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Abstract

Understanding sub-Rayleigh-to-intersonic transition of mode II cracks is a fundamental problem in fracture

mechanics with important practical implications for earthquake dynamics and seismic radiation. In the Burridge–Andrews

mechanism, an intersonic daughter crack nucleates, for sufficiently high prestress, at the shear stress peak traveling with the

shear wave speed in front of the main crack. We find that sub-Rayleigh-to-intersonic transition and sustained intersonic

propagation occurs in a number of other models that subject developing cracks to intersonic loading fields. We consider a

spontaneously expanding sub-Rayleigh crack (or main crack) which advances, along a planar interface with linear slip-

weakening friction, towards a place of favorable heterogeneity, such as a preexisting subcritical crack or a small patch of

higher prestress (similar behavior is expected for a small patch of lower static strength). For a range of model parameters, a

secondary dynamic crack nucleates at the heterogeneity and acquires intersonic speeds due to the intersonic stress field

propagating in front of the main crack. Transition to intersonic speeds occurs directly at the tip of the secondary crack,

with the tip accelerating rapidly to values numerically equal to the Rayleigh wave speed and then abruptly jumping to an

intersonic speed. Models with favorable heterogeneity achieve intersonic transition and propagation for much lower

prestress levels than the ones implied by the Burridge–Andrews mechanism and have transition distances that depend on

the position of heterogeneity. We investigate the dependence of intersonic transition and subsequent crack propagation on

model parameters and discuss implications for earthquake dynamics.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding sub-Rayleigh-to-intersonic transition of mode II cracks is a fundamental problem in
fracture mechanics with important practical implications for earthquake dynamics and seismic radiation.
In this work, the word ‘‘intersonic’’ refers to speeds between the shear wave speed cs and the dilatational
wave speed cp, the range which is often called ‘‘supershear’’ in the geophysical literature. Large strike-slip
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earthquakes are dominated by in-plane sliding and some of their dynamics can be understood by considering
them as mode II cracks. Although average rupture speeds for earthquakes are sub-Rayleigh in general, seismic
data for several earthquakes points to intersonic propagation. Examples are 1979 Imperial Valley earthquake
(Archuleta, 1984; Spudich and Cranswick, 1984), 1992 Landers earthquake (Olsen et al., 1997), 1999 Izmit
earthquake (Bouchon et al., 2001), 2001 Kunlun earthquake (Bouchon and Vallée, 2003), and 2002 Denali
earthquake (Ellsworth et al., 2004). While this evidence is indirect, as it is obtained through analysis of seismic
data, it presents a compelling case that intersonic propagation and hence sub-Rayleigh-to-intersonic rupture
transition may occur during earthquakes.

Direct evidence for the possibility of spontaneous intersonic transition and propagation has been obtained
in the laboratory. Intersonic crack propagation of mode II cracks was observed on weak interfaces under
impact loading conditions (Rosakis et al., 1999; Rosakis, 2002). Needleman and Rosakis (1999) numerically
modeled those experiments and qualitatively reproduced their crack speed histories. Xia et al. (2004) reported
experimental observations of spontaneous sub-Rayleigh-to-intersonic transition of mode II cracks
propagating along a frictionally held homogeneous interface. Xia et al. (2005) experimentally observed a
change in rupture speed from sub-Rayleigh to intersonic along a bi-material interface.

Studies of sub-Rayleigh-to-intersonic transition have important practical implications. On the one hand,
understanding which parameters and conditions do, and do not, lead to intersonic rupture propagation in
models can help constrain properties and stress conditions on those faults where rupture speeds of large
earthquakes have been inferred. On the other hand, it is important to know which conditions can lead to
intersonic propagation on faults and how likely are intersonic ruptures to occur. This is because intersonic
ruptures can cause much stronger shaking far from the fault than subsonic ruptures can, as Mach fronts
generated by intersonic ruptures carry large stresses and particle velocities far from the fault (Bernard and
Baumont, 2005; Dunham and Archuleta, 2005; Bhat et al., 2007).

Theoretical and numerical studies of sub-Rayleigh-to-intersonic transition date back to Burridge (1973) and
Andrews (1976). Burridge (1973) considered a self-similar mode II crack and found that a shear stress peak
propagates with the shear wave speed cs in front of the crack. Andrews (1976) performed numerical
simulations of spontaneous crack propagation on a uniformly prestressed interface governed by a linear slip-
weakening law (Fig. 1a) in which friction linearly decreases from static friction strength ts to constant dynamic
friction strength td over a characteristic slip d0. This law implies a finite fracture energy given by 1

2
ðts � tdÞd0.

Andrews (1976) started with shear stress and slip distributions appropriate for a critical static crack under a
uniform far-field shear loading to and initiated a dynamic crack by slightly increasing shear stress along the
critical crack profile. The half length of the critical crack is given by (Andrews, 1976):

Lc ¼
1

pð1� nÞ
mðts � tdÞd0

ðto � tdÞ2
, (1)
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Fig. 1. (a) Linear slip-weakening friction law. G is the shear strength of the interface and d is slip (or relative displacement in shear) across

the interface. (b) A prescribed crack interface is embedded in an infinite, elastic, and homogeneous space. The main crack is initiated from

a region around x ¼ 0. This work considers interaction of the main crack with a region of heterogeneity that exists in front of the main

crack and may initiate a secondary crack. Depending on the model, the heterogeneity is a preexisting subcritical crack, a patch with higher

prestress, or a patch with lower static friction strength. When discussing crack tips and their speeds for both main and secondary cracks,

we always refer to crack tips that propagate in the direction of increasing x, or to the right in all figures, unless specified otherwise.
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where n is the Poisson’s ratio and m is the shear modulus. Lc is used as a reference length scale in this study,
to facilitate comparison with Andrews (1976) and subsequent studies. Andrews (1976) confirmed and
supplemented the findings of Burridge (1973) by demonstrating that a growing shear stress peak propagates
with the shear wave speed cs in front of the initially sub-Rayleigh crack and that the peak approaches
the limiting value tmax ¼ to þ Scritðto � tdÞ, Scrit ¼ 1:77, as the crack approaches the Rayleigh wave
speed cR. If tmax4ts, the shear stress peak reaches static friction strength during crack propagation,
and a daughter crack is initiated in front of the main crack. The daughter crack propagates with intersonic
speeds from its very beginning. This process of intersonic transition is often called the Burridge–Andrews
mechanism. Fig. 2 shows our simulation of this transition mechanism; the methodology is described in
Section 2.

The Burridge–Andrews mechanism has been observed in the laboratory (Xia et al., 2004) and provides a
plausible model for intersonic transition during earthquakes. The condition tmax4ts implies that, for given
friction properties, shear prestress to on the interface has to be large enough for intersonic transition to
occur, i.e., ðto � tdÞ=ðts � tdÞ41=ð1þ ScritÞ ¼ 0:36. Equivalently, the seismic ratio S defined as S ¼ ðts � toÞ=
ðto � tdÞ has to be smaller than the critical value, Scrit ¼ 1:77. If, for given friction properties, shear prestress to

is not large enough, no daughter crack nucleates, and the limiting rupture speed of the main crack is the
Rayleigh wave speed cR. Note that values of to only slightly larger than the limiting value would imply
transition to intersonic speeds at very large propagation distances, and larger values of to are needed for
smaller transition distances. For example, transition at the location x=Lc ¼ 13:5 requires prestress
ðto � tdÞ=ðts � tdÞ ¼ 0:53, which is the case shown in Fig. 2.

Since the pioneering work of Burridge (1973) and Andrews (1976), a number of theoretical and numerical
studies have addressed the issue of sub-Rayleigh-to-intersonic transition and/or intersonic propagation.
Significant advances have been made in understanding various theoretical aspects of crack propagation with
speeds larger than cR (e.g., Burridge et al., 1979; Freund, 1979; Broberg, 1994, 1995; Huang and Gao, 2001;
Samudrala et al., 2002; Antipov and Willis, 2003). In part, it has been established that cracks cannot
propagate with speeds in the interval ½cR; cs� due to energetic constraints, and that intersonic cracks in models
with finite tractions, constant fracture energy, and uniform prestress would tend to accelerate to the
dilatational wave speed cp. Gao et al. (2001) studied the transition of a sub-Rayleigh mode II crack to
intersonic speeds using both continuum and molecular dynamics simulations and showed that the two
approaches agree. Geubelle and Kubair (2001) analyzed numerically intersonic transition under mixed-mode
conditions and pointed out that transition from sub-Rayleigh to intersonic speeds can occur ‘‘through a
sudden acceleration of the tip of the main cohesive zone’’. The study of Geubelle and Kubair (2001)
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Fig. 2. (a) Shear stress distribution for a mode II crack spontaneously propagating on an interface governed by linear slip-weakening

friction. A peak in shear stress travels with the shear wave speed in front of the crack. The interface has uniform friction properties and

uniform prestress to given by ðto � tdÞ=ðts � tdÞ ¼ 0:53. (b) Rupture time along the interface, i.e., the time at which each point along the

interface first acquires non-zero speeds. A daughter crack appears in front of the main crack at the location x=Lc ¼ 13:5 and propagates

with intersonic speeds as described by the Burridge–Andrews mechanism. Here and in the text the word ‘‘intersonic’’ refers to speeds

between the shear wave speed cs and the dilatational wave speed cp. For lower prestress, the daughter crack would appear further along the

interface or not at all.
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considered relatively high prestress levels that would result in intersonic transition by the Burridge–Andrews
mechanism. It is likely that transition in their model is influenced by the crack initiation procedure as discussed
in Section 5.4. Recently, Festa and Vilotte (2006) and Shi et al. (2007) considered dependence of intersonic
transition and rupture mode on crack initiation; the former study used linear slip-weakening friction,
while the latter study used a law of a rate and state type. The importance of crack initiation is further
discussed in Section 5.4. Dunham (2006) proposed that transition distances for the Burridge–Andrews
mechanism can be obtained from the self-similar crack model by requiring that the daughter crack reaches a
critical size. The idea that an intersonic crack needs to reach a critical size before it can achieve
sustained intersonic propagation may help explain some of our results as discussed in Section 5.1. Intersonic
transition in 3D models of earthquake rupture, in some cases in the presence of heterogeneities, have
been studied numerically by a number of researchers (e.g., Day, 1982a,b; Madariaga and Olsen, 2000;
Fukuyama and Olsen, 2002; Dunham et al., 2003). In particular, the 3D model of Fukuyama and Olsen
(2002) included an asperity of higher prestress, as we consider in one of the models in this study. Differences
between 2D and 3D models are discussed in Section 5.6. A number of studies addressed the issue of intersonic
rupture speeds in a bi-material configuration, where the interface separates two different elastic materials
(e.g., Harris and Day, 1997; Cochard and Rice, 2000; Adams, 2001; Ranjith and Rice, 2001; Shi and Ben-Zion,
2006).

