ �
� 1

� �
D~t

2
664

3
775 ~n

~�n

� �

¼ Qda D~tð Þ ~n
~�n

� �
; ðB12Þ

respectively.
[77] To compare the values of D~t that separate the

growing and decaying behaviors of the perturbations, D~tcr,
for the two state variable integration schemes, we use the
same the physical parameters and spatial grid size as in our
simulation examples (section 4), which combine to give the
following parameters: b = b/a = 1.4, � = pmL/4hase = 5.23,
and ase/h = 0.06 m/s. The results, for both quasi‐static and
quasi‐dynamic analyses, are plotted in Figure B1 as a

Figure B1. Stability criteria for numerical integration of
quasi‐static (dashed lines) and quasi‐dynamic (thin solid
lines) spring‐slider models based on constant state evolution
rate (gray lines) and constant slip rate (thin black lines). The
choice of time stepping used in this work is indicated by a
dot‐dashed thick black line. Time integration scheme based
on constant slip rate is more stable at coseismically high slip
rates in terms of D~t.
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function of z. Note that the quasi‐static case based on
constant _� allows for an analytical solution which was given
by Lapusta et al. [2000]. We compute solutions for the other
three cases numerically. The quasi‐static analysis does not
depend on z, and hence the results are given as straight
horizontal lines. The two integration schemes are compa-
rable in the quasi‐static case, although the scheme based on
the constant rate of state variable (Qsl) is slightly superior, in
that it results in the slightly lower value of D~tcr. Note that
this is not the case for all parameter choices; for example,
for a sparser spatial grid, with h = 100 m instead of 60 m,
the scheme based on the constant slip rate (Qsa) becomes
more stable (this result is not plotted). At slip rates low
compared to z = 1 or Vss = 0.06 m/s, there is little difference
between the quasi‐static and quasi‐dynamic analyses, as
should be the case, since the inertial effects are not impor-
tant for such slip rates.
[78] As the slip rates (and hence z) increase, the stability

region in terms of D~t expands for both schemes in the
quasi‐dynamic analysis, but there is a significant difference
between the two schemes. At coseismically high slip rates
(e.g., z = 100 or Vss = 6 m/s), D~tcr is more than 1 order of
magnitude larger for the scheme based on the constant slip
rate (Qda) than for the other scheme (Qdl). At the limit of an
infinitely large slip rate, we get

lim
�!1

Qdl D~tð Þ ¼ 1 0
0 1�D~t


 �
; ðB13Þ

and

lim
�!1

Qda D~tð Þ ¼ 1 0
0 1�D~t


 �
: ðB14Þ

Since 0 < D~t < 1, Qda approaches an unconditionally stable
operator. This is a very useful feature to have in dynamic
rupture simulations, where slip rates at rupture tips can
briefly reach very high values. While our analysis is not
fully applicable to that case, as it considers perturbations
from steady state sliding, this is still an encouraging result.
[79] The adaptive time step (equation (39)) that we

employ in this work is indicated by a dot‐dashed thick black
line in Figure B1. Note that the line is within the stable
region for both integration schemes, up until slip rates of the
order of 0.6 m/s (z = 10). For higher slip rates, the time
stepping used is within the stable regime for the scheme
based on constant slip rate used in this work but not the
other scheme.

Appendix C: Second‐Order Accuracy of the State
Variable Integration

[80] Lapusta et al. [2000], Lapusta and Liu [2009], and
the present work use different methods of integrating �.
Consider the following updating methods:

� t̂ þDt̂ð Þ ¼ � t̂ð Þ þ VcDt̂

L
�ss Vcð Þ � �cð Þ; ðC1Þ

� t̂ þDt̂ð Þ ¼ �ss Vcð Þ þ � t̂ð Þ � �ss Vcð Þð Þe �VcDt̂
Lð Þ; ðC2Þ

and

� t̂ þDt̂ð Þ ¼ � t̂ð Þ þ VcDt̂

L
�ss Vcð Þ � � t̂ð Þð Þ: ðC3Þ

Lapusta et al. [2000] used equation (C1), Lapusta and Liu
[2009] used either equations (C2) or (C3), depending on the
value ofV�/L, and the present work uses either equations (C1)
or (C2). Appendix C shows that the integration scheme after
two iterations is second‐order accurate for equations (C1) or
(C2) but not for equation (C3).
[81] Let us assume that there exist smooth exact solutions,

Vex(t) and �ex(t), to which our numerical solutions should
converge as time steps decrease. Vex and �ex satisfy

d�ex
dt

tð Þ ¼ Vex tð Þ
L

�ss Vex tð Þð Þ � �ex tð Þð Þ: ðC4Þ

Without loss of generality, let us consider integrating � from
t = 0 to t = Dt given the initial conditions, Vex(0) = Vi and
�ex(0) = �i. Vex(Dt) is represented by