In this work, we take a broader look at the Burridge–Andrews mechanism and find, through numerical
simulations of spontaneous crack propagation, that sub-Rayleigh-to-intersonic transition occurs in a number
of models where a crack is subjected to an intersonic loading stress field. The Burridge–Andrews mechanism
falls under that category, as a daughter crack initiates at the location of the shear stress peak and finds itself
under the influence of the stress field of the advancing main crack. That stress field creates intersonic loading
in front of the shear stress peak (Appendix A). We consider interaction of an advancing mode II crack (main
crack) with a location susceptible to nucleation of a secondary dynamic crack (Fig. 1b), such as a preexisting
subcritical crack, a patch of higher prestress, or a patch of lower static strength. Such locations are called
collectively by ‘‘favorable heterogeneity’’ in this work. For a range of parameters, a secondary dynamic crack
initiates at the location before the shear stress peak arrives, acquires intersonic speeds, and maintains
intersonic propagation for large distances. We call the crack secondary to reserve the term ‘‘daughter’’ for
cracks that initiate at the location of the shear stress peak in front of the main crack in the absence of
preexisting heterogeneity. Our results show, in part, that nucleating a daughter crack at the shear wave peak, a
feature that propagates with the shear wave speed, is not essential for the subsequent intersonic propagation of
the daughter crack.

The main findings of this study are: (1) Crack tips can abruptly jump from speeds approaching the Rayleigh
wave speed cR to an intersonic speed csp, csocspocp. This is different from the Burridge–Andrews mechanism,
in which the daughter crack is intersonic from its very beginning. (2) Intersonic rupture transition can be
achieved and subsequent intersonic crack propagation can be maintained under background prestress levels
that are lower than the ones predicted by the Burridge–Andrews mechanism. (3) Transition lengths depend, in
our models, on the position of favorable heterogeneities, as the secondary crack acquires sustained intersonic
speeds close to that position. (The intersonic transition length is defined here as the distance between the
location of the main crack initiation and the location of intersonic transition.) Observations of transition
lengths in earthquakes are sometimes interpreted using the Burridge–Andrews mechanism to infer parameters
of fault friction (e.g., Xia et al., 2004). If intersonic transition is governed by presence of heterogeneities as
considered in this work, such inferences may be misleading. These and other findings and their implications
are further discussed in Section 5.

2. Methodology

We consider a mode II plane-strain shear crack propagating along a planar interface y ¼ 0 embedded
in an infinite, linear elastic, and homogeneous space (Fig. 1). The direction of crack propagation and slip
(or relative displacement in shear) dðx; tÞ is denoted by x. The Poisson’s ratio n is chosen to be 0.25,
so that cR ¼ 0:92cs and cp ¼

ffiffiffi
3
p

cs. The crack interface is governed by a linear slip-weakening friction
law, in which its shear strength G linearly decreases from its static value ts to its dynamic value td over
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a characteristic slip d0:

GðdÞ ¼
td þ ðts � tdÞð1� d=d0Þ; dpd0;

td; d4d0:

(
(2)

ts and td can be thought of as products of constant in time compressive normal stress sðxÞ and static and
dynamic friction coefficients, respectively. ts and td are uniform in space for cases described in this study.
Section 5 contains a comment about models with a patch of lower static friction strength ts.

Rupture propagation is numerically calculated using the spectral boundary integral method (e.g., Perrin
et al., 1995; Geubelle and Rice, 1995; Lapusta et al., 2000). The main idea of the method is to confine the
numerical consideration to the interface plane, by expressing the elastodynamic response of the surrounding
elastic media in terms of integral relationships between slip and traction on the interface. In our 2D model,
shear traction tðx; tÞ on the interface y ¼ 0 can be expressed as the sum of ‘‘loading’’ traction tlðx; tÞ that
would act on the interface in the absence of any displacement discontinuity (i.e., slip) plus additional terms due
to time-dependent slip dðx; tÞ on the interface, in the form:

tðx; tÞ ¼ tlðx; tÞ þ f ðx; tÞ �
m
2cs

V ðx; tÞ, (3)

where f ðx; tÞ is a functional of slip history on the interface and V ðx; tÞ ¼ qdðx; tÞ=qt is slip velocity. As f ðx; tÞ is
obtained analytically through a closed-form Green function, boundary integral methods can be considered
semi-analytical and tend to be more accurate than other numerical approaches such as finite difference
methods (e.g., Day et al., 2005). f ðx; tÞ is related to dðx; tÞ and history of V ðx; tÞ in the Fourier domain
(Appendix B), and hence the spatial extent of the simulated interface is actually infinite with the domain of
interest periodically replicated along the interface. The size of the domain is chosen so that waves from its
periodic replications do not reach spatial locations of interest during the simulated time. Note that slip does
not affect normal tractions sðxÞ which remain constant in this model.

Spontaneous rupture of the interface is simulated by requiring, at each time step, that shear traction
(3) is equal to shear strength (2) for points along the interface that have non-zero slip velocity, and
that shear traction (3) is smaller than shear strength (2) for points along the interface that have zero slip
velocity. More details about the formulation and numerical procedure are given in Appendix B and Day et al.
(2005).

Loading is incorporated in the model by prescribing traction tlðx; tÞ in Eq. (3) that would act on
the interface if it were constrained against any slip. tlðx; tÞ is equal to a constant value, to, on most
of the interface. We call to ‘‘background prestress’’ and quantify it in two ways. t̄o ¼ ðto � tdÞ=ðts � tdÞ
gives a non-dimensional value of to which increases with to. The seismic ratio S ¼ ðts � toÞ=ðto � tdÞ
(Andrews, 1976) is smaller for larger to. In a region close to x ¼ 0, tlðx; tÞ is such that a main crack
spontaneously spreads from there starting at t ¼ 0. tlðx; tÞ is elevated above to in a region of favorable
heterogeneity of the size 2Lh located at x ¼ D (Fig. 1). D is fixed and equal to 12Lc. Dependence of results on
D is discussed in Section 4. Further specification of tlðx; tÞ and the process of initiating the main crack are
discussed in Sections 3 and 4.

Uenishi and Rice (2003) considered a quasi-static mode II crack on a linearly slip-weakening interface
subjected to peaked loading. They demonstrated that the crack would become unstable when its half length
reaches the nucleation half length given by

Lnucl ¼
0:579

1� n
md0

ðts � tdÞ
¼ 0:579p

ðto � tdÞ2

ðts � tdÞ2
Lc, (4)

assuming that the crack half length reaches Lnucl while slip inside the crack is still below d0. In other words,
Lnucl is relevant for cracks developing in such a way that their half length reaches Lnucl before their slip
(or relative shear displacement) exceeds d0. In that case, the entire crack length lies within the cohesive zone up
until unstable crack propagation, and the singular crack theory cannot be used. As demonstrated by Uenishi
and Rice (2003) and confirmed in this study, this situation is relevant for a wide range of loading conditions.
We discuss the relation of Lnucl to our results in the following sections. Note that Lnucl could be chosen as
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a characteristic length scale in our models but we use the critical half length Lc in that capacity, to facilitate
comparison with previous studies. As a reminder, Lc ¼ ð2pð1� nÞÞ�1mG=ðto � tdÞ2 gives the half length for
a singular crack, with fracture energy G and residual shear stress td, which is in the critical state (such that, for
an infinitesimal crack advance, the energy released is exactly balanced by the energy absorbed) under uniform
far-field stress to. Lc is relevant for cohesive-zone models of cracks in situations when the cohesive zone sizes at
the crack tips of quasi-static cracks are small compared to the overall crack size, which means that cracks are
still quasi-static when slip exceeds d0 over most of the crack length. Note that Lnucl is independent of
background prestress to but the normalized ratio Lnucl=Lc depends on to (Table 1).

Rupture propagation is simulated on a uniform spatial grid with the cell size Dx ¼ Lc=Nc and constant time
step Dt ¼ Dx=ðbcsÞ, where Nc is the number of cells in the length Lc, and b determines the time step as a
fraction (equal to 1/b) of the time for the shear wave to travel through Dx. An important quantity to
resolve is the cohesive zone length at the crack tip (Palmer and Rice, 1973; Day et al., 2005). A useful upper
bound for the cohesive zone length of a sub-Rayleigh crack is given by the cohesive zone length L0 of a crack
propagating at 0þ speeds (Palmer and Rice, 1973; Rice, 1980):

L0 ¼
9p

32ð1� nÞ
md0

ðts � tdÞ
. (5)

Note that, for given friction properties, Lnucl and L0 differ only by a prefactor of order 1. Table 1 relates
numerical resolution of Lc and L0 and gives values of Lnucl=Lc for different prestress levels to used in this
study.

We use the following non-dimensional variables: time t̄ ¼ cst=Lc, length x̄ ¼ x=Lc, slip velocity
V̄ ¼ mV=csðto � tdÞ, and stress t̄ ¼ ðt� tdÞ=ðts � tdÞ. All other variables and quantities are non-dimensio-
nalized accordingly and their non-dimensional names are denoted by adding a bar ‘‘�’’. For example, t̄o ¼

ðto � tdÞ=ðts � tdÞ and L̄nucl ¼ Lnucl=Lc. Note that t̄s ¼ 1, t̄d ¼ 0, and L̄c ¼ 1. For clarity, we sometimes
specify non-dimensional quantities in terms of their dimensional analogs.

Slip progression along the interface is tracked using the notion of rupture time. Non-dimensional rupture
time is defined as the non-dimensional time t̄ðx̄Þ when slip rate V̄ of point x̄ becomes non-zero for the first
time. Our implementation of that definition is to require that slip rate exceeds a given small value, V̄ c. The
results do not depend on the value of V̄ c as long as it is small enough to capture slip initiation. We adopt
V̄ c ¼ 10�6. Note that, for m ¼ 3� 104 MPa and cs ¼ 3� 103 m=s typical for rocks, and to � td ¼ 10MPa
which is the order of magnitude for typical stress drops during large earthquakes, V̄ c ¼ 10�6 corresponds to
the dimensional value of 10�6 m=s. In all cases we checked, we find that any spatial cell with non-zero slip rate
has non-dimensional slip rate larger than 10�6, which means that this choice for V̄ c appropriately captures
initiation of slip.

3. Advancing main rupture towards a preexisting subcritical crack: an example of abrupt sub-Rayleigh-to-

intersonic transition

To smoothly initiate a main crack and a subcritical secondary crack, we conduct a preliminary quasi-
dynamic calculation in which the part of the functional f ðx; tÞ that accounts for wave mediated stress transfers

ARTICLE IN PRESS

Table 1

Values of S, Lnucl=Lc, and numerical resolution of Lc and L0 for different prestress levels to

t̄o ¼ ðto � tdÞ=ðts � tdÞ 0.33 0.25 0.20 0.08

S ¼ ðts � toÞ=ðto � tdÞ 2 3 4 11.5

Lnucl=Lc 0.202 0.114 0.073 0.012

Nc ¼ Lc=Dx 100 100 100 800

L0=Dx 30.8 17.4 11.1 14.2

Nc ¼ 100 is the lowest resolution used. Numerical convergence have been verified by considering Nc equal to 200, 400, and, in some cases,

1200, which increases the resolution of the cohesive zone by a factor of two, four, and 12, respectively.

Y. Liu, N. Lapusta / J. Mech. Phys. Solids 56 (2008) 25–5030
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is ignored (Appendix B). We prescribe loading traction t̄lðx̄; t̄0Þ which has two peaks, at x̄ ¼ 0 and x̄ ¼ D̄:

t̄lðx̄; t̄0Þ ¼ t̄o þ ð1� t̄oÞð1þ Rt̄0Þ exp �
x̄

L̄nucl

� �2
" #

þ exp �
x̄� D̄

L̄nucl=2

� �2
" #( )

. (6)

In Eq. (6), R is the loading rate of the imposed peaks and t̄o is (constant) background prestress outside of the
two peaks; t̄o ¼ 0:33 (i.e., S ¼ 2) in this section. At t̄0 ¼ 0, frictional sliding initiates at x̄ ¼ 0 and D̄. We let the
sliding zone centered at x̄ ¼ 0 expand until it reaches a certain half size L̄ini. This happens at the time t̄0 ¼ t̄0ini.
We save the corresponding distributions of loading tractions t̄l, shear tractions t̄, slip d̄, and slip velocity V̄

along the interface, and use them as initial conditions for a subsequent fully dynamic calculation, in which we
reset the time by setting t̄ ¼ t̄0 � t̄0ini. Note that loading tractions t̄lðx̄; t̄Þ are unchanged thereafter (for all t̄40).

We choose parameters of the initiation procedure that mimic tectonically driven slow nucleation on faults in
the Earth’s crust and result in smooth acceleration of the main crack. For that, we first consider the initiation
of the main crack separately, without the second exponential term in Eq. (6). We consider progressively slower
loading rates R ¼ 0:63, 0.063, and 0.0063 and progressively smaller initial half sizes L̄ini ¼ L̄nucl, 0:9L̄nucl, and
0:8L̄nucl and compare stress conditions that the resulting main crack creates at the location x̄ ¼ D̄ ¼ 12 of the
preexisting subcritical crack. For L̄ini ¼ L̄nucl, loading rates R ¼ 0:063 and 0:0063 give virtually identical
stressing conditions as shown in Fig. 3; we use R ¼ 0:0063 in the simulations described in this work. For
R ¼ 0:0063, L̄ini ¼ 0:8L̄nucl does not initiate spontaneous crack propagation, while both L̄ini ¼ 0:9L̄nucl and
L̄ini ¼ L̄nucl create a spontaneously propagating main crack that smoothly accelerates from near-zero tip
speeds. L̄ini ¼ 0:9L̄nucl and L̄ini ¼ L̄nucl result in virtually indistinguishable stressing conditions at the location
of the subcritical crack. We choose L̄ini ¼ L̄nucl because it results in shorter computation time. The importance
of the initiation procedure and related results of Festa and Vilotte (2006), Shi et al. (2007), and Geubelle and
Kubair (2001) are discussed in Section 5.4.

The shear stress distribution at the beginning of a dynamic simulation is shown in Fig. 4. At t̄ ¼ 0, the
secondary crack centered at x̄ ¼ 12 is much smaller than the main crack (which has length L̄nucl), constituting
a subcritical crack. The background prestress level t̄o ¼ 0:33 is below the critical value 0.36 of the
Burridge–Andrews mechanism. t̄o ¼ 0:33 is even lower if compared to the value t̄BA ¼ 0:53 needed for the
Burridge–Andrews transition at the location x̄ ¼ 13:5 which is close to the location of the subcritical crack.
Hence no intersonic transition would occur under such prestress in the homogeneous case (with no preexisting
subcritical crack).

For t̄40, the spontaneously propagating main crack sends out dilatational and shear waves, which impose
an intersonic loading stress field (Appendix A) on the secondary subcritical crack. Fig. 5 (left panel) shows
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rupture time on the interface. The secondary crack begins to spread at the time t̄ ¼ cst=Lc ¼ 7:9 with
rupture speeds close to zero. At that time, the main crack tip arrives at the position 5:4Lc. As the
main crack approaches, the secondary crack rapidly accelerates to the Rayleigh wave speed cR and then
jumps to an intersonic speed (Fig. 5, right panel). The crack tip speed of the secondary crack before
the jump is numerically indistinguishable from cR, so it is possible that the crack tip speed reaches cR
momentarily before the jump. Note that while steady crack propagation with cR would result in zero cohesive
zone length and infinite slip velocities and hence would be impossible, transient propagation with cR cannot be
excluded.

To confirm the abrupt nature of the sub-Rayleigh-to-intersonic transition of the secondary crack, we have
done simulations with several levels of resolution, from Nc ¼ 200; b ¼ 4 to Nc ¼ 1200; b ¼ 4. Fig. 6 shows
the space–time progression of the rupture front of the secondary crack close to the location and time of the
transition. The results have converged with respect to the discretization of space and time. For example, the
location of the transition is 12.862 for Nc ¼ 800 and 12.855 for Nc ¼ 1200, a relative difference of less than
0.1%. As Fig. 6 demonstrates, the sub-Rayleigh-to-intersonic transition occurs within one spatial grid cell Dx

and one time step Dt for all resolutions we have considered. Hence, in the limit of Dx! 0 and Dt! 0, the
crack tip should abruptly jump from cR to an intersonic speed.

Fig. 7 illustrates abrupt transition of the secondary crack tip to intersonic speeds by giving snapshots of slip
velocity and stress distributions at the crack tip. At time t̄ ¼ cst=Lc ¼ 15:02, the tip of the secondary crack
propagates with the speed numerically equal to cR. At t̄ ¼ 15:04, sliding initiates just one cell ahead of the
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crack tip and the sliding region propagates with intersonic speeds immediately. This process is the same in
simulations with different Dx and time step Dt. In the limit of Dx! 0 and Dt! 0, intersonic sliding should be
inseparable from the crack tip, and initiate exactly at the tip.
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Hence we conclude that the secondary crack transitions from sub-Rayleigh to intersonic speeds by abruptly
changing the speed of its tip. This transition mechanism is different from the Burridge–Andrews mechanism,
in which a daughter crack starts out as an intersonic crack. Note that once the secondary crack transitions to
intersonic speeds, it accelerates to speeds close to cp and maintains them for long propagation distances.
Further discussion of this mechanism is given in Section 5.1 and Appendix C. Whether the transition occurs or
not should depend on the size of the preexisting crack, background prestress t̄o, and loading provided by the
main crack. (The loading significantly depends on the initiation procedure for the main crack, as explained in
Sections 4 and 5.4.) We explore these dependencies for a related case of a patch of higher prestress discussed in
the next section.

4. Advancing main crack towards a patch of higher prestress: dependence on patch size, prestress, and location

Instead of a preexisting crack (Section 3), let us consider higher prestress t̄o
h ¼ ðt

o
h � tdÞ=ðts � tdÞ in a small

patch D̄ox̄oD̄þ 2L̄h, where L̄h ¼ Lh=Lc is the half size of the patch (Fig. 8). We select D̄ ¼ 12. Sliding in the
patch starts from its end x̄ ¼ D̄ (closer to the main crack) at the same time for all patch sizes, everything else
being equal. We use two ways to initiate the main crack: (i) the same smooth initiation as in Section 3, and
(ii) a more abrupt initiation for which, at t̄ ¼ 0, prestress within jx̄jo1 is set to be 1% larger than the static
strength ts of the interface. In the case of (ii), the main crack initiates at once in the entire region jx̄jo1. It
accelerates and acquires speeds close to cR much sooner than in the case of the smooth initiation procedure.
This results in a significantly higher shear stress peak as shown in Fig. 3. For the smooth initiation,
such a shear stress peak would result only after much longer rupture propagation along the interface. As in
Section 3, background prestress t̄o is chosen low compared to prestress required for intersonic transition by
the Burridge–Andrews mechanism. If there were no patch of higher prestress, no intersonic transition and
propagation would occur.

Spontaneous propagation of the main crack for times t̄40 imposes an additional dynamic stress field on the
patch of higher prestress. For a range of patch sizes Lh=Lc and values of background prestress t̄o

h, as discussed
in the following, shear stress in the patch overcomes the static friction strength ts before the arrival of the
shear stress peak, and secondary sliding (or crack) initiates at the patch corner x̄ ¼ 12 closest to the main
crack. The secondary crack spreads along the patch with intersonic speeds, driven by intersonic stress increase
due to the advancing main crack. So far, the behavior is intuitively obvious. However, it is not intuitively clear
how this intersonic secondary crack would behave after it enters the surrounding region of lower background
prestress. While intersonic propagation over the higher-stressed patch is an interesting phenomenon, we would
like to study whether the patch can induce sustained intersonic propagation for long distances beyond the
patch. Hence in the following we call ‘‘sub-Rayleigh’’ those scenarios that result in the eventual sub-Rayleigh
propagation of the crack, despite the fact that all scenarios include intersonic propagation of the secondary
crack over the higher-stressed patch.