Vex Dtð Þ ¼ Vi þ AiDt þ o Dt2
� �

; ðC5Þ

where Ai is the initial acceleration. �ex(Dt) is represented by

�ex Dtð Þ ¼ �i þ Vi

L
�ssi � �ið ÞDt þ 1

2



Ai

L
�ssi � �ið Þ þ ViAi

L
�ssi
0

� V 2
i

L2
�ssi � �ið Þ

�
Dt2 þ o Dt3

� �
: ðC6Þ

where �ssi = �ss(Vi) and �′ssi = �′ss(Vi).
[82] The two‐iteration scheme used in this work is as

follows.
[83] 1. From the initial value �(0) = �i, advance time byDt

using Vc = Vi and �c = �i. The result is denoted �*(Dt).
[84] 2. From the initial value �(0) = �i, advance time by

Dt/2 using Vc = Vi and �c = �i. Let us denote the result
by �1/2.
[85] 3. From the initial value �(Dt/2) = �1/2, advance time

by Dt/2 using the first predictions of V and � at t = Dt,
which are V*(Dt) and �*(Dt). The results are denoted by
�**(Dt) and adopted as the value at the time t = Dt.
[86] Let us assume that the computation of the functional

term and the Newton‐Raphson search is accurate enough so
that V*(Dt) is first‐order accurate:

V* Dtð Þ ¼ Vi þ AiDt þ o Dt2
� �

: ðC7Þ

If �**(Dt) is calculated using equations (C1)–(C3),
equations (C1) and (C2) result in

�** Dtð Þ ¼ �i þ Vi

L
�ssi � �ið ÞDt þ 1

2



Ai

L
�ssi � �ið Þ þ ViAi

L
�ssi
0

� V 2
i

L2
�ssi � �ið Þ

�
Dt2 þ o Dt3

� �
: ðC8Þ

Comparing with the expansion of the exact solution,
equation (C6), we conclude that the schemes equations (C1)
and (C2) are second‐order accurate in the adopted two‐
iteration scheme. However, equation (C3) yields

�** Dtð Þ ¼ �i þ Vi

L
�ssi � �ið ÞDt þ 1

2

Ai

L
�ssi � �ið Þ



þ ViAi

L
�ssi
0
�
Dt2

þ o Dt3
� �

; ðC9Þ

NODA AND LAPUSTA: EARTHQUAKE SEQUENCE WITH TP B12314B12314

21 of 24



which is only first‐order accurate approximation to
�ex(Dt).

Appendix D: Comparison of Two Numerical
Schemes With Different Storage for Computing
Convolutions

[87] Previous studies [Lapusta et al., 2000; Lapusta and
Liu, 2009] stored the values ( _D**(tn) + _D*(tn+1))/2 as the
history for tn < t < tn+1, for use in computing dynamic stress
transfers. This work uses ( _D**(tn) + _D**(tn+1))/2. Here we
compare the performance of the two algorithms using a 2‐D
dynamic rupture simulation problem TPV205‐2D defined
by the SCEC/USGS Spontaneous Rupture Code Verifica-
tion Project [Harris et al., 2009].
[88] In the problem, a 2‐D in‐plane dynamic rupture pro-

pagates on a 30‐km long fault governed by a linear slip‐
weakening law. The fault prestress is heterogeneous, as
shown in Figure C1a. Letting x be a coordinate along the
fault, the initial shear stress t0 is 81.6 MPa for −1.5 km < x <

1.5 km, 78 MPa for −9 km < x < −6 km, 62 MPa for 6 km <
x < 9 km, and 70 MPa otherwise. There are unbreakable
barriers at ∣x∣ = 15 km. The static and dynamic friction
strength is 81.24 MPa and 63 MPa, respectively, and the
slip weakening distance is 0.4 m. The P and S wave speeds
are 6000 m/s and 3464 m/s, respectively, and the density is
2670 kg/m3. The slip‐weakening rate is 45.6 MPa/m and
the quasi‐static cohesive zone size R0 is 828 m.
[89] Figures C1b, C1c, and C1d compare numerical

solutions for the slip rate history at x = −7.5 km obtained
in 3 different simulations. The very well‐resolved solu-
tion (green) uses h = 1.5625 (resulting in R0/h = 530) and
( _D**(tn) + _D**(tn+1))/2 for history storage. The other two
solutions (red and blue) use ( _D**(tn) + _D**(tn+1))/2 and
( _D**(tn) + _D*(tn+1))/2, respectively, with a much lower
resolution h = 200 m (R0/h = 4.1) which is comparable to
what is used in the main part of this study.
[90] Although the overall behavior is reasonably

resolved with R0/h = 4.1 by both algorithms (Figure C1b),
the one used in this study (with ( _D**(tn) + _D**(tn+1))/2

Figure C1. Comparison of numerical solutions with different approaches to convolution storage history.
(a) Distribution of initial shear stress and static and kinetic frictional resistance in a test problem,
TPV205‐2D [Harris et al., 2009]. (b) Numerical solutions for the slip rate history at x = −7.5 km with
different resolutions and choice of history to be stored, as explained in the text. (c and d) Close‐ups of the
solutions at the rupture front and tail, respectively.
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for history storage) performs better. First, the rupture
arrival is slightly earlier and closer to the well‐resolved
solution (Figure C1c). Second, numerical oscillations are
less significant (Figure C1d). Therefore, we conclude that
it is better to use ( _D**(tn) + _D**(tn+1))/2 for history
storage.
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