Our simulations show that behavior of the secondary crack after it leaves the patch of higher prestress is
quite complicated. First, its tip speed momentarily reduces to zero, at least for small patch sizes studied here.
Its subsequent behavior depends on background prestress t̄o, on the additional loading provided by the main
crack, on the level t̄o

h of prestress in the patch, and on the patch size L̄h ¼ Lh=Lc. Loading provided to the
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patch by the main crack depends on background prestress t̄o, the position of heterogeneity D̄, and the
procedure of main crack initiation. For each initiation procedure, we fix D̄ ¼ 12 and consider the dependence
of results on the patch prestress t̄o

h and size L̄h for different values of t̄o. Intuitively, the larger the patch and
the higher prestress it has, the more likely it is to cause transition to intersonic speeds. Yet the simulation
results are more complex.

We start by describing results for the more abrupt initiation (ii) of the main crack. Results of our
simulations in terms of intersonic vs. sub-Rayleigh propagation of rupture beyond the patch of higher
prestress are summarized in Fig. 9. To determine the eventual crack speed, we simulate rupture propagation
until the location x̄ ¼ x=Lc ¼ 16 is ruptured. For cases that require further clarification, and for selected
conceptually important cases, we redo calculations until the location x̄ ¼ 25 is ruptured. Note that our
methodology periodically repeats the simulated domain. Hence, to simulate a bilateral main crack and to
avoid waves arriving from periodic replications of the rupture process into the region of observation, we use
domain lengths of 50 and 80 to determine the crack speed at locations x̄ ¼ 16 and 25, respectively.

Fig. 9 (top panel) shows results for t̄o ¼ 0:25 (S ¼ 3). We find two regions of sub-Rayleigh behavior,
marked ‘‘Sub-Rayleigh I’’ and ‘‘Sub-Rayleigh II’’ in the figure, and one connected region of intersonic
behavior. Boundaries separating regions of intersonic and sub-Rayleigh behavior are approximate in Fig. 9,
inferred based on simulated cases shown as dots. We have studied many cases close to the boundaries, and
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that is why dots close to the boundaries overlap. Results for cases t̄o ¼ 0:33 (S ¼ 2) and t̄o ¼ 0:2 (S ¼ 4) are
shown in Fig. 9, bottom panels. Comparison of cases t̄o ¼ 0:25 and 0.33 shows that regions of sub-Rayleigh
behavior shrink for the higher background prestress t̄o ¼ 0:33, especially region ‘‘Sub-Rayleigh II’’.
Comparison of cases t̄o ¼ 0:25 and 0:2 shows that for the lower background prestress t̄o ¼ 0:2, regions of sub-
Rayleigh behavior expand and overlap, creating a single larger sub-Rayleigh region. Hence larger background
prestress favors intersonic propagation, as could be expected, and causes consistent motion of the boundaries
separating sub-Rayleigh and intersonic behavior.

Simulations for the smooth main crack initiation, which results in a smaller shear stress peak as the main
crack approaches the patch of higher prestress, are summarized in Fig. 10. We see qualitatively similar
behavior in terms of where regions of sub-Rayleigh and intersonic propagation are located. As could be
expected, a smaller shear stress peak results in smaller regions of intersonic propagation for the same values of
background prestress.

To explain the existence and location of regions of sub-Rayleigh and intersonic behavior in Figs. 9 and 10,
let us consider some limiting cases. If there were no patch of higher prestress, the main crack would stay sub-
Rayleigh, as all background prestress values t̄o considered here are lower than prestress required for transition
by the Burridge–Andrews mechanism. A very small patch should have the same effect as no patch, and hence
we should have sub-Rayleigh propagation for patch half sizes L̄h ¼ Lh=Lc close to zero, regardless of the
patch prestress. This explains the existence of the region marked ‘‘Sub-Rayleigh I’’ close to the L̄h ¼ 0 line
for any value of t̄o

h. For most cases in region ‘‘Sub-Rayleigh I’’, the main crack overtakes secondary
sliding, and continues its sub-Rayleigh propagation. An example of such case is shown in Fig. 11 (left panel,
L̄h ¼ 0:055 ¼ 0:48L̄nucl). Only for cases close to the boundary with the intersonic region, the secondary crack
either just manages to propagate with sub-Rayleigh speed itself, or even transitions to intersonic speeds for a
brief time and then reverts back to sub-Rayleigh speeds (Fig. 11, right panel).

If the prestress level in the patch is equal to the static strength, t̄o
h ¼ 1, then secondary sliding starts in the

patch at t̄ ¼ 0, when the main crack is still far away. If the patch is large enough, as approximately given by
L̄hXL̄nucl, then the secondary crack develops into a spontaneous sub-Rayleigh crack and runs away with
speeds close to cR before the main crack can approach and interact with that process. Similar behavior occurs
for t̄o

h close to 1. Case L̄h ¼ 0:2 ¼ 1:75L̄nucl, t̄o
h ¼ 0:85 in Fig. 11 is an example of such behavior. This argument

explains the existence of the region marked ‘‘Sub-Rayleigh II’’ which includes a part of the line t̄o
h ¼ 1.

If the patch with t̄o
h ¼ 1 is small, as approximately given by L̄hpL̄nucl, then it develops into a subcritical

crack and, similarly to the preexisting crack case of Section 3, such subcritical cracks can be driven, under the
right conditions, to intersonic speeds by the stress field of the advancing main crack. Such intersonic cases
separate the two sub-Rayleigh regions for background prestress values t̄o ¼ 0:25 and 0.33 in Fig. 9 and
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t̄o ¼ 0:33 in Fig. 10. An example of such intersonic behavior is the case of L̄h ¼ 0:075 ¼ 0:66L̄nucl in Fig. 11.
However, regions ‘‘Sub-Rayleigh I’’ and ‘‘Sub-Rayleigh II’’ merge for lower levels of background prestress
and smaller shear stress peaks, as Figs. 9 and 10 show. The resulting connected sub-Rayleigh region consists of
two distinct areas, one in which the eventual sub-Rayleigh propagation is due to the main crack, and the other
in which the eventual sub-Rayleigh propagation is due to the secondary crack. Note that large patches
(i.e., larger than Lnucl) with uniform prestress t̄o

h ¼ 1 (or close to 1) are unlikely to exist on the path of another
crack in a realistic situation (i.e., on faults in the Earth’s crust). Any small heterogeneities or perturbations
would lead to development of unstable sliding in those patches, effectively nucleating a main crack there. Such
patches are considered in this study mostly to have a better understanding of the parameter space.

If the shear stress peak traveling in front of the main crack does not initiate sliding in the patch, lower shear
stresses behind the peak cannot do that either, and sliding in the patch initiates only due to high stresses very
close to the main crack tip. In this situation, a small patch can no longer create a preexisting subcritical crack
that could be driven to intersonic speeds by the approaching main crack. Hence small patches can only cause
intersonic transition for large enough values of the patch prestress, t̄o

h4a, where a is the patch prestress which
would be brought to the static strength by the maximum of the shear stress peak. Prestress a satisfies
1� a ¼ t̄peak � t̄o, where t̄peak is the maximum of the shear stress peak when it arrives at the patch. The value
of t̄peak depends on the history of the main crack; in our simulations, it is determined by the initiation
procedure, background prestress, and location of the patch (which is fixed at x̄ ¼ 12). For t̄o ¼ 0:25 (S ¼ 3)
and more abrupt initiation of the main crack, simulations show that t̄peak ¼ 0:665, which leads to a ¼ 0:585.
The values of a for other values of t̄o and for smooth initiation of the main crack are determined analogously.
Lines t̄o

h ¼ a are marked in Figs. 9 and 10 as vertical black lines with short dashes. Intersonic transition should
be inhibited for t̄o

hoa, at least for small patches, and that is what we observe in Figs. 9 and 10.
For patches with t̄o

h4a, intersonic loading stress provided by the main crack creates intersonic secondary
crack in the patch. When the intersonic secondary crack exits from the patch into the region of lower
background prestress, it slows down first but, for large enough patch sizes, accelerates back at once and jumps
abruptly to intersonic speeds (e.g., case L̄h ¼ 0:34 ¼ 2:98L̄nucl in Fig. 11). That behavior can be understood as
follows. Intersonic propagation in the patch radiates stress waves and most of them are left behind by the

ARTICLE IN PRESS

9 10 11 12 13 14 15 16
9

10

11

12

13

14

15

16

cR

cs

cp

cR

cs

cp

L h =
 0.055

L h =
 0.20

L h =
 0.075

12 12.5 13 13.5 14

11

12

13

14

R
up

tu
re

 ti
m

e 
t =

 c
st

/L
c

R
up

tu
re

 ti
m

e 
t =

 c
st

/L
c

A B C
D

E

x = x/Lcx = x/Lc

Fig. 11. Rupture time for different patch sizes, with t̄o ¼ 0:25 (S ¼ 3) and more abrupt initiation of the main crack. Left panel: patch

prestress t̄o
h ¼ 0:85. Rupture eventually propagates with intersonic speeds for L̄h ¼ Lh=Lc ¼ 0:075 and 0:34 and sub-Rayleigh speeds for

L̄h ¼ 0:055 and 0:20. Behavior for these and other patch sizes is discussed in the text. Right panel: patch prestress t̄o
h ¼ 0:70, note a

different scale of x̄. The behavior is much simpler than for t̄o
h ¼ 0:85. Cases with different L̄h are marked by letters A–E at the location

x̄ ¼ 12þ 2L̄h where the secondary crack for each case leaves the patch. L̄h ¼ 0:08, line A: the secondary crack is overtaken by the main

crack for this and smaller L̄h. L̄h ¼ 0:1; 0:105; 0:11; 0:115; 0:12, lines B: for 0:1pL̄hp0:115, the secondary crack accelerates to cR and

abruptly transitions to intersonic speeds, but reverts back to sub-Rayleigh speeds after short (but progressively longer) intersonic

propagation; for L̄h ¼ 0:12, the crack manages to stay intersonic and results in eventual intersonic propagation. L̄h ¼ 0:20; 0:30; 0:45, lines
C–E: same behavior as for L̄h ¼ 0:12.

Y. Liu, N. Lapusta / J. Mech. Phys. Solids 56 (2008) 25–50 37



Author's personal copy

intersonic secondary crack. When the secondary crack exits the patch and slows down, the stress field radiated
by sliding in the patch catches up with the secondary crack and loads it. The duration of this loading depends
on the patch size, and hence it would be increasingly important for larger patches, causing acceleration of the
secondary crack and transition to intersonic speeds. Note that for patches with prestress lower than a but close
to it, sliding in the patch is still intersonic but it is separated from the main crack only by a few cell sizes, and
the behavior of the two cracks after exiting the patch cannot be well separated. Subsequent sustained
intersonic propagation occurs only for large enough patches, as it is driven exclusively by stress radiation from
the patch. For patch prestress levels much smaller than a, the main crack and secondary sliding in the patch
cannot be separated, and the only effect of the patch is to increase the sub-Rayleigh propagation speed of the
main crack.

More abrupt initiation of the main crack results in a larger shear stress peak and hence should provide an
approximate picture of the model behavior for a patch located much farther from the initiation of the main
crack (i.e., for larger D̄). Consider the case of t̄o ¼ 0:33. Through simulations we find that the more abrupt
initiation procedure results in the same maximum of the shear stress peak at the location of x̄ ¼ 12 as the
smooth initiation procedure at the location of x̄ ¼ 80. Given the high resolution we would like to achieve in
this study, such long propagation distances are hard to study even in 2D. To check the correspondence
between the smooth initiation procedure with D̄ ¼ 80 and abrupt initiation procedure with D̄ ¼ 12, we have
done simulations with the smooth initiation procedure where we put a patch of higher prestress t̄o

h ¼ 0:65 or
0.7 and size L̄h ¼ 0:25 at the location D̄ ¼ 80, with background prestress t̄o ¼ 0:33 (S ¼ 2). These cases are
sub-Rayleigh for D̄ ¼ 12 and smooth initiation (Fig. 10, left panel, open black dots surrounded by red
squares). However, they are intersonic for D̄ ¼ 12 and more abrupt initiation (Fig. 9, bottom left panel). For
smooth initiation and D̄ ¼ 80, these cases are also intersonic, indicating that more abrupt initiation and its
higher shear stress peak can indeed approximate long propagation distances for the smooth initiation. The
correspondence cannot be exact, however, since the shear stress distribution in front of the main crack keeps
extending in space for longer propagation distances; the height of the peak may be the same, but its width
would be different. Since the intersonic vs. sub-Rayleigh behavior depends not just on the stress field ahead of
the main crack but also on other factors such as, for example, the patch size in relation to L̄nucl, this
discrepancy cannot be resolved by simply scaling the patch size in accordance with its location.

We have demonstrated that a small patch of higher prestress can completely change rupture behavior. To
illustrate the complexity of the response that results when the stress field of the main crack interacts with the
patch, let us consider the case of background prestress t̄o ¼ 0:25 (S ¼ 3), patch prestress t̄o

h ¼ 0:85, and more
abrupt initiation of the main crack (Fig. 9, top panel). Rupture times for four values of the patch size
L̄h ¼ Lh=Lc are shown in Fig. 11 (left panel) but more cases (shown as dots in Fig. 9 for t̄o

h ¼ 0:85) are
enumerated in the following. Note that L̄nucl ¼ 0:11 in this case.

For L̄hp0:06, the main crack overtakes the secondary crack, and continues its sub-Rayleigh propagation
beyond the patch of higher stress (Fig. 11, L̄h ¼ 0:055). For L̄h ¼ 0:065, the secondary crack survives but
stays sub-Rayleigh. For 0:07pL̄hp0:085, the secondary crack accelerates after a pause and acquires
sustained intersonic speeds by the abrupt transition mechanism described in Section 3 (Fig. 11, L̄h ¼ 0:075).
For 0:09pL̄hp0:105, the secondary crack accelerates to sub-Rayleigh speeds and creates an intersonic
daughter crack in front; the daughter crack subsequently dies and the secondary crack continues its
propagation with sub-Rayleigh speeds. For L̄h ¼ 0:125, the secondary crack accelerates to sub-Rayleigh
speeds and there is no intersonic propagation beyond the patch. For 0:15pL̄hp0:25, the secondary crack
accelerates after its momentary stop and briefly acquires intersonic speeds but then continues its sub-Rayleigh
propagation (Fig. 11, L̄h ¼ 0:2). This seems contradictory with eventual intersonic propagation of smaller
patches, for example, L̄h ¼ 0:075. Closer examination of these two cases shows that the secondary rupture
accelerates faster after leaving the patch in the case of L̄h ¼ 0:20, as expected for a larger patch and hence a
larger secondary crack. However, this means that the secondary crack in the case of L̄h ¼ 0:20 reaches the
same locations along the interface sooner than in the case of L̄h ¼ 0:075, and hence those locations are less
stressed by the advancing main crack. For 0:3pL̄hp0:335, the secondary crack transitions to intersonic
speeds, reverts back to sub-Rayleigh speeds, nucleates an intersonic daughter crack in front which shortly dies,
so that eventual propagation is sub-Rayleigh; such complicated behavior results from complicated dynamic
stressing that combines the stress field of the main crack and the stress field released by intersonic sliding in the
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patch. For 0:34pL̄hp0:6, the secondary crack only briefly pauses after leaving the patch, accelerating and
transitioning abruptly to intersonic speeds while the main crack is still relatively far. For these larger patches,
stress release during intersonic propagation within the patch must play a significant role in inducing the
subsequent intersonic transition as already discussed. Fig. 11 shows the case of L̄h ¼ 0:34.

This rich response is consistent with our discussion of regions of intersonic vs. sub-Rayleigh behavior in
Figs. 9 and 10. Note that the illustrated case of t̄o

h ¼ 0:85 is especially complicated since, for increasing patch
size, we cross three boundaries separating regions of sub-Rayleigh and intersonic behavior (Fig. 9, top panel,
t̄o
h ¼ 0:85). The response in other cases can be much simpler, as it is, for example, in the case of t̄o

h ¼ 0:70,
where only one boundary is crossed (Fig. 9, top panel, and Fig. 11, right panel). This is because the patch
prestress t̄o

h ¼ 0:70 is relatively far from the non-dimensional static strength of 1 and hence the region ‘‘sub-
Rayleigh II’’ does not come into play.

To illustrate the behavior of the secondary crack, we show snapshots of stress and slip rate on the interface
close to the patch of higher prestress. Fig. 12 compares two cases from the left panel of Fig. 11: the case of
L̄h ¼ 0:075 (which results in intersonic transition) and the case of a larger patch, L̄h ¼ 0:20 (for which the
crack stays sub-Rayleigh). The case with no patch is also shown.

t̄ ¼ 10:0: Stress and slip rate are the same for all three cases, with the only difference being higher stress at
the location of the patch. Stress at the left corner of the patch (x̄ ¼ x=Lc ¼ 12) has just reached the static
strength, due to the additional stress provided by the main crack. The front of the main crack is located
between x̄ ¼ 9 and 10.

t̄ ¼ 11:0: The range of x̄ is shifted in this snapshot. The secondary crack is still subcritical and close to the
boundaries of the patch for L̄h ¼ 0:075 but it is well developed and propagates outside the patch for
L̄h ¼ 0:20. This is not unexpected, since for L̄h ¼ 0:20 the secondary crack is much larger when it exits the
patch. Note that L̄nucl ¼ 0:114.
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t̄ ¼ 12:0: The front of the secondary crack for L̄h ¼ 0:075 is already intersonic (it is located close to x̄ ¼ 13).
Note that the shear stress peak of the main rupture, plotted for the case with no patch, has not yet reached this
location. The secondary crack for L̄h ¼ 0:20, located close to x̄ ¼ 14, continues its sub-Rayleigh propagation
and a clear shear stress peak develops in front if it.

t̄ ¼ 14:0: The range of x̄ is shifted in this snapshot. The intersonic secondary crack front for L̄h ¼ 0:075 has
passed x̄ ¼ 16, which means that its average speed since t̄ ¼ 12:0 has been larger than 1:5cs. The sub-Rayleigh
front for L̄h ¼ 0:20 is now behind, at about x̄ ¼ 15:5. The shear wave peak ahead of that front has increased,
almost reaching the static strength, raising the possibility of a Burridge–Andrews-type daughter crack.
However, examination of further crack history (not shown) reveals that this peak starts to decrease for
subsequent times and does not reach the static strength. (However, for similar situations with other
parameters, a daughter crack does sometimes nucleate and either dies or leads to sustained intersonic
propagation.) The tip of the main crack is at about x̄ ¼ 13, but, at this time, all points behind the secondary
crack tip have already slipped for both cases, so we have one compound rupture with the tip that coincides
with the secondary crack tip.

Note that the patch makes prestress distribution on the interface discontinuous at the patch edges (Fig. 8).
We have done several simulations in which prestress is smooth and differentiable between the background
level t̄o and the patch level t̄o

h. We find that simulation results with the continuous prestress distribution
around the patch are very similar to those with discontinuous prestress distribution and reproduce all
qualitative features, including abrupt intersonic transition and rupture behavior beyond the location of the
patch.

5. Conclusions and discussion

We find that sub-Rayleigh-to-intersonic transition of mode II cracks occurs in a number of models that
subject cracks to intersonic loading fields. A natural example of such stress field is stress between the
shear wave peak and earliest dilatational waves propagating in front of a spontaneously expanding
sub-Rayleigh mode II crack (Appendix A). If a secondary developing crack is subjected to such stress field,
it can transition to intersonic speeds and maintain that intersonic propagation under a range of conditions.
The Burridge–Andrews mechanism is a special case of such models. We have demonstrated sub-Rayleigh-to-
intersonic transition and sustained intersonic propagation for two more models that contain ‘‘favorable
heterogeneity’’, i.e., places susceptible to nucleation of secondary cracks. Models with a preexisting subcritical
crack and with a small patch of higher prestress have been considered. Similar behavior is expected in a model
with a small patch of lower static strength, and we confirm that in our simulations (not shown in this work).

In the models, a secondary crack nucleates at the location of the favorable heterogeneity and, for a range of
parameters, it is driven to intersonic speeds by the advancing main crack. In models with a patch of higher
prestress, interaction between the advancing stress field of the main crack and the patch results in a
complicated behavior which is described in Section 4 and can be understood by considering limiting cases. We
note that propagation of a secondary crack before the intersonic transition is not only nonlinear (due to
friction) but also highly unsteady dynamic process and its analytical treatment, beyond qualitative arguments
provided in this study, may be rather difficult. However, once crack tips become intersonic, their behavior is
consistent with analytical inferences for intersonic cracks (e.g., Burridge et al., 1979; Freund, 1979; Broberg,
1994, 1995; Huang and Gao, 2001; Samudrala et al., 2002; Antipov and Willis, 2003).

In the following, we summarize and discuss other findings and their implications.

5.1. Abrupt change of crack tip speeds

In the presented models, tips of secondary cracks exhibit abrupt change of their speed from the value
numerically equal to the Rayleigh wave speed cR to an intersonic speed, and that change occurs right at the
crack tip. This is different from the Burridge–Andrews mechanism, in which the daughter crack is intersonic
from its very beginning. The abrupt change of a crack tip speed described in this work is an alternative way of
avoiding the forbidden speed regime ½cR; cs�.
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Freund (1990) pointed out that, under some general assumptions, crack front speeds change in phase with
applied driving stress. That implies that smooth variations in applied driving stress should result in smooth
variations of the resulting crack speed. This is indeed the case in our simulations for crack speed changes
within the sub-Rayleigh regime and within the intersonic regime. However, in the preexisting subcritical crack
case of Section 3, all stress-related fields are continuous in time and space, but we still observe an abrupt front
speed jump from speeds approaching cR to an intersonic speed. These simulations imply that jumps from cR to
intersonic speeds may be possible, in highly unsteady situations, even if the driving stress is continuous. We
emphasize that, for all cases of abrupt intersonic transition presented in this study, (i) the corresponding crack
tip has been under action of an intersonic stress field of an advancing crack and, in some cases, an additional
intersonic stress field radiated during intersonic sliding in the patch of higher prestress, with the latter field
playing either minor or dominating role depending on the patch size, and (ii) the fronts have been highly
unsteady prior to transition, rapidly accelerating from near-zero speeds to cR.

Once the crack tip starts to propagate with intersonic speeds, the sliding process behind the tip retains larger
slip velocities at the place of the old crack tip propagating with cR and tends to create a region of decreased
slip velocities propagating with cs (which is a general feature of intersonic mode II cracks which propagate
faster than shear and Rayleigh waves). This creates an impression of the old front (close to cR) falling behind
and an intersonic daughter-like crack emerging from the old front. In that sense, the abrupt transition
resembles a daughter crack originating right at the secondary crack front. The region of decreased slip
velocities propagating with cs behind the intersonic crack tip tends to separate the sliding region, further
reinforcing the daughter-crack analogy. (That separation also creates intersonic pulses.) Whether this is just a
visual resemblance or a useful way of thinking about this transition theoretically remains a question for future
study. In some cases, intersonic transition of the secondary crack beyond the patch of higher prestress is
followed by transition back to sub-Rayleigh speeds. Such intersonic-to-sub-Rayleigh transition is only
observed after short intersonic propagation distances, less than 1–2 Lc. When the ‘‘reverse’’ transition
happens, the crack reverts back to the old crack front. This further supports the notion of a daughter crack
originating right at the crack tip and expanding but then, in the case of the ‘‘reverse’’ transition, shrinking and
disappearing, presumably because the intersonic loading stress due to the approaching main crack and, in
some cases, due to stress waves released from the higher-stressed patch, has passed by without creating a large
enough intersonic daughter crack. This consideration supports the notion of a critical crack size for intersonic
transition introduced in a different context by Dunham (2006).

5.2. Prestress levels for intersonic transition and propagation

In models with favorable heterogeneities, intersonic transition and propagation can occur under much
lower background prestress levels than those required by the Burridge–Andrews mechanism. This means that
the level of prestress required by the Burridge–Andrews mechanism is only needed to nucleate a daughter
crack on a homogeneously prestressed interface, and not to drive the daughter crack to intersonic speeds or to
maintain that intersonic propagation. In Sections 3 and 4, intersonic transition and propagation occur with
background prestress t̄o ¼ ðto � tdÞ=ðts � tdÞ ¼ 0:33, 0.25, and 0.2, while the Burridge–Andrews mechanism
has critical prestress of 0.36 and needs prestress of 0.53 to achieve intersonic transition at a comparable
transition length.

How low can prestress levels be and still allow intersonic transition and propagation? To investigate that
question, we have considered progressively lower background prestress values t̄o ¼ 0:15, 0.10, and 0.08 in the
model with a patch of higher prestress (Section 4). Intersonic transition and sustained intersonic propagation
beyond the patch occur for all these prestresses. (The other parameters of the model are: patch location
D=Lc ¼ 12, patch size Lh=Lc ¼ 0:25, patch prestress t̄o

h ¼ 0:8, and more abrupt initiation of the main crack.)
Note that the smaller t̄o, the more challenging numerical simulations are if we would like to consider the same
size of the simulated domain in terms of Lc and ensure that the cohesive zone length is adequately resolved.
Combining Eqs. (1), (5), and Nc ¼ Lc=Dx gives the following resolution estimate: Lo=Dx ¼ ð9p2=32Þðt̄oÞ

2Nc,
where Lo is the cohesive zone length for 0þ crack tip speeds. We use Nc ¼ 800 for low prestress values which
gives, for the lowest value t̄o ¼ 0:08, Lo=Dx ¼ 14. For sub-Rayleigh crack speeds higher than 0þ, the cohesive
zone length would decrease; we verify cohesive zone resolution by plotting stress distributions on the interface
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for various stages of the crack development and observing that there are several cell sizes within the cohesive
zone, which means that the cohesive zone is adequately resolved (e.g., Day et al., 2005). In addition, there are
virtually no cell-by-cell numerical oscillations of slip velocities behind crack tips in our simulations; such
oscillations are usually a sign of inadequate numerical resolution. To the best of our knowledge, this is the first
demonstration, in a simulation of spontaneous propagation of cracks, that shear cracks can propagate with
intersonic speeds under such low prestress levels.

Based on our simulations, we hypothesize that, in the presence of a sufficiently large favorable
heterogeneity, intersonic transition and propagation of mode II cracks are possible for any background
prestress t̄o40 (or equivalently to4td). This would be analogous to sub-Rayleigh cracks, for which any
background prestress to higher than dynamic strength td would lead to sustained crack propagation assuming
that the initial crack is large enough (recall that the critical size Lc�1=ðto � tdÞ2 and Lc increases rapidly as to

approaches td).

5.3. Transition distance

Models with favorable heterogeneities have transition distances that depend on the position of
heterogeneity. Transition lengths determined by Andrews (1976) for homogeneous stress and strength
provide an upper bound for transition lengths in models considered here.

Andrews (1976) numerically showed that non-dimensional transition distance LBA=Lc on a homogeneously
prestressed interface, with initial conditions appropriate for a quasi-static critical crack, is a function of the
seismic ratio S (or, equivalently, prestress t̄o). For high enough prestress (i.e., SoScrit), transition length
LBA=Lc of the Burridge–Andrews mechanism is determined by the position where the maximum of the shear
stress peak reaches static strength. For smaller prestress (i.e., SXScrit), no intersonic transition is possible by
the Burridge–Andrews mechanism, and LBA=Lc is infinity. This study shows that if favorable heterogeneity is
located closer to the main crack initiation region than LBA=Lc, then intersonic transition may occur due to the
heterogeneity, with the transition length approximately given by the location of the heterogeneity. For
example, all models with sustained intersonic propagation in Sections 3 and 4 have transition lengths dictated
by the location of heterogeneity D=Lc ¼ 12. If heterogeneities were not present in the models, transition
lengths by the Burridge–Andrews mechanism would be infinite for the prestress values studied.

5.4. Importance of crack initiation procedure

The procedure of main crack initiation significantly affects subsequent crack propagation and hence the
loading provided by the main crack to the location of favorable heterogeneity. That, in turn, affects the crack
tip speed beyond the location of heterogeneity (Section 4, Fig. 9 vs. Fig. 10).

In the smooth initiation procedure (described in Section 3), we stop the time-dependent loading increase
when the initial half size Lini of the main crack reaches the nucleation half size Lnucl determined by Uenishi and
Rice (2003). That plus the slow loading we choose ensures that the initiation procedure mimics tectonically
driven slow nucleation on faults in the Earth’s crust. Our more abrupt crack initiation (Section 4) initiates the
main crack by imposing prestress 1% larger than static strength over length 2Lc, a procedure typical in
modeling single earthquakes. For the background prestress levels used in this study, 2Lc is appreciably larger
than 2Lnucl (Table 1). That creates larger initial crack sizes and faster acceleration of the main crack, by
overstressing the main crack initially in comparison with a slow, quasi-static nucleation process. The resulting
higher shear stresses ahead of the main crack promote intersonic transition. This more abrupt initiation
procedure can be considered a proxy for larger propagation distances as explained in Section 4.

Note that similar overstressing of the crack can be achieved with our smooth initiation procedure by using
faster time-dependent loading and continuing it until initial crack half sizes larger than Lnucl would be created.
Under slow tectonic loading characteristic for earthquakes, nucleation zones should become unstable after
reaching half lengths of Lnucl, as shown by Uenishi and Rice (2003) and confirmed in this work, making
subsequent tectonic loading irrelevant on the time scale of the dynamic event. Hence nucleation half sizes
larger than Lnucl are hard to obtain under slowly increasing loading. In a model, any loading added to the
nucleation zone after a developing nucleation site reaches the half size Lnucl represents extra loading or
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overstressing. More abrupt initiation procedure similarly provides the crack with extra loading. It is possible
that such extra loading can result on real faults for some dynamic triggering scenarios or rapid strength
variations. However, it is important to keep in mind that nucleation procedures that are abrupt and/or
overstress the crack initially may not be the most common ones on tectonically loaded faults.

In Sections 3 and 4, we have considered relatively low background prestress levels, lower than the ones
needed for intersonic transition by the Burridge–Andrews mechanism. We have conducted additional
simulations that use the more abrupt initiation procedure with higher prestress levels in the absence of
heterogeneities. In those simulations, the main crack achieves intersonic speeds much sooner than predicted by
the Burridge–Andrews mechanism. If we load the nucleation region even more, we can make the main crack
transition to intersonic speeds right outside the nucleation zone. In those cases, transition to intersonic speeds
happens by either the abrupt transition mechanism described in this work, or by the Burridge–Andrews
daughter mechanism, or both (that is, in some cases, the crack experiences abrupt speed changes twice, once
by the abrupt mechanism described in this study, and the second time by nucleating an intersonic
Burridge–Andrews daughter crack in front of the already intersonic crack).

These results for overstressed cracks are consistent with the studies of Festa and Vilotte (2006) and Shi et al.
(2007) who considered, in the absence of stress heterogeneity beyond the nucleation region, the dependence of
intersonic transition and rupture mode on the initiation procedure, and with the study of Geubelle and Kubair
(2001) and Shi and Ben-Zion (2006). In Shi et al. (2007), the initiation procedure is similar to the more abrupt
procedure of this work, in that a value of shear stress about 3% above the static strength is used over a zone
which is about 3–6 times larger than 2Lnucl. That may explain the rapid transition of rupture to intersonic
speeds in the model of Shi et al. (2007) for high background prestress levels. (Note that their study uses a
friction law of a rate and state type.) In Festa and Vilotte (2006), a nucleation procedure with a peaked stress
in the nucleation zone is used. They find that intersonic transition is enhanced, and transition distances are
shorter, when peaked loading with widths progressively larger than 2Lnucl is used. Geubelle and Kubair (2001),
while concentrating on mixed-mode failure, considered, in part, intersonic transition for a purely mode II
crack. They found that the crack transitions to intersonic speeds by abruptly changing the speed of its tip at
distances very close to the crack initiation zone. The initiation procedure in Geubelle and Kubair (2001) was
not described in detail but short transition distances obtained in that work suggest that the initiation
procedure provided some overstressing, in the sense defined above.

5.5. Propagation speeds in the intersonic regime

Once a crack acquires intersonic speeds, it tends to accelerate, in our models, to speeds larger than
ffiffiffi
2
p

cs and
close to the dilatational wave speed cp. This is consistent with the theoretical study of Burridge et al. (1979)
who concluded that intersonic ruptures in models with finite tractions, constant fracture energy, and
homogeneous prestress would accelerate to cp (our models have homogeneous prestress after the location of
favorable heterogeneity). This result is also consistent with experiments (e.g., Xia et al., 2004). Samudrala et al.
(2002) found that, for velocity-weakening interfaces, the open interval of speeds from

ffiffiffi
2
p

cs to cp corresponds
to stable rupture growth, so speeds larger than

ffiffiffi
2
p

cs should be typical for velocity-weakening interfaces as
well. Note that, for singular cracks,

ffiffiffi
2
p

cs is the only possible intersonic speed, as this is the only speed at which
the energy release rate is positive (Freund, 1990), but that is no longer the case for cohesive-zone models with
finite tractions.

5.6. Implications for earthquake dynamics

Models for intersonic transition and propagation proposed here may have important consequences for
earthquake dynamics. Favorable heterogeneities considered in this work are likely to be present on real faults.
Earthquake models predict that seismic events are preceded by quasi-static slip in so-called nucleation zones
(e.g., Lapusta et al., 2000; Lapusta and Rice, 2003) that are analogous to preexisting subcritical cracks
considered in Section 3. Faults are likely to harbor multiple nucleation zones. When one of these zones gives
rise to an earthquake, the other developing nucleation zones would find themselves under the stress field of an
approaching dynamic crack, creating the scenario considered in Section 3. How heterogeneous stress and
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strength are on faults and on what scales is an active area of current research. Seismic inversions typically
contain regions of high and low slip, which likely indicate variations in fault prestress and/or strength. In
particular, faults may contain patches of higher prestress considered in Section 4 or patches of lower strength.
We do not present results for patches of lower strength in this work but our simulations show that they are
similar to results for patches of higher prestress.

Our modeling indicates that intersonic transition may be dominated by those heterogeneities. In that case,
interpretation of inferred intersonic propagation using the Burridge–Andrews mechanism for homogeneous
prestress and strength could lead to misleading constraints on background prestress levels or friction
properties.

Note that even when sustained intersonic propagation does not occur in our models, the presence of
favorable heterogeneity often mimics intersonic propagation locally by producing significant advance in the
crack tip location. For a preexisting subcritical crack or a patch of sufficiently high prestress (higher than a
defined in Section 4), the tip of combined rupture propagating beyond the patch is that of the secondary crack
for patches close to and larger than Lnucl (for smaller patches, the secondary crack is overtaken by the main
crack). Even if the secondary crack is sub-Rayleigh, average rupture speed would appear to be intersonic in
the region that surrounds the patch. Consider, for example, the case with a patch of the size Lh=Lc ¼ 0:20
from the left panel of Fig. 11. Eventual propagation is sub-Rayleigh in that case, but the secondary crack
tip is about 2Lc ahead of where the main crack front would have been if there were no patch. Hence
the average crack speed in the space interval shown in Fig. 11 (from x̄ ¼ 9 to 16) is 1:4cs. In addition,
favorable heterogeneity provides the main crack with additional stress release which temporarily increases
stresses in front of the crack. That makes intersonic transition due to another heterogeneity or due to the
Burridge–Andrews mechanism more likely.

There are a number of ways in which the presented conceptual models could be extended to make them
more directly relevant to earthquake phenomena.

(i) This study uses linear slip-weakening friction which has constant fracture energy and governs both
initiation of cracks and their dynamic propagation. It becomes increasingly clear that fault behavior
during earthquakes is much more complex. Nucleation processes are likely governed by rate and state
friction laws which have characteristic nucleation lengths of order meters (e.g., Lapusta and Rice, 2003,
and references therein) although larger nucleation zones may result due to low effective normal stresses or
friction properties close to rate-neutral. Dynamic propagation is likely to activate a number of additional
weakening mechanisms, some of them related to shear heating, which could lead either to a combined
slip- and rate-weakening law or to nonlinear slip-weakening behavior with larger fracture energies for
larger slips (e.g., Rice, 2006). In addition, off-fault bulk dissipation could have a significant effect on
rupture dynamics and may delay intersonic transition (Templeton and Rice, 2006); that effect may be
possible to approximately represent by appropriate variations in fracture energy (Andrews, 2005). Seismic
observations and current theories indicate that, during dynamic propagation, characteristic crack lengths
could be significantly larger than nucleation lengths. Hence it is important to study rupture interaction
with heterogeneities on interfaces governed by nonlinear slip-weakening laws and also by combined laws
that incorporate rate and state laws at slow slip velocities and nonlinear slip-weakening laws at higher,
seismic slip velocities.

(ii) This study considers 2D models of in-plane sliding. Large strike-slip earthquakes occur on faults that have
long strike lengths (hundreds of km) but limited depth extent (15–20 km or so). Hence their dynamics,
while dominated by in-plane sliding, is also influenced by 3D aspects, especially the finite fault width,
which have been shown to have adverse effects on intersonic transition (e.g., Day, 1982a,b; Fukuyama
and Olsen, 2002; Dunham, 2006). This means that transition models presented in this 2D study would
need to employ larger heterogeneities and/or larger background prestress in 3D. We plan to extend this
study to 3D, using parameters informed by our 2D results. Note that most 3D studies of intersonic
transition used models without a free surface. A free surface would favor intersonic transition (e.g.,
Dunham and Archuleta, 2004; Kaneko et al., 2006).

(iii) Pulse-like rupture propagation on real faults may be more common than crack-like rupture propagation
(e.g., Das and Kostrov, 1988; Heaton, 1990; Zheng and Rice, 1998; Nielsen et al., 2000; Ben-Zion, 2001;
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Shi et al., 2007). Hence it would be important to consider the potential intersonic transition due to
preexisting heterogeneity for the case of pulse-like main rupture. Such main rupture can be created by
switching to more realistic friction laws discussed above. Note that recent laboratory experiments have
demonstrated intersonic transition of pulse-like ruptures (Lu et al., 2006).

(iv) Stress and strength distributions on faults in the Earth’s crust can be much more complicated than
assumed in this study. Certain types of heterogeneous stress distributions result in slower rupture speeds
than the speeds that would correspond to mean values of stress (e.g., Day, 1982b). While one can assume
any prestress distribution for a simulation of one instance of dynamic rupture, stress distribution on faults
before a large earthquake is the result of a complicated history of seismic and aseismic sliding. That
history would tend to redistribute stress and may exclude some prestress distributions before a large
earthquake and hence certain rupture behaviors (Lapusta and Liu, 2006). Hence it is important to
simulate long deformation histories of faults, to be able to study simulated earthquakes under prestress
distributions that naturally arise as the result of prior sliding history (Lapusta et al., 2000; Lapusta and
Rice, 2003; Lapusta and Liu, 2006).

In a broader context, this study shows the importance of incorporating heterogeneities into models of
rupture dynamics. This study indicates that a small preexisting crack or higher-stressed patch can completely
change the failure process on the interface, perturbing a sub-Rayleigh crack into becoming intersonic. This
emphasizes the need to systematically study effects of stress and strength heterogeneities on rupture behavior.
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Appendix A. Intersonic loading field due to an accelerating sub-Rayleigh mode II crack

For a sufficiently smooth dynamic shear stress field tðx; tÞ, let us define its propagation speed cðx; tÞ as

cðx; tÞ ¼ �
qtðx; tÞ=qt

qtðx; tÞ=qx
. (A.1)

A stress field with cðx; tÞ4cs and qtðx; tÞ=qt40 represents stress increase that travels along the interface with
an intersonic speed. We call such stress fields ‘‘intersonic loading fields’’ in this study. Intersonic loading fields
should promote failure of the interface with intersonic speeds (and they indeed do as this study demonstrates).
Simulations show that a sub-Rayleigh mode II crack spontaneously accelerating on a uniformly prestressed
interface governed by linear slip-weakening friction develops a shear stress peak ahead of its tip (e.g.,
Andrews, 1976, Figs. 2 and 3), and stress in front of the peak represents an intersonic loading field.

This can be theoretically understood by considering a self-similar singular crack model, in which the stress
field takes a general form of tðx; tÞ ¼ ~tðx=tÞ. If a self-similar crack expands bilaterally with rupture speed
vrocR under uniform prestress to on an interface with dynamic resistance td, the stress field ahead of the crack
between the dilatational and shear wave fronts can be expressed as (e.g., Burridge, 1973; Freund, 1990):

tðx; tÞ ¼ ~tðc ¼ x=tÞ ¼ to þ ðto � tdÞ
F ðh;oÞ

IðhÞ
, (A.2)

h ¼ 1=vr; a ¼ 1=cp; b ¼ 1=cs; o ¼ t=x ¼ 1=c, (A.3)

F ðh;oÞ ¼
Z o

a

4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
ðh2
� x2Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� x2

p dx, (A.4)
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IðhÞ ¼

Z 1
0

ðb2
þ 2x2Þ2 � 4x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ x2

p
ðh2
þ x2Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ x2

p dx. (A.5)

The propagation speed of a self-similar stress field tðx; tÞ is cðx; tÞ ¼ x=t. For points located between the
dilatational and shear wave fronts csox=tocp, stress propagates with intersonic speeds and increases if
vrocR:

qt
qt
¼ ðto � tdÞ

qF

qo
qo
qt
¼

to � td

x

4o2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � a2
p

ðh2
� o2Þ

3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� o2

p 40. (A.6)

Therefore, the stress field between the dilatational and shear wave fronts of a sub-Rayleigh self-similar crack
represents an intersonic loading field.

Larger sub-Rayleigh crack front speeds vr correspond to larger stress between the dilatational and shear
wave fronts. To show that, let us define Gð1=vr; 1=cÞ ¼ ð~tðcÞ � toÞ=ðto � tdÞ, hence Gðh;oÞ ¼ F ðh;oÞ=IðhÞ, and

qGðh;oÞ
qh

¼
IðhÞqF ðh;oÞ=qh� F ðh;oÞqIðhÞ=qh

I2ðhÞ
¼

qF
qh
=F � qI

qh
=I

FI3
. (A.7)

Notice that F ðh ¼ 1=vr;o ¼ 1=cÞ40 and Iðh ¼ 1=vrÞ40 for any 0ovrocR and cspcocp, and

qF

qh
¼ �

3

h

Z o

a

h2

h2
� x2

4x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
ðh2
� x2Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
� x2

p dxo�
3

h
F , (A.8)

qI

qh
¼ �

3

h

Z 1
0

h2

h2
þ x2
ðb2
þ 2x2Þ2 � 4x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ x2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ x2

p
ðh2
þ x2Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
þ x2

p dx4�
3

h
I . (A.9)

Combining Eqs. (A.7)–(A.9), we get

qGðh;oÞ
qh

o0; h ¼ 1=vr41=cR and 1=cppoo1=cs. (A.10)

One can also find that Gð1=vr; 1=csÞ ! 1:775 as vr ! cR, as shown in Fig. A.1a, which is consistent with the
value of Scrit computed by Andrews (1976).

The theoretical considerations above are based on a self-similar crack model, in which stress is inverse
square-root singular at the rupture tip for sub-Rayleigh propagation. However, as Andrews (1976) pointed
out, a crack governed by a linear slip-weakening law can be well approximated by the self-similar solution
after it propagates through several critical lengths Lc.
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representation of f ðx; tÞ.
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Appendix B. Expressions for stress transfer functional in the spectral boundary integral method

In simulations, we use a spectral boundary integral method (Section 2), in which Fourier coefficients of the
stress transfer functional f ðx; tÞ are related to Fourier coefficients of slip dðx; tÞ and its history (Perrin et al.,
1995; Geubelle and Rice, 1995; Lapusta et al., 2000). The simulated domain of length L is discretized into N

elements and we write

dðx; tÞ ¼
XN=2

k¼�N=2

d̂ðk; tÞ expði2pkx=LÞ, ðB:1Þ

f ðx; tÞ ¼
XN=2

k¼�N=2

f̂ ðk; tÞ expði2pkx=LÞ. ðB:2Þ

The Fourier coefficients f̂ ðk; tÞ and d̂ðk; tÞ are related by

f̂ ðk; tÞ ¼ �
m ~k
2

Z t

0

CIIð
~kcst
0Þd̂ðk; t� t0Þ ~kcs dt0, (B.3)

CIIðTÞ ¼ J1ðTÞ=T þ 4T ½W ðcpT=csÞ �W ðTÞ� � 4
cp

cs
J0ðcpT=csÞ þ 3J0ðTÞ, (B.4)

where ~k ¼ 2pk=L, CIIðTÞ is the mode II convolution kernel (Geubelle and Rice, 1995), J0ðTÞ and J1ðTÞ are
Bessel functions, and

W ðTÞ ¼ 1�

Z T

0

J1ðxÞ

x
dx. (B.5)

Integration of Eq. (B.3) by parts separates the stress functional into static (long-term) and transient dynamic
parts:

f̂ ðk; tÞ ¼ �m ~k 1�
c2s
c2p

 !
d̂ðk; tÞ þ

m ~k
2

Z t

0

K IIð
~kcst
0Þ
qd̂ðk; t� t0Þ

qt
dt0, (B.6)

K IIðTÞ ¼

Z 1
T

CIIðZÞdZ ¼ 2 1�
c2p

c2s

 !
�

Z T

0

CIIðZÞdZ. (B.7)

The integral term on the right-hand side of Eq. (B.6) describes dynamic stress changes due to waves. If it is
neglected, the resulting formulation is referred to as ‘‘quasi-dynamic’’. The quasi-dynamic formulation differs
from the quasi-static formulation in that it contains the radiation damping term, mV=ð2csÞ, which captures
some dynamic effects. The quasi-dynamic formulation is widely used in earthquake studies to simplify
computations. We use the quasi-dynamic formulation during slow and relatively long smooth initiation phases
discussed in Section 3, to speed up computations and to ensure that no stress waves from the initiation
procedure exist in the model at later times. After the initiation phase, we use fully dynamic formulation. Note
that kernel CIIðTÞ oscillates with decaying amplitude which allows to truncate the integral term (e.g., Lapusta
et al., 2000; Day et al., 2005). However, in this study we do not employ any truncation, to compute dynamic
stress fields as accurately as possible.

Appendix C. Some aspects of crack tip behavior during abrupt intersonic transition

As we show in Sections 3 and 4, if a secondary crack finds itself under the action of an intersonic loading
field generated by an approaching main crack, the tip of the secondary crack can rapidly accelerate to values
numerically indistinguishable from cR and then abruptly jump to an intersonic speed. While steady crack
propagation with cR would result in zero cohesive zone length and infinite slip velocities and hence it is
impossible, our simulations show that transient propagation with cR may be possible. The crack tip jumps to
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an intersonic speed by initiating sliding just one cell Dx away from the crack tip (Figs. 6 and 7). At that
moment, shear stress in the cell immediately in front of the tip is below static strength, and shear stress in the
next cell has reached static strength (Fig. 7). The same process is observed for smaller and smaller Dx, with the
shear stress in the intermediate cell closer and closer to static strength. Hence, in the limit Dx! 0, we expect
intersonic transition to occur right at the crack tip.

To understand why shear stress is lower immediately next to the crack tip than farther ahead, let us consider
a mode II crack tip that has propagated (for a short time) with the Rayleigh wave speed cR. How does the
wave radiation from that tip at time t0 influence the stress field in front of the tip at the time t4t0? To answer
that question, let us consider the stress transfer functional f ðx; tÞ (Eq. (3)) in the space–time domain (e.g.,
Cochard and Rice, 1997):

f ðx; tÞ ¼
mcs

2p

Z t

�1

Z þ1
�1

M
x� z

csðt� yÞ

� �
d;zzðz; yÞ
csðt� yÞ

dzdy, (C.1)

MðuÞ ¼

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðc2s=c2pÞu
2

q
� ð2� u2Þ

2

u2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p if jujo1;

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc2s=c2pÞu

2
q

u2
if 1ojujocp=cs;

0 if juj4cp=cs:

8>>>>>>>><
>>>>>>>>:

(C.2)

The integral kernel MðuÞ is plotted in Fig. A.1b. Note that MðuÞo0 for cR=csouo1. Let us denote the
location of the crack tip at the time t by xrðtÞ, where xrðtÞ ¼ xrðt0Þ þ cRðt� t0Þ.

Numerical calculation approximates the above integral with discretized space and time, effectively assuming
constant d;zz within the cell size Dx and time step Dt. Therefore rupture tip located at xrðt0Þ at the time t0
contributes to the stress functional f ðx; tÞ by an amount Df ðxrðt0Þ; t0Þ:

Df ðxrðt0Þ; t0Þ ¼
mcs

2p
M

x� xrðt0Þ

csðt� t0Þ

� �
d;zzðxrðt0Þ; t0Þ

csðt� t0Þ
DtDx. (C.3)

In Eq. (C.3), d;zzðxrðt0Þ; t0Þ is the value for the spatial cell located in the ruptured region ðxoxrðt0ÞÞ and, for
sufficiently small cell size, its sign can be obtained by considering z! x�r ðt0Þ. Since dðzXxrðt0Þ; t0Þ ¼ 0 and
d;zðx�r ðt0Þ; t0Þ ¼ d;zðxþr ðt0Þ; t0Þ ¼ 2exxðxrðt0Þ; t0ÞÞ ¼ 0, where exx is the normal strain in x direction, we find

0odðzoxrðt0Þ; t0Þ ¼ 1
2
d;zzðx�r ðt0Þ; t0Þðz� xrðt0ÞÞ

2
þ oððz� xrðt0ÞÞ

2
Þ, (C.4)

and hence d;zzðx�r ðt0Þ; t0Þ40. From properties of kernel M and Eqs. (C.3) and (C.4), we obtain for t4t0:

Df ðxrðt0Þ; t0Þo0; xrðt0Þ þ cRðt� t0Þoxoxrðt0Þ þ csðt� t0Þ;

Df ðxrðt0Þ; t0Þ40; xrðt0Þ þ csðt� t0Þoxoxrðt0Þ þ cpðt� t0Þ:

(
(C.5)

At time t, the crack tip is at xrðtÞ ¼ xrðt0Þ þ cRðt� t0Þ. Therefore Df ðxrðt0Þ; t0Þo0 for x 2 ½xrðtÞ;xrðtÞþ

ðcs � cRÞðt� t0Þ�, and Df ðxrðt0Þ; t0Þ40 for x 2 ½xrðtÞ þ ðcs � cRÞðt� t0Þ;xrðtÞ þ ðcp � cRÞðt� t0Þ�. This means
that the crack tip traveling with cR at time t0 contributes negatively to shear stress at the part of the interface
immediately in front of the current rupture tip (at time t) and positively to shear stress a little farther ahead.
This relation holds for all times t0ot for which the crack has propagated with a speed at or close to cR. Piling
up of these contribution from different t0ot may explain the observed stress distribution during intersonic
transition in our simulations (Fig. 7), where shear stress is lower in the cell immediately in front of the crack tip
and reaches static strength in the next cell. In the continuum solution, the negative contribution of the crack
tip to location immediately ahead may be exactly balanced by contributions from other parts of the crack, as
our simulations suggest for decreasing cell sizes. But in a discretized calculation, contributions from the crack
front are evidently overemphasized, which is not surprising since one would expect largest numerical errors to
come from crack tips where slip velocity and stress vary rapidly.
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